
Linux Ubuntu 22.4.5 Manual Pages on command 'gdbserver.1'

$ man gdbserver.1

GDBSERVER(1) GNU Development Tools GDBSERVER(1)

NAME

 gdbserver - Remote Server for the GNU Debugger

SYNOPSIS

 gdbserver comm prog [args...]

 gdbserver --attach comm pid

 gdbserver --multi comm

DESCRIPTION

 gdbserver is a program that allows you to run GDB on a different machine than the

 one which is running the program being debugged.

 Usage (server (target) side):

 First, you need to have a copy of the program you want to debug put onto the target

 system. The program can be stripped to save space if needed, as gdbserver doesn't

 care about symbols. All symbol handling is taken care of by the GDB running on the

 host system.

 To use the server, you log on to the target system, and run the gdbserver program.

 You must tell it (a) how to communicate with GDB, (b) the name of your program, and

 (c) its arguments. The general syntax is:

 target> gdbserver <comm> <program> [<args> ...]

 For example, using a serial port, you might say:

 target> gdbserver /dev/com1 emacs foo.txt

 This tells gdbserver to debug emacs with an argument of foo.txt, and to communicate
Page 1/5

 with GDB via /dev/com1. gdbserver now waits patiently for the host GDB to

 communicate with it.

 To use a TCP connection, you could say:

 target> gdbserver host:2345 emacs foo.txt

 This says pretty much the same thing as the last example, except that we are going

 to communicate with the "host" GDB via TCP. The "host:2345" argument means that we

 are expecting to see a TCP connection from "host" to local TCP port 2345.

 (Currently, the "host" part is ignored.) You can choose any number you want for

 the port number as long as it does not conflict with any existing TCP ports on the

 target system. This same port number must be used in the host GDBs "target remote"

 command, which will be described shortly. Note that if you chose a port number

 that conflicts with another service, gdbserver will print an error message and

 exit.

 gdbserver can also attach to running programs. This is accomplished via the

 --attach argument. The syntax is:

 target> gdbserver --attach <comm> <pid>

 pid is the process ID of a currently running process. It isn't necessary to point

 gdbserver at a binary for the running process.

 To start "gdbserver" without supplying an initial command to run or process ID to

 attach, use the --multi command line option. In such case you should connect using

 "target extended-remote" to start the program you want to debug.

 target> gdbserver --multi <comm>

 Usage (host side):

 You need an unstripped copy of the target program on your host system, since GDB

 needs to examine its symbol tables and such. Start up GDB as you normally would,

 with the target program as the first argument. (You may need to use the --baud

 option if the serial line is running at anything except 9600 baud.) That is "gdb

 TARGET-PROG", or "gdb --baud BAUD TARGET-PROG". After that, the only new command

 you need to know about is "target remote" (or "target extended-remote"). Its

 argument is either a device name (usually a serial device, like /dev/ttyb), or a

 "HOST:PORT" descriptor. For example:

 (gdb) target remote /dev/ttyb

 communicates with the server via serial line /dev/ttyb, and: Page 2/5

 (gdb) target remote the-target:2345

 communicates via a TCP connection to port 2345 on host `the-target', where you

 previously started up gdbserver with the same port number. Note that for TCP

 connections, you must start up gdbserver prior to using the `target remote'

 command, otherwise you may get an error that looks something like `Connection

 refused'.

 gdbserver can also debug multiple inferiors at once, described in the GDB manual in

 node "Inferiors and Programs" -- shell command "info -f gdb -n 'Inferiors and

 Programs'". In such case use the "extended-remote" GDB command variant:

 (gdb) target extended-remote the-target:2345

 The gdbserver option --multi may or may not be used in such case.

OPTIONS

 There are three different modes for invoking gdbserver:

 ? Debug a specific program specified by its program name:

 gdbserver <comm> <prog> [<args>...]

 The comm parameter specifies how should the server communicate with GDB; it is

 either a device name (to use a serial line), a TCP port number (":1234"), or

 "-" or "stdio" to use stdin/stdout of "gdbserver". Specify the name of the

 program to debug in prog. Any remaining arguments will be passed to the

 program verbatim. When the program exits, GDB will close the connection, and

 "gdbserver" will exit.

 ? Debug a specific program by specifying the process ID of a running program:

 gdbserver --attach <comm> <pid>

 The comm parameter is as described above. Supply the process ID of a running

 program in pid; GDB will do everything else. Like with the previous mode, when

 the process pid exits, GDB will close the connection, and "gdbserver" will

 exit.

 ? Multi-process mode -- debug more than one program/process:

 gdbserver --multi <comm>

 In this mode, GDB can instruct gdbserver which command(s) to run. Unlike the

 other 2 modes, GDB will not close the connection when a process being debugged

 exits, so you can debug several processes in the same session.

 In each of the modes you may specify these options: Page 3/5

 --help

 List all options, with brief explanations.

 --version

 This option causes gdbserver to print its version number and exit.

 --attach

 gdbserver will attach to a running program. The syntax is:

 target> gdbserver --attach <comm> <pid>

 pid is the process ID of a currently running process. It isn't necessary to

 point gdbserver at a binary for the running process.

 --multi

 To start "gdbserver" without supplying an initial command to run or process ID

 to attach, use this command line option. Then you can connect using "target

 extended-remote" and start the program you want to debug. The syntax is:

 target> gdbserver --multi <comm>

 --debug

 Instruct "gdbserver" to display extra status information about the debugging

 process. This option is intended for "gdbserver" development and for bug

 reports to the developers.

 --remote-debug

 Instruct "gdbserver" to display remote protocol debug output. This option is

 intended for "gdbserver" development and for bug reports to the developers.

 --debug-file=filename

 Instruct "gdbserver" to send any debug output to the given filename. This

 option is intended for "gdbserver" development and for bug reports to the

 developers.

 --debug-format=option1[,option2,...]

 Instruct "gdbserver" to include extra information in each line of debugging

 output.

 --wrapper

 Specify a wrapper to launch programs for debugging. The option should be

 followed by the name of the wrapper, then any command-line arguments to pass to

 the wrapper, then "--" indicating the end of the wrapper arguments.

 --once Page 4/5

 By default, gdbserver keeps the listening TCP port open, so that additional

 connections are possible. However, if you start "gdbserver" with the --once

 option, it will stop listening for any further connection attempts after

 connecting to the first GDB session.

SEE ALSO

 The full documentation for GDB is maintained as a Texinfo manual. If the "info"

 and "gdb" programs and GDB's Texinfo documentation are properly installed at your

 site, the command

 info gdb

 should give you access to the complete manual.

 Using GDB: A Guide to the GNU Source-Level Debugger, Richard M. Stallman and Roland

 H. Pesch, July 1991.

COPYRIGHT

 Copyright (c) 1988-2020 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document under the

 terms of the GNU Free Documentation License, Version 1.3 or any later version

 published by the Free Software Foundation; with the Invariant Sections being "Free

 Software" and "Free Software Needs Free Documentation", with the Front-Cover Texts

 being "A GNU Manual," and with the Back-Cover Texts as in (a) below.

 (a) The FSF's Back-Cover Text is: "You are free to copy and modify this GNU Manual.

 Buying copies from GNU Press supports the FSF in developing GNU and promoting

 software freedom."

gdb-9.2 2021-12-07 GDBSERVER(1)

Page 5/5

