
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-clone.1'

$ man git-clone.1

GIT-CLONE(1) Git Manual GIT-CLONE(1)

NAME

 git-clone - Clone a repository into a new directory

SYNOPSIS

 git clone [--template=<template_directory>]

 [-l] [-s] [--no-hardlinks] [-q] [-n] [--bare] [--mirror]

 [-o <name>] [-b <name>] [-u <upload-pack>] [--reference <repository>]

 [--dissociate] [--separate-git-dir <git dir>]

 [--depth <depth>] [--[no-]single-branch] [--no-tags]

 [--recurse-submodules[=<pathspec>]] [--[no-]shallow-submodules]

 [--[no-]remote-submodules] [--jobs <n>] [--sparse] [--[no-]reject-shallow]

 [--filter=<filter>] [--] <repository>

 [<directory>]

DESCRIPTION

 Clones a repository into a newly created directory, creates remote-tracking branches for

 each branch in the cloned repository (visible using git branch --remotes), and creates and

 checks out an initial branch that is forked from the cloned repository?s currently active

 branch.

 After the clone, a plain git fetch without arguments will update all the remote-tracking

 branches, and a git pull without arguments will in addition merge the remote master branch

 into the current master branch, if any (this is untrue when "--single-branch" is given;

 see below).

 This default configuration is achieved by creating references to the remote branch heads Page 1/9

 under refs/remotes/origin and by initializing remote.origin.url and remote.origin.fetch

 configuration variables.

OPTIONS

 -l, --local

 When the repository to clone from is on a local machine, this flag bypasses the normal

 "Git aware" transport mechanism and clones the repository by making a copy of HEAD and

 everything under objects and refs directories. The files under .git/objects/ directory

 are hardlinked to save space when possible.

 If the repository is specified as a local path (e.g., /path/to/repo), this is the

 default, and --local is essentially a no-op. If the repository is specified as a URL,

 then this flag is ignored (and we never use the local optimizations). Specifying

 --no-local will override the default when /path/to/repo is given, using the regular

 Git transport instead.

 NOTE: this operation can race with concurrent modification to the source repository,

 similar to running cp -r src dst while modifying src.

 --no-hardlinks

 Force the cloning process from a repository on a local filesystem to copy the files

 under the .git/objects directory instead of using hardlinks. This may be desirable if

 you are trying to make a back-up of your repository.

 -s, --shared

 When the repository to clone is on the local machine, instead of using hard links,

 automatically setup .git/objects/info/alternates to share the objects with the source

 repository. The resulting repository starts out without any object of its own.

 NOTE: this is a possibly dangerous operation; do not use it unless you understand what

 it does. If you clone your repository using this option and then delete branches (or

 use any other Git command that makes any existing commit unreferenced) in the source

 repository, some objects may become unreferenced (or dangling). These objects may be

 removed by normal Git operations (such as git commit) which automatically call git

 maintenance run --auto. (See git-maintenance(1).) If these objects are removed and

 were referenced by the cloned repository, then the cloned repository will become

 corrupt.

 Note that running git repack without the --local option in a repository cloned with

 --shared will copy objects from the source repository into a pack in the cloned Page 2/9

 repository, removing the disk space savings of clone --shared. It is safe, however, to

 run git gc, which uses the --local option by default.

 If you want to break the dependency of a repository cloned with --shared on its source

 repository, you can simply run git repack -a to copy all objects from the source

 repository into a pack in the cloned repository.

 --reference[-if-able] <repository>

 If the reference repository is on the local machine, automatically setup

 .git/objects/info/alternates to obtain objects from the reference repository. Using an

 already existing repository as an alternate will require fewer objects to be copied

 from the repository being cloned, reducing network and local storage costs. When using

 the --reference-if-able, a non existing directory is skipped with a warning instead of

 aborting the clone.

 NOTE: see the NOTE for the --shared option, and also the --dissociate option.

 --dissociate

 Borrow the objects from reference repositories specified with the --reference options

 only to reduce network transfer, and stop borrowing from them after a clone is made by

 making necessary local copies of borrowed objects. This option can also be used when

 cloning locally from a repository that already borrows objects from another

 repository?the new repository will borrow objects from the same repository, and this

 option can be used to stop the borrowing.

 -q, --quiet

 Operate quietly. Progress is not reported to the standard error stream.

 -v, --verbose

 Run verbosely. Does not affect the reporting of progress status to the standard error

 stream.

 --progress

 Progress status is reported on the standard error stream by default when it is

 attached to a terminal, unless --quiet is specified. This flag forces progress status

 even if the standard error stream is not directed to a terminal.

 --server-option=<option>

 Transmit the given string to the server when communicating using protocol version 2.

 The given string must not contain a NUL or LF character. The server?s handling of

 server options, including unknown ones, is server-specific. When multiple Page 3/9

 --server-option=<option> are given, they are all sent to the other side in the order

 listed on the command line.

 -n, --no-checkout

 No checkout of HEAD is performed after the clone is complete.

 --[no-]reject-shallow

 Fail if the source repository is a shallow repository. The clone.rejectShallow

 configuration variable can be used to specify the default.

 --bare

 Make a bare Git repository. That is, instead of creating <directory> and placing the

 administrative files in <directory>/.git, make the <directory> itself the $GIT_DIR.

 This obviously implies the --no-checkout because there is nowhere to check out the

 working tree. Also the branch heads at the remote are copied directly to corresponding

 local branch heads, without mapping them to refs/remotes/origin/. When this option is

 used, neither remote-tracking branches nor the related configuration variables are

 created.

 --sparse

 Initialize the sparse-checkout file so the working directory starts with only the

 files in the root of the repository. The sparse-checkout file can be modified to grow

 the working directory as needed.

 --filter=<filter-spec>

 Use the partial clone feature and request that the server sends a subset of reachable

 objects according to a given object filter. When using --filter, the supplied

 <filter-spec> is used for the partial clone filter. For example, --filter=blob:none

 will filter out all blobs (file contents) until needed by Git. Also,

 --filter=blob:limit=<size> will filter out all blobs of size at least <size>. For more

 details on filter specifications, see the --filter option in git-rev-list(1).

 --mirror

 Set up a mirror of the source repository. This implies --bare. Compared to --bare,

 --mirror not only maps local branches of the source to local branches of the target,

 it maps all refs (including remote-tracking branches, notes etc.) and sets up a

 refspec configuration such that all these refs are overwritten by a git remote update

 in the target repository.

 -o <name>, --origin <name> Page 4/9

 Instead of using the remote name origin to keep track of the upstream repository, use

 <name>. Overrides clone.defaultRemoteName from the config.

 -b <name>, --branch <name>

 Instead of pointing the newly created HEAD to the branch pointed to by the cloned

 repository?s HEAD, point to <name> branch instead. In a non-bare repository, this is

 the branch that will be checked out. --branch can also take tags and detaches the

 HEAD at that commit in the resulting repository.

 -u <upload-pack>, --upload-pack <upload-pack>

 When given, and the repository to clone from is accessed via ssh, this specifies a

 non-default path for the command run on the other end.

 --template=<template_directory>

 Specify the directory from which templates will be used; (See the "TEMPLATE DIRECTORY"

 section of git-init(1).)

 -c <key>=<value>, --config <key>=<value>

 Set a configuration variable in the newly-created repository; this takes effect

 immediately after the repository is initialized, but before the remote history is

 fetched or any files checked out. The key is in the same format as expected by git-

 config(1) (e.g., core.eol=true). If multiple values are given for the same key, each

 value will be written to the config file. This makes it safe, for example, to add

 additional fetch refspecs to the origin remote.

 Due to limitations of the current implementation, some configuration variables do not

 take effect until after the initial fetch and checkout. Configuration variables known

 to not take effect are: remote.<name>.mirror and remote.<name>.tagOpt. Use the

 corresponding --mirror and --no-tags options instead.

 --depth <depth>

 Create a shallow clone with a history truncated to the specified number of commits.

 Implies --single-branch unless --no-single-branch is given to fetch the histories near

 the tips of all branches. If you want to clone submodules shallowly, also pass

 --shallow-submodules.

 --shallow-since=<date>

 Create a shallow clone with a history after the specified time.

 --shallow-exclude=<revision>

 Create a shallow clone with a history, excluding commits reachable from a specified Page 5/9

 remote branch or tag. This option can be specified multiple times.

 --[no-]single-branch

 Clone only the history leading to the tip of a single branch, either specified by the

 --branch option or the primary branch remote?s HEAD points at. Further fetches into

 the resulting repository will only update the remote-tracking branch for the branch

 this option was used for the initial cloning. If the HEAD at the remote did not point

 at any branch when --single-branch clone was made, no remote-tracking branch is

 created.

 --no-tags

 Don?t clone any tags, and set remote.<remote>.tagOpt=--no-tags in the config, ensuring

 that future git pull and git fetch operations won?t follow any tags. Subsequent

 explicit tag fetches will still work, (see git-fetch(1)).

 Can be used in conjunction with --single-branch to clone and maintain a branch with no

 references other than a single cloned branch. This is useful e.g. to maintain minimal

 clones of the default branch of some repository for search indexing.

 --recurse-submodules[=<pathspec>]

 After the clone is created, initialize and clone submodules within based on the

 provided pathspec. If no pathspec is provided, all submodules are initialized and

 cloned. This option can be given multiple times for pathspecs consisting of multiple

 entries. The resulting clone has submodule.active set to the provided pathspec, or "."

 (meaning all submodules) if no pathspec is provided.

 Submodules are initialized and cloned using their default settings. This is equivalent

 to running git submodule update --init --recursive <pathspec> immediately after the

 clone is finished. This option is ignored if the cloned repository does not have a

 worktree/checkout (i.e. if any of --no-checkout/-n, --bare, or --mirror is given)

 --[no-]shallow-submodules

 All submodules which are cloned will be shallow with a depth of 1.

 --[no-]remote-submodules

 All submodules which are cloned will use the status of the submodule?s remote-tracking

 branch to update the submodule, rather than the superproject?s recorded SHA-1.

 Equivalent to passing --remote to git submodule update.

 --separate-git-dir=<git dir>

 Instead of placing the cloned repository where it is supposed to be, place the cloned Page 6/9

 repository at the specified directory, then make a filesystem-agnostic Git symbolic

 link to there. The result is Git repository can be separated from working tree.

 -j <n>, --jobs <n>

 The number of submodules fetched at the same time. Defaults to the submodule.fetchJobs

 option.

 <repository>

 The (possibly remote) repository to clone from. See the GIT URLS section below for

 more information on specifying repositories.

 <directory>

 The name of a new directory to clone into. The "humanish" part of the source

 repository is used if no directory is explicitly given (repo for /path/to/repo.git and

 foo for host.xz:foo/.git). Cloning into an existing directory is only allowed if the

 directory is empty.

GIT URLS

 In general, URLs contain information about the transport protocol, the address of the

 remote server, and the path to the repository. Depending on the transport protocol, some

 of this information may be absent.

 Git supports ssh, git, http, and https protocols (in addition, ftp, and ftps can be used

 for fetching, but this is inefficient and deprecated; do not use it).

 The native transport (i.e. git:// URL) does no authentication and should be used with

 caution on unsecured networks.

 The following syntaxes may be used with them:

 ? ssh://[user@]host.xz[:port]/path/to/repo.git/

 ? git://host.xz[:port]/path/to/repo.git/

 ? http[s]://host.xz[:port]/path/to/repo.git/

 ? ftp[s]://host.xz[:port]/path/to/repo.git/

 An alternative scp-like syntax may also be used with the ssh protocol:

 ? [user@]host.xz:path/to/repo.git/

 This syntax is only recognized if there are no slashes before the first colon. This helps

 differentiate a local path that contains a colon. For example the local path foo:bar could

 be specified as an absolute path or ./foo:bar to avoid being misinterpreted as an ssh url.

 The ssh and git protocols additionally support ~username expansion:

 ? ssh://[user@]host.xz[:port]/~[user]/path/to/repo.git/ Page 7/9

 ? git://host.xz[:port]/~[user]/path/to/repo.git/

 ? [user@]host.xz:/~[user]/path/to/repo.git/

 For local repositories, also supported by Git natively, the following syntaxes may be

 used:

 ? /path/to/repo.git/

 ? file:///path/to/repo.git/

 These two syntaxes are mostly equivalent, except the former implies --local option.

 git clone, git fetch and git pull, but not git push, will also accept a suitable bundle

 file. See git-bundle(1).

 When Git doesn?t know how to handle a certain transport protocol, it attempts to use the

 remote-<transport> remote helper, if one exists. To explicitly request a remote helper,

 the following syntax may be used:

 ? <transport>::<address>

 where <address> may be a path, a server and path, or an arbitrary URL-like string

 recognized by the specific remote helper being invoked. See gitremote-helpers(7) for

 details.

 If there are a large number of similarly-named remote repositories and you want to use a

 different format for them (such that the URLs you use will be rewritten into URLs that

 work), you can create a configuration section of the form:

 [url "<actual url base>"]

 insteadOf = <other url base>

 For example, with this:

 [url "git://git.host.xz/"]

 insteadOf = host.xz:/path/to/

 insteadOf = work:

 a URL like "work:repo.git" or like "host.xz:/path/to/repo.git" will be rewritten in any

 context that takes a URL to be "git://git.host.xz/repo.git".

 If you want to rewrite URLs for push only, you can create a configuration section of the

 form:

 [url "<actual url base>"]

 pushInsteadOf = <other url base>

 For example, with this:

 [url "ssh://example.org/"] Page 8/9

 pushInsteadOf = git://example.org/

 a URL like "git://example.org/path/to/repo.git" will be rewritten to

 "ssh://example.org/path/to/repo.git" for pushes, but pulls will still use the original

 URL.

EXAMPLES

 ? Clone from upstream:

 $ git clone git://git.kernel.org/pub/scm/.../linux.git my-linux

 $ cd my-linux

 $ make

 ? Make a local clone that borrows from the current directory, without checking things

 out:

 $ git clone -l -s -n . ../copy

 $ cd ../copy

 $ git show-branch

 ? Clone from upstream while borrowing from an existing local directory:

 $ git clone --reference /git/linux.git \

 git://git.kernel.org/pub/scm/.../linux.git \

 my-linux

 $ cd my-linux

 ? Create a bare repository to publish your changes to the public:

 $ git clone --bare -l /home/proj/.git /pub/scm/proj.git

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-CLONE(1)

Page 9/9

