
Rocky Enterprise Linux 9.2 Manual Pages on command 'get_thread_area.2'

$ man get_thread_area.2

SET_THREAD_AREA(2) Linux Programmer's Manual SET_THREAD_AREA(2)

NAME

 get_thread_area, set_thread_area - manipulate thread-local storage information

SYNOPSIS

 #include <linux/unistd.h>

 #if defined __i386__ || defined __x86_64__

 # include <asm/ldt.h>

 int get_thread_area(struct user_desc *u_info);

 int set_thread_area(struct user_desc *u_info);

 #elif defined __m68k__

 int get_thread_area(void);

 int set_thread_area(unsigned long tp);

 #elif defined __mips__

 int set_thread_area(unsigned long addr);

 #endif

 Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION

 These calls provide architecture-specific support for a thread-local storage implementa?

 tion. At the moment, set_thread_area() is available on m68k, MIPS, and x86 (both 32-bit

 and 64-bit variants); get_thread_area() is available on m68k and x86.

 On m68k and MIPS, set_thread_area() allows storing an arbitrary pointer (provided in the

 tp argument on m68k and in the addr argument on MIPS) in the kernel data structure associ?

 ated with the calling thread; this pointer can later be retrieved using get_thread_area() Page 1/4

 (see also NOTES for information regarding obtaining the thread pointer on MIPS).

 On x86, Linux dedicates three global descriptor table (GDT) entries for thread-local stor?

 age. For more information about the GDT, see the Intel Software Developer's Manual or the

 AMD Architecture Programming Manual.

 Both of these system calls take an argument that is a pointer to a structure of the fol?

 lowing type:

 struct user_desc {

 unsigned int entry_number;

 unsigned int base_addr;

 unsigned int limit;

 unsigned int seg_32bit:1;

 unsigned int contents:2;

 unsigned int read_exec_only:1;

 unsigned int limit_in_pages:1;

 unsigned int seg_not_present:1;

 unsigned int useable:1;

 #ifdef __x86_64__

 unsigned int lm:1;

 #endif

 };

 get_thread_area() reads the GDT entry indicated by u_info->entry_number and fills in the

 rest of the fields in u_info.

 set_thread_area() sets a TLS entry in the GDT.

 The TLS array entry set by set_thread_area() corresponds to the value of u_info->en?

 try_number passed in by the user. If this value is in bounds, set_thread_area() writes

 the TLS descriptor pointed to by u_info into the thread's TLS array.

 When set_thread_area() is passed an entry_number of -1, it searches for a free TLS entry.

 If set_thread_area() finds a free TLS entry, the value of u_info->entry_number is set upon

 return to show which entry was changed.

 A user_desc is considered "empty" if read_exec_only and seg_not_present are set to 1 and

 all of the other fields are 0. If an "empty" descriptor is passed to set_thread_area(),

 the corresponding TLS entry will be cleared. See BUGS for additional details.

 Since Linux 3.19, set_thread_area() cannot be used to write non-present segments, 16-bit Page 2/4

 segments, or code segments, although clearing a segment is still acceptable.

RETURN VALUE

 On x86, these system calls return 0 on success, and -1 on failure, with errno set appro?

 priately.

 On MIPS and m68k, set_thread_area() always returns 0. On m68k, get_thread_area() returns

 the thread area pointer value (previously set via set_thread_area()).

ERRORS

 EFAULT u_info is an invalid pointer.

 EINVAL u_info->entry_number is out of bounds.

 ENOSYS get_thread_area() or set_thread_area() was invoked as a 64-bit system call.

 ESRCH (set_thread_area()) A free TLS entry could not be located.

VERSIONS

 set_thread_area() first appeared in Linux 2.5.29. get_thread_area() first appeared in

 Linux 2.5.32.

CONFORMING TO

 set_thread_area() and get_thread_area() are Linux-specific and should not be used in pro?

 grams that are intended to be portable.

NOTES

 Glibc does not provide wrappers for these system calls, since they are generally intended

 for use only by threading libraries. In the unlikely event that you want to call them di?

 rectly, use syscall(2).

 arch_prctl(2) can interfere with set_thread_area() on x86. See arch_prctl(2) for more de?

 tails. This is not normally a problem, as arch_prctl(2) is normally used only by 64-bit

 programs.

 On MIPS, the current value of the thread area pointer can be obtained using the instruc?

 tion:

 rdhwr dest, $29

 This instruction traps and is handled by kernel.

BUGS

 On 64-bit kernels before Linux 3.19, one of the padding bits in user_desc, if set, would

 prevent the descriptor from being considered empty (see modify_ldt(2)). As a result, the

 only reliable way to clear a TLS entry is to use memset(3) to zero the entire user_desc

 structure, including padding bits, and then to set the read_exec_only and seg_not_present Page 3/4

 bits. On Linux 3.19, a user_desc consisting entirely of zeros except for entry_number

 will also be interpreted as a request to clear a TLS entry, but this behaved differently

 on older kernels.

 Prior to Linux 3.19, the DS and ES segment registers must not reference TLS entries.

SEE ALSO

 arch_prctl(2), modify_ldt(2), ptrace(2) (PTRACE_GET_THREAD_AREA and

 PTRACE_SET_THREAD_AREA)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-02-09 SET_THREAD_AREA(2)

Page 4/4

