
Rocky Enterprise Linux 9.2 Manual Pages on command 'getpriority.2'

$ man getpriority.2

GETPRIORITY(2) Linux Programmer's Manual GETPRIORITY(2)

NAME

 getpriority, setpriority - get/set program scheduling priority

SYNOPSIS

 #include <sys/time.h>

 #include <sys/resource.h>

 int getpriority(int which, id_t who);

 int setpriority(int which, id_t who, int prio);

DESCRIPTION

 The scheduling priority of the process, process group, or user, as indicated by which and

 who is obtained with the getpriority() call and set with the setpriority() call. The

 process attribute dealt with by these system calls is the same attribute (also known as

 the "nice" value) that is dealt with by nice(2).

 The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted

 relative to which (a process identifier for PRIO_PROCESS, process group identifier for

 PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who denotes (respectively) the

 calling process, the process group of the calling process, or the real user ID of the

 calling process.

 The prio argument is a value in the range -20 to 19 (but see NOTES below). with -20 being

 the highest priority and 19 being the lowest priority. Attempts to set a priority outside

 this range are silently clamped to the range. The default priority is 0; lower values

 give a process a higher scheduling priority.

 The getpriority() call returns the highest priority (lowest numerical value) enjoyed by Page 1/3

 any of the specified processes. The setpriority() call sets the priorities of all of the

 specified processes to the specified value.

 Traditionally, only a privileged process could lower the nice value (i.e., set a higher

 priority). However, since Linux 2.6.12, an unprivileged process can decrease the nice

 value of a target process that has a suitable RLIMIT_NICE soft limit; see getrlimit(2) for

 details.

RETURN VALUE

 On success, getpriority() returns the calling thread's nice value, which may be a negative

 number. On error, it returns -1 and sets errno to indicate the cause of the error.

 Since a successful call to getpriority() can legitimately return the value -1, it is nec?

 essary to clear the external variable errno prior to the call, then check errno afterward

 to determine if -1 is an error or a legitimate value.

 setpriority() returns 0 on success. On error, it returns -1 and sets errno to indicate

 the cause of the error.

ERRORS

 EINVAL which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

 ESRCH No process was located using the which and who values specified.

 In addition to the errors indicated above, setpriority() may fail if:

 EACCES The caller attempted to set a lower nice value (i.e., a higher process priority),

 but did not have the required privilege (on Linux: did not have the CAP_SYS_NICE

 capability).

 EPERM A process was located, but its effective user ID did not match either the effective

 or the real user ID of the caller, and was not privileged (on Linux: did not have

 the CAP_SYS_NICE capability). But see NOTES below.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD).

NOTES

 For further details on the nice value, see sched(7).

 Note: the addition of the "autogroup" feature in Linux 2.6.38 means that the nice value no

 longer has its traditional effect in many circumstances. For details, see sched(7).

 A child created by fork(2) inherits its parent's nice value. The nice value is preserved

 across execve(2).

 The details on the condition for EPERM depend on the system. The above description is Page 2/3

 what POSIX.1-2001 says, and seems to be followed on all System V-like systems. Linux ker?

 nels before 2.6.12 required the real or effective user ID of the caller to match the real

 user of the process who (instead of its effective user ID). Linux 2.6.12 and later re?

 quire the effective user ID of the caller to match the real or effective user ID of the

 process who. All BSD-like systems (SunOS 4.1.3, Ultrix 4.2, 4.3BSD, FreeBSD 4.3, Open?

 BSD-2.5, ...) behave in the same manner as Linux 2.6.12 and later.

 Including <sys/time.h> is not required these days, but increases portability. (Indeed,

 <sys/resource.h> defines the rusage structure with fields of type struct timeval defined

 in <sys/time.h>.)

 C library/kernel differences

 Within the kernel, nice values are actually represented using the range 40..1 (since nega?

 tive numbers are error codes) and these are the values employed by the setpriority() and

 getpriority() system calls. The glibc wrapper functions for these system calls handle the

 translations between the user-land and kernel representations of the nice value according

 to the formula unice = 20 - knice. (Thus, the kernel's 40..1 range corresponds to the

 range -20..19 as seen by user space.)

BUGS

 According to POSIX, the nice value is a per-process setting. However, under the current

 Linux/NPTL implementation of POSIX threads, the nice value is a per-thread attribute: dif?

 ferent threads in the same process can have different nice values. Portable applications

 should avoid relying on the Linux behavior, which may be made standards conformant in the

 future.

SEE ALSO

 nice(1), renice(1), fork(2), capabilities(7), sched(7)

 Documentation/scheduler/sched-nice-design.txt in the Linux kernel source tree (since Linux

 2.6.23)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 GETPRIORITY(2)

Page 3/3

