
Linux Ubuntu 22.4.5 Manual Pages on command 'gemfile2.7.5'

$ man gemfile2.7.5

GEMFILE(5) GEMFILE(5)

NAME

 Gemfile - A format for describing gem dependencies for Ruby programs

SYNOPSIS

 A Gemfile describes the gem dependencies required to execute associated Ruby code.

 Place the Gemfile in the root of the directory containing the associated code. For

 instance, in a Rails application, place the Gemfile in the same directory as the

 Rakefile.

SYNTAX

 A Gemfile is evaluated as Ruby code, in a context which makes available a number of

 methods used to describe the gem requirements.

GLOBAL SOURCES

 At the top of the Gemfile, add a line for the Rubygems source that contains the

 gems listed in the Gemfile.

 source "https://rubygems.org"

 It is possible, but not recommended as of Bundler 1.7, to add multiple global

 source lines. Each of these sources MUST be a valid Rubygems repository.

 Sources are checked for gems following the heuristics described in SOURCE PRIORITY.

 If a gem is found in more than one global source, Bundler will print a warning af?

 ter installing the gem indicating which source was used, and listing the other

 sources where the gem is available. A specific source can be selected for gems that

 need to use a non-standard repository, suppressing this warning, by using the
Page 1/11

 :source option or a source block.

 CREDENTIALS

 Some gem sources require a username and password. Use bundle config(1) bundle-con?

 fig.1.html to set the username and password for any of the sources that need it.

 The command must be run once on each computer that will install the Gemfile, but

 this keeps the credentials from being stored in plain text in version control.

 bundle config gems.example.com user:password

 For some sources, like a company Gemfury account, it may be easier to include the

 credentials in the Gemfile as part of the source URL.

 source "https://user:password@gems.example.com"

 Credentials in the source URL will take precedence over credentials set using con?

 fig.

RUBY

 If your application requires a specific Ruby version or engine, specify your re?

 quirements using the ruby method, with the following arguments. All parameters are

 OPTIONAL unless otherwise specified.

 VERSION (required)

 The version of Ruby that your application requires. If your application requires an

 alternate Ruby engine, such as JRuby, Rubinius or TruffleRuby, this should be the

 Ruby version that the engine is compatible with.

 ruby "1.9.3"

 ENGINE

 Each application may specify a Ruby engine. If an engine is specified, an engine

 version must also be specified.

 What exactly is an Engine? - A Ruby engine is an implementation of the Ruby lan?

 guage.

 ? For background: the reference or original implementation of the Ruby program?

 ming language is called Matz?s Ruby Interpreter

 https://en.wikipedia.org/wiki/Ruby_MRI, or MRI for short. This is named after

 Ruby creator Yukihiro Matsumoto, also known as Matz. MRI is also known as

 CRuby, because it is written in C. MRI is the most widely used Ruby engine.

 ? Other implementations https://www.ruby-lang.org/en/about/ of Ruby exist. Some

 of the more well-known implementations include Rubinius https://rubinius.com/, Page 2/11

 and JRuby http://jruby.org/. Rubinius is an alternative implementation of Ruby

 written in Ruby. JRuby is an implementation of Ruby on the JVM, short for Java

 Virtual Machine.

 ENGINE VERSION

 Each application may specify a Ruby engine version. If an engine version is speci?

 fied, an engine must also be specified. If the engine is "ruby" the engine version

 specified must match the Ruby version.

 ruby "1.8.7", :engine => "jruby", :engine_version => "1.6.7"

 PATCHLEVEL

 Each application may specify a Ruby patchlevel.

 ruby "2.0.0", :patchlevel => "247"

GEMS

 Specify gem requirements using the gem method, with the following arguments. All

 parameters are OPTIONAL unless otherwise specified.

 NAME (required)

 For each gem requirement, list a single gem line.

 gem "nokogiri"

 VERSION

 Each gem MAY have one or more version specifiers.

 gem "nokogiri", ">= 1.4.2"

 gem "RedCloth", ">= 4.1.0", "< 4.2.0"

 REQUIRE AS

 Each gem MAY specify files that should be used when autorequiring via Bundler.re?

 quire. You may pass an array with multiple files or true if file you want required

 has same name as gem or false to prevent any file from being autorequired.

 gem "redis", :require => ["redis/connection/hiredis", "redis"]

 gem "webmock", :require => false

 gem "byebug", :require => true

 The argument defaults to the name of the gem. For example, these are identical:

 gem "nokogiri"

 gem "nokogiri", :require => "nokogiri"

 gem "nokogiri", :require => true

 GROUPS Page 3/11

 Each gem MAY specify membership in one or more groups. Any gem that does not spec?

 ify membership in any group is placed in the default group.

 gem "rspec", :group => :test

 gem "wirble", :groups => [:development, :test]

 The Bundler runtime allows its two main methods, Bundler.setup and Bundler.require,

 to limit their impact to particular groups.

 # setup adds gems to Ruby?s load path

 Bundler.setup # defaults to all groups

 require "bundler/setup" # same as Bundler.setup

 Bundler.setup(:default) # only set up the _default_ group

 Bundler.setup(:test) # only set up the _test_ group (but `not` _default_)

 Bundler.setup(:default, :test) # set up the _default_ and _test_ groups, but no others

 # require requires all of the gems in the specified groups

 Bundler.require # defaults to the _default_ group

 Bundler.require(:default) # identical

 Bundler.require(:default, :test) # requires the _default_ and _test_ groups

 Bundler.require(:test) # requires the _test_ group

 The Bundler CLI allows you to specify a list of groups whose gems bundle install

 should not install with the without configuration.

 To specify multiple groups to ignore, specify a list of groups separated by spaces.

 bundle config set without test

 bundle config set without development test

 Also, calling Bundler.setup with no parameters, or calling require "bundler/setup"

 will setup all groups except for the ones you excluded via --without (since they

 are not available).

 Note that on bundle install, bundler downloads and evaluates all gems, in order to

 create a single canonical list of all of the required gems and their dependencies.

 This means that you cannot list different versions of the same gems in different

 groups. For more details, see Understanding Bundler https://bundler.io/ratio?

 nale.html.

 PLATFORMS

 If a gem should only be used in a particular platform or set of platforms, you can

 specify them. Platforms are essentially identical to groups, except that you do not Page 4/11

 need to use the --without install-time flag to exclude groups of gems for other

 platforms.

 There are a number of Gemfile platforms:

 ruby C Ruby (MRI), Rubinius or TruffleRuby, but NOT Windows

 mri Same as ruby, but only C Ruby (MRI)

 mingw Windows 32 bit ?mingw32? platform (aka RubyInstaller)

 x64_mingw

 Windows 64 bit ?mingw32? platform (aka RubyInstaller x64)

 rbx Rubinius

 jruby JRuby

 truffleruby

 TruffleRuby

 mswin Windows

 You can restrict further by platform and version for all platforms except for rbx,

 jruby, truffleruby and mswin.

 To specify a version in addition to a platform, append the version number without

 the delimiter to the platform. For example, to specify that a gem should only be

 used on platforms with Ruby 2.3, use:

 ruby_23

 The full list of platforms and supported versions includes:

 ruby 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

 mri 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

 mingw 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

 x64_mingw

 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

 As with groups, you can specify one or more platforms:

 gem "weakling", :platforms => :jruby

 gem "ruby-debug", :platforms => :mri_18

 gem "nokogiri", :platforms => [:mri_18, :jruby]

 All operations involving groups (bundle install bundle-install.1.html,

 Bundler.setup, Bundler.require) behave exactly the same as if any groups not match?

 ing the current platform were explicitly excluded.

 SOURCE Page 5/11

 You can select an alternate Rubygems repository for a gem using the ?:source? op?

 tion.

 gem "some_internal_gem", :source => "https://gems.example.com"

 This forces the gem to be loaded from this source and ignores any global sources

 declared at the top level of the file. If the gem does not exist in this source, it

 will not be installed.

 Bundler will search for child dependencies of this gem by first looking in the

 source selected for the parent, but if they are not found there, it will fall back

 on global sources using the ordering described in SOURCE PRIORITY.

 Selecting a specific source repository this way also suppresses the ambiguous gem

 warning described above in GLOBAL SOURCES (#source).

 Using the :source option for an individual gem will also make that source available

 as a possible global source for any other gems which do not specify explicit

 sources. Thus, when adding gems with explicit sources, it is recommended that you

 also ensure all other gems in the Gemfile are using explicit sources.

 GIT

 If necessary, you can specify that a gem is located at a particular git repository

 using the :git parameter. The repository can be accessed via several protocols:

 HTTP(S)

 gem "rails", :git => "https://github.com/rails/rails.git"

 SSH gem "rails", :git => "git@github.com:rails/rails.git"

 git gem "rails", :git => "git://github.com/rails/rails.git"

 If using SSH, the user that you use to run bundle install MUST have the appropriate

 keys available in their $HOME/.ssh.

 NOTE: http:// and git:// URLs should be avoided if at all possible. These protocols

 are unauthenticated, so a man-in-the-middle attacker can deliver malicious code and

 compromise your system. HTTPS and SSH are strongly preferred.

 The group, platforms, and require options are available and behave exactly the same

 as they would for a normal gem.

 A git repository SHOULD have at least one file, at the root of the directory con?

 taining the gem, with the extension .gemspec. This file MUST contain a valid gem

 specification, as expected by the gem build command.

 If a git repository does not have a .gemspec, bundler will attempt to create one, Page 6/11

 but it will not contain any dependencies, executables, or C extension compilation

 instructions. As a result, it may fail to properly integrate into your application.

 If a git repository does have a .gemspec for the gem you attached it to, a version

 specifier, if provided, means that the git repository is only valid if the .gemspec

 specifies a version matching the version specifier. If not, bundler will print a

 warning.

 gem "rails", "2.3.8", :git => "https://github.com/rails/rails.git"

 # bundle install will fail, because the .gemspec in the rails

 # repository?s master branch specifies version 3.0.0

 If a git repository does not have a .gemspec for the gem you attached it to, a ver?

 sion specifier MUST be provided. Bundler will use this version in the simple .gem?

 spec it creates.

 Git repositories support a number of additional options.

 branch, tag, and ref

 You MUST only specify at most one of these options. The default is :branch

 => "master". For example:

 gem "rails", :git => "https://github.com/rails/rails.git", :branch =>

 "5-0-stable"

 gem "rails", :git => "https://github.com/rails/rails.git", :tag => "v5.0.0"

 gem "rails", :git => "https://github.com/rails/rails.git", :ref => "4aded"

 submodules

 For reference, a git submodule https://git-scm.com/book/en/v2/Git-Tools-Sub?

 modules lets you have another git repository within a subfolder of your

 repository. Specify :submodules => true to cause bundler to expand any sub?

 modules included in the git repository

 If a git repository contains multiple .gemspecs, each .gemspec represents a gem lo?

 cated at the same place in the file system as the .gemspec.

 |~rails [git root]

 | |-rails.gemspec [rails gem located here]

 |~actionpack

 | |-actionpack.gemspec [actionpack gem located here]

 |~activesupport

 | |-activesupport.gemspec [activesupport gem located here] Page 7/11

 |...

 To install a gem located in a git repository, bundler changes to the directory con?

 taining the gemspec, runs gem build name.gemspec and then installs the resulting

 gem. The gem build command, which comes standard with Rubygems, evaluates the .gem?

 spec in the context of the directory in which it is located.

 GIT SOURCE

 A custom git source can be defined via the git_source method. Provide the source?s

 name as an argument, and a block which receives a single argument and interpolates

 it into a string to return the full repo address:

 git_source(:stash){ |repo_name| "https://stash.corp.acme.pl/#{repo_name}.git" }

 gem ?rails?, :stash => ?forks/rails?

 In addition, if you wish to choose a specific branch:

 gem "rails", :stash => "forks/rails", :branch => "branch_name"

 GITHUB

 NOTE: This shorthand should be avoided until Bundler 2.0, since it currently ex?

 pands to an insecure git:// URL. This allows a man-in-the-middle attacker to com?

 promise your system.

 If the git repository you want to use is hosted on GitHub and is public, you can

 use the :github shorthand to specify the github username and repository name (with?

 out the trailing ".git"), separated by a slash. If both the username and repository

 name are the same, you can omit one.

 gem "rails", :github => "rails/rails"

 gem "rails", :github => "rails"

 Are both equivalent to

 gem "rails", :git => "git://github.com/rails/rails.git"

 Since the github method is a specialization of git_source, it accepts a :branch

 named argument.

 GIST

 If the git repository you want to use is hosted as a Github Gist and is public, you

 can use the :gist shorthand to specify the gist identifier (without the trailing

 ".git").

 gem "the_hatch", :gist => "4815162342"

 Is equivalent to: Page 8/11

 gem "the_hatch", :git => "https://gist.github.com/4815162342.git"

 Since the gist method is a specialization of git_source, it accepts a :branch named

 argument.

 BITBUCKET

 If the git repository you want to use is hosted on Bitbucket and is public, you can

 use the :bitbucket shorthand to specify the bitbucket username and repository name

 (without the trailing ".git"), separated by a slash. If both the username and

 repository name are the same, you can omit one.

 gem "rails", :bitbucket => "rails/rails"

 gem "rails", :bitbucket => "rails"

 Are both equivalent to

 gem "rails", :git => "https://rails@bitbucket.org/rails/rails.git"

 Since the bitbucket method is a specialization of git_source, it accepts a :branch

 named argument.

 PATH

 You can specify that a gem is located in a particular location on the file system.

 Relative paths are resolved relative to the directory containing the Gemfile.

 Similar to the semantics of the :git option, the :path option requires that the di?

 rectory in question either contains a .gemspec for the gem, or that you specify an

 explicit version that bundler should use.

 Unlike :git, bundler does not compile C extensions for gems specified as paths.

 gem "rails", :path => "vendor/rails"

 If you would like to use multiple local gems directly from the filesystem, you can

 set a global path option to the path containing the gem?s files. This will automat?

 ically load gemspec files from subdirectories.

 path ?components? do

 gem ?admin_ui?

 gem ?public_ui?

 end

BLOCK FORM OF SOURCE, GIT, PATH, GROUP and PLATFORMS

 The :source, :git, :path, :group, and :platforms options may be applied to a group

 of gems by using block form.

 source "https://gems.example.com" do Page 9/11

 gem "some_internal_gem"

 gem "another_internal_gem"

 end

 git "https://github.com/rails/rails.git" do

 gem "activesupport"

 gem "actionpack"

 end

 platforms :ruby do

 gem "ruby-debug"

 gem "sqlite3"

 end

 group :development, :optional => true do

 gem "wirble"

 gem "faker"

 end

 In the case of the group block form the :optional option can be given to prevent a

 group from being installed unless listed in the --with option given to the bundle

 install command.

 In the case of the git block form, the :ref, :branch, :tag, and :submodules options

 may be passed to the git method, and all gems in the block will inherit those op?

 tions.

 The presence of a source block in a Gemfile also makes that source available as a

 possible global source for any other gems which do not specify explicit sources.

 Thus, when defining source blocks, it is recommended that you also ensure all other

 gems in the Gemfile are using explicit sources, either via source blocks or :source

 directives on individual gems.

INSTALL_IF

 The install_if method allows gems to be installed based on a proc or lambda. This

 is especially useful for optional gems that can only be used if certain software is

 installed or some other conditions are met.

 install_if -> { RUBY_PLATFORM =~ /darwin/ } do

 gem "pasteboard"

 end Page 10/11

GEMSPEC

 The .gemspec http://guides.rubygems.org/specification-reference/ file is where you

 provide metadata about your gem to Rubygems. Some required Gemspec attributes in?

 clude the name, description, and homepage of your gem. This is also where you spec?

 ify the dependencies your gem needs to run.

 If you wish to use Bundler to help install dependencies for a gem while it is being

 developed, use the gemspec method to pull in the dependencies listed in the .gem?

 spec file.

 The gemspec method adds any runtime dependencies as gem requirements in the default

 group. It also adds development dependencies as gem requirements in the development

 group. Finally, it adds a gem requirement on your project (:path => ?.?). In con?

 junction with Bundler.setup, this allows you to require project files in your test

 code as you would if the project were installed as a gem; you need not manipulate

 the load path manually or require project files via relative paths.

 The gemspec method supports optional :path, :glob, :name, and :development_group

 options, which control where bundler looks for the .gemspec, the glob it uses to

 look for the gemspec (defaults to: "{,,/*}.gemspec"), what named .gemspec it uses

 (if more than one is present), and which group development dependencies are in?

 cluded in.

 When a gemspec dependency encounters version conflicts during resolution, the local

 version under development will always be selected -- even if there are remote ver?

 sions that better match other requirements for the gemspec gem.

SOURCE PRIORITY

 When attempting to locate a gem to satisfy a gem requirement, bundler uses the fol?

 lowing priority order:

 1. The source explicitly attached to the gem (using :source, :path, or :git)

 2. For implicit gems (dependencies of explicit gems), any source, git, or path

 repository declared on the parent. This results in bundler prioritizing the Ac?

 tiveSupport gem from the Rails git repository over ones from rubygems.org

 3. The sources specified via global source lines, searching each source in your

 Gemfile from last added to first added.

 December 2019 GEMFILE(5)

Page 11/11

