
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-archive.1'

$ man git-archive.1

GIT-ARCHIVE(1) Git Manual GIT-ARCHIVE(1)

NAME

 git-archive - Create an archive of files from a named tree

SYNOPSIS

 git archive [--format=<fmt>] [--list] [--prefix=<prefix>/] [<extra>]

 [-o <file> | --output=<file>] [--worktree-attributes]

 [--remote=<repo> [--exec=<git-upload-archive>]] <tree-ish>

 [<path>...]

DESCRIPTION

 Creates an archive of the specified format containing the tree structure for the named

 tree, and writes it out to the standard output. If <prefix> is specified it is prepended

 to the filenames in the archive.

 git archive behaves differently when given a tree ID versus when given a commit ID or tag

 ID. In the first case the current time is used as the modification time of each file in

 the archive. In the latter case the commit time as recorded in the referenced commit

 object is used instead. Additionally the commit ID is stored in a global extended pax

 header if the tar format is used; it can be extracted using git get-tar-commit-id. In ZIP

 files it is stored as a file comment.

OPTIONS

 --format=<fmt>

 Format of the resulting archive: tar or zip. If this option is not given, and the

 output file is specified, the format is inferred from the filename if possible (e.g.

 writing to "foo.zip" makes the output to be in the zip format). Otherwise the output Page 1/5

 format is tar.

 -l, --list

 Show all available formats.

 -v, --verbose

 Report progress to stderr.

 --prefix=<prefix>/

 Prepend <prefix>/ to each filename in the archive.

 -o <file>, --output=<file>

 Write the archive to <file> instead of stdout.

 --add-file=<file>

 Add a non-tracked file to the archive. Can be repeated to add multiple files. The path

 of the file in the archive is built by concatenating the value for --prefix (if any)

 and the basename of <file>.

 --worktree-attributes

 Look for attributes in .gitattributes files in the working tree as well (see the

 section called ?ATTRIBUTES?).

 <extra>

 This can be any options that the archiver backend understands. See next section.

 --remote=<repo>

 Instead of making a tar archive from the local repository, retrieve a tar archive from

 a remote repository. Note that the remote repository may place restrictions on which

 sha1 expressions may be allowed in <tree-ish>. See git-upload-archive(1) for details.

 --exec=<git-upload-archive>

 Used with --remote to specify the path to the git-upload-archive on the remote side.

 <tree-ish>

 The tree or commit to produce an archive for.

 <path>

 Without an optional path parameter, all files and subdirectories of the current

 working directory are included in the archive. If one or more paths are specified,

 only these are included.

BACKEND EXTRA OPTIONS

 zip

 -<digit> Page 2/5

 Specify compression level. Larger values allow the command to spend more time to

 compress to smaller size. Supported values are from -0 (store-only) to -9 (best

 ratio). Default is -6 if not given.

 tar

 -<number>

 Specify compression level. The value will be passed to the compression command

 configured in tar.<format>.command. See manual page of the configured command for the

 list of supported levels and the default level if this option isn?t specified.

CONFIGURATION

 tar.umask

 This variable can be used to restrict the permission bits of tar archive entries. The

 default is 0002, which turns off the world write bit. The special value "user"

 indicates that the archiving user?s umask will be used instead. See umask(2) for

 details. If --remote is used then only the configuration of the remote repository

 takes effect.

 tar.<format>.command

 This variable specifies a shell command through which the tar output generated by git

 archive should be piped. The command is executed using the shell with the generated

 tar file on its standard input, and should produce the final output on its standard

 output. Any compression-level options will be passed to the command (e.g., "-9"). An

 output file with the same extension as <format> will be use this format if no other

 format is given.

 The "tar.gz" and "tgz" formats are defined automatically and default to gzip -cn. You

 may override them with custom commands.

 tar.<format>.remote

 If true, enable <format> for use by remote clients via git-upload-archive(1). Defaults

 to false for user-defined formats, but true for the "tar.gz" and "tgz" formats.

ATTRIBUTES

 export-ignore

 Files and directories with the attribute export-ignore won?t be added to archive

 files. See gitattributes(5) for details.

 export-subst

 If the attribute export-subst is set for a file then Git will expand several Page 3/5

 placeholders when adding this file to an archive. See gitattributes(5) for details.

 Note that attributes are by default taken from the .gitattributes files in the tree that

 is being archived. If you want to tweak the way the output is generated after the fact

 (e.g. you committed without adding an appropriate export-ignore in its .gitattributes),

 adjust the checked out .gitattributes file as necessary and use --worktree-attributes

 option. Alternatively you can keep necessary attributes that should apply while archiving

 any tree in your $GIT_DIR/info/attributes file.

EXAMPLES

 git archive --format=tar --prefix=junk/ HEAD | (cd /var/tmp/ && tar xf -)

 Create a tar archive that contains the contents of the latest commit on the current

 branch, and extract it in the /var/tmp/junk directory.

 git archive --format=tar --prefix=git-1.4.0/ v1.4.0 | gzip >git-1.4.0.tar.gz

 Create a compressed tarball for v1.4.0 release.

 git archive --format=tar.gz --prefix=git-1.4.0/ v1.4.0 >git-1.4.0.tar.gz

 Same as above, but using the builtin tar.gz handling.

 git archive --prefix=git-1.4.0/ -o git-1.4.0.tar.gz v1.4.0

 Same as above, but the format is inferred from the output file.

 git archive --format=tar --prefix=git-1.4.0/ v1.4.0^{tree} | gzip >git-1.4.0.tar.gz

 Create a compressed tarball for v1.4.0 release, but without a global extended pax

 header.

 git archive --format=zip --prefix=git-docs/ HEAD:Documentation/ > git-1.4.0-docs.zip

 Put everything in the current head?s Documentation/ directory into git-1.4.0-docs.zip,

 with the prefix git-docs/.

 git archive -o latest.zip HEAD

 Create a Zip archive that contains the contents of the latest commit on the current

 branch. Note that the output format is inferred by the extension of the output file.

 git config tar.tar.xz.command "xz -c"

 Configure a "tar.xz" format for making LZMA-compressed tarfiles. You can use it

 specifying --format=tar.xz, or by creating an output file like -o foo.tar.xz.

SEE ALSO

 gitattributes(5)

GIT

 Part of the git(1) suite Page 4/5

Git 2.34.1 07/07/2023 GIT-ARCHIVE(1)

Page 5/5

