
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-add.1'

$ man git-add.1

GIT-ADD(1) Git Manual GIT-ADD(1)

NAME

 git-add - Add file contents to the index

SYNOPSIS

 git add [--verbose | -v] [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]

 [--edit | -e] [--[no-]all | --[no-]ignore-removal | [--update | -u]] [--sparse]

 [--intent-to-add | -N] [--refresh] [--ignore-errors] [--ignore-missing] [--renormalize]

 [--chmod=(+|-)x] [--pathspec-from-file=<file> [--pathspec-file-nul]]

 [--] [<pathspec>...]

DESCRIPTION

 This command updates the index using the current content found in the working tree, to

 prepare the content staged for the next commit. It typically adds the current content of

 existing paths as a whole, but with some options it can also be used to add content with

 only part of the changes made to the working tree files applied, or remove paths that do

 not exist in the working tree anymore.

 The "index" holds a snapshot of the content of the working tree, and it is this snapshot

 that is taken as the contents of the next commit. Thus after making any changes to the

 working tree, and before running the commit command, you must use the add command to add

 any new or modified files to the index.

 This command can be performed multiple times before a commit. It only adds the content of

 the specified file(s) at the time the add command is run; if you want subsequent changes

 included in the next commit, then you must run git add again to add the new content to the

 index. Page 1/9

 The git status command can be used to obtain a summary of which files have changes that

 are staged for the next commit.

 The git add command will not add ignored files by default. If any ignored files were

 explicitly specified on the command line, git add will fail with a list of ignored files.

 Ignored files reached by directory recursion or filename globbing performed by Git (quote

 your globs before the shell) will be silently ignored. The git add command can be used to

 add ignored files with the -f (force) option.

 Please see git-commit(1) for alternative ways to add content to a commit.

OPTIONS

 <pathspec>...

 Files to add content from. Fileglobs (e.g. *.c) can be given to add all matching

 files. Also a leading directory name (e.g. dir to add dir/file1 and dir/file2) can be

 given to update the index to match the current state of the directory as a whole (e.g.

 specifying dir will record not just a file dir/file1 modified in the working tree, a

 file dir/file2 added to the working tree, but also a file dir/file3 removed from the

 working tree). Note that older versions of Git used to ignore removed files; use

 --no-all option if you want to add modified or new files but ignore removed ones.

 For more details about the <pathspec> syntax, see the pathspec entry in

 gitglossary(7).

 -n, --dry-run

 Don?t actually add the file(s), just show if they exist and/or will be ignored.

 -v, --verbose

 Be verbose.

 -f, --force

 Allow adding otherwise ignored files.

 --sparse

 Allow updating index entries outside of the sparse-checkout cone. Normally, git add

 refuses to update index entries whose paths do not fit within the sparse-checkout

 cone, since those files might be removed from the working tree without warning. See

 git-sparse-checkout(1) for more details.

 -i, --interactive

 Add modified contents in the working tree interactively to the index. Optional path

 arguments may be supplied to limit operation to a subset of the working tree. See Page 2/9

 ?Interactive mode? for details.

 -p, --patch

 Interactively choose hunks of patch between the index and the work tree and add them

 to the index. This gives the user a chance to review the difference before adding

 modified contents to the index.

 This effectively runs add --interactive, but bypasses the initial command menu and

 directly jumps to the patch subcommand. See ?Interactive mode? for details.

 -e, --edit

 Open the diff vs. the index in an editor and let the user edit it. After the editor

 was closed, adjust the hunk headers and apply the patch to the index.

 The intent of this option is to pick and choose lines of the patch to apply, or even

 to modify the contents of lines to be staged. This can be quicker and more flexible

 than using the interactive hunk selector. However, it is easy to confuse oneself and

 create a patch that does not apply to the index. See EDITING PATCHES below.

 -u, --update

 Update the index just where it already has an entry matching <pathspec>. This removes

 as well as modifies index entries to match the working tree, but adds no new files.

 If no <pathspec> is given when -u option is used, all tracked files in the entire

 working tree are updated (old versions of Git used to limit the update to the current

 directory and its subdirectories).

 -A, --all, --no-ignore-removal

 Update the index not only where the working tree has a file matching <pathspec> but

 also where the index already has an entry. This adds, modifies, and removes index

 entries to match the working tree.

 If no <pathspec> is given when -A option is used, all files in the entire working tree

 are updated (old versions of Git used to limit the update to the current directory and

 its subdirectories).

 --no-all, --ignore-removal

 Update the index by adding new files that are unknown to the index and files modified

 in the working tree, but ignore files that have been removed from the working tree.

 This option is a no-op when no <pathspec> is used.

 This option is primarily to help users who are used to older versions of Git, whose

 "git add <pathspec>..." was a synonym for "git add --no-all <pathspec>...", i.e. Page 3/9

 ignored removed files.

 -N, --intent-to-add

 Record only the fact that the path will be added later. An entry for the path is

 placed in the index with no content. This is useful for, among other things, showing

 the unstaged content of such files with git diff and committing them with git commit

 -a.

 --refresh

 Don?t add the file(s), but only refresh their stat() information in the index.

 --ignore-errors

 If some files could not be added because of errors indexing them, do not abort the

 operation, but continue adding the others. The command shall still exit with non-zero

 status. The configuration variable add.ignoreErrors can be set to true to make this

 the default behaviour.

 --ignore-missing

 This option can only be used together with --dry-run. By using this option the user

 can check if any of the given files would be ignored, no matter if they are already

 present in the work tree or not.

 --no-warn-embedded-repo

 By default, git add will warn when adding an embedded repository to the index without

 using git submodule add to create an entry in .gitmodules. This option will suppress

 the warning (e.g., if you are manually performing operations on submodules).

 --renormalize

 Apply the "clean" process freshly to all tracked files to forcibly add them again to

 the index. This is useful after changing core.autocrlf configuration or the text

 attribute in order to correct files added with wrong CRLF/LF line endings. This option

 implies -u.

 --chmod=(+|-)x

 Override the executable bit of the added files. The executable bit is only changed in

 the index, the files on disk are left unchanged.

 --pathspec-from-file=<file>

 Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then

 standard input is used. Pathspec elements are separated by LF or CR/LF. Pathspec

 elements can be quoted as explained for the configuration variable core.quotePath (see Page 4/9

 git-config(1)). See also --pathspec-file-nul and global --literal-pathspecs.

 --pathspec-file-nul

 Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL

 character and all other characters are taken literally (including newlines and

 quotes).

 --

 This option can be used to separate command-line options from the list of files,

 (useful when filenames might be mistaken for command-line options).

EXAMPLES

 ? Adds content from all *.txt files under Documentation directory and its

 subdirectories:

 $ git add Documentation/*.txt

 Note that the asterisk * is quoted from the shell in this example; this lets the

 command include the files from subdirectories of Documentation/ directory.

 ? Considers adding content from all git-*.sh scripts:

 $ git add git-*.sh

 Because this example lets the shell expand the asterisk (i.e. you are listing the

 files explicitly), it does not consider subdir/git-foo.sh.

INTERACTIVE MODE

 When the command enters the interactive mode, it shows the output of the status

 subcommand, and then goes into its interactive command loop.

 The command loop shows the list of subcommands available, and gives a prompt "What now> ".

 In general, when the prompt ends with a single >, you can pick only one of the choices

 given and type return, like this:

 *** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

 What now> 1

 You also could say s or sta or status above as long as the choice is unique.

 The main command loop has 6 subcommands (plus help and quit).

 status

 This shows the change between HEAD and index (i.e. what will be committed if you say

 git commit), and between index and working tree files (i.e. what you could stage Page 5/9

 further before git commit using git add) for each path. A sample output looks like

 this:

 staged unstaged path

 1: binary nothing foo.png

 2: +403/-35 +1/-1 git-add--interactive.perl

 It shows that foo.png has differences from HEAD (but that is binary so line count

 cannot be shown) and there is no difference between indexed copy and the working tree

 version (if the working tree version were also different, binary would have been shown

 in place of nothing). The other file, git-add--interactive.perl, has 403 lines added

 and 35 lines deleted if you commit what is in the index, but working tree file has

 further modifications (one addition and one deletion).

 update

 This shows the status information and issues an "Update>>" prompt. When the prompt

 ends with double >>, you can make more than one selection, concatenated with

 whitespace or comma. Also you can say ranges. E.g. "2-5 7,9" to choose 2,3,4,5,7,9

 from the list. If the second number in a range is omitted, all remaining patches are

 taken. E.g. "7-" to choose 7,8,9 from the list. You can say * to choose everything.

 What you chose are then highlighted with *, like this:

 staged unstaged path

 1: binary nothing foo.png

 * 2: +403/-35 +1/-1 git-add--interactive.perl

 To remove selection, prefix the input with - like this:

 Update>> -2

 After making the selection, answer with an empty line to stage the contents of working

 tree files for selected paths in the index.

 revert

 This has a very similar UI to update, and the staged information for selected paths

 are reverted to that of the HEAD version. Reverting new paths makes them untracked.

 add untracked

 This has a very similar UI to update and revert, and lets you add untracked paths to

 the index.

 patch

 This lets you choose one path out of a status like selection. After choosing the path, Page 6/9

 it presents the diff between the index and the working tree file and asks you if you

 want to stage the change of each hunk. You can select one of the following options and

 type return:

 y - stage this hunk

 n - do not stage this hunk

 q - quit; do not stage this hunk or any of the remaining ones

 a - stage this hunk and all later hunks in the file

 d - do not stage this hunk or any of the later hunks in the file

 g - select a hunk to go to

 / - search for a hunk matching the given regex

 j - leave this hunk undecided, see next undecided hunk

 J - leave this hunk undecided, see next hunk

 k - leave this hunk undecided, see previous undecided hunk

 K - leave this hunk undecided, see previous hunk

 s - split the current hunk into smaller hunks

 e - manually edit the current hunk

 ? - print help

 After deciding the fate for all hunks, if there is any hunk that was chosen, the index

 is updated with the selected hunks.

 You can omit having to type return here, by setting the configuration variable

 interactive.singleKey to true.

 diff

 This lets you review what will be committed (i.e. between HEAD and index).

EDITING PATCHES

 Invoking git add -e or selecting e from the interactive hunk selector will open a patch in

 your editor; after the editor exits, the result is applied to the index. You are free to

 make arbitrary changes to the patch, but note that some changes may have confusing

 results, or even result in a patch that cannot be applied. If you want to abort the

 operation entirely (i.e., stage nothing new in the index), simply delete all lines of the

 patch. The list below describes some common things you may see in a patch, and which

 editing operations make sense on them.

 added content

 Added content is represented by lines beginning with "+". You can prevent staging any Page 7/9

 addition lines by deleting them.

 removed content

 Removed content is represented by lines beginning with "-". You can prevent staging

 their removal by converting the "-" to a " " (space).

 modified content

 Modified content is represented by "-" lines (removing the old content) followed by

 "+" lines (adding the replacement content). You can prevent staging the modification

 by converting "-" lines to " ", and removing "+" lines. Beware that modifying only

 half of the pair is likely to introduce confusing changes to the index.

 There are also more complex operations that can be performed. But beware that because the

 patch is applied only to the index and not the working tree, the working tree will appear

 to "undo" the change in the index. For example, introducing a new line into the index that

 is in neither the HEAD nor the working tree will stage the new line for commit, but the

 line will appear to be reverted in the working tree.

 Avoid using these constructs, or do so with extreme caution.

 removing untouched content

 Content which does not differ between the index and working tree may be shown on

 context lines, beginning with a " " (space). You can stage context lines for removal

 by converting the space to a "-". The resulting working tree file will appear to

 re-add the content.

 modifying existing content

 One can also modify context lines by staging them for removal (by converting " " to

 "-") and adding a "+" line with the new content. Similarly, one can modify "+" lines

 for existing additions or modifications. In all cases, the new modification will

 appear reverted in the working tree.

 new content

 You may also add new content that does not exist in the patch; simply add new lines,

 each starting with "+". The addition will appear reverted in the working tree.

 There are also several operations which should be avoided entirely, as they will make the

 patch impossible to apply:

 ? adding context (" ") or removal ("-") lines

 ? deleting context or removal lines

 ? modifying the contents of context or removal lines Page 8/9

SEE ALSO

 git-status(1) git-rm(1) git-reset(1) git-mv(1) git-commit(1) git-update-index(1)

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-ADD(1)

Page 9/9

