
Rocky Enterprise Linux 9.2 Manual Pages on command 'gcc.1'

$ man gcc.1

GCC(1) GNU GCC(1)

NAME

 gcc - GNU project C and C++ compiler

SYNOPSIS

 gcc [-c|-S|-E] [-std=standard]

 [-g] [-pg] [-Olevel]

 [-Wwarn...] [-Wpedantic]

 [-Idir...] [-Ldir...]

 [-Dmacro[=defn]...] [-Umacro]

 [-foption...] [-mmachine-option...]

 [-o outfile] [@file] infile...

 Only the most useful options are listed here; see below for the remainder. g++ accepts

 mostly the same options as gcc.

DESCRIPTION

 When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.

 The "overall options" allow you to stop this process at an intermediate stage. For

 example, the -c option says not to run the linker. Then the output consists of object

 files output by the assembler.

 Other options are passed on to one or more stages of processing. Some options control the

 preprocessor and others the compiler itself. Yet other options control the assembler and

 linker; most of these are not documented here, since you rarely need to use any of them.

 Most of the command-line options that you can use with GCC are useful for C programs; when

 an option is only useful with another language (usually C++), the explanation says so Page 1/576

 explicitly. If the description for a particular option does not mention a source

 language, you can use that option with all supported languages.

 The usual way to run GCC is to run the executable called gcc, or machine-gcc when cross-

 compiling, or machine-gcc-version to run a specific version of GCC. When you compile C++

 programs, you should invoke GCC as g++ instead.

 The gcc program accepts options and file names as operands. Many options have multi-

 letter names; therefore multiple single-letter options may not be grouped: -dv is very

 different from -d -v.

 You can mix options and other arguments. For the most part, the order you use doesn't

 matter. Order does matter when you use several options of the same kind; for example, if

 you specify -L more than once, the directories are searched in the order specified. Also,

 the placement of the -l option is significant.

 Many options have long names starting with -f or with -W---for example,

 -fmove-loop-invariants, -Wformat and so on. Most of these have both positive and negative

 forms; the negative form of -ffoo is -fno-foo. This manual documents only one of these

 two forms, whichever one is not the default.

 Some options take one or more arguments typically separated either by a space or by the

 equals sign (=) from the option name. Unless documented otherwise, an argument can be

 either numeric or a string. Numeric arguments must typically be small unsigned decimal or

 hexadecimal integers. Hexadecimal arguments must begin with the 0x prefix. Arguments to

 options that specify a size threshold of some sort may be arbitrarily large decimal or

 hexadecimal integers followed by a byte size suffix designating a multiple of bytes such

 as "kB" and "KiB" for kilobyte and kibibyte, respectively, "MB" and "MiB" for megabyte and

 mebibyte, "GB" and "GiB" for gigabyte and gigibyte, and so on. Such arguments are

 designated by byte-size in the following text. Refer to the NIST, IEC, and other relevant

 national and international standards for the full listing and explanation of the binary

 and decimal byte size prefixes.

OPTIONS

 Option Summary

 Here is a summary of all the options, grouped by type. Explanations are in the following

 sections.

 Overall Options

 -c -S -E -o file -dumpbase dumpbase -dumpbase-ext auxdropsuf -dumpdir dumppfx -x Page 2/576

 language -v -### --help[=class[,...]] --target-help --version -pass-exit-codes

 -pipe -specs=file -wrapper @file -ffile-prefix-map=old=new -fplugin=file

 -fplugin-arg-name=arg -fdump-ada-spec[-slim] -fada-spec-parent=unit

 -fdump-go-spec=file

 C Language Options

 -ansi -std=standard -fgnu89-inline -fpermitted-flt-eval-methods=standard -aux-info

 filename -fallow-parameterless-variadic-functions -fno-asm -fno-builtin

 -fno-builtin-function -fgimple -fhosted -ffreestanding -fopenacc -fopenacc-dim=geom

 -fopenmp -fopenmp-simd -fms-extensions -fplan9-extensions -fsso-struct=endianness

 -fallow-single-precision -fcond-mismatch -flax-vector-conversions -fsigned-bitfields

 -fsigned-char -funsigned-bitfields -funsigned-char

 C++ Language Options

 -fabi-version=n -fno-access-control -faligned-new=n -fargs-in-order=n -fchar8_t

 -fcheck-new -fconstexpr-depth=n -fconstexpr-cache-depth=n -fconstexpr-loop-limit=n

 -fconstexpr-ops-limit=n -fno-elide-constructors -fno-enforce-eh-specs

 -fno-gnu-keywords -fno-implicit-templates -fno-implicit-inline-templates

 -fno-implement-inlines -fmodule-header[=kind] -fmodule-only -fmodules-ts

 -fmodule-implicit-inline -fno-module-lazy -fmodule-mapper=specification

 -fmodule-version-ignore -fms-extensions -fnew-inheriting-ctors -fnew-ttp-matching

 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names -fno-optional-diags

 -fpermissive -fno-pretty-templates -fno-rtti -fsized-deallocation

 -ftemplate-backtrace-limit=n -ftemplate-depth=n -fno-threadsafe-statics

 -fuse-cxa-atexit -fno-weak -nostdinc++ -fvisibility-inlines-hidden

 -fvisibility-ms-compat -fext-numeric-literals -flang-info-include-translate[=header]

 -flang-info-include-translate-not -flang-info-module-cmi[=module]

 -stdlib=libstdc++,libc++ -Wabi-tag -Wcatch-value -Wcatch-value=n

 -Wno-class-conversion -Wclass-memaccess -Wcomma-subscript -Wconditionally-supported

 -Wno-conversion-null -Wctad-maybe-unsupported -Wctor-dtor-privacy

 -Wno-delete-incomplete -Wdelete-non-virtual-dtor -Wdeprecated-copy

 -Wdeprecated-copy-dtor -Wno-deprecated-enum-enum-conversion

 -Wno-deprecated-enum-float-conversion -Weffc++ -Wno-exceptions -Wextra-semi

 -Wno-inaccessible-base -Wno-inherited-variadic-ctor -Wno-init-list-lifetime

 -Winvalid-imported-macros -Wno-invalid-offsetof -Wno-literal-suffix Page 3/576

 -Wno-mismatched-new-delete -Wmismatched-tags -Wmultiple-inheritance -Wnamespaces

 -Wnarrowing -Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor -Wpessimizing-move

 -Wno-placement-new -Wplacement-new=n -Wrange-loop-construct -Wredundant-move

 -Wredundant-tags -Wreorder -Wregister -Wstrict-null-sentinel -Wno-subobject-linkage

 -Wtemplates -Wno-non-template-friend -Wold-style-cast -Woverloaded-virtual

 -Wno-pmf-conversions -Wsign-promo -Wsized-deallocation -Wsuggest-final-methods

 -Wsuggest-final-types -Wsuggest-override -Wno-terminate -Wuseless-cast

 -Wno-vexing-parse -Wvirtual-inheritance -Wno-virtual-move-assign -Wvolatile

 -Wzero-as-null-pointer-constant

 Objective-C and Objective-C++ Language Options

 -fconstant-string-class=class-name -fgnu-runtime -fnext-runtime -fno-nil-receivers

 -fobjc-abi-version=n -fobjc-call-cxx-cdtors -fobjc-direct-dispatch -fobjc-exceptions

 -fobjc-gc -fobjc-nilcheck -fobjc-std=objc1 -fno-local-ivars

 -fivar-visibility=[public|protected|private|package] -freplace-objc-classes

 -fzero-link -gen-decls -Wassign-intercept -Wno-property-assign-default -Wno-protocol

 -Wobjc-root-class -Wselector -Wstrict-selector-match -Wundeclared-selector

 Diagnostic Message Formatting Options

 -fmessage-length=n -fdiagnostics-plain-output -fdiagnostics-show-location=[once|every-

 line] -fdiagnostics-color=[auto|never|always] -fdiagnostics-urls=[auto|never|always]

 -fdiagnostics-format=[text|json] -fno-diagnostics-show-option

 -fno-diagnostics-show-caret -fno-diagnostics-show-labels

 -fno-diagnostics-show-line-numbers -fno-diagnostics-show-cwe

 -fdiagnostics-minimum-margin-width=width -fdiagnostics-parseable-fixits

 -fdiagnostics-generate-patch -fdiagnostics-show-template-tree -fno-elide-type

 -fdiagnostics-path-format=[none|separate-events|inline-events]

 -fdiagnostics-show-path-depths -fno-show-column

 -fdiagnostics-column-unit=[display|byte] -fdiagnostics-column-origin=origin

 Warning Options

 -fsyntax-only -fmax-errors=n -Wpedantic -pedantic-errors -w -Wextra -Wall -Wabi=n

 -Waddress -Wno-address-of-packed-member -Waggregate-return

 -Walloc-size-larger-than=byte-size -Walloc-zero -Walloca -Walloca-larger-than=byte-

 size -Wno-aggressive-loop-optimizations -Warith-conversion -Warray-bounds

 -Warray-bounds=n -Wno-attributes -Wattribute-alias=n -Wno-attribute-alias Page 4/576

 -Wno-attribute-warning -Wbool-compare -Wbool-operation

 -Wno-builtin-declaration-mismatch -Wno-builtin-macro-redefined -Wc90-c99-compat

 -Wc99-c11-compat -Wc11-c2x-compat -Wc++-compat -Wc++11-compat -Wc++14-compat

 -Wc++17-compat -Wc++20-compat -Wcast-align -Wcast-align=strict -Wcast-function-type

 -Wcast-qual -Wchar-subscripts -Wclobbered -Wcomment -Wconversion

 -Wno-coverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time -Wno-deprecated

 -Wno-deprecated-declarations -Wno-designated-init -Wdisabled-optimization

 -Wno-discarded-array-qualifiers -Wno-discarded-qualifiers -Wno-div-by-zero

 -Wdouble-promotion -Wduplicated-branches -Wduplicated-cond -Wempty-body

 -Wno-endif-labels -Wenum-compare -Wenum-conversion -Werror -Werror=*

 -Wexpansion-to-defined -Wfatal-errors -Wfloat-conversion -Wfloat-equal -Wformat

 -Wformat=2 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral

 -Wformat-overflow=n -Wformat-security -Wformat-signedness -Wformat-truncation=n

 -Wformat-y2k -Wframe-address -Wframe-larger-than=byte-size -Wno-free-nonheap-object

 -Wno-if-not-aligned -Wno-ignored-attributes -Wignored-qualifiers

 -Wno-incompatible-pointer-types -Wimplicit -Wimplicit-fallthrough

 -Wimplicit-fallthrough=n -Wno-implicit-function-declaration -Wno-implicit-int

 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context

 -Wno-int-to-pointer-cast -Wno-invalid-memory-model -Winvalid-pch -Wjump-misses-init

 -Wlarger-than=byte-size -Wlogical-not-parentheses -Wlogical-op -Wlong-long

 -Wno-lto-type-mismatch -Wmain -Wmaybe-uninitialized -Wmemset-elt-size

 -Wmemset-transposed-args -Wmisleading-indentation -Wmissing-attributes

 -Wmissing-braces -Wmissing-field-initializers -Wmissing-format-attribute

 -Wmissing-include-dirs -Wmissing-noreturn -Wno-missing-profile -Wno-multichar

 -Wmultistatement-macros -Wnonnull -Wnonnull-compare -Wnormalized=[none|id|nfc|nfkc]

 -Wnull-dereference -Wno-odr -Wopenmp-simd -Wno-overflow -Woverlength-strings

 -Wno-override-init-side-effects -Wpacked -Wno-packed-bitfield-compat

 -Wpacked-not-aligned -Wpadded -Wparentheses -Wno-pedantic-ms-format -Wpointer-arith

 -Wno-pointer-compare -Wno-pointer-to-int-cast -Wno-pragmas -Wno-prio-ctor-dtor

 -Wredundant-decls -Wrestrict -Wno-return-local-addr -Wreturn-type

 -Wno-scalar-storage-order -Wsequence-point -Wshadow -Wshadow=global -Wshadow=local

 -Wshadow=compatible-local -Wno-shadow-ivar -Wno-shift-count-negative

 -Wno-shift-count-overflow -Wshift-negative-value -Wno-shift-overflow Page 5/576

 -Wshift-overflow=n -Wsign-compare -Wsign-conversion -Wno-sizeof-array-argument

 -Wsizeof-array-div -Wsizeof-pointer-div -Wsizeof-pointer-memaccess -Wstack-protector

 -Wstack-usage=byte-size -Wstrict-aliasing -Wstrict-aliasing=n -Wstrict-overflow

 -Wstrict-overflow=n -Wstring-compare -Wno-stringop-overflow -Wno-stringop-overread

 -Wno-stringop-truncation -Wsuggest-attribute=[pure|const|noreturn|format|malloc]

 -Wswitch -Wno-switch-bool -Wswitch-default -Wswitch-enum -Wno-switch-outside-range

 -Wno-switch-unreachable -Wsync-nand -Wsystem-headers -Wtautological-compare

 -Wtrampolines -Wtrigraphs -Wtsan -Wtype-limits -Wundef -Wuninitialized

 -Wunknown-pragmas -Wunsuffixed-float-constants -Wunused -Wunused-but-set-parameter

 -Wunused-but-set-variable -Wunused-const-variable -Wunused-const-variable=n

 -Wunused-function -Wunused-label -Wunused-local-typedefs -Wunused-macros

 -Wunused-parameter -Wno-unused-result -Wunused-value -Wunused-variable -Wno-varargs

 -Wvariadic-macros -Wvector-operation-performance -Wvla -Wvla-larger-than=byte-size

 -Wno-vla-larger-than -Wvolatile-register-var -Wwrite-strings -Wzero-length-bounds

 Static Analyzer Options

 -fanalyzer -fanalyzer-call-summaries -fanalyzer-checker=name -fno-analyzer-feasibility

 -fanalyzer-fine-grained -fanalyzer-state-merge -fanalyzer-state-purge

 -fanalyzer-transitivity -fanalyzer-verbose-edges -fanalyzer-verbose-state-changes

 -fanalyzer-verbosity=level -fdump-analyzer -fdump-analyzer-stderr

 -fdump-analyzer-callgraph -fdump-analyzer-exploded-graph

 -fdump-analyzer-exploded-nodes -fdump-analyzer-exploded-nodes-2

 -fdump-analyzer-exploded-nodes-3 -fdump-analyzer-feasibility -fdump-analyzer-json

 -fdump-analyzer-state-purge -fdump-analyzer-supergraph -Wno-analyzer-double-fclose

 -Wno-analyzer-double-free -Wno-analyzer-exposure-through-output-file

 -Wno-analyzer-file-leak -Wno-analyzer-free-of-non-heap -Wno-analyzer-malloc-leak

 -Wno-analyzer-mismatching-deallocation -Wno-analyzer-null-argument

 -Wno-analyzer-null-dereference -Wno-analyzer-possible-null-argument

 -Wno-analyzer-possible-null-dereference -Wno-analyzer-shift-count-negative

 -Wno-analyzer-shift-count-overflow -Wno-analyzer-stale-setjmp-buffer

 -Wno-analyzer-tainted-array-index -Wanalyzer-too-complex

 -Wno-analyzer-unsafe-call-within-signal-handler -Wno-analyzer-use-after-free

 -Wno-analyzer-use-of-pointer-in-stale-stack-frame

 -Wno-analyzer-use-of-uninitialized-value -Wno-analyzer-write-to-const Page 6/576

 -Wno-analyzer-write-to-string-literal

 C and Objective-C-only Warning Options

 -Wbad-function-cast -Wmissing-declarations -Wmissing-parameter-type

 -Wmissing-prototypes -Wnested-externs -Wold-style-declaration -Wold-style-definition

 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion

 -Wdeclaration-after-statement -Wpointer-sign

 Debugging Options

 -g -glevel -gdwarf -gdwarf-version -ggdb -grecord-gcc-switches

 -gno-record-gcc-switches -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

 -gas-loc-support -gno-as-loc-support -gas-locview-support -gno-as-locview-support

 -gcolumn-info -gno-column-info -gdwarf32 -gdwarf64 -gstatement-frontiers

 -gno-statement-frontiers -gvariable-location-views -gno-variable-location-views

 -ginternal-reset-location-views -gno-internal-reset-location-views -ginline-points

 -gno-inline-points -gvms -gxcoff -gxcoff+ -gz[=type] -gsplit-dwarf -gdescribe-dies

 -gno-describe-dies -fdebug-prefix-map=old=new -fdebug-types-section

 -fno-eliminate-unused-debug-types -femit-struct-debug-baseonly

 -femit-struct-debug-reduced -femit-struct-debug-detailed[=spec-list]

 -fno-eliminate-unused-debug-symbols -femit-class-debug-always

 -fno-merge-debug-strings -fno-dwarf2-cfi-asm -fvar-tracking

 -fvar-tracking-assignments

 Optimization Options

 -faggressive-loop-optimizations -falign-functions[=n[:m:[n2[:m2]]]]

 -falign-jumps[=n[:m:[n2[:m2]]]] -falign-labels[=n[:m:[n2[:m2]]]]

 -falign-loops[=n[:m:[n2[:m2]]]] -fno-allocation-dce -fallow-store-data-races

 -fassociative-math -fauto-profile -fauto-profile[=path] -fauto-inc-dec

 -fbranch-probabilities -fcaller-saves -fcombine-stack-adjustments -fconserve-stack

 -fcompare-elim -fcprop-registers -fcrossjumping -fcse-follow-jumps

 -fcse-skip-blocks -fcx-fortran-rules -fcx-limited-range -fdata-sections -fdce

 -fdelayed-branch -fdelete-null-pointer-checks -fdevirtualize

 -fdevirtualize-speculatively -fdevirtualize-at-ltrans -fdse -fearly-inlining

 -fipa-sra -fexpensive-optimizations -ffat-lto-objects -ffast-math

 -ffinite-math-only -ffloat-store -fexcess-precision=style -ffinite-loops

 -fforward-propagate -ffp-contract=style -ffunction-sections -fgcse Page 7/576

 -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity -fgcse-sm

 -fhoist-adjacent-loads -fif-conversion -fif-conversion2 -findirect-inlining

 -finline-functions -finline-functions-called-once -finline-limit=n

 -finline-small-functions -fipa-modref -fipa-cp -fipa-cp-clone -fipa-bit-cp -fipa-vrp

 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference

 -fipa-reference-addressable -fipa-stack-alignment -fipa-icf

 -fira-algorithm=algorithm -flive-patching=level -fira-region=region

 -fira-hoist-pressure -fira-loop-pressure -fno-ira-share-save-slots

 -fno-ira-share-spill-slots -fisolate-erroneous-paths-dereference

 -fisolate-erroneous-paths-attribute -fivopts -fkeep-inline-functions

 -fkeep-static-functions -fkeep-static-consts -flimit-function-alignment

 -flive-range-shrinkage -floop-block -floop-interchange -floop-strip-mine

 -floop-unroll-and-jam -floop-nest-optimize -floop-parallelize-all -flra-remat -flto

 -flto-compression-level -flto-partition=alg -fmerge-all-constants -fmerge-constants

 -fmodulo-sched -fmodulo-sched-allow-regmoves -fmove-loop-invariants

 -fno-branch-count-reg -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse

 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole

 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock -fno-sched-spec

 -fno-signed-zeros -fno-toplevel-reorder -fno-trapping-math

 -fno-zero-initialized-in-bss -fomit-frame-pointer -foptimize-sibling-calls

 -fpartial-inlining -fpeel-loops -fpredictive-commoning -fprefetch-loop-arrays

 -fprofile-correction -fprofile-use -fprofile-use=path -fprofile-partial-training

 -fprofile-values -fprofile-reorder-functions -freciprocal-math -free

 -frename-registers -freorder-blocks -freorder-blocks-algorithm=algorithm

 -freorder-blocks-and-partition -freorder-functions -frerun-cse-after-loop

 -freschedule-modulo-scheduled-loops -frounding-math -fsave-optimization-record

 -fsched2-use-superblocks -fsched-pressure -fsched-spec-load

 -fsched-spec-load-dangerous -fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]

 -fsched-group-heuristic -fsched-critical-path-heuristic -fsched-spec-insn-heuristic

 -fsched-rank-heuristic -fsched-last-insn-heuristic -fsched-dep-count-heuristic

 -fschedule-fusion -fschedule-insns -fschedule-insns2 -fsection-anchors

 -fselective-scheduling -fselective-scheduling2 -fsel-sched-pipelining

 -fsel-sched-pipelining-outer-loops -fsemantic-interposition -fshrink-wrap Page 8/576

 -fshrink-wrap-separate -fsignaling-nans -fsingle-precision-constant

 -fsplit-ivs-in-unroller -fsplit-loops -fsplit-paths -fsplit-wide-types

 -fsplit-wide-types-early -fssa-backprop -fssa-phiopt -fstdarg-opt -fstore-merging

 -fstrict-aliasing -fthread-jumps -ftracer -ftree-bit-ccp -ftree-builtin-call-dce

 -ftree-ccp -ftree-ch -ftree-coalesce-vars -ftree-copy-prop -ftree-dce

 -ftree-dominator-opts -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting

 -ftree-loop-if-convert -ftree-loop-im -ftree-phiprop -ftree-loop-distribution

 -ftree-loop-distribute-patterns -ftree-loop-ivcanon -ftree-loop-linear

 -ftree-loop-optimize -ftree-loop-vectorize -ftree-parallelize-loops=n -ftree-pre

 -ftree-partial-pre -ftree-pta -ftree-reassoc -ftree-scev-cprop -ftree-sink

 -ftree-slsr -ftree-sra -ftree-switch-conversion -ftree-tail-merge -ftree-ter

 -ftree-vectorize -ftree-vrp -funconstrained-commons -funit-at-a-time

 -funroll-all-loops -funroll-loops -funsafe-math-optimizations -funswitch-loops

 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb

 -fwhole-program -fwpa -fuse-linker-plugin -fzero-call-used-regs --param name=value

 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og

 Program Instrumentation Options

 -p -pg -fprofile-arcs --coverage -ftest-coverage -fprofile-abs-path

 -fprofile-dir=path -fprofile-generate -fprofile-generate=path -fprofile-info-section

 -fprofile-info-section=name -fprofile-note=path -fprofile-prefix-path=path

 -fprofile-update=method -fprofile-filter-files=regex -fprofile-exclude-files=regex

 -fprofile-reproducible=[multithreaded|parallel-runs|serial] -fsanitize=style

 -fsanitize-recover -fsanitize-recover=style -fasan-shadow-offset=number

 -fsanitize-sections=s1,s2,... -fsanitize-undefined-trap-on-error -fbounds-check

 -fcf-protection=[full|branch|return|none|check] -fstack-protector

 -fstack-protector-all -fstack-protector-strong -fstack-protector-explicit

 -fstack-check -fstack-limit-register=reg -fstack-limit-symbol=sym -fno-stack-limit

 -fsplit-stack -fvtable-verify=[std|preinit|none] -fvtv-counts -fvtv-debug

 -finstrument-functions -finstrument-functions-exclude-function-list=sym,sym,...

 -finstrument-functions-exclude-file-list=file,file,...

 Preprocessor Options

 -Aquestion=answer -A-question[=answer] -C -CC -Dmacro[=defn] -dD -dI -dM -dN -dU

 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers -fexec-charset=charset Page 9/576

 -fextended-identifiers -finput-charset=charset -flarge-source-files

 -fmacro-prefix-map=old=new -fmax-include-depth=depth -fno-canonical-system-headers

 -fpch-deps -fpch-preprocess -fpreprocessed -ftabstop=width -ftrack-macro-expansion

 -fwide-exec-charset=charset -fworking-directory -H -imacros file -include file -M

 -MD -MF -MG -MM -MMD -MP -MQ -MT -Mno-modules -no-integrated-cpp -P -pthread

 -remap -traditional -traditional-cpp -trigraphs -Umacro -undef -Wp,option

 -Xpreprocessor option

 Assembler Options

 -Wa,option -Xassembler option

 Linker Options

 object-file-name -fuse-ld=linker -llibrary -nostartfiles -nodefaultlibs -nolibc

 -nostdlib -e entry --entry=entry -pie -pthread -r -rdynamic -s -static

 -static-pie -static-libgcc -static-libstdc++ -static-libasan -static-libtsan

 -static-liblsan -static-libubsan -shared -shared-libgcc -symbolic -T script

 -Wl,option -Xlinker option -u symbol -z keyword

 Directory Options

 -Bprefix -Idir -I- -idirafter dir -imacros file -imultilib dir -iplugindir=dir

 -iprefix file -iquote dir -isysroot dir -isystem dir -iwithprefix dir

 -iwithprefixbefore dir -Ldir -no-canonical-prefixes --no-sysroot-suffix -nostdinc

 -nostdinc++ --sysroot=dir

 Code Generation Options

 -fcall-saved-reg -fcall-used-reg -ffixed-reg -fexceptions -fnon-call-exceptions

 -fdelete-dead-exceptions -funwind-tables -fasynchronous-unwind-tables -fno-gnu-unique

 -finhibit-size-directive -fcommon -fno-ident -fpcc-struct-return -fpic -fPIC

 -fpie -fPIE -fno-plt -fno-jump-tables -fno-bit-tests -frecord-gcc-switches

 -freg-struct-return -fshort-enums -fshort-wchar -fverbose-asm -fpack-struct[=n]

 -fleading-underscore -ftls-model=model -fstack-reuse=reuse_level -ftrampolines

 -ftrapv -fwrapv -fvisibility=[default|internal|hidden|protected]

 -fstrict-volatile-bitfields -fsync-libcalls

 Developer Options

 -dletters -dumpspecs -dumpmachine -dumpversion -dumpfullversion

 -fcallgraph-info[=su,da] -fchecking -fchecking=n -fdbg-cnt-list -fdbg-cnt=counter-

 value-list -fdisable-ipa-pass_name -fdisable-rtl-pass_name -fdisable-rtl-pass- Page 10/576

 name=range-list -fdisable-tree-pass_name -fdisable-tree-pass-name=range-list

 -fdump-debug -fdump-earlydebug -fdump-noaddr -fdump-unnumbered

 -fdump-unnumbered-links -fdump-final-insns[=file] -fdump-ipa-all -fdump-ipa-cgraph

 -fdump-ipa-inline -fdump-lang-all -fdump-lang-switch -fdump-lang-switch-options

 -fdump-lang-switch-options=filename -fdump-passes -fdump-rtl-pass

 -fdump-rtl-pass=filename -fdump-statistics -fdump-tree-all -fdump-tree-switch

 -fdump-tree-switch-options -fdump-tree-switch-options=filename -fcompare-debug[=opts]

 -fcompare-debug-second -fenable-kind-pass -fenable-kind-pass=range-list

 -fira-verbose=n -flto-report -flto-report-wpa -fmem-report-wpa -fmem-report

 -fpre-ipa-mem-report -fpost-ipa-mem-report -fopt-info -fopt-info-options[=file]

 -fprofile-report -frandom-seed=string -fsched-verbose=n -fsel-sched-verbose

 -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose -fstats -fstack-usage

 -ftime-report -ftime-report-details -fvar-tracking-assignments-toggle -gtoggle

 -print-file-name=library -print-libgcc-file-name -print-multi-directory

 -print-multi-lib -print-multi-os-directory -print-prog-name=program

 -print-search-dirs -Q -print-sysroot -print-sysroot-headers-suffix -save-temps

 -save-temps=cwd -save-temps=obj -time[=file]

 Machine-Dependent Options

 AArch64 Options -mabi=name -mbig-endian -mlittle-endian -mgeneral-regs-only

 -mcmodel=tiny -mcmodel=small -mcmodel=large -mstrict-align -mno-strict-align

 -momit-leaf-frame-pointer -mtls-dialect=desc -mtls-dialect=traditional

 -mtls-size=size -mfix-cortex-a53-835769 -mfix-cortex-a53-843419

 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div

 -mpc-relative-literal-loads -msign-return-address=scope

 -mbranch-protection=none|standard|pac-ret[+leaf +b-key]|bti -mharden-sls=opts

 -march=name -mcpu=name -mtune=name -moverride=string -mverbose-cost-dump

 -mstack-protector-guard=guard -mstack-protector-guard-reg=sysreg

 -mstack-protector-guard-offset=offset -mtrack-speculation -moutline-atomics

 Adapteva Epiphany Options -mhalf-reg-file -mprefer-short-insn-regs -mbranch-cost=num

 -mcmove -mnops=num -msoft-cmpsf -msplit-lohi -mpost-inc -mpost-modify

 -mstack-offset=num -mround-nearest -mlong-calls -mshort-calls -msmall16

 -mfp-mode=mode -mvect-double -max-vect-align=num -msplit-vecmove-early -m1reg-reg

 AMD GCN Options -march=gpu -mtune=gpu -mstack-size=bytes Page 11/576

 ARC Options -mbarrel-shifter -mjli-always -mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr -mea -mno-mpy -mmul32x16

 -mmul64 -matomic -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float

 -mswap -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape

 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof -mlong-calls

 -mmedium-calls -msdata -mirq-ctrl-saved -mrgf-banked-regs -mlpc-width=width -G num

 -mvolatile-cache -mtp-regno=regno -malign-call -mauto-modify-reg -mbbit-peephole

 -mno-brcc -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi

 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none -mlra-priority-compact

 mlra-priority-noncompact -mmillicode -mmixed-code -mq-class -mRcq -mRcw

 -msize-level=level -mtune=cpu -mmultcost=num -mcode-density-frame

 -munalign-prob-threshold=probability -mmpy-option=multo -mdiv-rem -mcode-density

 -mll64 -mfpu=fpu -mrf16 -mbranch-index

 ARM Options -mapcs-frame -mno-apcs-frame -mabi=name -mapcs-stack-check

 -mno-apcs-stack-check -mapcs-reentrant -mno-apcs-reentrant -mgeneral-regs-only

 -msched-prolog -mno-sched-prolog -mlittle-endian -mbig-endian -mbe8 -mbe32

 -mfloat-abi=name -mfp16-format=name -mthumb-interwork -mno-thumb-interwork -mcpu=name

 -march=name -mfpu=name -mtune=name -mprint-tune-info -mstructure-size-boundary=n

 -mabort-on-noreturn -mlong-calls -mno-long-calls -msingle-pic-base

 -mno-single-pic-base -mpic-register=reg -mnop-fun-dllimport -mpoke-function-name

 -mthumb -marm -mflip-thumb -mtpcs-frame -mtpcs-leaf-frame

 -mcaller-super-interworking -mcallee-super-interworking -mtp=name

 -mtls-dialect=dialect -mword-relocations -mfix-cortex-m3-ldrd -munaligned-access

 -mneon-for-64bits -mslow-flash-data -masm-syntax-unified -mrestrict-it

 -mverbose-cost-dump -mpure-code -mcmse -mfix-cmse-cve-2021-35465 -mfdpic

 AVR Options -mmcu=mcu -mabsdata -maccumulate-args -mbranch-cost=cost

 -mcall-prologues -mgas-isr-prologues -mint8 -mdouble=bits -mlong-double=bits

 -mn_flash=size -mno-interrupts -mmain-is-OS_task -mrelax -mrmw -mstrict-X

 -mtiny-stack -mfract-convert-truncate -mshort-calls -nodevicelib -nodevicespecs

 -Waddr-space-convert -Wmisspelled-isr

 Blackfin Options -mcpu=cpu[-sirevision] -msim -momit-leaf-frame-pointer

 -mno-omit-leaf-frame-pointer -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly

 -mno-csync-anomaly -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library Page 12/576

 -mno-id-shared-library -mshared-library-id=n -mleaf-id-shared-library

 -mno-leaf-id-shared-library -msep-data -mno-sep-data -mlong-calls -mno-long-calls

 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram -micplb

 C6X Options -mbig-endian -mlittle-endian -march=cpu -msim -msdata=sdata-type

 CRIS Options -mcpu=cpu -march=cpu -mtune=cpu -mmax-stack-frame=n -metrax4 -metrax100

 -mpdebug -mcc-init -mno-side-effects -mstack-align -mdata-align -mconst-align

 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -melf -maout -sim -sim2

 -mmul-bug-workaround -mno-mul-bug-workaround

 CR16 Options -mmac -mcr16cplus -mcr16c -msim -mint32 -mbit-ops -mdata-model=model

 C-SKY Options -march=arch -mcpu=cpu -mbig-endian -EB -mlittle-endian -EL

 -mhard-float -msoft-float -mfpu=fpu -mdouble-float -mfdivdu -mfloat-abi=name

 -melrw -mistack -mmp -mcp -mcache -msecurity -mtrust -mdsp -medsp -mvdsp -mdiv

 -msmart -mhigh-registers -manchor -mpushpop -mmultiple-stld -mconstpool

 -mstack-size -mccrt -mbranch-cost=n -mcse-cc -msched-prolog -msim

 Darwin Options -all_load -allowable_client -arch -arch_errors_fatal -arch_only

 -bind_at_load -bundle -bundle_loader -client_name -compatibility_version

 -current_version -dead_strip -dependency-file -dylib_file -dylinker_install_name

 -dynamic -dynamiclib -exported_symbols_list -filelist -flat_namespace

 -force_cpusubtype_ALL -force_flat_namespace -headerpad_max_install_names -iframework

 -image_base -init -install_name -keep_private_externs -multi_module

 -multiply_defined -multiply_defined_unused -noall_load

 -no_dead_strip_inits_and_terms -nofixprebinding -nomultidefs -noprebind

 -noseglinkedit -pagezero_size -prebind -prebind_all_twolevel_modules -private_bundle

 -read_only_relocs -sectalign -sectobjectsymbols -whyload -seg1addr -sectcreate

 -sectobjectsymbols -sectorder -segaddr -segs_read_only_addr -segs_read_write_addr

 -seg_addr_table -seg_addr_table_filename -seglinkedit -segprot -segs_read_only_addr

 -segs_read_write_addr -single_module -static -sub_library -sub_umbrella

 -twolevel_namespace -umbrella -undefined -unexported_symbols_list

 -weak_reference_mismatches -whatsloaded -F -gused -gfull

 -mmacosx-version-min=version -mkernel -mone-byte-bool

 DEC Alpha Options -mno-fp-regs -msoft-float -mieee -mieee-with-inexact

 -mieee-conformant -mfp-trap-mode=mode -mfp-rounding-mode=mode -mtrap-precision=mode

 -mbuild-constants -mcpu=cpu-type -mtune=cpu-type -mbwx -mmax -mfix -mcix Page 13/576

 -mfloat-vax -mfloat-ieee -mexplicit-relocs -msmall-data -mlarge-data -msmall-text

 -mlarge-text -mmemory-latency=time

 eBPF Options -mbig-endian -mlittle-endian -mkernel=version -mframe-limit=bytes -mxbpf

 FR30 Options -msmall-model -mno-lsim

 FT32 Options -msim -mlra -mnodiv -mft32b -mcompress -mnopm

 FRV Options -mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 -mhard-float -msoft-float

 -malloc-cc -mfixed-cc -mdword -mno-dword -mdouble -mno-double -mmedia -mno-media

 -mmuladd -mno-muladd -mfdpic -minline-plt -mgprel-ro -multilib-library-pic

 -mlinked-fp -mlong-calls -malign-labels -mlibrary-pic -macc-4 -macc-8 -mpack

 -mno-pack -mno-eflags -mcond-move -mno-cond-move -moptimize-membar

 -mno-optimize-membar -mscc -mno-scc -mcond-exec -mno-cond-exec -mvliw-branch

 -mno-vliw-branch -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec

 -mno-nested-cond-exec -mtomcat-stats -mTLS -mtls -mcpu=cpu

 GNU/Linux Options -mglibc -muclibc -mmusl -mbionic -mandroid -tno-android-cc

 -tno-android-ld

 H8/300 Options -mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

 HPPA Options -march=architecture-type -mcaller-copies -mdisable-fpregs

 -mdisable-indexing -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld

 -mfixed-range=register-range -mjump-in-delay -mlinker-opt -mlong-calls

 -mlong-load-store -mno-disable-fpregs -mno-disable-indexing -mno-fast-indirect-calls

 -mno-gas -mno-jump-in-delay -mno-long-load-store -mno-portable-runtime

 -mno-soft-float -mno-space-regs -msoft-float -mpa-risc-1-0 -mpa-risc-1-1

 -mpa-risc-2-0 -mportable-runtime -mschedule=cpu-type -mspace-regs -msio -mwsio

 -munix=unix-std -nolibdld -static -threads

 IA-64 Options -mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic

 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata -mconstant-gp -mauto-pic

 -mfused-madd -minline-float-divide-min-latency -minline-float-divide-max-throughput

 -mno-inline-float-divide -minline-int-divide-min-latency

 -minline-int-divide-max-throughput -mno-inline-int-divide -minline-sqrt-min-latency

 -minline-sqrt-max-throughput -mno-inline-sqrt -mdwarf2-asm -mearly-stop-bits

 -mfixed-range=register-range -mtls-size=tls-size -mtune=cpu-type -milp32 -mlp64

 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec

 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec Page 14/576

 -msched-spec-ldc -msched-spec-control-ldc -msched-prefer-non-data-spec-insns

 -msched-prefer-non-control-spec-insns -msched-stop-bits-after-every-cycle

 -msched-count-spec-in-critical-path -msel-sched-dont-check-control-spec

 -msched-fp-mem-deps-zero-cost -msched-max-memory-insns-hard-limit

 -msched-max-memory-insns=max-insns

 LM32 Options -mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled

 -msign-extend-enabled -muser-enabled

 M32R/D Options -m32r2 -m32rx -m32r -mdebug -malign-loops -mno-align-loops

 -missue-rate=number -mbranch-cost=number -mmodel=code-size-model-type -msdata=sdata-

 type -mno-flush-func -mflush-func=name -mno-flush-trap -mflush-trap=number -G num

 M32C Options -mcpu=cpu -msim -memregs=number

 M680x0 Options -march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40

 -m68020-60 -m68030 -m68040 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407

 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 -mnobitfield -mrtd -mno-rtd

 -mdiv -mno-div -mshort -mno-short -mhard-float -m68881 -msoft-float -mpcrel

 -malign-int -mstrict-align -msep-data -mno-sep-data -mshared-library-id=n

 -mid-shared-library -mno-id-shared-library -mxgot -mno-xgot

 -mlong-jump-table-offsets

 MCore Options -mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates

 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields -m4byte-functions

 -mno-4byte-functions -mcallgraph-data -mno-callgraph-data -mslow-bytes

 -mno-slow-bytes -mno-lsim -mlittle-endian -mbig-endian -m210 -m340

 -mstack-increment

 MeP Options -mabsdiff -mall-opts -maverage -mbased=n -mbitops -mc=n -mclip

 -mconfig=name -mcop -mcop32 -mcop64 -mivc2 -mdc -mdiv -meb -mel -mio-volatile

 -ml -mleadz -mm -mminmax -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim

 -msimnovec -mtf -mtiny=n

 MicroBlaze Options -msoft-float -mhard-float -msmall-divides -mcpu=cpu -mmemcpy

 -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift -mxl-pattern-compare -mxl-stack-check

 -mxl-gp-opt -mno-clearbss -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt

 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model

 -mpic-data-is-text-relative

 MIPS Options -EL -EB -march=arch -mtune=arch -mips1 -mips2 -mips3 -mips4 Page 15/576

 -mips32 -mips32r2 -mips32r3 -mips32r5 -mips32r6 -mips64 -mips64r2 -mips64r3

 -mips64r5 -mips64r6 -mips16 -mno-mips16 -mflip-mips16 -minterlink-compressed

 -mno-interlink-compressed -minterlink-mips16 -mno-interlink-mips16 -mabi=abi

 -mabicalls -mno-abicalls -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot

 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float -mno-float

 -msingle-float -mdouble-float -modd-spreg -mno-odd-spreg -mabs=mode -mnan=encoding

 -mdsp -mno-dsp -mdspr2 -mno-dspr2 -mmcu -mmno-mcu -meva -mno-eva -mvirt

 -mno-virt -mxpa -mno-xpa -mcrc -mno-crc -mginv -mno-ginv -mmicromips

 -mno-micromips -mmsa -mno-msa -mloongson-mmi -mno-loongson-mmi -mloongson-ext

 -mno-loongson-ext -mloongson-ext2 -mno-loongson-ext2 -mfpu=fpu-type -msmartmips

 -mno-smartmips -mpaired-single -mno-paired-single -mdmx -mno-mdmx -mips3d

 -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc -mlong64 -mlong32 -msym32 -mno-sym32

 -Gnum -mlocal-sdata -mno-local-sdata -mextern-sdata -mno-extern-sdata -mgpopt

 -mno-gopt -membedded-data -mno-embedded-data -muninit-const-in-rodata

 -mno-uninit-const-in-rodata -mcode-readable=setting -msplit-addresses

 -mno-split-addresses -mexplicit-relocs -mno-explicit-relocs -mcheck-zero-division

 -mno-check-zero-division -mdivide-traps -mdivide-breaks -mload-store-pairs

 -mno-load-store-pairs -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls -mmad

 -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp -mfix-24k

 -mno-fix-24k -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 -mfix-r5900

 -mno-fix-r5900 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000

 -mfix-vr4120 -mno-fix-vr4120 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1

 -mflush-func=func -mno-flush-func -mbranch-cost=num -mbranch-likely

 -mno-branch-likely -mcompact-branches=policy -mfp-exceptions -mno-fp-exceptions

 -mvr4130-align -mno-vr4130-align -msynci -mno-synci -mlxc1-sxc1 -mno-lxc1-sxc1

 -mmadd4 -mno-madd4 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address

 -mframe-header-opt -mno-frame-header-opt

 MMIX Options -mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu

 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols -melf -mbranch-predict

 -mno-branch-predict -mbase-addresses -mno-base-addresses -msingle-exit

 -mno-single-exit

 MN10300 Options -mmult-bug -mno-mult-bug -mno-am33 -mam33 -mam33-2 -mam34

 -mtune=cpu-type -mreturn-pointer-on-d0 -mno-crt0 -mrelax -mliw -msetlb Page 16/576

 Moxie Options -meb -mel -mmul.x -mno-crt0

 MSP430 Options -msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax -mwarn-mcu

 -mcode-region= -mdata-region= -msilicon-errata= -msilicon-errata-warn= -mhwmult=

 -minrt -mtiny-printf -mmax-inline-shift=

 NDS32 Options -mbig-endian -mlittle-endian -mreduced-regs -mfull-regs -mcmov

 -mno-cmov -mext-perf -mno-ext-perf -mext-perf2 -mno-ext-perf2 -mext-string

 -mno-ext-string -mv3push -mno-v3push -m16bit -mno-16bit -misr-vector-size=num

 -mcache-block-size=num -march=arch -mcmodel=code-model -mctor-dtor -mrelax

 Nios II Options -G num -mgpopt=option -mgpopt -mno-gpopt -mgprel-sec=regexp

 -mr0rel-sec=regexp -mel -meb -mno-bypass-cache -mbypass-cache -mno-cache-volatile

 -mcache-volatile -mno-fast-sw-div -mfast-sw-div -mhw-mul -mno-hw-mul -mhw-mulx

 -mno-hw-mulx -mno-hw-div -mhw-div -mcustom-insn=N -mno-custom-insn

 -mcustom-fpu-cfg=name -mhal -msmallc -msys-crt0=name -msys-lib=name -march=arch

 -mbmx -mno-bmx -mcdx -mno-cdx

 Nvidia PTX Options -m64 -mmainkernel -moptimize

 OpenRISC Options -mboard=name -mnewlib -mhard-mul -mhard-div -msoft-mul -msoft-div

 -msoft-float -mhard-float -mdouble-float -munordered-float -mcmov -mror -mrori

 -msext -msfimm -mshftimm

 PDP-11 Options -mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 -mint32

 -mno-int16 -mint16 -mno-int32 -msplit -munix-asm -mdec-asm -mgnu-asm -mlra

 picoChip Options -mae=ae_type -mvliw-lookahead=N -msymbol-as-address

 -mno-inefficient-warnings

 PowerPC Options See RS/6000 and PowerPC Options.

 PRU Options -mmcu=mcu -minrt -mno-relax -mloop -mabi=variant

 RISC-V Options -mbranch-cost=N-instruction -mplt -mno-plt -mabi=ABI-string -mfdiv

 -mno-fdiv -mdiv -mno-div -march=ISA-string -mtune=processor-string

 -mpreferred-stack-boundary=num -msmall-data-limit=N-bytes -msave-restore

 -mno-save-restore -mshorten-memrefs -mno-shorten-memrefs -mstrict-align

 -mno-strict-align -mcmodel=medlow -mcmodel=medany -mexplicit-relocs

 -mno-explicit-relocs -mrelax -mno-relax -mriscv-attribute -mmo-riscv-attribute

 -malign-data=type -mbig-endian -mlittle-endian +-mstack-protector-guard=guard

 -mstack-protector-guard-reg=reg +-mstack-protector-guard-offset=offset

 RL78 Options -msim -mmul=none -mmul=g13 -mmul=g14 -mallregs -mcpu=g10 -mcpu=g13 Page 17/576

 -mcpu=g14 -mg10 -mg13 -mg14 -m64bit-doubles -m32bit-doubles

 -msave-mduc-in-interrupts

 RS/6000 and PowerPC Options -mcpu=cpu-type -mtune=cpu-type -mcmodel=code-model

 -mpowerpc64 -maltivec -mno-altivec -mpowerpc-gpopt -mno-powerpc-gpopt

 -mpowerpc-gfxopt -mno-powerpc-gfxopt -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb

 -mpopcntd -mno-popcntd -mfprnd -mno-fprnd -mcmpb -mno-cmpb -mhard-dfp

 -mno-hard-dfp -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc -m64 -m32

 -mxl-compat -mno-xl-compat -mpe -malign-power -malign-natural -msoft-float

 -mhard-float -mmultiple -mno-multiple -mupdate -mno-update

 -mavoid-indexed-addresses -mno-avoid-indexed-addresses -mfused-madd -mno-fused-madd

 -mbit-align -mno-bit-align -mstrict-align -mno-strict-align -mrelocatable

 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib -mtoc -mno-toc -mlittle

 -mlittle-endian -mbig -mbig-endian -mdynamic-no-pic -mswdiv -msingle-pic-base

 -mprioritize-restricted-insns=priority -msched-costly-dep=dependence_type

 -minsert-sched-nops=scheme -mcall-aixdesc -mcall-eabi -mcall-freebsd -mcall-linux

 -mcall-netbsd -mcall-openbsd -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi

 -mtraceback=traceback_type -maix-struct-return -msvr4-struct-return -mabi=abi-type

 -msecure-plt -mbss-plt -mlongcall -mno-longcall -mpltseq -mno-pltseq

 -mblock-move-inline-limit=num -mblock-compare-inline-limit=num

 -mblock-compare-inline-loop-limit=num -mno-block-ops-unaligned-vsx

 -mstring-compare-inline-limit=num -misel -mno-isel -mvrsave -mno-vrsave -mmulhw

 -mno-mulhw -mdlmzb -mno-dlmzb -mprototype -mno-prototype -msim -mmvme -mads

 -myellowknife -memb -msdata -msdata=opt -mreadonly-in-sdata -mvxworks -G num

 -mrecip -mrecip=opt -mno-recip -mrecip-precision -mno-recip-precision

 -mveclibabi=type -mfriz -mno-friz -mpointers-to-nested-functions

 -mno-pointers-to-nested-functions -msave-toc-indirect -mno-save-toc-indirect

 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector -mcrypto

 -mno-crypto -mhtm -mno-htm -mquad-memory -mno-quad-memory -mquad-memory-atomic

 -mno-quad-memory-atomic -mcompat-align-parm -mno-compat-align-parm -mfloat128

 -mno-float128 -mfloat128-hardware -mno-float128-hardware -mgnu-attribute

 -mno-gnu-attribute -mstack-protector-guard=guard -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset -mprefixed -mno-prefixed -mpcrel -mno-pcrel

 -mmma -mno-mmma -mrop-protect -mno-rop-protect -mprivileged -mno-privileged Page 18/576

 RX Options -m64bit-doubles -m32bit-doubles -fpu -nofpu -mcpu= -mbig-endian-data

 -mlittle-endian-data -msmall-data -msim -mno-sim -mas100-syntax -mno-as100-syntax

 -mrelax -mmax-constant-size= -mint-register= -mpid -mallow-string-insns

 -mno-allow-string-insns -mjsr -mno-warn-multiple-fast-interrupts

 -msave-acc-in-interrupts

 S/390 and zSeries Options -mtune=cpu-type -march=cpu-type -mhard-float -msoft-float

 -mhard-dfp -mno-hard-dfp -mlong-double-64 -mlong-double-128 -mbackchain

 -mno-backchain -mpacked-stack -mno-packed-stack -msmall-exec -mno-small-exec

 -mmvcle -mno-mvcle -m64 -m31 -mdebug -mno-debug -mesa -mzarch -mhtm -mvx

 -mzvector -mtpf-trace -mno-tpf-trace -mtpf-trace-skip -mno-tpf-trace-skip

 -mfused-madd -mno-fused-madd -mwarn-framesize -mwarn-dynamicstack -mstack-size

 -mstack-guard -mhotpatch=halfwords,halfwords

 Score Options -meb -mel -mnhwloop -muls -mmac -mscore5 -mscore5u -mscore7

 -mscore7d

 SH Options -m1 -m2 -m2e -m2a-nofpu -m2a-single-only -m2a-single -m2a -m3 -m3e

 -m4-nofpu -m4-single-only -m4-single -m4 -m4a-nofpu -m4a-single-only -m4a-single

 -m4a -m4al -mb -ml -mdalign -mrelax -mbigtable -mfmovd -mrenesas -mno-renesas

 -mnomacsave -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct

 -mprefergot -musermode -multcost=number -mdiv=strategy -mdivsi3_libfunc=name

 -mfixed-range=register-range -maccumulate-outgoing-args -matomic-model=atomic-model

 -mbranch-cost=num -mzdcbranch -mno-zdcbranch -mcbranch-force-delay-slot -mfused-madd

 -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra -mpretend-cmove -mtas

 Solaris 2 Options -mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text

 -pthreads

 SPARC Options -mcpu=cpu-type -mtune=cpu-type -mcmodel=code-model -mmemory-model=mem-

 model -m32 -m64 -mapp-regs -mno-app-regs -mfaster-structs -mno-faster-structs

 -mflat -mno-flat -mfpu -mno-fpu -mhard-float -msoft-float -mhard-quad-float

 -msoft-quad-float -mstack-bias -mno-stack-bias -mstd-struct-return

 -mno-std-struct-return -munaligned-doubles -mno-unaligned-doubles -muser-mode

 -mno-user-mode -mv8plus -mno-v8plus -mvis -mno-vis -mvis2 -mno-vis2 -mvis3

 -mno-vis3 -mvis4 -mno-vis4 -mvis4b -mno-vis4b -mcbcond -mno-cbcond -mfmaf

 -mno-fmaf -mfsmuld -mno-fsmuld -mpopc -mno-popc -msubxc -mno-subxc -mfix-at697f

 -mfix-ut699 -mfix-ut700 -mfix-gr712rc -mlra -mno-lra Page 19/576

 System V Options -Qy -Qn -YP,paths -Ym,dir

 TILE-Gx Options -mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian -mcmodel=code-

 model

 TILEPro Options -mcpu=cpu -m32

 V850 Options -mlong-calls -mno-long-calls -mep -mno-ep -mprolog-function

 -mno-prolog-function -mspace -mtda=n -msda=n -mzda=n -mapp-regs -mno-app-regs

 -mdisable-callt -mno-disable-callt -mv850e2v3 -mv850e2 -mv850e1 -mv850es -mv850e

 -mv850 -mv850e3v5 -mloop -mrelax -mlong-jumps -msoft-float -mhard-float -mgcc-abi

 -mrh850-abi -mbig-switch

 VAX Options -mg -mgnu -munix

 Visium Options -mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float -mcpu=cpu-

 type -mtune=cpu-type -msv-mode -muser-mode

 VMS Options -mvms-return-codes -mdebug-main=prefix -mmalloc64 -mpointer-size=size

 VxWorks Options -mrtp -non-static -Bstatic -Bdynamic -Xbind-lazy -Xbind-now

 x86 Options -mtune=cpu-type -march=cpu-type -mtune-ctrl=feature-list

 -mdump-tune-features -mno-default -mfpmath=unit -masm=dialect -mno-fancy-math-387

 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float -mno-wide-multiply -mrtd

 -malign-double -mpreferred-stack-boundary=num -mincoming-stack-boundary=num -mcld

 -mcx16 -msahf -mmovbe -mcrc32 -mmwait -mrecip -mrecip=opt -mvzeroupper

 -mprefer-avx128 -mprefer-vector-width=opt -mmmx -msse -msse2 -msse3 -mssse3

 -msse4.1 -msse4.2 -msse4 -mavx -mavx2 -mavx512f -mavx512pf -mavx512er

 -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha

 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd -mptwrite

 -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves -msse4a -m3dnow -m3dnowa

 -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -madx -mlzcnt -mbmi2 -mfxsr -mxsave

 -mxsaveopt -mrtm -mhle -mlwp -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes

 -mwaitpkg -mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16

 -menqcmd -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq

 -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid -mrdseed -msgx

 -mavx512vp2intersect -mserialize -mtsxldtrk -mamx-tile -mamx-int8 -mamx-bf16 -muintr

 -mhreset -mavxvnni -mcldemote -mms-bitfields -mno-align-stringops

 -minline-all-stringops -minline-stringops-dynamically -mstringop-strategy=alg -mkl

 -mwidekl -mmemcpy-strategy=strategy -mmemset-strategy=strategy -mpush-args Page 20/576

 -maccumulate-outgoing-args -m128bit-long-double -m96bit-long-double -mlong-double-64

 -mlong-double-80 -mlong-double-128 -mregparm=num -msseregparm -mveclibabi=type

 -mvect8-ret-in-mem -mpc32 -mpc64 -mpc80 -mdaz-ftz -mstackrealign

 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs -mcmodel=code-model

 -mabi=name -maddress-mode=mode -m32 -m64 -mx32 -m16 -miamcu

 -mlarge-data-threshold=num -msse2avx -mfentry -mrecord-mcount -mnop-mcount

 -m8bit-idiv -minstrument-return=type -mfentry-name=name -mfentry-section=name

 -mavx256-split-unaligned-load -mavx256-split-unaligned-store -malign-data=type

 -mstack-protector-guard=guard -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset -mstack-protector-guard-symbol=symbol

 -mgeneral-regs-only -mcall-ms2sysv-xlogues -mindirect-branch=choice

 -mfunction-return=choice -mindirect-branch-register -mharden-sls=choice

 -mindirect-branch-cs-prefix -mneeded

 x86 Windows Options -mconsole -mcygwin -mno-cygwin -mdll -mnop-fun-dllimport

 -mthread -municode -mwin32 -mwindows -fno-set-stack-executable

 Xstormy16 Options -msim

 Xtensa Options -mconst16 -mno-const16 -mfused-madd -mno-fused-madd -mforce-no-pic

 -mserialize-volatile -mno-serialize-volatile -mtext-section-literals

 -mno-text-section-literals -mauto-litpools -mno-auto-litpools -mtarget-align

 -mno-target-align -mlongcalls -mno-longcalls -mabi=abi-type

 zSeries Options See S/390 and zSeries Options.

 Options Controlling the Kind of Output

 Compilation can involve up to four stages: preprocessing, compilation proper, assembly and

 linking, always in that order. GCC is capable of preprocessing and compiling several

 files either into several assembler input files, or into one assembler input file; then

 each assembler input file produces an object file, and linking combines all the object

 files (those newly compiled, and those specified as input) into an executable file.

 For any given input file, the file name suffix determines what kind of compilation is

 done:

 file.c

 C source code that must be preprocessed.

 file.i

 C source code that should not be preprocessed. Page 21/576

 file.ii

 C++ source code that should not be preprocessed.

 file.m

 Objective-C source code. Note that you must link with the libobjc library to make an

 Objective-C program work.

 file.mi

 Objective-C source code that should not be preprocessed.

 file.mm

 file.M

 Objective-C++ source code. Note that you must link with the libobjc library to make

 an Objective-C++ program work. Note that .M refers to a literal capital M.

 file.mii

 Objective-C++ source code that should not be preprocessed.

 file.h

 C, C++, Objective-C or Objective-C++ header file to be turned into a precompiled

 header (default), or C, C++ header file to be turned into an Ada spec (via the

 -fdump-ada-spec switch).

 file.cc

 file.cp

 file.cxx

 file.cpp

 file.CPP

 file.c++

 file.C

 C++ source code that must be preprocessed. Note that in .cxx, the last two letters

 must both be literally x. Likewise, .C refers to a literal capital C.

 file.mm

 file.M

 Objective-C++ source code that must be preprocessed.

 file.mii

 Objective-C++ source code that should not be preprocessed.

 file.hh

 file.H Page 22/576

 file.hp

 file.hxx

 file.hpp

 file.HPP

 file.h++

 file.tcc

 C++ header file to be turned into a precompiled header or Ada spec.

 file.f

 file.for

 file.ftn

 Fixed form Fortran source code that should not be preprocessed.

 file.F

 file.FOR

 file.fpp

 file.FPP

 file.FTN

 Fixed form Fortran source code that must be preprocessed (with the traditional

 preprocessor).

 file.f90

 file.f95

 file.f03

 file.f08

 Free form Fortran source code that should not be preprocessed.

 file.F90

 file.F95

 file.F03

 file.F08

 Free form Fortran source code that must be preprocessed (with the traditional

 preprocessor).

 file.go

 Go source code.

 file.brig

 BRIG files (binary representation of HSAIL). Page 23/576

 file.d

 D source code.

 file.di

 D interface file.

 file.dd

 D documentation code (Ddoc).

 file.ads

 Ada source code file that contains a library unit declaration (a declaration of a

 package, subprogram, or generic, or a generic instantiation), or a library unit

 renaming declaration (a package, generic, or subprogram renaming declaration). Such

 files are also called specs.

 file.adb

 Ada source code file containing a library unit body (a subprogram or package body).

 Such files are also called bodies.

 file.s

 Assembler code.

 file.S

 file.sx

 Assembler code that must be preprocessed.

 other

 An object file to be fed straight into linking. Any file name with no recognized

 suffix is treated this way.

 You can specify the input language explicitly with the -x option:

 -x language

 Specify explicitly the language for the following input files (rather than letting the

 compiler choose a default based on the file name suffix). This option applies to all

 following input files until the next -x option. Possible values for language are:

 c c-header cpp-output

 c++ c++-header c++-system-header c++-user-header c++-cpp-output

 objective-c objective-c-header objective-c-cpp-output

 objective-c++ objective-c++-header objective-c++-cpp-output

 assembler assembler-with-cpp

 ada Page 24/576

 d

 f77 f77-cpp-input f95 f95-cpp-input

 go

 brig

 -x none

 Turn off any specification of a language, so that subsequent files are handled

 according to their file name suffixes (as they are if -x has not been used at all).

 If you only want some of the stages of compilation, you can use -x (or filename suffixes)

 to tell gcc where to start, and one of the options -c, -S, or -E to say where gcc is to

 stop. Note that some combinations (for example, -x cpp-output -E) instruct gcc to do

 nothing at all.

 -c Compile or assemble the source files, but do not link. The linking stage simply is

 not done. The ultimate output is in the form of an object file for each source file.

 By default, the object file name for a source file is made by replacing the suffix .c,

 .i, .s, etc., with .o.

 Unrecognized input files, not requiring compilation or assembly, are ignored.

 -S Stop after the stage of compilation proper; do not assemble. The output is in the

 form of an assembler code file for each non-assembler input file specified.

 By default, the assembler file name for a source file is made by replacing the suffix

 .c, .i, etc., with .s.

 Input files that don't require compilation are ignored.

 -E Stop after the preprocessing stage; do not run the compiler proper. The output is in

 the form of preprocessed source code, which is sent to the standard output.

 Input files that don't require preprocessing are ignored.

 -o file

 Place the primary output in file file. This applies to whatever sort of output is

 being produced, whether it be an executable file, an object file, an assembler file or

 preprocessed C code.

 If -o is not specified, the default is to put an executable file in a.out, the object

 file for source.suffix in source.o, its assembler file in source.s, a precompiled

 header file in source.suffix.gch, and all preprocessed C source on standard output.

 Though -o names only the primary output, it also affects the naming of auxiliary and

 dump outputs. See the examples below. Unless overridden, both auxiliary outputs and Page 25/576

 dump outputs are placed in the same directory as the primary output. In auxiliary

 outputs, the suffix of the input file is replaced with that of the auxiliary output

 file type; in dump outputs, the suffix of the dump file is appended to the input file

 suffix. In compilation commands, the base name of both auxiliary and dump outputs is

 that of the primary output; in compile and link commands, the primary output name,

 minus the executable suffix, is combined with the input file name. If both share the

 same base name, disregarding the suffix, the result of the combination is that base

 name, otherwise, they are concatenated, separated by a dash.

 gcc -c foo.c ...

 will use foo.o as the primary output, and place aux outputs and dumps next to it,

 e.g., aux file foo.dwo for -gsplit-dwarf, and dump file foo.c.???r.final for

 -fdump-rtl-final.

 If a non-linker output file is explicitly specified, aux and dump files by default

 take the same base name:

 gcc -c foo.c -o dir/foobar.o ...

 will name aux outputs dir/foobar.* and dump outputs dir/foobar.c.*.

 A linker output will instead prefix aux and dump outputs:

 gcc foo.c bar.c -o dir/foobar ...

 will generally name aux outputs dir/foobar-foo.* and dir/foobar-bar.*, and dump

 outputs dir/foobar-foo.c.* and dir/foobar-bar.c.*.

 The one exception to the above is when the executable shares the base name with the

 single input:

 gcc foo.c -o dir/foo ...

 in which case aux outputs are named dir/foo.* and dump outputs named dir/foo.c.*.

 The location and the names of auxiliary and dump outputs can be adjusted by the

 options -dumpbase, -dumpbase-ext, -dumpdir, -save-temps=cwd, and -save-temps=obj.

 -dumpbase dumpbase

 This option sets the base name for auxiliary and dump output files. It does not

 affect the name of the primary output file. Intermediate outputs, when preserved, are

 not regarded as primary outputs, but as auxiliary outputs:

 gcc -save-temps -S foo.c

 saves the (no longer) temporary preprocessed file in foo.i, and then compiles to the

 (implied) output file foo.s, whereas: Page 26/576

 gcc -save-temps -dumpbase save-foo -c foo.c

 preprocesses to in save-foo.i, compiles to save-foo.s (now an intermediate, thus

 auxiliary output), and then assembles to the (implied) output file foo.o.

 Absent this option, dump and aux files take their names from the input file, or from

 the (non-linker) output file, if one is explicitly specified: dump output files (e.g.

 those requested by -fdump-* options) with the input name suffix, and aux output files

 (those requested by other non-dump options, e.g. "-save-temps", "-gsplit-dwarf",

 "-fcallgraph-info") without it.

 Similar suffix differentiation of dump and aux outputs can be attained for explicitly-

 given -dumpbase basename.suf by also specifying -dumpbase-ext .suf.

 If dumpbase is explicitly specified with any directory component, any dumppfx

 specification (e.g. -dumpdir or -save-temps=*) is ignored, and instead of appending to

 it, dumpbase fully overrides it:

 gcc foo.c -c -o dir/foo.o -dumpbase alt/foo \

 -dumpdir pfx- -save-temps=cwd ...

 creates auxiliary and dump outputs named alt/foo.*, disregarding dir/ in -o, the ./

 prefix implied by -save-temps=cwd, and pfx- in -dumpdir.

 When -dumpbase is specified in a command that compiles multiple inputs, or that

 compiles and then links, it may be combined with dumppfx, as specified under -dumpdir.

 Then, each input file is compiled using the combined dumppfx, and default values for

 dumpbase and auxdropsuf are computed for each input file:

 gcc foo.c bar.c -c -dumpbase main ...

 creates foo.o and bar.o as primary outputs, and avoids overwriting the auxiliary and

 dump outputs by using the dumpbase as a prefix, creating auxiliary and dump outputs

 named main-foo.* and main-bar.*.

 An empty string specified as dumpbase avoids the influence of the output basename in

 the naming of auxiliary and dump outputs during compilation, computing default values

 :

 gcc -c foo.c -o dir/foobar.o -dumpbase " ...

 will name aux outputs dir/foo.* and dump outputs dir/foo.c.*. Note how their

 basenames are taken from the input name, but the directory still defaults to that of

 the output.

 The empty-string dumpbase does not prevent the use of the output basename for outputs Page 27/576

 during linking:

 gcc foo.c bar.c -o dir/foobar -dumpbase " -flto ...

 The compilation of the source files will name auxiliary outputs dir/foo.* and

 dir/bar.*, and dump outputs dir/foo.c.* and dir/bar.c.*. LTO recompilation during

 linking will use dir/foobar. as the prefix for dumps and auxiliary files.

 -dumpbase-ext auxdropsuf

 When forming the name of an auxiliary (but not a dump) output file, drop trailing

 auxdropsuf from dumpbase before appending any suffixes. If not specified, this option

 defaults to the suffix of a default dumpbase, i.e., the suffix of the input file when

 -dumpbase is not present in the command line, or dumpbase is combined with dumppfx.

 gcc foo.c -c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...

 creates dir/foo.o as the main output, and generates auxiliary outputs in dir/x-foo.*,

 taking the location of the primary output, and dropping the .c suffix from the

 dumpbase. Dump outputs retain the suffix: dir/x-foo.c.*.

 This option is disregarded if it does not match the suffix of a specified dumpbase,

 except as an alternative to the executable suffix when appending the linker output

 base name to dumppfx, as specified below:

 gcc foo.c bar.c -o main.out -dumpbase-ext .out ...

 creates main.out as the primary output, and avoids overwriting the auxiliary and dump

 outputs by using the executable name minus auxdropsuf as a prefix, creating auxiliary

 outputs named main-foo.* and main-bar.* and dump outputs named main-foo.c.* and

 main-bar.c.*.

 -dumpdir dumppfx

 When forming the name of an auxiliary or dump output file, use dumppfx as a prefix:

 gcc -dumpdir pfx- -c foo.c ...

 creates foo.o as the primary output, and auxiliary outputs named pfx-foo.*, combining

 the given dumppfx with the default dumpbase derived from the default primary output,

 derived in turn from the input name. Dump outputs also take the input name suffix:

 pfx-foo.c.*.

 If dumppfx is to be used as a directory name, it must end with a directory separator:

 gcc -dumpdir dir/ -c foo.c -o obj/bar.o ...

 creates obj/bar.o as the primary output, and auxiliary outputs named dir/bar.*,

 combining the given dumppfx with the default dumpbase derived from the primary output Page 28/576

 name. Dump outputs also take the input name suffix: dir/bar.c.*.

 It defaults to the location of the output file, unless the output file is a special

 file like "/dev/null". Options -save-temps=cwd and -save-temps=obj override this

 default, just like an explicit -dumpdir option. In case multiple such options are

 given, the last one prevails:

 gcc -dumpdir pfx- -c foo.c -save-temps=obj ...

 outputs foo.o, with auxiliary outputs named foo.* because -save-temps=* overrides the

 dumppfx given by the earlier -dumpdir option. It does not matter that =obj is the

 default for -save-temps, nor that the output directory is implicitly the current

 directory. Dump outputs are named foo.c.*.

 When compiling from multiple input files, if -dumpbase is specified, dumpbase, minus a

 auxdropsuf suffix, and a dash are appended to (or override, if containing any

 directory components) an explicit or defaulted dumppfx, so that each of the multiple

 compilations gets differently-named aux and dump outputs.

 gcc foo.c bar.c -c -dumpdir dir/pfx- -dumpbase main ...

 outputs auxiliary dumps to dir/pfx-main-foo.* and dir/pfx-main-bar.*, appending

 dumpbase- to dumppfx. Dump outputs retain the input file suffix: dir/pfx-main-foo.c.*

 and dir/pfx-main-bar.c.*, respectively. Contrast with the single-input compilation:

 gcc foo.c -c -dumpdir dir/pfx- -dumpbase main ...

 that, applying -dumpbase to a single source, does not compute and append a separate

 dumpbase per input file. Its auxiliary and dump outputs go in dir/pfx-main.*.

 When compiling and then linking from multiple input files, a defaulted or explicitly

 specified dumppfx also undergoes the dumpbase- transformation above (e.g. the

 compilation of foo.c and bar.c above, but without -c). If neither -dumpdir nor

 -dumpbase are given, the linker output base name, minus auxdropsuf, if specified, or

 the executable suffix otherwise, plus a dash is appended to the default dumppfx

 instead. Note, however, that unlike earlier cases of linking:

 gcc foo.c bar.c -dumpdir dir/pfx- -o main ...

 does not append the output name main to dumppfx, because -dumpdir is explicitly

 specified. The goal is that the explicitly-specified dumppfx may contain the

 specified output name as part of the prefix, if desired; only an explicitly-specified

 -dumpbase would be combined with it, in order to avoid simply discarding a meaningful

 option. Page 29/576

 When compiling and then linking from a single input file, the linker output base name

 will only be appended to the default dumppfx as above if it does not share the base

 name with the single input file name. This has been covered in single-input linking

 cases above, but not with an explicit -dumpdir that inhibits the combination, even if

 overridden by -save-temps=*:

 gcc foo.c -dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...

 Auxiliary outputs are named foo.*, and dump outputs foo.c.*, in the current working

 directory as ultimately requested by -save-temps=cwd.

 Summing it all up for an intuitive though slightly imprecise data flow: the primary

 output name is broken into a directory part and a basename part; dumppfx is set to the

 former, unless overridden by -dumpdir or -save-temps=*, and dumpbase is set to the

 latter, unless overriden by -dumpbase. If there are multiple inputs or linking, this

 dumpbase may be combined with dumppfx and taken from each input file. Auxiliary

 output names for each input are formed by combining dumppfx, dumpbase minus suffix,

 and the auxiliary output suffix; dump output names are only different in that the

 suffix from dumpbase is retained.

 When it comes to auxiliary and dump outputs created during LTO recompilation, a

 combination of dumppfx and dumpbase, as given or as derived from the linker output

 name but not from inputs, even in cases in which this combination would not otherwise

 be used as such, is passed down with a trailing period replacing the compiler-added

 dash, if any, as a -dumpdir option to lto-wrapper; being involved in linking, this

 program does not normally get any -dumpbase and -dumpbase-ext, and it ignores them.

 When running sub-compilers, lto-wrapper appends LTO stage names to the received

 dumppfx, ensures it contains a directory component so that it overrides any -dumpdir,

 and passes that as -dumpbase to sub-compilers.

 -v Print (on standard error output) the commands executed to run the stages of

 compilation. Also print the version number of the compiler driver program and of the

 preprocessor and the compiler proper.

 -###

 Like -v except the commands are not executed and arguments are quoted unless they

 contain only alphanumeric characters or "./-_". This is useful for shell scripts to

 capture the driver-generated command lines.

 --help Page 30/576

 Print (on the standard output) a description of the command-line options understood by

 gcc. If the -v option is also specified then --help is also passed on to the various

 processes invoked by gcc, so that they can display the command-line options they

 accept. If the -Wextra option has also been specified (prior to the --help option),

 then command-line options that have no documentation associated with them are also

 displayed.

 --target-help

 Print (on the standard output) a description of target-specific command-line options

 for each tool. For some targets extra target-specific information may also be

 printed.

 --help={class|[^]qualifier}[,...]

 Print (on the standard output) a description of the command-line options understood by

 the compiler that fit into all specified classes and qualifiers. These are the

 supported classes:

 optimizers

 Display all of the optimization options supported by the compiler.

 warnings

 Display all of the options controlling warning messages produced by the compiler.

 target

 Display target-specific options. Unlike the --target-help option however, target-

 specific options of the linker and assembler are not displayed. This is because

 those tools do not currently support the extended --help= syntax.

 params

 Display the values recognized by the --param option.

 language

 Display the options supported for language, where language is the name of one of

 the languages supported in this version of GCC. If an option is supported by all

 languages, one needs to select common class.

 common

 Display the options that are common to all languages.

 These are the supported qualifiers:

 undocumented

 Display only those options that are undocumented. Page 31/576

 joined

 Display options taking an argument that appears after an equal sign in the same

 continuous piece of text, such as: --help=target.

 separate

 Display options taking an argument that appears as a separate word following the

 original option, such as: -o output-file.

 Thus for example to display all the undocumented target-specific switches supported by

 the compiler, use:

 --help=target,undocumented

 The sense of a qualifier can be inverted by prefixing it with the ^ character, so for

 example to display all binary warning options (i.e., ones that are either on or off

 and that do not take an argument) that have a description, use:

 --help=warnings,^joined,^undocumented

 The argument to --help= should not consist solely of inverted qualifiers.

 Combining several classes is possible, although this usually restricts the output so

 much that there is nothing to display. One case where it does work, however, is when

 one of the classes is target. For example, to display all the target-specific

 optimization options, use:

 --help=target,optimizers

 The --help= option can be repeated on the command line. Each successive use displays

 its requested class of options, skipping those that have already been displayed. If

 --help is also specified anywhere on the command line then this takes precedence over

 any --help= option.

 If the -Q option appears on the command line before the --help= option, then the

 descriptive text displayed by --help= is changed. Instead of describing the displayed

 options, an indication is given as to whether the option is enabled, disabled or set

 to a specific value (assuming that the compiler knows this at the point where the

 --help= option is used).

 Here is a truncated example from the ARM port of gcc:

 % gcc -Q -mabi=2 --help=target -c

 The following options are target specific:

 -mabi= 2

 -mabort-on-noreturn [disabled] Page 32/576

 -mapcs [disabled]

 The output is sensitive to the effects of previous command-line options, so for

 example it is possible to find out which optimizations are enabled at -O2 by using:

 -Q -O2 --help=optimizers

 Alternatively you can discover which binary optimizations are enabled by -O3 by using:

 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts

 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts

 diff /tmp/O2-opts /tmp/O3-opts | grep enabled

 --version

 Display the version number and copyrights of the invoked GCC.

 -pass-exit-codes

 Normally the gcc program exits with the code of 1 if any phase of the compiler returns

 a non-success return code. If you specify -pass-exit-codes, the gcc program instead

 returns with the numerically highest error produced by any phase returning an error

 indication. The C, C++, and Fortran front ends return 4 if an internal compiler error

 is encountered.

 -pipe

 Use pipes rather than temporary files for communication between the various stages of

 compilation. This fails to work on some systems where the assembler is unable to read

 from a pipe; but the GNU assembler has no trouble.

 -specs=file

 Process file after the compiler reads in the standard specs file, in order to override

 the defaults which the gcc driver program uses when determining what switches to pass

 to cc1, cc1plus, as, ld, etc. More than one -specs=file can be specified on the

 command line, and they are processed in order, from left to right.

 -wrapper

 Invoke all subcommands under a wrapper program. The name of the wrapper program and

 its parameters are passed as a comma separated list.

 gcc -c t.c -wrapper gdb,--args

 This invokes all subprograms of gcc under gdb --args, thus the invocation of cc1 is

 gdb --args cc1

 -ffile-prefix-map=old=new

 When compiling files residing in directory old, record any references to them in the Page 33/576

 result of the compilation as if the files resided in directory new instead.

 Specifying this option is equivalent to specifying all the individual -f*-prefix-map

 options. This can be used to make reproducible builds that are location independent.

 See also -fmacro-prefix-map and -fdebug-prefix-map.

 -fplugin=name.so

 Load the plugin code in file name.so, assumed to be a shared object to be dlopen'd by

 the compiler. The base name of the shared object file is used to identify the plugin

 for the purposes of argument parsing (See -fplugin-arg-name-key=value below). Each

 plugin should define the callback functions specified in the Plugins API.

 -fplugin-arg-name-key=value

 Define an argument called key with a value of value for the plugin called name.

 -fdump-ada-spec[-slim]

 For C and C++ source and include files, generate corresponding Ada specs.

 -fada-spec-parent=unit

 In conjunction with -fdump-ada-spec[-slim] above, generate Ada specs as child units of

 parent unit.

 -fdump-go-spec=file

 For input files in any language, generate corresponding Go declarations in file. This

 generates Go "const", "type", "var", and "func" declarations which may be a useful way

 to start writing a Go interface to code written in some other language.

 @file

 Read command-line options from file. The options read are inserted in place of the

 original @file option. If file does not exist, or cannot be read, then the option

 will be treated literally, and not removed.

 Options in file are separated by whitespace. A whitespace character may be included

 in an option by surrounding the entire option in either single or double quotes. Any

 character (including a backslash) may be included by prefixing the character to be

 included with a backslash. The file may itself contain additional @file options; any

 such options will be processed recursively.

 Compiling C++ Programs

 C++ source files conventionally use one of the suffixes .C, .cc, .cpp, .CPP, .c++, .cp, or

 .cxx; C++ header files often use .hh, .hpp, .H, or (for shared template code) .tcc; and

 preprocessed C++ files use the suffix .ii. GCC recognizes files with these names and Page 34/576

 compiles them as C++ programs even if you call the compiler the same way as for compiling

 C programs (usually with the name gcc).

 However, the use of gcc does not add the C++ library. g++ is a program that calls GCC and

 automatically specifies linking against the C++ library. It treats .c, .h and .i files as

 C++ source files instead of C source files unless -x is used. This program is also useful

 when precompiling a C header file with a .h extension for use in C++ compilations. On

 many systems, g++ is also installed with the name c++.

 When you compile C++ programs, you may specify many of the same command-line options that

 you use for compiling programs in any language; or command-line options meaningful for C

 and related languages; or options that are meaningful only for C++ programs.

 Options Controlling C Dialect

 The following options control the dialect of C (or languages derived from C, such as C++,

 Objective-C and Objective-C++) that the compiler accepts:

 -ansi

 In C mode, this is equivalent to -std=c90. In C++ mode, it is equivalent to

 -std=c++98.

 This turns off certain features of GCC that are incompatible with ISO C90 (when

 compiling C code), or of standard C++ (when compiling C++ code), such as the "asm" and

 "typeof" keywords, and predefined macros such as "unix" and "vax" that identify the

 type of system you are using. It also enables the undesirable and rarely used ISO

 trigraph feature. For the C compiler, it disables recognition of C++ style //

 comments as well as the "inline" keyword.

 The alternate keywords "__asm__", "__extension__", "__inline__" and "__typeof__"

 continue to work despite -ansi. You would not want to use them in an ISO C program,

 of course, but it is useful to put them in header files that might be included in

 compilations done with -ansi. Alternate predefined macros such as "__unix__" and

 "__vax__" are also available, with or without -ansi.

 The -ansi option does not cause non-ISO programs to be rejected gratuitously. For

 that, -Wpedantic is required in addition to -ansi.

 The macro "__STRICT_ANSI__" is predefined when the -ansi option is used. Some header

 files may notice this macro and refrain from declaring certain functions or defining

 certain macros that the ISO standard doesn't call for; this is to avoid interfering

 with any programs that might use these names for other things. Page 35/576

 Functions that are normally built in but do not have semantics defined by ISO C (such

 as "alloca" and "ffs") are not built-in functions when -ansi is used.

 -std=

 Determine the language standard. This option is currently only supported when

 compiling C or C++.

 The compiler can accept several base standards, such as c90 or c++98, and GNU dialects

 of those standards, such as gnu90 or gnu++98. When a base standard is specified, the

 compiler accepts all programs following that standard plus those using GNU extensions

 that do not contradict it. For example, -std=c90 turns off certain features of GCC

 that are incompatible with ISO C90, such as the "asm" and "typeof" keywords, but not

 other GNU extensions that do not have a meaning in ISO C90, such as omitting the

 middle term of a "?:" expression. On the other hand, when a GNU dialect of a standard

 is specified, all features supported by the compiler are enabled, even when those

 features change the meaning of the base standard. As a result, some strict-conforming

 programs may be rejected. The particular standard is used by -Wpedantic to identify

 which features are GNU extensions given that version of the standard. For example

 -std=gnu90 -Wpedantic warns about C++ style // comments, while -std=gnu99 -Wpedantic

 does not.

 A value for this option must be provided; possible values are

 c90

 c89

 iso9899:1990

 Support all ISO C90 programs (certain GNU extensions that conflict with ISO C90

 are disabled). Same as -ansi for C code.

 iso9899:199409

 ISO C90 as modified in amendment 1.

 c99

 c9x

 iso9899:1999

 iso9899:199x

 ISO C99. This standard is substantially completely supported, modulo bugs and

 floating-point issues (mainly but not entirely relating to optional C99 features

 from Annexes F and G). See <http://gcc.gnu.org/c99status.html> for more Page 36/576

 information. The names c9x and iso9899:199x are deprecated.

 c11

 c1x

 iso9899:2011

 ISO C11, the 2011 revision of the ISO C standard. This standard is substantially

 completely supported, modulo bugs, floating-point issues (mainly but not entirely

 relating to optional C11 features from Annexes F and G) and the optional Annexes K

 (Bounds-checking interfaces) and L (Analyzability). The name c1x is deprecated.

 c17

 c18

 iso9899:2017

 iso9899:2018

 ISO C17, the 2017 revision of the ISO C standard (published in 2018). This

 standard is same as C11 except for corrections of defects (all of which are also

 applied with -std=c11) and a new value of "__STDC_VERSION__", and so is supported

 to the same extent as C11.

 c2x The next version of the ISO C standard, still under development. The support for

 this version is experimental and incomplete.

 gnu90

 gnu89

 GNU dialect of ISO C90 (including some C99 features).

 gnu99

 gnu9x

 GNU dialect of ISO C99. The name gnu9x is deprecated.

 gnu11

 gnu1x

 GNU dialect of ISO C11. The name gnu1x is deprecated.

 gnu17

 gnu18

 GNU dialect of ISO C17. This is the default for C code.

 gnu2x

 The next version of the ISO C standard, still under development, plus GNU

 extensions. The support for this version is experimental and incomplete. Page 37/576

 c++98

 c++03

 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some additional

 defect reports. Same as -ansi for C++ code.

 gnu++98

 gnu++03

 GNU dialect of -std=c++98.

 c++11

 c++0x

 The 2011 ISO C++ standard plus amendments. The name c++0x is deprecated.

 gnu++11

 gnu++0x

 GNU dialect of -std=c++11. The name gnu++0x is deprecated.

 c++14

 c++1y

 The 2014 ISO C++ standard plus amendments. The name c++1y is deprecated.

 gnu++14

 gnu++1y

 GNU dialect of -std=c++14. The name gnu++1y is deprecated.

 c++17

 c++1z

 The 2017 ISO C++ standard plus amendments. The name c++1z is deprecated.

 gnu++17

 gnu++1z

 GNU dialect of -std=c++17. This is the default for C++ code. The name gnu++1z is

 deprecated.

 c++20

 c++2a

 The 2020 ISO C++ standard plus amendments. Support is experimental, and could

 change in incompatible ways in future releases. The name c++2a is deprecated.

 gnu++20

 gnu++2a

 GNU dialect of -std=c++20. Support is experimental, and could change in Page 38/576

 incompatible ways in future releases. The name gnu++2a is deprecated.

 c++2b

 c++23

 The next revision of the ISO C++ standard, planned for 2023. Support is highly

 experimental, and will almost certainly change in incompatible ways in future

 releases.

 gnu++2b

 gnu++23

 GNU dialect of -std=c++2b. Support is highly experimental, and will almost

 certainly change in incompatible ways in future releases.

 -fgnu89-inline

 The option -fgnu89-inline tells GCC to use the traditional GNU semantics for "inline"

 functions when in C99 mode.

 Using this option is roughly equivalent to adding the "gnu_inline" function attribute

 to all inline functions.

 The option -fno-gnu89-inline explicitly tells GCC to use the C99 semantics for

 "inline" when in C99 or gnu99 mode (i.e., it specifies the default behavior). This

 option is not supported in -std=c90 or -std=gnu90 mode.

 The preprocessor macros "__GNUC_GNU_INLINE__" and "__GNUC_STDC_INLINE__" may be used

 to check which semantics are in effect for "inline" functions.

 -fpermitted-flt-eval-methods=style

 ISO/IEC TS 18661-3 defines new permissible values for "FLT_EVAL_METHOD" that indicate

 that operations and constants with a semantic type that is an interchange or extended

 format should be evaluated to the precision and range of that type. These new values

 are a superset of those permitted under C99/C11, which does not specify the meaning of

 other positive values of "FLT_EVAL_METHOD". As such, code conforming to C11 may not

 have been written expecting the possibility of the new values.

 -fpermitted-flt-eval-methods specifies whether the compiler should allow only the

 values of "FLT_EVAL_METHOD" specified in C99/C11, or the extended set of values

 specified in ISO/IEC TS 18661-3.

 style is either "c11" or "ts-18661-3" as appropriate.

 The default when in a standards compliant mode (-std=c11 or similar) is

 -fpermitted-flt-eval-methods=c11. The default when in a GNU dialect (-std=gnu11 or Page 39/576

 similar) is -fpermitted-flt-eval-methods=ts-18661-3.

 -aux-info filename

 Output to the given filename prototyped declarations for all functions declared and/or

 defined in a translation unit, including those in header files. This option is

 silently ignored in any language other than C.

 Besides declarations, the file indicates, in comments, the origin of each declaration

 (source file and line), whether the declaration was implicit, prototyped or

 unprototyped (I, N for new or O for old, respectively, in the first character after

 the line number and the colon), and whether it came from a declaration or a definition

 (C or F, respectively, in the following character). In the case of function

 definitions, a K&R-style list of arguments followed by their declarations is also

 provided, inside comments, after the declaration.

 -fallow-parameterless-variadic-functions

 Accept variadic functions without named parameters.

 Although it is possible to define such a function, this is not very useful as it is

 not possible to read the arguments. This is only supported for C as this construct is

 allowed by C++.

 -fno-asm

 Do not recognize "asm", "inline" or "typeof" as a keyword, so that code can use these

 words as identifiers. You can use the keywords "__asm__", "__inline__" and

 "__typeof__" instead. -ansi implies -fno-asm.

 In C++, this switch only affects the "typeof" keyword, since "asm" and "inline" are

 standard keywords. You may want to use the -fno-gnu-keywords flag instead, which has

 the same effect. In C99 mode (-std=c99 or -std=gnu99), this switch only affects the

 "asm" and "typeof" keywords, since "inline" is a standard keyword in ISO C99.

 -fno-builtin

 -fno-builtin-function

 Don't recognize built-in functions that do not begin with __builtin_ as prefix.

 GCC normally generates special code to handle certain built-in functions more

 efficiently; for instance, calls to "alloca" may become single instructions which

 adjust the stack directly, and calls to "memcpy" may become inline copy loops. The

 resulting code is often both smaller and faster, but since the function calls no

 longer appear as such, you cannot set a breakpoint on those calls, nor can you change Page 40/576

 the behavior of the functions by linking with a different library. In addition, when

 a function is recognized as a built-in function, GCC may use information about that

 function to warn about problems with calls to that function, or to generate more

 efficient code, even if the resulting code still contains calls to that function. For

 example, warnings are given with -Wformat for bad calls to "printf" when "printf" is

 built in and "strlen" is known not to modify global memory.

 With the -fno-builtin-function option only the built-in function function is disabled.

 function must not begin with __builtin_. If a function is named that is not built-in

 in this version of GCC, this option is ignored. There is no corresponding

 -fbuiltin-function option; if you wish to enable built-in functions selectively when

 using -fno-builtin or -ffreestanding, you may define macros such as:

 #define abs(n) __builtin_abs ((n))

 #define strcpy(d, s) __builtin_strcpy ((d), (s))

 -fgimple

 Enable parsing of function definitions marked with "__GIMPLE". This is an

 experimental feature that allows unit testing of GIMPLE passes.

 -fhosted

 Assert that compilation targets a hosted environment. This implies -fbuiltin. A

 hosted environment is one in which the entire standard library is available, and in

 which "main" has a return type of "int". Examples are nearly everything except a

 kernel. This is equivalent to -fno-freestanding.

 -ffreestanding

 Assert that compilation targets a freestanding environment. This implies

 -fno-builtin. A freestanding environment is one in which the standard library may not

 exist, and program startup may not necessarily be at "main". The most obvious example

 is an OS kernel. This is equivalent to -fno-hosted.

 -fopenacc

 Enable handling of OpenACC directives "#pragma acc" in C/C++ and "!$acc" in Fortran.

 When -fopenacc is specified, the compiler generates accelerated code according to the

 OpenACC Application Programming Interface v2.6 <https://www.openacc.org>. This option

 implies -pthread, and thus is only supported on targets that have support for

 -pthread.

 -fopenacc-dim=geom Page 41/576

 Specify default compute dimensions for parallel offload regions that do not explicitly

 specify. The geom value is a triple of ':'-separated sizes, in order 'gang', 'worker'

 and, 'vector'. A size can be omitted, to use a target-specific default value.

 -fopenmp

 Enable handling of OpenMP directives "#pragma omp" in C/C++ and "!$omp" in Fortran.

 When -fopenmp is specified, the compiler generates parallel code according to the

 OpenMP Application Program Interface v4.5 <https://www.openmp.org>. This option

 implies -pthread, and thus is only supported on targets that have support for

 -pthread. -fopenmp implies -fopenmp-simd.

 -fopenmp-simd

 Enable handling of OpenMP's SIMD directives with "#pragma omp" in C/C++ and "!$omp" in

 Fortran. Other OpenMP directives are ignored.

 -fgnu-tm

 When the option -fgnu-tm is specified, the compiler generates code for the Linux

 variant of Intel's current Transactional Memory ABI specification document (Revision

 1.1, May 6 2009). This is an experimental feature whose interface may change in

 future versions of GCC, as the official specification changes. Please note that not

 all architectures are supported for this feature.

 For more information on GCC's support for transactional memory,

 Note that the transactional memory feature is not supported with non-call exceptions

 (-fnon-call-exceptions).

 -fms-extensions

 Accept some non-standard constructs used in Microsoft header files.

 In C++ code, this allows member names in structures to be similar to previous types

 declarations.

 typedef int UOW;

 struct ABC {

 UOW UOW;

 };

 Some cases of unnamed fields in structures and unions are only accepted with this

 option.

 Note that this option is off for all targets except for x86 targets using ms-abi.

 -fplan9-extensions Page 42/576

 Accept some non-standard constructs used in Plan 9 code.

 This enables -fms-extensions, permits passing pointers to structures with anonymous

 fields to functions that expect pointers to elements of the type of the field, and

 permits referring to anonymous fields declared using a typedef. This is only

 supported for C, not C++.

 -fcond-mismatch

 Allow conditional expressions with mismatched types in the second and third arguments.

 The value of such an expression is void. This option is not supported for C++.

 -flax-vector-conversions

 Allow implicit conversions between vectors with differing numbers of elements and/or

 incompatible element types. This option should not be used for new code.

 -funsigned-char

 Let the type "char" be unsigned, like "unsigned char".

 Each kind of machine has a default for what "char" should be. It is either like

 "unsigned char" by default or like "signed char" by default.

 Ideally, a portable program should always use "signed char" or "unsigned char" when it

 depends on the signedness of an object. But many programs have been written to use

 plain "char" and expect it to be signed, or expect it to be unsigned, depending on the

 machines they were written for. This option, and its inverse, let you make such a

 program work with the opposite default.

 The type "char" is always a distinct type from each of "signed char" or "unsigned

 char", even though its behavior is always just like one of those two.

 -fsigned-char

 Let the type "char" be signed, like "signed char".

 Note that this is equivalent to -fno-unsigned-char, which is the negative form of

 -funsigned-char. Likewise, the option -fno-signed-char is equivalent to

 -funsigned-char.

 -fsigned-bitfields

 -funsigned-bitfields

 -fno-signed-bitfields

 -fno-unsigned-bitfields

 These options control whether a bit-field is signed or unsigned, when the declaration

 does not use either "signed" or "unsigned". By default, such a bit-field is signed, Page 43/576

 because this is consistent: the basic integer types such as "int" are signed types.

 -fsso-struct=endianness

 Set the default scalar storage order of structures and unions to the specified

 endianness. The accepted values are big-endian, little-endian and native for the

 native endianness of the target (the default). This option is not supported for C++.

 Warning: the -fsso-struct switch causes GCC to generate code that is not binary

 compatible with code generated without it if the specified endianness is not the

 native endianness of the target.

 Options Controlling C++ Dialect

 This section describes the command-line options that are only meaningful for C++ programs.

 You can also use most of the GNU compiler options regardless of what language your program

 is in. For example, you might compile a file firstClass.C like this:

 g++ -g -fstrict-enums -O -c firstClass.C

 In this example, only -fstrict-enums is an option meant only for C++ programs; you can use

 the other options with any language supported by GCC.

 Some options for compiling C programs, such as -std, are also relevant for C++ programs.

 Here is a list of options that are only for compiling C++ programs:

 -fabi-version=n

 Use version n of the C++ ABI. The default is version 0.

 Version 0 refers to the version conforming most closely to the C++ ABI specification.

 Therefore, the ABI obtained using version 0 will change in different versions of G++

 as ABI bugs are fixed.

 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.

 Version 2 is the version of the C++ ABI that first appeared in G++ 3.4, and was the

 default through G++ 4.9.

 Version 3 corrects an error in mangling a constant address as a template argument.

 Version 4, which first appeared in G++ 4.5, implements a standard mangling for vector

 types.

 Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute

 const/volatile on function pointer types, decltype of a plain decl, and use of a

 function parameter in the declaration of another parameter.

 Version 6, which first appeared in G++ 4.7, corrects the promotion behavior of C++11

 scoped enums and the mangling of template argument packs, const/static_cast, prefix ++ Page 44/576

 and --, and a class scope function used as a template argument.

 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a builtin type

 and corrects the mangling of lambdas in default argument scope.

 Version 8, which first appeared in G++ 4.9, corrects the substitution behavior of

 function types with function-cv-qualifiers.

 Version 9, which first appeared in G++ 5.2, corrects the alignment of "nullptr_t".

 Version 10, which first appeared in G++ 6.1, adds mangling of attributes that affect

 type identity, such as ia32 calling convention attributes (e.g. stdcall).

 Version 11, which first appeared in G++ 7, corrects the mangling of sizeof...

 expressions and operator names. For multiple entities with the same name within a

 function, that are declared in different scopes, the mangling now changes starting

 with the twelfth occurrence. It also implies -fnew-inheriting-ctors.

 Version 12, which first appeared in G++ 8, corrects the calling conventions for empty

 classes on the x86_64 target and for classes with only deleted copy/move constructors.

 It accidentally changes the calling convention for classes with a deleted copy

 constructor and a trivial move constructor.

 Version 13, which first appeared in G++ 8.2, fixes the accidental change in version

 12.

 Version 14, which first appeared in G++ 10, corrects the mangling of the nullptr

 expression.

 Version 15, which first appeared in G++ 11, changes the mangling of "__alignof__" to

 be distinct from that of "alignof", and dependent operator names.

 See also -Wabi.

 -fabi-compat-version=n

 On targets that support strong aliases, G++ works around mangling changes by creating

 an alias with the correct mangled name when defining a symbol with an incorrect

 mangled name. This switch specifies which ABI version to use for the alias.

 With -fabi-version=0 (the default), this defaults to 11 (GCC 7 compatibility). If

 another ABI version is explicitly selected, this defaults to 0. For compatibility

 with GCC versions 3.2 through 4.9, use -fabi-compat-version=2.

 If this option is not provided but -Wabi=n is, that version is used for compatibility

 aliases. If this option is provided along with -Wabi (without the version), the

 version from this option is used for the warning. Page 45/576

 -fno-access-control

 Turn off all access checking. This switch is mainly useful for working around bugs in

 the access control code.

 -faligned-new

 Enable support for C++17 "new" of types that require more alignment than "void*

 ::operator new(std::size_t)" provides. A numeric argument such as "-faligned-new=32"

 can be used to specify how much alignment (in bytes) is provided by that function, but

 few users will need to override the default of "alignof(std::max_align_t)".

 This flag is enabled by default for -std=c++17.

 -fchar8_t

 -fno-char8_t

 Enable support for "char8_t" as adopted for C++20. This includes the addition of a

 new "char8_t" fundamental type, changes to the types of UTF-8 string and character

 literals, new signatures for user-defined literals, associated standard library

 updates, and new "__cpp_char8_t" and "__cpp_lib_char8_t" feature test macros.

 This option enables functions to be overloaded for ordinary and UTF-8 strings:

 int f(const char *); // #1

 int f(const char8_t *); // #2

 int v1 = f("text"); // Calls #1

 int v2 = f(u8"text"); // Calls #2

 and introduces new signatures for user-defined literals:

 int operator""_udl1(char8_t);

 int v3 = u8'x'_udl1;

 int operator""_udl2(const char8_t*, std::size_t);

 int v4 = u8"text"_udl2;

 template<typename T, T...> int operator""_udl3();

 int v5 = u8"text"_udl3;

 The change to the types of UTF-8 string and character literals introduces

 incompatibilities with ISO C++11 and later standards. For example, the following code

 is well-formed under ISO C++11, but is ill-formed when -fchar8_t is specified.

 char ca[] = u8"xx"; // error: char-array initialized from wide

 // string

 const char *cp = u8"xx";// error: invalid conversion from Page 46/576

 // `const char8_t*' to `const char*'

 int f(const char*);

 auto v = f(u8"xx"); // error: invalid conversion from

 // `const char8_t*' to `const char*'

 std::string s{u8"xx"}; // error: no matching function for call to

 // `std::basic_string<char>::basic_string()'

 using namespace std::literals;

 s = u8"xx"s; // error: conversion from

 // `basic_string<char8_t>' to non-scalar

 // type `basic_string<char>' requested

 -fcheck-new

 Check that the pointer returned by "operator new" is non-null before attempting to

 modify the storage allocated. This check is normally unnecessary because the C++

 standard specifies that "operator new" only returns 0 if it is declared "throw()", in

 which case the compiler always checks the return value even without this option. In

 all other cases, when "operator new" has a non-empty exception specification, memory

 exhaustion is signalled by throwing "std::bad_alloc". See also new (nothrow).

 -fconcepts

 -fconcepts-ts

 Below -std=c++20, -fconcepts enables support for the C++ Extensions for Concepts

 Technical Specification, ISO 19217 (2015).

 With -std=c++20 and above, Concepts are part of the language standard, so -fconcepts

 defaults to on. But the standard specification of Concepts differs significantly from

 the TS, so some constructs that were allowed in the TS but didn't make it into the

 standard can still be enabled by -fconcepts-ts.

 -fconstexpr-depth=n

 Set the maximum nested evaluation depth for C++11 constexpr functions to n. A limit

 is needed to detect endless recursion during constant expression evaluation. The

 minimum specified by the standard is 512.

 -fconstexpr-cache-depth=n

 Set the maximum level of nested evaluation depth for C++11 constexpr functions that

 will be cached to n. This is a heuristic that trades off compilation speed (when the

 cache avoids repeated calculations) against memory consumption (when the cache grows Page 47/576

 very large from highly recursive evaluations). The default is 8. Very few users are

 likely to want to adjust it, but if your code does heavy constexpr calculations you

 might want to experiment to find which value works best for you.

 -fconstexpr-loop-limit=n

 Set the maximum number of iterations for a loop in C++14 constexpr functions to n. A

 limit is needed to detect infinite loops during constant expression evaluation. The

 default is 262144 (1<<18).

 -fconstexpr-ops-limit=n

 Set the maximum number of operations during a single constexpr evaluation. Even when

 number of iterations of a single loop is limited with the above limit, if there are

 several nested loops and each of them has many iterations but still smaller than the

 above limit, or if in a body of some loop or even outside of a loop too many

 expressions need to be evaluated, the resulting constexpr evaluation might take too

 long. The default is 33554432 (1<<25).

 -fcoroutines

 Enable support for the C++ coroutines extension (experimental).

 -fno-elide-constructors

 The C++ standard allows an implementation to omit creating a temporary that is only

 used to initialize another object of the same type. Specifying this option disables

 that optimization, and forces G++ to call the copy constructor in all cases. This

 option also causes G++ to call trivial member functions which otherwise would be

 expanded inline.

 In C++17, the compiler is required to omit these temporaries, but this option still

 affects trivial member functions.

 -fno-enforce-eh-specs

 Don't generate code to check for violation of exception specifications at run time.

 This option violates the C++ standard, but may be useful for reducing code size in

 production builds, much like defining "NDEBUG". This does not give user code

 permission to throw exceptions in violation of the exception specifications; the

 compiler still optimizes based on the specifications, so throwing an unexpected

 exception results in undefined behavior at run time.

 -fextern-tls-init

 -fno-extern-tls-init Page 48/576

 The C++11 and OpenMP standards allow "thread_local" and "threadprivate" variables to

 have dynamic (runtime) initialization. To support this, any use of such a variable

 goes through a wrapper function that performs any necessary initialization. When the

 use and definition of the variable are in the same translation unit, this overhead can

 be optimized away, but when the use is in a different translation unit there is

 significant overhead even if the variable doesn't actually need dynamic

 initialization. If the programmer can be sure that no use of the variable in a non-

 defining TU needs to trigger dynamic initialization (either because the variable is

 statically initialized, or a use of the variable in the defining TU will be executed

 before any uses in another TU), they can avoid this overhead with the

 -fno-extern-tls-init option.

 On targets that support symbol aliases, the default is -fextern-tls-init. On targets

 that do not support symbol aliases, the default is -fno-extern-tls-init.

 -fno-gnu-keywords

 Do not recognize "typeof" as a keyword, so that code can use this word as an

 identifier. You can use the keyword "__typeof__" instead. This option is implied by

 the strict ISO C++ dialects: -ansi, -std=c++98, -std=c++11, etc.

 -fno-implicit-templates

 Never emit code for non-inline templates that are instantiated implicitly (i.e. by

 use); only emit code for explicit instantiations. If you use this option, you must

 take care to structure your code to include all the necessary explicit instantiations

 to avoid getting undefined symbols at link time.

 -fno-implicit-inline-templates

 Don't emit code for implicit instantiations of inline templates, either. The default

 is to handle inlines differently so that compiles with and without optimization need

 the same set of explicit instantiations.

 -fno-implement-inlines

 To save space, do not emit out-of-line copies of inline functions controlled by

 "#pragma implementation". This causes linker errors if these functions are not

 inlined everywhere they are called.

 -fmodules-ts

 -fno-modules-ts

 Enable support for C++20 modules The -fno-modules-ts is usually not needed, as that Page 49/576

 is the default. Even though this is a C++20 feature, it is not currently implicitly

 enabled by selecting that standard version.

 -fmodule-header

 -fmodule-header=user

 -fmodule-header=system

 Compile a header file to create an importable header unit.

 -fmodule-implicit-inline

 Member functions defined in their class definitions are not implicitly inline for

 modular code. This is different to traditional C++ behavior, for good reasons.

 However, it may result in a difficulty during code porting. This option makes such

 function definitions implicitly inline. It does however generate an ABI

 incompatibility, so you must use it everywhere or nowhere. (Such definitions outside

 of a named module remain implicitly inline, regardless.)

 -fno-module-lazy

 Disable lazy module importing and module mapper creation.

 -fmodule-mapper=[hostname]:port[?ident]

 -fmodule-mapper=|program[?ident] args...

 -fmodule-mapper==socket[?ident]

 -fmodule-mapper=<>[inout][?ident]

 -fmodule-mapper=<in>out[?ident]

 -fmodule-mapper=file[?ident]

 An oracle to query for module name to filename mappings. If unspecified the

 CXX_MODULE_MAPPER environment variable is used, and if that is unset, an in-process

 default is provided.

 -fmodule-only

 Only emit the Compiled Module Interface, inhibiting any object file.

 -fms-extensions

 Disable Wpedantic warnings about constructs used in MFC, such as implicit int and

 getting a pointer to member function via non-standard syntax.

 -fnew-inheriting-ctors

 Enable the P0136 adjustment to the semantics of C++11 constructor inheritance. This

 is part of C++17 but also considered to be a Defect Report against C++11 and C++14.

 This flag is enabled by default unless -fabi-version=10 or lower is specified. Page 50/576

 -fnew-ttp-matching

 Enable the P0522 resolution to Core issue 150, template template parameters and

 default arguments: this allows a template with default template arguments as an

 argument for a template template parameter with fewer template parameters. This flag

 is enabled by default for -std=c++17.

 -fno-nonansi-builtins

 Disable built-in declarations of functions that are not mandated by ANSI/ISO C. These

 include "ffs", "alloca", "_exit", "index", "bzero", "conjf", and other related

 functions.

 -fnothrow-opt

 Treat a "throw()" exception specification as if it were a "noexcept" specification to

 reduce or eliminate the text size overhead relative to a function with no exception

 specification. If the function has local variables of types with non-trivial

 destructors, the exception specification actually makes the function smaller because

 the EH cleanups for those variables can be optimized away. The semantic effect is

 that an exception thrown out of a function with such an exception specification

 results in a call to "terminate" rather than "unexpected".

 -fno-operator-names

 Do not treat the operator name keywords "and", "bitand", "bitor", "compl", "not", "or"

 and "xor" as synonyms as keywords.

 -fno-optional-diags

 Disable diagnostics that the standard says a compiler does not need to issue.

 Currently, the only such diagnostic issued by G++ is the one for a name having

 multiple meanings within a class.

 -fpermissive

 Downgrade some diagnostics about nonconformant code from errors to warnings. Thus,

 using -fpermissive allows some nonconforming code to compile.

 -fno-pretty-templates

 When an error message refers to a specialization of a function template, the compiler

 normally prints the signature of the template followed by the template arguments and

 any typedefs or typenames in the signature (e.g. "void f(T) [with T = int]" rather

 than "void f(int)") so that it's clear which template is involved. When an error

 message refers to a specialization of a class template, the compiler omits any Page 51/576

 template arguments that match the default template arguments for that template. If

 either of these behaviors make it harder to understand the error message rather than

 easier, you can use -fno-pretty-templates to disable them.

 -fno-rtti

 Disable generation of information about every class with virtual functions for use by

 the C++ run-time type identification features ("dynamic_cast" and "typeid"). If you

 don't use those parts of the language, you can save some space by using this flag.

 Note that exception handling uses the same information, but G++ generates it as

 needed. The "dynamic_cast" operator can still be used for casts that do not require

 run-time type information, i.e. casts to "void *" or to unambiguous base classes.

 Mixing code compiled with -frtti with that compiled with -fno-rtti may not work. For

 example, programs may fail to link if a class compiled with -fno-rtti is used as a

 base for a class compiled with -frtti.

 -fsized-deallocation

 Enable the built-in global declarations

 void operator delete (void *, std::size_t) noexcept;

 void operator delete[] (void *, std::size_t) noexcept;

 as introduced in C++14. This is useful for user-defined replacement deallocation

 functions that, for example, use the size of the object to make deallocation faster.

 Enabled by default under -std=c++14 and above. The flag -Wsized-deallocation warns

 about places that might want to add a definition.

 -fstrict-enums

 Allow the compiler to optimize using the assumption that a value of enumerated type

 can only be one of the values of the enumeration (as defined in the C++ standard;

 basically, a value that can be represented in the minimum number of bits needed to

 represent all the enumerators). This assumption may not be valid if the program uses

 a cast to convert an arbitrary integer value to the enumerated type.

 -fstrong-eval-order

 Evaluate member access, array subscripting, and shift expressions in left-to-right

 order, and evaluate assignment in right-to-left order, as adopted for C++17. Enabled

 by default with -std=c++17. -fstrong-eval-order=some enables just the ordering of

 member access and shift expressions, and is the default without -std=c++17.

 -ftemplate-backtrace-limit=n Page 52/576

 Set the maximum number of template instantiation notes for a single warning or error

 to n. The default value is 10.

 -ftemplate-depth=n

 Set the maximum instantiation depth for template classes to n. A limit on the

 template instantiation depth is needed to detect endless recursions during template

 class instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum

 depth greater than 17 (changed to 1024 in C++11). The default value is 900, as the

 compiler can run out of stack space before hitting 1024 in some situations.

 -fno-threadsafe-statics

 Do not emit the extra code to use the routines specified in the C++ ABI for thread-

 safe initialization of local statics. You can use this option to reduce code size

 slightly in code that doesn't need to be thread-safe.

 -fuse-cxa-atexit

 Register destructors for objects with static storage duration with the "__cxa_atexit"

 function rather than the "atexit" function. This option is required for fully

 standards-compliant handling of static destructors, but only works if your C library

 supports "__cxa_atexit".

 -fno-use-cxa-get-exception-ptr

 Don't use the "__cxa_get_exception_ptr" runtime routine. This causes

 "std::uncaught_exception" to be incorrect, but is necessary if the runtime routine is

 not available.

 -fvisibility-inlines-hidden

 This switch declares that the user does not attempt to compare pointers to inline

 functions or methods where the addresses of the two functions are taken in different

 shared objects.

 The effect of this is that GCC may, effectively, mark inline methods with

 "__attribute__ ((visibility ("hidden")))" so that they do not appear in the export

 table of a DSO and do not require a PLT indirection when used within the DSO.

 Enabling this option can have a dramatic effect on load and link times of a DSO as it

 massively reduces the size of the dynamic export table when the library makes heavy

 use of templates.

 The behavior of this switch is not quite the same as marking the methods as hidden

 directly, because it does not affect static variables local to the function or cause Page 53/576

 the compiler to deduce that the function is defined in only one shared object.

 You may mark a method as having a visibility explicitly to negate the effect of the

 switch for that method. For example, if you do want to compare pointers to a

 particular inline method, you might mark it as having default visibility. Marking the

 enclosing class with explicit visibility has no effect.

 Explicitly instantiated inline methods are unaffected by this option as their linkage

 might otherwise cross a shared library boundary.

 -fvisibility-ms-compat

 This flag attempts to use visibility settings to make GCC's C++ linkage model

 compatible with that of Microsoft Visual Studio.

 The flag makes these changes to GCC's linkage model:

 1. It sets the default visibility to "hidden", like -fvisibility=hidden.

 2. Types, but not their members, are not hidden by default.

 3. The One Definition Rule is relaxed for types without explicit visibility

 specifications that are defined in more than one shared object: those declarations

 are permitted if they are permitted when this option is not used.

 In new code it is better to use -fvisibility=hidden and export those classes that are

 intended to be externally visible. Unfortunately it is possible for code to rely,

 perhaps accidentally, on the Visual Studio behavior.

 Among the consequences of these changes are that static data members of the same type

 with the same name but defined in different shared objects are different, so changing

 one does not change the other; and that pointers to function members defined in

 different shared objects may not compare equal. When this flag is given, it is a

 violation of the ODR to define types with the same name differently.

 -fno-weak

 Do not use weak symbol support, even if it is provided by the linker. By default, G++

 uses weak symbols if they are available. This option exists only for testing, and

 should not be used by end-users; it results in inferior code and has no benefits.

 This option may be removed in a future release of G++.

 -fext-numeric-literals (C++ and Objective-C++ only)

 Accept imaginary, fixed-point, or machine-defined literal number suffixes as GNU

 extensions. When this option is turned off these suffixes are treated as C++11 user-

 defined literal numeric suffixes. This is on by default for all pre-C++11 dialects Page 54/576

 and all GNU dialects: -std=c++98, -std=gnu++98, -std=gnu++11, -std=gnu++14. This

 option is off by default for ISO C++11 onwards (-std=c++11, ...).

 -nostdinc++

 Do not search for header files in the standard directories specific to C++, but do

 still search the other standard directories. (This option is used when building the

 C++ library.)

 -flang-info-include-translate

 -flang-info-include-translate-not

 -flang-info-include-translate=header

 Inform of include translation events. The first will note accepted include

 translations, the second will note declined include translations. The header form

 will inform of include translations relating to that specific header. If header is of

 the form "user" or "<system>" it will be resolved to a specific user or system header

 using the include path.

 -flang-info-module-cmi

 -flang-info-module-cmi=module

 Inform of Compiled Module Interface pathnames. The first will note all read CMI

 pathnames. The module form will not reading a specific module's CMI. module may be a

 named module or a header-unit (the latter indicated by either being a pathname

 containing directory separators or enclosed in "<>" or "").

 -stdlib=libstdc++,libc++

 When G++ is configured to support this option, it allows specification of alternate

 C++ runtime libraries. Two options are available: libstdc++ (the default, native C++

 runtime for G++) and libc++ which is the C++ runtime installed on some operating

 systems (e.g. Darwin versions from Darwin11 onwards). The option switches G++ to use

 the headers from the specified library and to emit "-lstdc++" or "-lc++" respectively,

 when a C++ runtime is required for linking.

 In addition, these warning options have meanings only for C++ programs:

 -Wabi-tag (C++ and Objective-C++ only)

 Warn when a type with an ABI tag is used in a context that does not have that ABI tag.

 See C++ Attributes for more information about ABI tags.

 -Wcomma-subscript (C++ and Objective-C++ only)

 Warn about uses of a comma expression within a subscripting expression. This usage Page 55/576

 was deprecated in C++20. However, a comma expression wrapped in "()" is not

 deprecated. Example:

 void f(int *a, int b, int c) {

 a[b,c]; // deprecated

 a[(b,c)]; // OK

 }

 Enabled by default with -std=c++20.

 -Wctad-maybe-unsupported (C++ and Objective-C++ only)

 Warn when performing class template argument deduction (CTAD) on a type with no

 explicitly written deduction guides. This warning will point out cases where CTAD

 succeeded only because the compiler synthesized the implicit deduction guides, which

 might not be what the programmer intended. Certain style guides allow CTAD only on

 types that specifically "opt-in"; i.e., on types that are designed to support CTAD.

 This warning can be suppressed with the following pattern:

 struct allow_ctad_t; // any name works

 template <typename T> struct S {

 S(T) { }

 };

 S(allow_ctad_t) -> S<void>; // guide with incomplete parameter type will never be considered

 -Wctor-dtor-privacy (C++ and Objective-C++ only)

 Warn when a class seems unusable because all the constructors or destructors in that

 class are private, and it has neither friends nor public static member functions.

 Also warn if there are no non-private methods, and there's at least one private member

 function that isn't a constructor or destructor.

 -Wdelete-non-virtual-dtor (C++ and Objective-C++ only)

 Warn when "delete" is used to destroy an instance of a class that has virtual

 functions and non-virtual destructor. It is unsafe to delete an instance of a derived

 class through a pointer to a base class if the base class does not have a virtual

 destructor. This warning is enabled by -Wall.

 -Wdeprecated-copy (C++ and Objective-C++ only)

 Warn that the implicit declaration of a copy constructor or copy assignment operator

 is deprecated if the class has a user-provided copy constructor or copy assignment

 operator, in C++11 and up. This warning is enabled by -Wextra. With Page 56/576

 -Wdeprecated-copy-dtor, also deprecate if the class has a user-provided destructor.

 -Wno-deprecated-enum-enum-conversion (C++ and Objective-C++ only)

 Disable the warning about the case when the usual arithmetic conversions are applied

 on operands where one is of enumeration type and the other is of a different

 enumeration type. This conversion was deprecated in C++20. For example:

 enum E1 { e };

 enum E2 { f };

 int k = f - e;

 -Wdeprecated-enum-enum-conversion is enabled by default with -std=c++20. In pre-C++20

 dialects, this warning can be enabled by -Wenum-conversion.

 -Wno-deprecated-enum-float-conversion (C++ and Objective-C++ only)

 Disable the warning about the case when the usual arithmetic conversions are applied

 on operands where one is of enumeration type and the other is of a floating-point

 type. This conversion was deprecated in C++20. For example:

 enum E1 { e };

 enum E2 { f };

 bool b = e <= 3.7;

 -Wdeprecated-enum-float-conversion is enabled by default with -std=c++20. In

 pre-C++20 dialects, this warning can be enabled by -Wenum-conversion.

 -Wno-init-list-lifetime (C++ and Objective-C++ only)

 Do not warn about uses of "std::initializer_list" that are likely to result in

 dangling pointers. Since the underlying array for an "initializer_list" is handled

 like a normal C++ temporary object, it is easy to inadvertently keep a pointer to the

 array past the end of the array's lifetime. For example:

 * If a function returns a temporary "initializer_list", or a local

 "initializer_list" variable, the array's lifetime ends at the end of the return

 statement, so the value returned has a dangling pointer.

 * If a new-expression creates an "initializer_list", the array only lives until the

 end of the enclosing full-expression, so the "initializer_list" in the heap has a

 dangling pointer.

 * When an "initializer_list" variable is assigned from a brace-enclosed initializer

 list, the temporary array created for the right side of the assignment only lives

 until the end of the full-expression, so at the next statement the Page 57/576

 "initializer_list" variable has a dangling pointer.

 // li's initial underlying array lives as long as li

 std::initializer_list<int> li = { 1,2,3 };

 // assignment changes li to point to a temporary array

 li = { 4, 5 };

 // now the temporary is gone and li has a dangling pointer

 int i = li.begin()[0] // undefined behavior

 * When a list constructor stores the "begin" pointer from the "initializer_list"

 argument, this doesn't extend the lifetime of the array, so if a class variable is

 constructed from a temporary "initializer_list", the pointer is left dangling by

 the end of the variable declaration statement.

 -Winvalid-imported-macros

 Verify all imported macro definitions are valid at the end of compilation. This is

 not enabled by default, as it requires additional processing to determine. It may be

 useful when preparing sets of header-units to ensure consistent macros.

 -Wno-literal-suffix (C++ and Objective-C++ only)

 Do not warn when a string or character literal is followed by a ud-suffix which does

 not begin with an underscore. As a conforming extension, GCC treats such suffixes as

 separate preprocessing tokens in order to maintain backwards compatibility with code

 that uses formatting macros from "<inttypes.h>". For example:

 #define __STDC_FORMAT_MACROS

 #include <inttypes.h>

 #include <stdio.h>

 int main() {

 int64_t i64 = 123;

 printf("My int64: %" PRId64"\n", i64);

 }

 In this case, "PRId64" is treated as a separate preprocessing token.

 This option also controls warnings when a user-defined literal operator is declared

 with a literal suffix identifier that doesn't begin with an underscore. Literal suffix

 identifiers that don't begin with an underscore are reserved for future

 standardization.

 These warnings are enabled by default. Page 58/576

 -Wno-narrowing (C++ and Objective-C++ only)

 For C++11 and later standards, narrowing conversions are diagnosed by default, as

 required by the standard. A narrowing conversion from a constant produces an error,

 and a narrowing conversion from a non-constant produces a warning, but -Wno-narrowing

 suppresses the diagnostic. Note that this does not affect the meaning of well-formed

 code; narrowing conversions are still considered ill-formed in SFINAE contexts.

 With -Wnarrowing in C++98, warn when a narrowing conversion prohibited by C++11 occurs

 within { }, e.g.

 int i = { 2.2 }; // error: narrowing from double to int

 This flag is included in -Wall and -Wc++11-compat.

 -Wnoexcept (C++ and Objective-C++ only)

 Warn when a noexcept-expression evaluates to false because of a call to a function

 that does not have a non-throwing exception specification (i.e. "throw()" or

 "noexcept") but is known by the compiler to never throw an exception.

 -Wnoexcept-type (C++ and Objective-C++ only)

 Warn if the C++17 feature making "noexcept" part of a function type changes the

 mangled name of a symbol relative to C++14. Enabled by -Wabi and -Wc++17-compat.

 As an example:

 template <class T> void f(T t) { t(); };

 void g() noexcept;

 void h() { f(g); }

 In C++14, "f" calls "f<void(*)()>", but in C++17 it calls "f<void(*)()noexcept>".

 -Wclass-memaccess (C++ and Objective-C++ only)

 Warn when the destination of a call to a raw memory function such as "memset" or

 "memcpy" is an object of class type, and when writing into such an object might bypass

 the class non-trivial or deleted constructor or copy assignment, violate const-

 correctness or encapsulation, or corrupt virtual table pointers. Modifying the

 representation of such objects may violate invariants maintained by member functions

 of the class. For example, the call to "memset" below is undefined because it

 modifies a non-trivial class object and is, therefore, diagnosed. The safe way to

 either initialize or clear the storage of objects of such types is by using the

 appropriate constructor or assignment operator, if one is available.

 std::string str = "abc"; Page 59/576

 memset (&str, 0, sizeof str);

 The -Wclass-memaccess option is enabled by -Wall. Explicitly casting the pointer to

 the class object to "void *" or to a type that can be safely accessed by the raw

 memory function suppresses the warning.

 -Wnon-virtual-dtor (C++ and Objective-C++ only)

 Warn when a class has virtual functions and an accessible non-virtual destructor

 itself or in an accessible polymorphic base class, in which case it is possible but

 unsafe to delete an instance of a derived class through a pointer to the class itself

 or base class. This warning is automatically enabled if -Weffc++ is specified.

 -Wregister (C++ and Objective-C++ only)

 Warn on uses of the "register" storage class specifier, except when it is part of the

 GNU Explicit Register Variables extension. The use of the "register" keyword as

 storage class specifier has been deprecated in C++11 and removed in C++17. Enabled by

 default with -std=c++17.

 -Wreorder (C++ and Objective-C++ only)

 Warn when the order of member initializers given in the code does not match the order

 in which they must be executed. For instance:

 struct A {

 int i;

 int j;

 A(): j (0), i (1) { }

 };

 The compiler rearranges the member initializers for "i" and "j" to match the

 declaration order of the members, emitting a warning to that effect. This warning is

 enabled by -Wall.

 -Wno-pessimizing-move (C++ and Objective-C++ only)

 This warning warns when a call to "std::move" prevents copy elision. A typical

 scenario when copy elision can occur is when returning in a function with a class

 return type, when the expression being returned is the name of a non-volatile

 automatic object, and is not a function parameter, and has the same type as the

 function return type.

 struct T {

 ... Page 60/576

 };

 T fn()

 {

 T t;

 ...

 return std::move (t);

 }

 But in this example, the "std::move" call prevents copy elision.

 This warning is enabled by -Wall.

 -Wno-redundant-move (C++ and Objective-C++ only)

 This warning warns about redundant calls to "std::move"; that is, when a move

 operation would have been performed even without the "std::move" call. This happens

 because the compiler is forced to treat the object as if it were an rvalue in certain

 situations such as returning a local variable, where copy elision isn't applicable.

 Consider:

 struct T {

 ...

 };

 T fn(T t)

 {

 ...

 return std::move (t);

 }

 Here, the "std::move" call is redundant. Because G++ implements Core Issue 1579,

 another example is:

 struct T { // convertible to U

 ...

 };

 struct U {

 ...

 };

 U fn()

 { Page 61/576

 T t;

 ...

 return std::move (t);

 }

 In this example, copy elision isn't applicable because the type of the expression

 being returned and the function return type differ, yet G++ treats the return value as

 if it were designated by an rvalue.

 This warning is enabled by -Wextra.

 -Wrange-loop-construct (C++ and Objective-C++ only)

 This warning warns when a C++ range-based for-loop is creating an unnecessary copy.

 This can happen when the range declaration is not a reference, but probably should be.

 For example:

 struct S { char arr[128]; };

 void fn () {

 S arr[5];

 for (const auto x : arr) { ... }

 }

 It does not warn when the type being copied is a trivially-copyable type whose size is

 less than 64 bytes.

 This warning also warns when a loop variable in a range-based for-loop is initialized

 with a value of a different type resulting in a copy. For example:

 void fn() {

 int arr[10];

 for (const double &x : arr) { ... }

 }

 In the example above, in every iteration of the loop a temporary value of type

 "double" is created and destroyed, to which the reference "const double &" is bound.

 This warning is enabled by -Wall.

 -Wredundant-tags (C++ and Objective-C++ only)

 Warn about redundant class-key and enum-key in references to class types and

 enumerated types in contexts where the key can be eliminated without causing an

 ambiguity. For example:

 struct foo; Page 62/576

 struct foo *p; // warn that keyword struct can be eliminated

 On the other hand, in this example there is no warning:

 struct foo;

 void foo (); // "hides" struct foo

 void bar (struct foo&); // no warning, keyword struct is necessary

 -Wno-subobject-linkage (C++ and Objective-C++ only)

 Do not warn if a class type has a base or a field whose type uses the anonymous

 namespace or depends on a type with no linkage. If a type A depends on a type B with

 no or internal linkage, defining it in multiple translation units would be an ODR

 violation because the meaning of B is different in each translation unit. If A only

 appears in a single translation unit, the best way to silence the warning is to give

 it internal linkage by putting it in an anonymous namespace as well. The compiler

 doesn't give this warning for types defined in the main .C file, as those are unlikely

 to have multiple definitions. -Wsubobject-linkage is enabled by default.

 -Weffc++ (C++ and Objective-C++ only)

 Warn about violations of the following style guidelines from Scott Meyers' Effective

 C++ series of books:

 * Define a copy constructor and an assignment operator for classes with dynamically-

 allocated memory.

 * Prefer initialization to assignment in constructors.

 * Have "operator=" return a reference to *this.

 * Don't try to return a reference when you must return an object.

 * Distinguish between prefix and postfix forms of increment and decrement operators.

 * Never overload "&&", "||", or ",".

 This option also enables -Wnon-virtual-dtor, which is also one of the effective C++

 recommendations. However, the check is extended to warn about the lack of virtual

 destructor in accessible non-polymorphic bases classes too.

 When selecting this option, be aware that the standard library headers do not obey all

 of these guidelines; use grep -v to filter out those warnings.

 -Wno-exceptions (C++ and Objective-C++ only)

 Disable the warning about the case when an exception handler is shadowed by another

 handler, which can point out a wrong ordering of exception handlers.

 -Wstrict-null-sentinel (C++ and Objective-C++ only) Page 63/576

 Warn about the use of an uncasted "NULL" as sentinel. When compiling only with GCC

 this is a valid sentinel, as "NULL" is defined to "__null". Although it is a null

 pointer constant rather than a null pointer, it is guaranteed to be of the same size

 as a pointer. But this use is not portable across different compilers.

 -Wno-non-template-friend (C++ and Objective-C++ only)

 Disable warnings when non-template friend functions are declared within a template.

 In very old versions of GCC that predate implementation of the ISO standard,

 declarations such as friend int foo(int), where the name of the friend is an

 unqualified-id, could be interpreted as a particular specialization of a template

 function; the warning exists to diagnose compatibility problems, and is enabled by

 default.

 -Wold-style-cast (C++ and Objective-C++ only)

 Warn if an old-style (C-style) cast to a non-void type is used within a C++ program.

 The new-style casts ("dynamic_cast", "static_cast", "reinterpret_cast", and

 "const_cast") are less vulnerable to unintended effects and much easier to search for.

 -Woverloaded-virtual (C++ and Objective-C++ only)

 Warn when a function declaration hides virtual functions from a base class. For

 example, in:

 struct A {

 virtual void f();

 };

 struct B: public A {

 void f(int);

 };

 the "A" class version of "f" is hidden in "B", and code like:

 B* b;

 b->f();

 fails to compile.

 -Wno-pmf-conversions (C++ and Objective-C++ only)

 Disable the diagnostic for converting a bound pointer to member function to a plain

 pointer.

 -Wsign-promo (C++ and Objective-C++ only)

 Warn when overload resolution chooses a promotion from unsigned or enumerated type to Page 64/576

 a signed type, over a conversion to an unsigned type of the same size. Previous

 versions of G++ tried to preserve unsignedness, but the standard mandates the current

 behavior.

 -Wtemplates (C++ and Objective-C++ only)

 Warn when a primary template declaration is encountered. Some coding rules disallow

 templates, and this may be used to enforce that rule. The warning is inactive inside

 a system header file, such as the STL, so one can still use the STL. One may also

 instantiate or specialize templates.

 -Wno-mismatched-new-delete (C++ and Objective-C++ only)

 Warn for mismatches between calls to "operator new" or "operator delete" and the

 corresponding call to the allocation or deallocation function. This includes

 invocations of C++ "operator delete" with pointers returned from either mismatched

 forms of "operator new", or from other functions that allocate objects for which the

 "operator delete" isn't a suitable deallocator, as well as calls to other deallocation

 functions with pointers returned from "operator new" for which the deallocation

 function isn't suitable.

 For example, the "delete" expression in the function below is diagnosed because it

 doesn't match the array form of the "new" expression the pointer argument was returned

 from. Similarly, the call to "free" is also diagnosed.

 void f ()

 {

 int *a = new int[n];

 delete a; // warning: mismatch in array forms of expressions

 char *p = new char[n];

 free (p); // warning: mismatch between new and free

 }

 The related option -Wmismatched-dealloc diagnoses mismatches involving allocation and

 deallocation functions other than "operator new" and "operator delete".

 -Wmismatched-new-delete is enabled by default.

 -Wmismatched-tags (C++ and Objective-C++ only)

 Warn for declarations of structs, classes, and class templates and their

 specializations with a class-key that does not match either the definition or the

 first declaration if no definition is provided. Page 65/576

 For example, the declaration of "struct Object" in the argument list of "draw"

 triggers the warning. To avoid it, either remove the redundant class-key "struct" or

 replace it with "class" to match its definition.

 class Object {

 public:

 virtual ~Object () = 0;

 };

 void draw (struct Object*);

 It is not wrong to declare a class with the class-key "struct" as the example above

 shows. The -Wmismatched-tags option is intended to help achieve a consistent style of

 class declarations. In code that is intended to be portable to Windows-based

 compilers the warning helps prevent unresolved references due to the difference in the

 mangling of symbols declared with different class-keys. The option can be used either

 on its own or in conjunction with -Wredundant-tags.

 -Wmultiple-inheritance (C++ and Objective-C++ only)

 Warn when a class is defined with multiple direct base classes. Some coding rules

 disallow multiple inheritance, and this may be used to enforce that rule. The warning

 is inactive inside a system header file, such as the STL, so one can still use the

 STL. One may also define classes that indirectly use multiple inheritance.

 -Wvirtual-inheritance

 Warn when a class is defined with a virtual direct base class. Some coding rules

 disallow multiple inheritance, and this may be used to enforce that rule. The warning

 is inactive inside a system header file, such as the STL, so one can still use the

 STL. One may also define classes that indirectly use virtual inheritance.

 -Wno-virtual-move-assign

 Suppress warnings about inheriting from a virtual base with a non-trivial C++11 move

 assignment operator. This is dangerous because if the virtual base is reachable along

 more than one path, it is moved multiple times, which can mean both objects end up in

 the moved-from state. If the move assignment operator is written to avoid moving from

 a moved-from object, this warning can be disabled.

 -Wnamespaces

 Warn when a namespace definition is opened. Some coding rules disallow namespaces,

 and this may be used to enforce that rule. The warning is inactive inside a system Page 66/576

 header file, such as the STL, so one can still use the STL. One may also use using

 directives and qualified names.

 -Wno-terminate (C++ and Objective-C++ only)

 Disable the warning about a throw-expression that will immediately result in a call to

 "terminate".

 -Wno-vexing-parse (C++ and Objective-C++ only)

 Warn about the most vexing parse syntactic ambiguity. This warns about the cases when

 a declaration looks like a variable definition, but the C++ language requires it to be

 interpreted as a function declaration. For instance:

 void f(double a) {

 int i(); // extern int i (void);

 int n(int(a)); // extern int n (int);

 }

 Another example:

 struct S { S(int); };

 void f(double a) {

 S x(int(a)); // extern struct S x (int);

 S y(int()); // extern struct S y (int (*) (void));

 S z(); // extern struct S z (void);

 }

 The warning will suggest options how to deal with such an ambiguity; e.g., it can

 suggest removing the parentheses or using braces instead.

 This warning is enabled by default.

 -Wno-class-conversion (C++ and Objective-C++ only)

 Do not warn when a conversion function converts an object to the same type, to a base

 class of that type, or to void; such a conversion function will never be called.

 -Wvolatile (C++ and Objective-C++ only)

 Warn about deprecated uses of the "volatile" qualifier. This includes postfix and

 prefix "++" and "--" expressions of "volatile"-qualified types, using simple

 assignments where the left operand is a "volatile"-qualified non-class type for their

 value, compound assignments where the left operand is a "volatile"-qualified non-class

 type, "volatile"-qualified function return type, "volatile"-qualified parameter type,

 and structured bindings of a "volatile"-qualified type. This usage was deprecated in Page 67/576

 C++20.

 Enabled by default with -std=c++20.

 -Wzero-as-null-pointer-constant (C++ and Objective-C++ only)

 Warn when a literal 0 is used as null pointer constant. This can be useful to

 facilitate the conversion to "nullptr" in C++11.

 -Waligned-new

 Warn about a new-expression of a type that requires greater alignment than the

 "alignof(std::max_align_t)" but uses an allocation function without an explicit

 alignment parameter. This option is enabled by -Wall.

 Normally this only warns about global allocation functions, but -Waligned-new=all also

 warns about class member allocation functions.

 -Wno-placement-new

 -Wplacement-new=n

 Warn about placement new expressions with undefined behavior, such as constructing an

 object in a buffer that is smaller than the type of the object. For example, the

 placement new expression below is diagnosed because it attempts to construct an array

 of 64 integers in a buffer only 64 bytes large.

 char buf [64];

 new (buf) int[64];

 This warning is enabled by default.

 -Wplacement-new=1

 This is the default warning level of -Wplacement-new. At this level the warning

 is not issued for some strictly undefined constructs that GCC allows as extensions

 for compatibility with legacy code. For example, the following "new" expression

 is not diagnosed at this level even though it has undefined behavior according to

 the C++ standard because it writes past the end of the one-element array.

 struct S { int n, a[1]; };

 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);

 new (s->a)int [32]();

 -Wplacement-new=2

 At this level, in addition to diagnosing all the same constructs as at level 1, a

 diagnostic is also issued for placement new expressions that construct an object

 in the last member of structure whose type is an array of a single element and Page 68/576

 whose size is less than the size of the object being constructed. While the

 previous example would be diagnosed, the following construct makes use of the

 flexible member array extension to avoid the warning at level 2.

 struct S { int n, a[]; };

 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);

 new (s->a)int [32]();

 -Wcatch-value

 -Wcatch-value=n (C++ and Objective-C++ only)

 Warn about catch handlers that do not catch via reference. With -Wcatch-value=1 (or

 -Wcatch-value for short) warn about polymorphic class types that are caught by value.

 With -Wcatch-value=2 warn about all class types that are caught by value. With

 -Wcatch-value=3 warn about all types that are not caught by reference. -Wcatch-value

 is enabled by -Wall.

 -Wconditionally-supported (C++ and Objective-C++ only)

 Warn for conditionally-supported (C++11 [intro.defs]) constructs.

 -Wno-delete-incomplete (C++ and Objective-C++ only)

 Do not warn when deleting a pointer to incomplete type, which may cause undefined

 behavior at runtime. This warning is enabled by default.

 -Wextra-semi (C++, Objective-C++ only)

 Warn about redundant semicolons after in-class function definitions.

 -Wno-inaccessible-base (C++, Objective-C++ only)

 This option controls warnings when a base class is inaccessible in a class derived

 from it due to ambiguity. The warning is enabled by default. Note that the warning

 for ambiguous virtual bases is enabled by the -Wextra option.

 struct A { int a; };

 struct B : A { };

 struct C : B, A { };

 -Wno-inherited-variadic-ctor

 Suppress warnings about use of C++11 inheriting constructors when the base class

 inherited from has a C variadic constructor; the warning is on by default because the

 ellipsis is not inherited.

 -Wno-invalid-offsetof (C++ and Objective-C++ only)

 Suppress warnings from applying the "offsetof" macro to a non-POD type. According to Page 69/576

 the 2014 ISO C++ standard, applying "offsetof" to a non-standard-layout type is

 undefined. In existing C++ implementations, however, "offsetof" typically gives

 meaningful results. This flag is for users who are aware that they are writing

 nonportable code and who have deliberately chosen to ignore the warning about it.

 The restrictions on "offsetof" may be relaxed in a future version of the C++ standard.

 -Wsized-deallocation (C++ and Objective-C++ only)

 Warn about a definition of an unsized deallocation function

 void operator delete (void *) noexcept;

 void operator delete[] (void *) noexcept;

 without a definition of the corresponding sized deallocation function

 void operator delete (void *, std::size_t) noexcept;

 void operator delete[] (void *, std::size_t) noexcept;

 or vice versa. Enabled by -Wextra along with -fsized-deallocation.

 -Wsuggest-final-types

 Warn about types with virtual methods where code quality would be improved if the type

 were declared with the C++11 "final" specifier, or, if possible, declared in an

 anonymous namespace. This allows GCC to more aggressively devirtualize the polymorphic

 calls. This warning is more effective with link-time optimization, where the

 information about the class hierarchy graph is more complete.

 -Wsuggest-final-methods

 Warn about virtual methods where code quality would be improved if the method were

 declared with the C++11 "final" specifier, or, if possible, its type were declared in

 an anonymous namespace or with the "final" specifier. This warning is more effective

 with link-time optimization, where the information about the class hierarchy graph is

 more complete. It is recommended to first consider suggestions of

 -Wsuggest-final-types and then rebuild with new annotations.

 -Wsuggest-override

 Warn about overriding virtual functions that are not marked with the "override"

 keyword.

 -Wuseless-cast (C++ and Objective-C++ only)

 Warn when an expression is casted to its own type.

 -Wno-conversion-null (C++ and Objective-C++ only)

 Do not warn for conversions between "NULL" and non-pointer types. -Wconversion-null is Page 70/576

 enabled by default.

 Options Controlling Objective-C and Objective-C++ Dialects

 (NOTE: This manual does not describe the Objective-C and Objective-C++ languages

 themselves.

 This section describes the command-line options that are only meaningful for Objective-C

 and Objective-C++ programs. You can also use most of the language-independent GNU

 compiler options. For example, you might compile a file some_class.m like this:

 gcc -g -fgnu-runtime -O -c some_class.m

 In this example, -fgnu-runtime is an option meant only for Objective-C and Objective-C++

 programs; you can use the other options with any language supported by GCC.

 Note that since Objective-C is an extension of the C language, Objective-C compilations

 may also use options specific to the C front-end (e.g., -Wtraditional). Similarly,

 Objective-C++ compilations may use C++-specific options (e.g., -Wabi).

 Here is a list of options that are only for compiling Objective-C and Objective-C++

 programs:

 -fconstant-string-class=class-name

 Use class-name as the name of the class to instantiate for each literal string

 specified with the syntax "@"..."". The default class name is "NXConstantString" if

 the GNU runtime is being used, and "NSConstantString" if the NeXT runtime is being

 used (see below). The -fconstant-cfstrings option, if also present, overrides the

 -fconstant-string-class setting and cause "@"..."" literals to be laid out as constant

 CoreFoundation strings.

 -fgnu-runtime

 Generate object code compatible with the standard GNU Objective-C runtime. This is

 the default for most types of systems.

 -fnext-runtime

 Generate output compatible with the NeXT runtime. This is the default for NeXT-based

 systems, including Darwin and Mac OS X. The macro "__NEXT_RUNTIME__" is predefined if

 (and only if) this option is used.

 -fno-nil-receivers

 Assume that all Objective-C message dispatches ("[receiver message:arg]") in this

 translation unit ensure that the receiver is not "nil". This allows for more

 efficient entry points in the runtime to be used. This option is only available in Page 71/576

 conjunction with the NeXT runtime and ABI version 0 or 1.

 -fobjc-abi-version=n

 Use version n of the Objective-C ABI for the selected runtime. This option is

 currently supported only for the NeXT runtime. In that case, Version 0 is the

 traditional (32-bit) ABI without support for properties and other Objective-C 2.0

 additions. Version 1 is the traditional (32-bit) ABI with support for properties and

 other Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If nothing is

 specified, the default is Version 0 on 32-bit target machines, and Version 2 on 64-bit

 target machines.

 -fobjc-call-cxx-cdtors

 For each Objective-C class, check if any of its instance variables is a C++ object

 with a non-trivial default constructor. If so, synthesize a special "- (id)

 .cxx_construct" instance method which runs non-trivial default constructors on any

 such instance variables, in order, and then return "self". Similarly, check if any

 instance variable is a C++ object with a non-trivial destructor, and if so, synthesize

 a special "- (void) .cxx_destruct" method which runs all such default destructors, in

 reverse order.

 The "- (id) .cxx_construct" and "- (void) .cxx_destruct" methods thusly generated only

 operate on instance variables declared in the current Objective-C class, and not those

 inherited from superclasses. It is the responsibility of the Objective-C runtime to

 invoke all such methods in an object's inheritance hierarchy. The "- (id)

 .cxx_construct" methods are invoked by the runtime immediately after a new object

 instance is allocated; the "- (void) .cxx_destruct" methods are invoked immediately

 before the runtime deallocates an object instance.

 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has support for

 invoking the "- (id) .cxx_construct" and "- (void) .cxx_destruct" methods.

 -fobjc-direct-dispatch

 Allow fast jumps to the message dispatcher. On Darwin this is accomplished via the

 comm page.

 -fobjc-exceptions

 Enable syntactic support for structured exception handling in Objective-C, similar to

 what is offered by C++. This option is required to use the Objective-C keywords @try,

 @throw, @catch, @finally and @synchronized. This option is available with both the Page 72/576

 GNU runtime and the NeXT runtime (but not available in conjunction with the NeXT

 runtime on Mac OS X 10.2 and earlier).

 -fobjc-gc

 Enable garbage collection (GC) in Objective-C and Objective-C++ programs. This option

 is only available with the NeXT runtime; the GNU runtime has a different garbage

 collection implementation that does not require special compiler flags.

 -fobjc-nilcheck

 For the NeXT runtime with version 2 of the ABI, check for a nil receiver in method

 invocations before doing the actual method call. This is the default and can be

 disabled using -fno-objc-nilcheck. Class methods and super calls are never checked

 for nil in this way no matter what this flag is set to. Currently this flag does

 nothing when the GNU runtime, or an older version of the NeXT runtime ABI, is used.

 -fobjc-std=objc1

 Conform to the language syntax of Objective-C 1.0, the language recognized by GCC 4.0.

 This only affects the Objective-C additions to the C/C++ language; it does not affect

 conformance to C/C++ standards, which is controlled by the separate C/C++ dialect

 option flags. When this option is used with the Objective-C or Objective-C++

 compiler, any Objective-C syntax that is not recognized by GCC 4.0 is rejected. This

 is useful if you need to make sure that your Objective-C code can be compiled with

 older versions of GCC.

 -freplace-objc-classes

 Emit a special marker instructing ld(1) not to statically link in the resulting object

 file, and allow dyld(1) to load it in at run time instead. This is used in

 conjunction with the Fix-and-Continue debugging mode, where the object file in

 question may be recompiled and dynamically reloaded in the course of program

 execution, without the need to restart the program itself. Currently, Fix-and-

 Continue functionality is only available in conjunction with the NeXT runtime on Mac

 OS X 10.3 and later.

 -fzero-link

 When compiling for the NeXT runtime, the compiler ordinarily replaces calls to

 "objc_getClass("...")" (when the name of the class is known at compile time) with

 static class references that get initialized at load time, which improves run-time

 performance. Specifying the -fzero-link flag suppresses this behavior and causes Page 73/576

 calls to "objc_getClass("...")" to be retained. This is useful in Zero-Link

 debugging mode, since it allows for individual class implementations to be modified

 during program execution. The GNU runtime currently always retains calls to

 "objc_get_class("...")" regardless of command-line options.

 -fno-local-ivars

 By default instance variables in Objective-C can be accessed as if they were local

 variables from within the methods of the class they're declared in. This can lead to

 shadowing between instance variables and other variables declared either locally

 inside a class method or globally with the same name. Specifying the -fno-local-ivars

 flag disables this behavior thus avoiding variable shadowing issues.

 -fivar-visibility=[public|protected|private|package]

 Set the default instance variable visibility to the specified option so that instance

 variables declared outside the scope of any access modifier directives default to the

 specified visibility.

 -gen-decls

 Dump interface declarations for all classes seen in the source file to a file named

 sourcename.decl.

 -Wassign-intercept (Objective-C and Objective-C++ only)

 Warn whenever an Objective-C assignment is being intercepted by the garbage collector.

 -Wno-property-assign-default (Objective-C and Objective-C++ only)

 Do not warn if a property for an Objective-C object has no assign semantics specified.

 -Wno-protocol (Objective-C and Objective-C++ only)

 If a class is declared to implement a protocol, a warning is issued for every method

 in the protocol that is not implemented by the class. The default behavior is to

 issue a warning for every method not explicitly implemented in the class, even if a

 method implementation is inherited from the superclass. If you use the -Wno-protocol

 option, then methods inherited from the superclass are considered to be implemented,

 and no warning is issued for them.

 -Wobjc-root-class (Objective-C and Objective-C++ only)

 Warn if a class interface lacks a superclass. Most classes will inherit from

 "NSObject" (or "Object") for example. When declaring classes intended to be root

 classes, the warning can be suppressed by marking their interfaces with

 "__attribute__((objc_root_class))". Page 74/576

 -Wselector (Objective-C and Objective-C++ only)

 Warn if multiple methods of different types for the same selector are found during

 compilation. The check is performed on the list of methods in the final stage of

 compilation. Additionally, a check is performed for each selector appearing in a

 "@selector(...)" expression, and a corresponding method for that selector has been

 found during compilation. Because these checks scan the method table only at the end

 of compilation, these warnings are not produced if the final stage of compilation is

 not reached, for example because an error is found during compilation, or because the

 -fsyntax-only option is being used.

 -Wstrict-selector-match (Objective-C and Objective-C++ only)

 Warn if multiple methods with differing argument and/or return types are found for a

 given selector when attempting to send a message using this selector to a receiver of

 type "id" or "Class". When this flag is off (which is the default behavior), the

 compiler omits such warnings if any differences found are confined to types that share

 the same size and alignment.

 -Wundeclared-selector (Objective-C and Objective-C++ only)

 Warn if a "@selector(...)" expression referring to an undeclared selector is found. A

 selector is considered undeclared if no method with that name has been declared before

 the "@selector(...)" expression, either explicitly in an @interface or @protocol

 declaration, or implicitly in an @implementation section. This option always performs

 its checks as soon as a "@selector(...)" expression is found, while -Wselector only

 performs its checks in the final stage of compilation. This also enforces the coding

 style convention that methods and selectors must be declared before being used.

 -print-objc-runtime-info

 Generate C header describing the largest structure that is passed by value, if any.

 Options to Control Diagnostic Messages Formatting

 Traditionally, diagnostic messages have been formatted irrespective of the output device's

 aspect (e.g. its width, ...). You can use the options described below to control the

 formatting algorithm for diagnostic messages, e.g. how many characters per line, how often

 source location information should be reported. Note that some language front ends may

 not honor these options.

 -fmessage-length=n

 Try to format error messages so that they fit on lines of about n characters. If n is Page 75/576

 zero, then no line-wrapping is done; each error message appears on a single line.

 This is the default for all front ends.

 Note - this option also affects the display of the #error and #warning pre-processor

 directives, and the deprecated function/type/variable attribute. It does not however

 affect the pragma GCC warning and pragma GCC error pragmas.

 -fdiagnostics-plain-output

 This option requests that diagnostic output look as plain as possible, which may be

 useful when running dejagnu or other utilities that need to parse diagnostics output

 and prefer that it remain more stable over time. -fdiagnostics-plain-output is

 currently equivalent to the following options: -fno-diagnostics-show-caret

 -fno-diagnostics-show-line-numbers -fdiagnostics-color=never -fdiagnostics-urls=never

 -fdiagnostics-path-format=separate-events In the future, if GCC changes the default

 appearance of its diagnostics, the corresponding option to disable the new behavior

 will be added to this list.

 -fdiagnostics-show-location=once

 Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to

 emit source location information once; that is, in case the message is too long to fit

 on a single physical line and has to be wrapped, the source location won't be emitted

 (as prefix) again, over and over, in subsequent continuation lines. This is the

 default behavior.

 -fdiagnostics-show-location=every-line

 Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to

 emit the same source location information (as prefix) for physical lines that result

 from the process of breaking a message which is too long to fit on a single line.

 -fdiagnostics-color[=WHEN]

 -fno-diagnostics-color

 Use color in diagnostics. WHEN is never, always, or auto. The default depends on how

 the compiler has been configured, it can be any of the above WHEN options or also

 never if GCC_COLORS environment variable isn't present in the environment, and auto

 otherwise. auto makes GCC use color only when the standard error is a terminal, and

 when not executing in an emacs shell. The forms -fdiagnostics-color and

 -fno-diagnostics-color are aliases for -fdiagnostics-color=always and

 -fdiagnostics-color=never, respectively. Page 76/576

 The colors are defined by the environment variable GCC_COLORS. Its value is a colon-

 separated list of capabilities and Select Graphic Rendition (SGR) substrings. SGR

 commands are interpreted by the terminal or terminal emulator. (See the section in

 the documentation of your text terminal for permitted values and their meanings as

 character attributes.) These substring values are integers in decimal representation

 and can be concatenated with semicolons. Common values to concatenate include 1 for

 bold, 4 for underline, 5 for blink, 7 for inverse, 39 for default foreground color, 30

 to 37 for foreground colors, 90 to 97 for 16-color mode foreground colors, 38;5;0 to

 38;5;255 for 88-color and 256-color modes foreground colors, 49 for default background

 color, 40 to 47 for background colors, 100 to 107 for 16-color mode background colors,

 and 48;5;0 to 48;5;255 for 88-color and 256-color modes background colors.

 The default GCC_COLORS is

 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\

 quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\

 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\

 type-diff=01;32

 where 01;31 is bold red, 01;35 is bold magenta, 01;36 is bold cyan, 32 is green, 34 is

 blue, 01 is bold, and 31 is red. Setting GCC_COLORS to the empty string disables

 colors. Supported capabilities are as follows.

 "error="

 SGR substring for error: markers.

 "warning="

 SGR substring for warning: markers.

 "note="

 SGR substring for note: markers.

 "path="

 SGR substring for colorizing paths of control-flow events as printed via

 -fdiagnostics-path-format=, such as the identifiers of individual events and lines

 indicating interprocedural calls and returns.

 "range1="

 SGR substring for first additional range.

 "range2="

 SGR substring for second additional range. Page 77/576

 "locus="

 SGR substring for location information, file:line or file:line:column etc.

 "quote="

 SGR substring for information printed within quotes.

 "fixit-insert="

 SGR substring for fix-it hints suggesting text to be inserted or replaced.

 "fixit-delete="

 SGR substring for fix-it hints suggesting text to be deleted.

 "diff-filename="

 SGR substring for filename headers within generated patches.

 "diff-hunk="

 SGR substring for the starts of hunks within generated patches.

 "diff-delete="

 SGR substring for deleted lines within generated patches.

 "diff-insert="

 SGR substring for inserted lines within generated patches.

 "type-diff="

 SGR substring for highlighting mismatching types within template arguments in the

 C++ frontend.

 -fdiagnostics-urls[=WHEN]

 Use escape sequences to embed URLs in diagnostics. For example, when

 -fdiagnostics-show-option emits text showing the command-line option controlling a

 diagnostic, embed a URL for documentation of that option.

 WHEN is never, always, or auto. auto makes GCC use URL escape sequences only when the

 standard error is a terminal, and when not executing in an emacs shell or any

 graphical terminal which is known to be incompatible with this feature, see below.

 The default depends on how the compiler has been configured. It can be any of the

 above WHEN options.

 GCC can also be configured (via the --with-diagnostics-urls=auto-if-env configure-time

 option) so that the default is affected by environment variables. Under such a

 configuration, GCC defaults to using auto if either GCC_URLS or TERM_URLS environment

 variables are present and non-empty in the environment of the compiler, or never if

 neither are. Page 78/576

 However, even with -fdiagnostics-urls=always the behavior is dependent on those

 environment variables: If GCC_URLS is set to empty or no, do not embed URLs in

 diagnostics. If set to st, URLs use ST escape sequences. If set to bel, the default,

 URLs use BEL escape sequences. Any other non-empty value enables the feature. If

 GCC_URLS is not set, use TERM_URLS as a fallback. Note: ST is an ANSI escape

 sequence, string terminator ESC \, BEL is an ASCII character, CTRL-G that usually

 sounds like a beep.

 At this time GCC tries to detect also a few terminals that are known to not implement

 the URL feature, and have bugs or at least had bugs in some versions that are still in

 use, where the URL escapes are likely to misbehave, i.e. print garbage on the screen.

 That list is currently xfce4-terminal, certain known to be buggy gnome-terminal

 versions, the linux console, and mingw. This check can be skipped with the

 -fdiagnostics-urls=always.

 -fno-diagnostics-show-option

 By default, each diagnostic emitted includes text indicating the command-line option

 that directly controls the diagnostic (if such an option is known to the diagnostic

 machinery). Specifying the -fno-diagnostics-show-option flag suppresses that

 behavior.

 -fno-diagnostics-show-caret

 By default, each diagnostic emitted includes the original source line and a caret ^

 indicating the column. This option suppresses this information. The source line is

 truncated to n characters, if the -fmessage-length=n option is given. When the output

 is done to the terminal, the width is limited to the width given by the COLUMNS

 environment variable or, if not set, to the terminal width.

 -fno-diagnostics-show-labels

 By default, when printing source code (via -fdiagnostics-show-caret), diagnostics can

 label ranges of source code with pertinent information, such as the types of

 expressions:

 printf ("foo %s bar", long_i + long_j);

 ~^ ~~~~~~~~~~~~~~~

 | |

 char * long int

 This option suppresses the printing of these labels (in the example above, the Page 79/576

 vertical bars and the "char *" and "long int" text).

 -fno-diagnostics-show-cwe

 Diagnostic messages can optionally have an associated

 @url{https://cwe.mitre.org/index.html, CWE} identifier. GCC itself only provides such

 metadata for some of the -fanalyzer diagnostics. GCC plugins may also provide

 diagnostics with such metadata. By default, if this information is present, it will

 be printed with the diagnostic. This option suppresses the printing of this metadata.

 -fno-diagnostics-show-line-numbers

 By default, when printing source code (via -fdiagnostics-show-caret), a left margin is

 printed, showing line numbers. This option suppresses this left margin.

 -fdiagnostics-minimum-margin-width=width

 This option controls the minimum width of the left margin printed by

 -fdiagnostics-show-line-numbers. It defaults to 6.

 -fdiagnostics-parseable-fixits

 Emit fix-it hints in a machine-parseable format, suitable for consumption by IDEs.

 For each fix-it, a line will be printed after the relevant diagnostic, starting with

 the string "fix-it:". For example:

 fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"

 The location is expressed as a half-open range, expressed as a count of bytes,

 starting at byte 1 for the initial column. In the above example, bytes 3 through 20

 of line 45 of "test.c" are to be replaced with the given string:

 00000000011111111112222222222

 12345678901234567890123456789

 gtk_widget_showall (dlg);

 ^^^^^^^^^^^^^^^^^^

 gtk_widget_show_all

 The filename and replacement string escape backslash as "\\", tab as "\t", newline as

 "\n", double quotes as "\"", non-printable characters as octal (e.g. vertical tab as

 "\013").

 An empty replacement string indicates that the given range is to be removed. An empty

 range (e.g. "45:3-45:3") indicates that the string is to be inserted at the given

 position.

 -fdiagnostics-generate-patch Page 80/576

 Print fix-it hints to stderr in unified diff format, after any diagnostics are

 printed. For example:

 --- test.c

 +++ test.c

 @ -42,5 +42,5 @

 void show_cb(GtkDialog *dlg)

 {

 - gtk_widget_showall(dlg);

 + gtk_widget_show_all(dlg);

 }

 The diff may or may not be colorized, following the same rules as for diagnostics (see

 -fdiagnostics-color).

 -fdiagnostics-show-template-tree

 In the C++ frontend, when printing diagnostics showing mismatching template types,

 such as:

 could not convert 'std::map<int, std::vector<double> >()'

 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>

 the -fdiagnostics-show-template-tree flag enables printing a tree-like structure

 showing the common and differing parts of the types, such as:

 map<

 [...],

 vector<

 [double != float]>>

 The parts that differ are highlighted with color ("double" and "float" in this case).

 -fno-elide-type

 By default when the C++ frontend prints diagnostics showing mismatching template

 types, common parts of the types are printed as "[...]" to simplify the error message.

 For example:

 could not convert 'std::map<int, std::vector<double> >()'

 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>

 Specifying the -fno-elide-type flag suppresses that behavior. This flag also affects

 the output of the -fdiagnostics-show-template-tree flag.

 -fdiagnostics-path-format=KIND Page 81/576

 Specify how to print paths of control-flow events for diagnostics that have such a

 path associated with them.

 KIND is none, separate-events, or inline-events, the default.

 none means to not print diagnostic paths.

 separate-events means to print a separate "note" diagnostic for each event within the

 diagnostic. For example:

 test.c:29:5: error: passing NULL as argument 1 to 'PyList_Append' which requires a non-NULL parameter

 test.c:25:10: note: (1) when 'PyList_New' fails, returning NULL

 test.c:27:3: note: (2) when 'i < count'

 test.c:29:5: note: (3) when calling 'PyList_Append', passing NULL from (1) as argument 1

 inline-events means to print the events "inline" within the source code. This view

 attempts to consolidate the events into runs of sufficiently-close events, printing

 them as labelled ranges within the source.

 For example, the same events as above might be printed as:

 'test': events 1-3

 |

 | 25 | list = PyList_New(0);

 | | ^~~~~~~~~~~~~

 | | |

 | | (1) when 'PyList_New' fails, returning NULL

 | 26 |

 | 27 | for (i = 0; i < count; i++) {

 | | ~~~

 | | |

 | | (2) when 'i < count'

 | 28 | item = PyLong_FromLong(random());

 | 29 | PyList_Append(list, item);

 | | ~~~~~~~~~~~~~~~~~~~~~~~~~

 | | |

 | | (3) when calling 'PyList_Append', passing NULL from (1) as argument 1

 |

 Interprocedural control flow is shown by grouping the events by stack frame, and using

 indentation to show how stack frames are nested, pushed, and popped. Page 82/576

 For example:

 'test': events 1-2

 |

 | 133 | {

 | | ^

 | | |

 | | (1) entering 'test'

 | 134 | boxed_int *obj = make_boxed_int (i);

 | | ~~~~~~~~~~~~~~~~~~

 | | |

 | | (2) calling 'make_boxed_int'

 |

 +--> 'make_boxed_int': events 3-4

 |

 | 120 | {

 | | ^

 | | |

 | | (3) entering 'make_boxed_int'

 | 121 | boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));

 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 | | |

 | | (4) calling 'wrapped_malloc'

 |

 +--> 'wrapped_malloc': events 5-6

 |

 | 7 | {

 | | ^

 | | |

 | | (5) entering 'wrapped_malloc'

 | 8 | return malloc (size);

 | | ~~~~~~~~~~~~~

 | | |

 | | (6) calling 'malloc' Page 83/576

 |

 <-------------+

 |

 'test': event 7

 |

 | 138 | free_boxed_int (obj);

 | | ^~~~~~~~~~~~~~~~~~~~

 | | |

 | | (7) calling 'free_boxed_int'

 |

 (etc)

 -fdiagnostics-show-path-depths

 This option provides additional information when printing control-flow paths

 associated with a diagnostic.

 If this is option is provided then the stack depth will be printed for each run of

 events within -fdiagnostics-path-format=separate-events.

 This is intended for use by GCC developers and plugin developers when debugging

 diagnostics that report interprocedural control flow.

 -fno-show-column

 Do not print column numbers in diagnostics. This may be necessary if diagnostics are

 being scanned by a program that does not understand the column numbers, such as

 dejagnu.

 -fdiagnostics-column-unit=UNIT

 Select the units for the column number. This affects traditional diagnostics (in the

 absence of -fno-show-column), as well as JSON format diagnostics if requested.

 The default UNIT, display, considers the number of display columns occupied by each

 character. This may be larger than the number of bytes required to encode the

 character, in the case of tab characters, or it may be smaller, in the case of

 multibyte characters. For example, the character "GREEK SMALL LETTER PI (U+03C0)"

 occupies one display column, and its UTF-8 encoding requires two bytes; the character

 "SLIGHTLY SMILING FACE (U+1F642)" occupies two display columns, and its UTF-8 encoding

 requires four bytes.

 Setting UNIT to byte changes the column number to the raw byte count in all cases, as Page 84/576

 was traditionally output by GCC prior to version 11.1.0.

 -fdiagnostics-column-origin=ORIGIN

 Select the origin for column numbers, i.e. the column number assigned to the first

 column. The default value of 1 corresponds to traditional GCC behavior and to the GNU

 style guide. Some utilities may perform better with an origin of 0; any non-negative

 value may be specified.

 -fdiagnostics-format=FORMAT

 Select a different format for printing diagnostics. FORMAT is text or json. The

 default is text.

 The json format consists of a top-level JSON array containing JSON objects

 representing the diagnostics.

 The JSON is emitted as one line, without formatting; the examples below have been

 formatted for clarity.

 Diagnostics can have child diagnostics. For example, this error and note:

 misleading-indentation.c:15:3: warning: this 'if' clause does not

 guard... [-Wmisleading-indentation]

 15 | if (flag)

 | ^~

 misleading-indentation.c:17:5: note: ...this statement, but the latter

 is misleadingly indented as if it were guarded by the 'if'

 17 | y = 2;

 | ^

 might be printed in JSON form (after formatting) like this:

 [

 {

 "kind": "warning",

 "locations": [

 {

 "caret": {

 "display-column": 3,

 "byte-column": 3,

 "column": 3,

 "file": "misleading-indentation.c", Page 85/576

 "line": 15

 },

 "finish": {

 "display-column": 4,

 "byte-column": 4,

 "column": 4,

 "file": "misleading-indentation.c",

 "line": 15

 }

 }

],

 "message": "this \u2018if\u2019 clause does not guard...",

 "option": "-Wmisleading-indentation",

 "option_url": "https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wmisleading-indentation",

 "children": [

 {

 "kind": "note",

 "locations": [

 {

 "caret": {

 "display-column": 5,

 "byte-column": 5,

 "column": 5,

 "file": "misleading-indentation.c",

 "line": 17

 }

 }

],

 "message": "...this statement, but the latter is ..."

 }

]

 "column-origin": 1,

 }, Page 86/576

 ...

]

 where the "note" is a child of the "warning".

 A diagnostic has a "kind". If this is "warning", then there is an "option" key

 describing the command-line option controlling the warning.

 A diagnostic can contain zero or more locations. Each location has an optional

 "label" string and up to three positions within it: a "caret" position and optional

 "start" and "finish" positions. A position is described by a "file" name, a "line"

 number, and three numbers indicating a column position:

 * "display-column" counts display columns, accounting for tabs and multibyte

 characters.

 * "byte-column" counts raw bytes.

 * "column" is equal to one of the previous two, as dictated by the

 -fdiagnostics-column-unit option.

 All three columns are relative to the origin specified by -fdiagnostics-column-origin,

 which is typically equal to 1 but may be set, for instance, to 0 for compatibility

 with other utilities that number columns from 0. The column origin is recorded in the

 JSON output in the "column-origin" tag. In the remaining examples below, the extra

 column number outputs have been omitted for brevity.

 For example, this error:

 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' {aka

 'struct s'} and 'T' {aka 'struct t'})

 64 | return callee_4a () + callee_4b ();

 | ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~

 | | |

 | | T {aka struct t}

 | S {aka struct s}

 has three locations. Its primary location is at the "+" token at column 23. It has

 two secondary locations, describing the left and right-hand sides of the expression,

 which have labels. It might be printed in JSON form as:

 {

 "children": [],

 "kind": "error", Page 87/576

 "locations": [

 {

 "caret": {

 "column": 23, "file": "bad-binary-ops.c", "line": 64

 }

 },

 {

 "caret": {

 "column": 10, "file": "bad-binary-ops.c", "line": 64

 },

 "finish": {

 "column": 21, "file": "bad-binary-ops.c", "line": 64

 },

 "label": "S {aka struct s}"

 },

 {

 "caret": {

 "column": 25, "file": "bad-binary-ops.c", "line": 64

 },

 "finish": {

 "column": 36, "file": "bad-binary-ops.c", "line": 64

 },

 "label": "T {aka struct t}"

 }

],

 "message": "invalid operands to binary + ..."

 }

 If a diagnostic contains fix-it hints, it has a "fixits" array, consisting of half-

 open intervals, similar to the output of -fdiagnostics-parseable-fixits. For example,

 this diagnostic with a replacement fix-it hint:

 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you

 mean 'color'?

 8 | return ptr->colour; Page 88/576

 | ^~~~~~

 | color

 might be printed in JSON form as:

 {

 "children": [],

 "fixits": [

 {

 "next": {

 "column": 21,

 "file": "demo.c",

 "line": 8

 },

 "start": {

 "column": 15,

 "file": "demo.c",

 "line": 8

 },

 "string": "color"

 }

],

 "kind": "error",

 "locations": [

 {

 "caret": {

 "column": 15,

 "file": "demo.c",

 "line": 8

 },

 "finish": {

 "column": 20,

 "file": "demo.c",

 "line": 8

 } Page 89/576

 }

],

 "message": "\u2018struct s\u2019 has no member named ..."

 }

 where the fix-it hint suggests replacing the text from "start" up to but not including

 "next" with "string"'s value. Deletions are expressed via an empty value for

 "string", insertions by having "start" equal "next".

 If the diagnostic has a path of control-flow events associated with it, it has a

 "path" array of objects representing the events. Each event object has a

 "description" string, a "location" object, along with a "function" string and a

 "depth" number for representing interprocedural paths. The "function" represents the

 current function at that event, and the "depth" represents the stack depth relative to

 some baseline: the higher, the more frames are within the stack.

 For example, the intraprocedural example shown for -fdiagnostics-path-format= might

 have this JSON for its path:

 "path": [

 {

 "depth": 0,

 "description": "when 'PyList_New' fails, returning NULL",

 "function": "test",

 "location": {

 "column": 10,

 "file": "test.c",

 "line": 25

 }

 },

 {

 "depth": 0,

 "description": "when 'i < count'",

 "function": "test",

 "location": {

 "column": 3,

 "file": "test.c", Page 90/576

 "line": 27

 }

 },

 {

 "depth": 0,

 "description": "when calling 'PyList_Append', passing NULL from (1) as argument 1",

 "function": "test",

 "location": {

 "column": 5,

 "file": "test.c",

 "line": 29

 }

 }

]

 Options to Request or Suppress Warnings

 Warnings are diagnostic messages that report constructions that are not inherently

 erroneous but that are risky or suggest there may have been an error.

 The following language-independent options do not enable specific warnings but control the

 kinds of diagnostics produced by GCC.

 -fsyntax-only

 Check the code for syntax errors, but don't do anything beyond that.

 -fmax-errors=n

 Limits the maximum number of error messages to n, at which point GCC bails out rather

 than attempting to continue processing the source code. If n is 0 (the default),

 there is no limit on the number of error messages produced. If -Wfatal-errors is also

 specified, then -Wfatal-errors takes precedence over this option.

 -w Inhibit all warning messages.

 -Werror

 Make all warnings into errors.

 -Werror=

 Make the specified warning into an error. The specifier for a warning is appended;

 for example -Werror=switch turns the warnings controlled by -Wswitch into errors.

 This switch takes a negative form, to be used to negate -Werror for specific warnings; Page 91/576

 for example -Wno-error=switch makes -Wswitch warnings not be errors, even when -Werror

 is in effect.

 The warning message for each controllable warning includes the option that controls

 the warning. That option can then be used with -Werror= and -Wno-error= as described

 above. (Printing of the option in the warning message can be disabled using the

 -fno-diagnostics-show-option flag.)

 Note that specifying -Werror=foo automatically implies -Wfoo. However, -Wno-error=foo

 does not imply anything.

 -Wfatal-errors

 This option causes the compiler to abort compilation on the first error occurred

 rather than trying to keep going and printing further error messages.

 You can request many specific warnings with options beginning with -W, for example

 -Wimplicit to request warnings on implicit declarations. Each of these specific warning

 options also has a negative form beginning -Wno- to turn off warnings; for example,

 -Wno-implicit. This manual lists only one of the two forms, whichever is not the default.

 For further language-specific options also refer to C++ Dialect Options and Objective-C

 and Objective-C++ Dialect Options. Additional warnings can be produced by enabling the

 static analyzer;

 Some options, such as -Wall and -Wextra, turn on other options, such as -Wunused, which

 may turn on further options, such as -Wunused-value. The combined effect of positive and

 negative forms is that more specific options have priority over less specific ones,

 independently of their position in the command-line. For options of the same specificity,

 the last one takes effect. Options enabled or disabled via pragmas take effect as if they

 appeared at the end of the command-line.

 When an unrecognized warning option is requested (e.g., -Wunknown-warning), GCC emits a

 diagnostic stating that the option is not recognized. However, if the -Wno- form is used,

 the behavior is slightly different: no diagnostic is produced for -Wno-unknown-warning

 unless other diagnostics are being produced. This allows the use of new -Wno- options

 with old compilers, but if something goes wrong, the compiler warns that an unrecognized

 option is present.

 The effectiveness of some warnings depends on optimizations also being enabled. For

 example -Wsuggest-final-types is more effective with link-time optimization and

 -Wmaybe-uninitialized does not warn at all unless optimization is enabled. Page 92/576

 -Wpedantic

 -pedantic

 Issue all the warnings demanded by strict ISO C and ISO C++; reject all programs that

 use forbidden extensions, and some other programs that do not follow ISO C and ISO

 C++. For ISO C, follows the version of the ISO C standard specified by any -std

 option used.

 Valid ISO C and ISO C++ programs should compile properly with or without this option

 (though a rare few require -ansi or a -std option specifying the required version of

 ISO C). However, without this option, certain GNU extensions and traditional C and

 C++ features are supported as well. With this option, they are rejected.

 -Wpedantic does not cause warning messages for use of the alternate keywords whose

 names begin and end with __. This alternate format can also be used to disable

 warnings for non-ISO __intN types, i.e. __intN__. Pedantic warnings are also disabled

 in the expression that follows "__extension__". However, only system header files

 should use these escape routes; application programs should avoid them.

 Some users try to use -Wpedantic to check programs for strict ISO C conformance. They

 soon find that it does not do quite what they want: it finds some non-ISO practices,

 but not all---only those for which ISO C requires a diagnostic, and some others for

 which diagnostics have been added.

 A feature to report any failure to conform to ISO C might be useful in some instances,

 but would require considerable additional work and would be quite different from

 -Wpedantic. We don't have plans to support such a feature in the near future.

 Where the standard specified with -std represents a GNU extended dialect of C, such as

 gnu90 or gnu99, there is a corresponding base standard, the version of ISO C on which

 the GNU extended dialect is based. Warnings from -Wpedantic are given where they are

 required by the base standard. (It does not make sense for such warnings to be given

 only for features not in the specified GNU C dialect, since by definition the GNU

 dialects of C include all features the compiler supports with the given option, and

 there would be nothing to warn about.)

 -pedantic-errors

 Give an error whenever the base standard (see -Wpedantic) requires a diagnostic, in

 some cases where there is undefined behavior at compile-time and in some other cases

 that do not prevent compilation of programs that are valid according to the standard. Page 93/576

 This is not equivalent to -Werror=pedantic, since there are errors enabled by this

 option and not enabled by the latter and vice versa.

 -Wall

 This enables all the warnings about constructions that some users consider

 questionable, and that are easy to avoid (or modify to prevent the warning), even in

 conjunction with macros. This also enables some language-specific warnings described

 in C++ Dialect Options and Objective-C and Objective-C++ Dialect Options.

 -Wall turns on the following warning flags:

 -Waddress -Warray-bounds=1 (only with -O2) -Warray-parameter=2 (C and Objective-C

 only) -Wbool-compare -Wbool-operation -Wc++11-compat -Wc++14-compat -Wcatch-value

 (C++ and Objective-C++ only) -Wchar-subscripts -Wcomment -Wduplicate-decl-specifier (C

 and Objective-C only) -Wenum-compare (in C/ObjC; this is on by default in C++)

 -Wformat -Wformat-overflow -Wformat-truncation -Wint-in-bool-context -Wimplicit (C and

 Objective-C only) -Wimplicit-int (C and Objective-C only)

 -Wimplicit-function-declaration (C and Objective-C only) -Winit-self (only for C++)

 -Wlogical-not-parentheses -Wmain (only for C/ObjC and unless -ffreestanding)

 -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args

 -Wmisleading-indentation (only for C/C++) -Wmissing-attributes -Wmissing-braces (only

 for C/ObjC) -Wmultistatement-macros -Wnarrowing (only for C++) -Wnonnull

 -Wnonnull-compare -Wopenmp-simd -Wparentheses -Wpessimizing-move (only for C++)

 -Wpointer-sign -Wrange-loop-construct (only for C++) -Wreorder -Wrestrict

 -Wreturn-type -Wsequence-point -Wsign-compare (only in C++) -Wsizeof-array-div

 -Wsizeof-pointer-div -Wsizeof-pointer-memaccess -Wstrict-aliasing -Wstrict-overflow=1

 -Wswitch -Wtautological-compare -Wtrigraphs -Wuninitialized -Wunknown-pragmas

 -Wunused-function -Wunused-label -Wunused-value -Wunused-variable -Wvla-parameter (C

 and Objective-C only) -Wvolatile-register-var -Wzero-length-bounds

 Note that some warning flags are not implied by -Wall. Some of them warn about

 constructions that users generally do not consider questionable, but which

 occasionally you might wish to check for; others warn about constructions that are

 necessary or hard to avoid in some cases, and there is no simple way to modify the

 code to suppress the warning. Some of them are enabled by -Wextra but many of them

 must be enabled individually.

 -Wextra Page 94/576

 This enables some extra warning flags that are not enabled by -Wall. (This option used

 to be called -W. The older name is still supported, but the newer name is more

 descriptive.)

 -Wclobbered -Wcast-function-type -Wdeprecated-copy (C++ only) -Wempty-body

 -Wenum-conversion (C only) -Wignored-qualifiers -Wimplicit-fallthrough=3

 -Wmissing-field-initializers -Wmissing-parameter-type (C only) -Wold-style-declaration

 (C only) -Woverride-init -Wsign-compare (C only) -Wstring-compare -Wredundant-move

 (only for C++) -Wtype-limits -Wuninitialized -Wshift-negative-value (in C++11 to C++17

 and in C99 and newer) -Wunused-parameter (only with -Wunused or -Wall)

 -Wunused-but-set-parameter (only with -Wunused or -Wall)

 The option -Wextra also prints warning messages for the following cases:

 * A pointer is compared against integer zero with "<", "<=", ">", or ">=".

 * (C++ only) An enumerator and a non-enumerator both appear in a conditional

 expression.

 * (C++ only) Ambiguous virtual bases.

 * (C++ only) Subscripting an array that has been declared "register".

 * (C++ only) Taking the address of a variable that has been declared "register".

 * (C++ only) A base class is not initialized in the copy constructor of a derived

 class.

 -Wabi (C, Objective-C, C++ and Objective-C++ only)

 Warn about code affected by ABI changes. This includes code that may not be

 compatible with the vendor-neutral C++ ABI as well as the psABI for the particular

 target.

 Since G++ now defaults to updating the ABI with each major release, normally -Wabi

 warns only about C++ ABI compatibility problems if there is a check added later in a

 release series for an ABI issue discovered since the initial release. -Wabi warns

 about more things if an older ABI version is selected (with -fabi-version=n).

 -Wabi can also be used with an explicit version number to warn about C++ ABI

 compatibility with a particular -fabi-version level, e.g. -Wabi=2 to warn about

 changes relative to -fabi-version=2.

 If an explicit version number is provided and -fabi-compat-version is not specified,

 the version number from this option is used for compatibility aliases. If no explicit

 version number is provided with this option, but -fabi-compat-version is specified, Page 95/576

 that version number is used for C++ ABI warnings.

 Although an effort has been made to warn about all such cases, there are probably some

 cases that are not warned about, even though G++ is generating incompatible code.

 There may also be cases where warnings are emitted even though the code that is

 generated is compatible.

 You should rewrite your code to avoid these warnings if you are concerned about the

 fact that code generated by G++ may not be binary compatible with code generated by

 other compilers.

 Known incompatibilities in -fabi-version=2 (which was the default from GCC 3.4 to 4.9)

 include:

 * A template with a non-type template parameter of reference type was mangled

 incorrectly:

 extern int N;

 template <int &> struct S {};

 void n (S<N>) {2}

 This was fixed in -fabi-version=3.

 * SIMD vector types declared using "__attribute ((vector_size))" were mangled in a

 non-standard way that does not allow for overloading of functions taking vectors

 of different sizes.

 The mangling was changed in -fabi-version=4.

 * "__attribute ((const))" and "noreturn" were mangled as type qualifiers, and

 "decltype" of a plain declaration was folded away.

 These mangling issues were fixed in -fabi-version=5.

 * Scoped enumerators passed as arguments to a variadic function are promoted like

 unscoped enumerators, causing "va_arg" to complain. On most targets this does not

 actually affect the parameter passing ABI, as there is no way to pass an argument

 smaller than "int".

 Also, the ABI changed the mangling of template argument packs, "const_cast",

 "static_cast", prefix increment/decrement, and a class scope function used as a

 template argument.

 These issues were corrected in -fabi-version=6.

 * Lambdas in default argument scope were mangled incorrectly, and the ABI changed

 the mangling of "nullptr_t". Page 96/576

 These issues were corrected in -fabi-version=7.

 * When mangling a function type with function-cv-qualifiers, the un-qualified

 function type was incorrectly treated as a substitution candidate.

 This was fixed in -fabi-version=8, the default for GCC 5.1.

 * "decltype(nullptr)" incorrectly had an alignment of 1, leading to unaligned

 accesses. Note that this did not affect the ABI of a function with a "nullptr_t"

 parameter, as parameters have a minimum alignment.

 This was fixed in -fabi-version=9, the default for GCC 5.2.

 * Target-specific attributes that affect the identity of a type, such as ia32

 calling conventions on a function type (stdcall, regparm, etc.), did not affect

 the mangled name, leading to name collisions when function pointers were used as

 template arguments.

 This was fixed in -fabi-version=10, the default for GCC 6.1.

 This option also enables warnings about psABI-related changes. The known psABI

 changes at this point include:

 * For SysV/x86-64, unions with "long double" members are passed in memory as

 specified in psABI. Prior to GCC 4.4, this was not the case. For example:

 union U {

 long double ld;

 int i;

 };

 "union U" is now always passed in memory.

 -Wchar-subscripts

 Warn if an array subscript has type "char". This is a common cause of error, as

 programmers often forget that this type is signed on some machines. This warning is

 enabled by -Wall.

 -Wno-coverage-mismatch

 Warn if feedback profiles do not match when using the -fprofile-use option. If a

 source file is changed between compiling with -fprofile-generate and with

 -fprofile-use, the files with the profile feedback can fail to match the source file

 and GCC cannot use the profile feedback information. By default, this warning is

 enabled and is treated as an error. -Wno-coverage-mismatch can be used to disable the

 warning or -Wno-error=coverage-mismatch can be used to disable the error. Disabling Page 97/576

 the error for this warning can result in poorly optimized code and is useful only in

 the case of very minor changes such as bug fixes to an existing code-base. Completely

 disabling the warning is not recommended.

 -Wno-cpp

 (C, Objective-C, C++, Objective-C++ and Fortran only) Suppress warning messages

 emitted by "#warning" directives.

 -Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)

 Give a warning when a value of type "float" is implicitly promoted to "double". CPUs

 with a 32-bit "single-precision" floating-point unit implement "float" in hardware,

 but emulate "double" in software. On such a machine, doing computations using

 "double" values is much more expensive because of the overhead required for software

 emulation.

 It is easy to accidentally do computations with "double" because floating-point

 literals are implicitly of type "double". For example, in:

 float area(float radius)

 {

 return 3.14159 * radius * radius;

 }

 the compiler performs the entire computation with "double" because the floating-point

 literal is a "double".

 -Wduplicate-decl-specifier (C and Objective-C only)

 Warn if a declaration has duplicate "const", "volatile", "restrict" or "_Atomic"

 specifier. This warning is enabled by -Wall.

 -Wformat

 -Wformat=n

 Check calls to "printf" and "scanf", etc., to make sure that the arguments supplied

 have types appropriate to the format string specified, and that the conversions

 specified in the format string make sense. This includes standard functions, and

 others specified by format attributes, in the "printf", "scanf", "strftime" and

 "strfmon" (an X/Open extension, not in the C standard) families (or other target-

 specific families). Which functions are checked without format attributes having been

 specified depends on the standard version selected, and such checks of functions

 without the attribute specified are disabled by -ffreestanding or -fno-builtin. Page 98/576

 The formats are checked against the format features supported by GNU libc version 2.2.

 These include all ISO C90 and C99 features, as well as features from the Single Unix

 Specification and some BSD and GNU extensions. Other library implementations may not

 support all these features; GCC does not support warning about features that go beyond

 a particular library's limitations. However, if -Wpedantic is used with -Wformat,

 warnings are given about format features not in the selected standard version (but not

 for "strfmon" formats, since those are not in any version of the C standard).

 -Wformat=1

 -Wformat

 Option -Wformat is equivalent to -Wformat=1, and -Wno-format is equivalent to

 -Wformat=0. Since -Wformat also checks for null format arguments for several

 functions, -Wformat also implies -Wnonnull. Some aspects of this level of format

 checking can be disabled by the options: -Wno-format-contains-nul,

 -Wno-format-extra-args, and -Wno-format-zero-length. -Wformat is enabled by

 -Wall.

 -Wformat=2

 Enable -Wformat plus additional format checks. Currently equivalent to -Wformat

 -Wformat-nonliteral -Wformat-security -Wformat-y2k.

 -Wno-format-contains-nul

 If -Wformat is specified, do not warn about format strings that contain NUL bytes.

 -Wno-format-extra-args

 If -Wformat is specified, do not warn about excess arguments to a "printf" or "scanf"

 format function. The C standard specifies that such arguments are ignored.

 Where the unused arguments lie between used arguments that are specified with $

 operand number specifications, normally warnings are still given, since the

 implementation could not know what type to pass to "va_arg" to skip the unused

 arguments. However, in the case of "scanf" formats, this option suppresses the

 warning if the unused arguments are all pointers, since the Single Unix Specification

 says that such unused arguments are allowed.

 -Wformat-overflow

 -Wformat-overflow=level

 Warn about calls to formatted input/output functions such as "sprintf" and "vsprintf"

 that might overflow the destination buffer. When the exact number of bytes written by Page 99/576

 a format directive cannot be determined at compile-time it is estimated based on

 heuristics that depend on the level argument and on optimization. While enabling

 optimization will in most cases improve the accuracy of the warning, it may also

 result in false positives.

 -Wformat-overflow

 -Wformat-overflow=1

 Level 1 of -Wformat-overflow enabled by -Wformat employs a conservative approach

 that warns only about calls that most likely overflow the buffer. At this level,

 numeric arguments to format directives with unknown values are assumed to have the

 value of one, and strings of unknown length to be empty. Numeric arguments that

 are known to be bounded to a subrange of their type, or string arguments whose

 output is bounded either by their directive's precision or by a finite set of

 string literals, are assumed to take on the value within the range that results in

 the most bytes on output. For example, the call to "sprintf" below is diagnosed

 because even with both a and b equal to zero, the terminating NUL character ('\0')

 appended by the function to the destination buffer will be written past its end.

 Increasing the size of the buffer by a single byte is sufficient to avoid the

 warning, though it may not be sufficient to avoid the overflow.

 void f (int a, int b)

 {

 char buf [13];

 sprintf (buf, "a = %i, b = %i\n", a, b);

 }

 -Wformat-overflow=2

 Level 2 warns also about calls that might overflow the destination buffer given an

 argument of sufficient length or magnitude. At level 2, unknown numeric arguments

 are assumed to have the minimum representable value for signed types with a

 precision greater than 1, and the maximum representable value otherwise. Unknown

 string arguments whose length cannot be assumed to be bounded either by the

 directive's precision, or by a finite set of string literals they may evaluate to,

 or the character array they may point to, are assumed to be 1 character long.

 At level 2, the call in the example above is again diagnosed, but this time

 because with a equal to a 32-bit "INT_MIN" the first %i directive will write some Page 100/576

 of its digits beyond the end of the destination buffer. To make the call safe

 regardless of the values of the two variables, the size of the destination buffer

 must be increased to at least 34 bytes. GCC includes the minimum size of the

 buffer in an informational note following the warning.

 An alternative to increasing the size of the destination buffer is to constrain

 the range of formatted values. The maximum length of string arguments can be

 bounded by specifying the precision in the format directive. When numeric

 arguments of format directives can be assumed to be bounded by less than the

 precision of their type, choosing an appropriate length modifier to the format

 specifier will reduce the required buffer size. For example, if a and b in the

 example above can be assumed to be within the precision of the "short int" type

 then using either the %hi format directive or casting the argument to "short"

 reduces the maximum required size of the buffer to 24 bytes.

 void f (int a, int b)

 {

 char buf [23];

 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);

 }

 -Wno-format-zero-length

 If -Wformat is specified, do not warn about zero-length formats. The C standard

 specifies that zero-length formats are allowed.

 -Wformat-nonliteral

 If -Wformat is specified, also warn if the format string is not a string literal and

 so cannot be checked, unless the format function takes its format arguments as a

 "va_list".

 -Wformat-security

 If -Wformat is specified, also warn about uses of format functions that represent

 possible security problems. At present, this warns about calls to "printf" and

 "scanf" functions where the format string is not a string literal and there are no

 format arguments, as in "printf (foo);". This may be a security hole if the format

 string came from untrusted input and contains %n. (This is currently a subset of what

 -Wformat-nonliteral warns about, but in future warnings may be added to

 -Wformat-security that are not included in -Wformat-nonliteral.) Page 101/576

 -Wformat-signedness

 If -Wformat is specified, also warn if the format string requires an unsigned argument

 and the argument is signed and vice versa.

 -Wformat-truncation

 -Wformat-truncation=level

 Warn about calls to formatted input/output functions such as "snprintf" and

 "vsnprintf" that might result in output truncation. When the exact number of bytes

 written by a format directive cannot be determined at compile-time it is estimated

 based on heuristics that depend on the level argument and on optimization. While

 enabling optimization will in most cases improve the accuracy of the warning, it may

 also result in false positives. Except as noted otherwise, the option uses the same

 logic -Wformat-overflow.

 -Wformat-truncation

 -Wformat-truncation=1

 Level 1 of -Wformat-truncation enabled by -Wformat employs a conservative approach

 that warns only about calls to bounded functions whose return value is unused and

 that will most likely result in output truncation.

 -Wformat-truncation=2

 Level 2 warns also about calls to bounded functions whose return value is used and

 that might result in truncation given an argument of sufficient length or

 magnitude.

 -Wformat-y2k

 If -Wformat is specified, also warn about "strftime" formats that may yield only a

 two-digit year.

 -Wnonnull

 Warn about passing a null pointer for arguments marked as requiring a non-null value

 by the "nonnull" function attribute.

 -Wnonnull is included in -Wall and -Wformat. It can be disabled with the -Wno-nonnull

 option.

 -Wnonnull-compare

 Warn when comparing an argument marked with the "nonnull" function attribute against

 null inside the function.

 -Wnonnull-compare is included in -Wall. It can be disabled with the Page 102/576

 -Wno-nonnull-compare option.

 -Wnull-dereference

 Warn if the compiler detects paths that trigger erroneous or undefined behavior due to

 dereferencing a null pointer. This option is only active when

 -fdelete-null-pointer-checks is active, which is enabled by optimizations in most

 targets. The precision of the warnings depends on the optimization options used.

 -Winit-self (C, C++, Objective-C and Objective-C++ only)

 Warn about uninitialized variables that are initialized with themselves. Note this

 option can only be used with the -Wuninitialized option.

 For example, GCC warns about "i" being uninitialized in the following snippet only

 when -Winit-self has been specified:

 int f()

 {

 int i = i;

 return i;

 }

 This warning is enabled by -Wall in C++.

 -Wno-implicit-int (C and Objective-C only)

 This option controls warnings when a declaration does not specify a type. This

 warning is enabled by default in C99 and later dialects of C, and also by -Wall.

 -Wno-implicit-function-declaration (C and Objective-C only)

 This option controls warnings when a function is used before being declared. This

 warning is enabled by default in C99 and later dialects of C, and also by -Wall. The

 warning is made into an error by -pedantic-errors.

 -Wimplicit (C and Objective-C only)

 Same as -Wimplicit-int and -Wimplicit-function-declaration. This warning is enabled

 by -Wall.

 -Wimplicit-fallthrough

 -Wimplicit-fallthrough is the same as -Wimplicit-fallthrough=3 and

 -Wno-implicit-fallthrough is the same as -Wimplicit-fallthrough=0.

 -Wimplicit-fallthrough=n

 Warn when a switch case falls through. For example:

 switch (cond) Page 103/576

 {

 case 1:

 a = 1;

 break;

 case 2:

 a = 2;

 case 3:

 a = 3;

 break;

 }

 This warning does not warn when the last statement of a case cannot fall through, e.g.

 when there is a return statement or a call to function declared with the noreturn

 attribute. -Wimplicit-fallthrough= also takes into account control flow statements,

 such as ifs, and only warns when appropriate. E.g.

 switch (cond)

 {

 case 1:

 if (i > 3) {

 bar (5);

 break;

 } else if (i < 1) {

 bar (0);

 } else

 return;

 default:

 ...

 }

 Since there are occasions where a switch case fall through is desirable, GCC provides

 an attribute, "__attribute__ ((fallthrough))", that is to be used along with a null

 statement to suppress this warning that would normally occur:

 switch (cond)

 {

 case 1: Page 104/576

 bar (0);

 __attribute__ ((fallthrough));

 default:

 ...

 }

 C++17 provides a standard way to suppress the -Wimplicit-fallthrough warning using

 "[[fallthrough]];" instead of the GNU attribute. In C++11 or C++14 users can use

 "[[gnu::fallthrough]];", which is a GNU extension. Instead of these attributes, it is

 also possible to add a fallthrough comment to silence the warning. The whole body of

 the C or C++ style comment should match the given regular expressions listed below.

 The option argument n specifies what kind of comments are accepted:

 *<-Wimplicit-fallthrough=0 disables the warning altogether.>

 <-Wimplicit-fallthrough=1 matches "." regular>

 expression, any comment is used as fallthrough comment.

 *<-Wimplicit-fallthrough=2 case insensitively matches>

 ".*falls?[\t-]*thr(ough|u).*" regular expression.

 *<-Wimplicit-fallthrough=3 case sensitively matches one of the>

 following regular expressions:

 *<"-fallthrough">

 *<"@fallthrough@">

 <"lint -fallthrough[\t]">

 <"[\t.!](ELSE,? |INTENTIONAL(LY)?)?FALL(S | |-)?THR(OUGH|U)[

 \t.!]*(-[^\n\r]*)?">

 <"[\t.!](Else,? |Intentional(ly)?)?Fall((s | |-)[Tt]|t)hr(ough|u)[

 \t.!]*(-[^\n\r]*)?">

 <"[\t.!]([Ee]lse,? |[Ii]ntentional(ly)?)?fall(s | |-)?thr(ough|u)[

 \t.!]*(-[^\n\r]*)?">

 *<-Wimplicit-fallthrough=4 case sensitively matches one of the>

 following regular expressions:

 *<"-fallthrough">

 *<"@fallthrough@">

 <"lint -fallthrough[\t]">

 *<"[\t]*FALLTHR(OUGH|U)[\t]*"> Page 105/576

 *<-Wimplicit-fallthrough=5 doesn't recognize any comments as>

 fallthrough comments, only attributes disable the warning.

 The comment needs to be followed after optional whitespace and other comments by

 "case" or "default" keywords or by a user label that precedes some "case" or "default"

 label.

 switch (cond)

 {

 case 1:

 bar (0);

 /* FALLTHRU */

 default:

 ...

 }

 The -Wimplicit-fallthrough=3 warning is enabled by -Wextra.

 -Wno-if-not-aligned (C, C++, Objective-C and Objective-C++ only)

 Control if warnings triggered by the "warn_if_not_aligned" attribute should be issued.

 These warnings are enabled by default.

 -Wignored-qualifiers (C and C++ only)

 Warn if the return type of a function has a type qualifier such as "const". For ISO C

 such a type qualifier has no effect, since the value returned by a function is not an

 lvalue. For C++, the warning is only emitted for scalar types or "void". ISO C

 prohibits qualified "void" return types on function definitions, so such return types

 always receive a warning even without this option.

 This warning is also enabled by -Wextra.

 -Wno-ignored-attributes (C and C++ only)

 This option controls warnings when an attribute is ignored. This is different from

 the -Wattributes option in that it warns whenever the compiler decides to drop an

 attribute, not that the attribute is either unknown, used in a wrong place, etc. This

 warning is enabled by default.

 -Wmain

 Warn if the type of "main" is suspicious. "main" should be a function with external

 linkage, returning int, taking either zero arguments, two, or three arguments of

 appropriate types. This warning is enabled by default in C++ and is enabled by either Page 106/576

 -Wall or -Wpedantic.

 -Wmisleading-indentation (C and C++ only)

 Warn when the indentation of the code does not reflect the block structure.

 Specifically, a warning is issued for "if", "else", "while", and "for" clauses with a

 guarded statement that does not use braces, followed by an unguarded statement with

 the same indentation.

 In the following example, the call to "bar" is misleadingly indented as if it were

 guarded by the "if" conditional.

 if (some_condition ())

 foo ();

 bar (); /* Gotcha: this is not guarded by the "if". */

 In the case of mixed tabs and spaces, the warning uses the -ftabstop= option to

 determine if the statements line up (defaulting to 8).

 The warning is not issued for code involving multiline preprocessor logic such as the

 following example.

 if (flagA)

 foo (0);

 #if SOME_CONDITION_THAT_DOES_NOT_HOLD

 if (flagB)

 #endif

 foo (1);

 The warning is not issued after a "#line" directive, since this typically indicates

 autogenerated code, and no assumptions can be made about the layout of the file that

 the directive references.

 This warning is enabled by -Wall in C and C++.

 -Wmissing-attributes

 Warn when a declaration of a function is missing one or more attributes that a related

 function is declared with and whose absence may adversely affect the correctness or

 efficiency of generated code. For example, the warning is issued for declarations of

 aliases that use attributes to specify less restrictive requirements than those of

 their targets. This typically represents a potential optimization opportunity. By

 contrast, the -Wattribute-alias=2 option controls warnings issued when the alias is

 more restrictive than the target, which could lead to incorrect code generation. Page 107/576

 Attributes considered include "alloc_align", "alloc_size", "cold", "const", "hot",

 "leaf", "malloc", "nonnull", "noreturn", "nothrow", "pure", "returns_nonnull", and

 "returns_twice".

 In C++, the warning is issued when an explicit specialization of a primary template

 declared with attribute "alloc_align", "alloc_size", "assume_aligned", "format",

 "format_arg", "malloc", or "nonnull" is declared without it. Attributes "deprecated",

 "error", and "warning" suppress the warning..

 You can use the "copy" attribute to apply the same set of attributes to a declaration

 as that on another declaration without explicitly enumerating the attributes. This

 attribute can be applied to declarations of functions, variables, or types.

 -Wmissing-attributes is enabled by -Wall.

 For example, since the declaration of the primary function template below makes use of

 both attribute "malloc" and "alloc_size" the declaration of the explicit

 specialization of the template is diagnosed because it is missing one of the

 attributes.

 template <class T>

 T* __attribute__ ((malloc, alloc_size (1)))

 allocate (size_t);

 template <>

 void* __attribute__ ((malloc)) // missing alloc_size

 allocate<void> (size_t);

 -Wmissing-braces

 Warn if an aggregate or union initializer is not fully bracketed. In the following

 example, the initializer for "a" is not fully bracketed, but that for "b" is fully

 bracketed.

 int a[2][2] = { 0, 1, 2, 3 };

 int b[2][2] = { { 0, 1 }, { 2, 3 } };

 This warning is enabled by -Wall.

 -Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)

 Warn if a user-supplied include directory does not exist.

 -Wno-missing-profile

 This option controls warnings if feedback profiles are missing when using the

 -fprofile-use option. This option diagnoses those cases where a new function or a new Page 108/576

 file is added between compiling with -fprofile-generate and with -fprofile-use,

 without regenerating the profiles. In these cases, the profile feedback data files do

 not contain any profile feedback information for the newly added function or file

 respectively. Also, in the case when profile count data (.gcda) files are removed,

 GCC cannot use any profile feedback information. In all these cases, warnings are

 issued to inform you that a profile generation step is due. Ignoring the warning can

 result in poorly optimized code. -Wno-missing-profile can be used to disable the

 warning, but this is not recommended and should be done only when non-existent profile

 data is justified.

 -Wno-mismatched-dealloc

 Warn for calls to deallocation functions with pointer arguments returned from from

 allocations functions for which the former isn't a suitable deallocator. A pair of

 functions can be associated as matching allocators and deallocators by use of

 attribute "malloc". Unless disabled by the -fno-builtin option the standard functions

 "calloc", "malloc", "realloc", and "free", as well as the corresponding forms of C++

 "operator new" and "operator delete" are implicitly associated as matching allocators

 and deallocators. In the following example "mydealloc" is the deallocator for

 pointers returned from "myalloc".

 void mydealloc (void*);

 __attribute__ ((malloc (mydealloc, 1))) void*

 myalloc (size_t);

 void f (void)

 {

 void *p = myalloc (32);

 // ...use p...

 free (p); // warning: not a matching deallocator for myalloc

 mydealloc (p); // ok

 }

 In C++, the related option -Wmismatched-new-delete diagnoses mismatches involving

 either "operator new" or "operator delete".

 Option -Wmismatched-dealloc is enabled by default.

 -Wmultistatement-macros

 Warn about unsafe multiple statement macros that appear to be guarded by a clause such Page 109/576

 as "if", "else", "for", "switch", or "while", in which only the first statement is

 actually guarded after the macro is expanded.

 For example:

 #define DOIT x++; y++

 if (c)

 DOIT;

 will increment "y" unconditionally, not just when "c" holds. The can usually be fixed

 by wrapping the macro in a do-while loop:

 #define DOIT do { x++; y++; } while (0)

 if (c)

 DOIT;

 This warning is enabled by -Wall in C and C++.

 -Wparentheses

 Warn if parentheses are omitted in certain contexts, such as when there is an

 assignment in a context where a truth value is expected, or when operators are nested

 whose precedence people often get confused about.

 Also warn if a comparison like "x<=y<=z" appears; this is equivalent to "(x<=y ? 1 :

 0) <= z", which is a different interpretation from that of ordinary mathematical

 notation.

 Also warn for dangerous uses of the GNU extension to "?:" with omitted middle operand.

 When the condition in the "?": operator is a boolean expression, the omitted value is

 always 1. Often programmers expect it to be a value computed inside the conditional

 expression instead.

 For C++ this also warns for some cases of unnecessary parentheses in declarations,

 which can indicate an attempt at a function call instead of a declaration:

 {

 // Declares a local variable called mymutex.

 std::unique_lock<std::mutex> (mymutex);

 // User meant std::unique_lock<std::mutex> lock (mymutex);

 }

 This warning is enabled by -Wall.

 -Wsequence-point

 Warn about code that may have undefined semantics because of violations of sequence Page 110/576

 point rules in the C and C++ standards.

 The C and C++ standards define the order in which expressions in a C/C++ program are

 evaluated in terms of sequence points, which represent a partial ordering between the

 execution of parts of the program: those executed before the sequence point, and those

 executed after it. These occur after the evaluation of a full expression (one which

 is not part of a larger expression), after the evaluation of the first operand of a

 "&&", "||", "? :" or "," (comma) operator, before a function is called (but after the

 evaluation of its arguments and the expression denoting the called function), and in

 certain other places. Other than as expressed by the sequence point rules, the order

 of evaluation of subexpressions of an expression is not specified. All these rules

 describe only a partial order rather than a total order, since, for example, if two

 functions are called within one expression with no sequence point between them, the

 order in which the functions are called is not specified. However, the standards

 committee have ruled that function calls do not overlap.

 It is not specified when between sequence points modifications to the values of

 objects take effect. Programs whose behavior depends on this have undefined behavior;

 the C and C++ standards specify that "Between the previous and next sequence point an

 object shall have its stored value modified at most once by the evaluation of an

 expression. Furthermore, the prior value shall be read only to determine the value to

 be stored.". If a program breaks these rules, the results on any particular

 implementation are entirely unpredictable.

 Examples of code with undefined behavior are "a = a++;", "a[n] = b[n++]" and "a[i++] =

 i;". Some more complicated cases are not diagnosed by this option, and it may give an

 occasional false positive result, but in general it has been found fairly effective at

 detecting this sort of problem in programs.

 The C++17 standard will define the order of evaluation of operands in more cases: in

 particular it requires that the right-hand side of an assignment be evaluated before

 the left-hand side, so the above examples are no longer undefined. But this option

 will still warn about them, to help people avoid writing code that is undefined in C

 and earlier revisions of C++.

 The standard is worded confusingly, therefore there is some debate over the precise

 meaning of the sequence point rules in subtle cases. Links to discussions of the

 problem, including proposed formal definitions, may be found on the GCC readings page, Page 111/576

 at <http://gcc.gnu.org/readings.html>.

 This warning is enabled by -Wall for C and C++.

 -Wno-return-local-addr

 Do not warn about returning a pointer (or in C++, a reference) to a variable that goes

 out of scope after the function returns.

 -Wreturn-type

 Warn whenever a function is defined with a return type that defaults to "int". Also

 warn about any "return" statement with no return value in a function whose return type

 is not "void" (falling off the end of the function body is considered returning

 without a value).

 For C only, warn about a "return" statement with an expression in a function whose

 return type is "void", unless the expression type is also "void". As a GNU extension,

 the latter case is accepted without a warning unless -Wpedantic is used. Attempting

 to use the return value of a non-"void" function other than "main" that flows off the

 end by reaching the closing curly brace that terminates the function is undefined.

 Unlike in C, in C++, flowing off the end of a non-"void" function other than "main"

 results in undefined behavior even when the value of the function is not used.

 This warning is enabled by default in C++ and by -Wall otherwise.

 -Wno-shift-count-negative

 Controls warnings if a shift count is negative. This warning is enabled by default.

 -Wno-shift-count-overflow

 Controls warnings if a shift count is greater than or equal to the bit width of the

 type. This warning is enabled by default.

 -Wshift-negative-value

 Warn if left shifting a negative value. This warning is enabled by -Wextra in C99

 (and newer) and C++11 to C++17 modes.

 -Wno-shift-overflow

 -Wshift-overflow=n

 These options control warnings about left shift overflows.

 -Wshift-overflow=1

 This is the warning level of -Wshift-overflow and is enabled by default in C99 and

 C++11 modes (and newer). This warning level does not warn about left-shifting 1

 into the sign bit. (However, in C, such an overflow is still rejected in contexts Page 112/576

 where an integer constant expression is required.) No warning is emitted in C++20

 mode (and newer), as signed left shifts always wrap.

 -Wshift-overflow=2

 This warning level also warns about left-shifting 1 into the sign bit, unless

 C++14 mode (or newer) is active.

 -Wswitch

 Warn whenever a "switch" statement has an index of enumerated type and lacks a "case"

 for one or more of the named codes of that enumeration. (The presence of a "default"

 label prevents this warning.) "case" labels outside the enumeration range also

 provoke warnings when this option is used (even if there is a "default" label). This

 warning is enabled by -Wall.

 -Wswitch-default

 Warn whenever a "switch" statement does not have a "default" case.

 -Wswitch-enum

 Warn whenever a "switch" statement has an index of enumerated type and lacks a "case"

 for one or more of the named codes of that enumeration. "case" labels outside the

 enumeration range also provoke warnings when this option is used. The only difference

 between -Wswitch and this option is that this option gives a warning about an omitted

 enumeration code even if there is a "default" label.

 -Wno-switch-bool

 Do not warn when a "switch" statement has an index of boolean type and the case values

 are outside the range of a boolean type. It is possible to suppress this warning by

 casting the controlling expression to a type other than "bool". For example:

 switch ((int) (a == 4))

 {

 ...

 }

 This warning is enabled by default for C and C++ programs.

 -Wno-switch-outside-range

 This option controls warnings when a "switch" case has a value that is outside of its

 respective type range. This warning is enabled by default for C and C++ programs.

 -Wno-switch-unreachable

 Do not warn when a "switch" statement contains statements between the controlling Page 113/576

 expression and the first case label, which will never be executed. For example:

 switch (cond)

 {

 i = 15;

 ...

 case 5:

 ...

 }

 -Wswitch-unreachable does not warn if the statement between the controlling expression

 and the first case label is just a declaration:

 switch (cond)

 {

 int i;

 ...

 case 5:

 i = 5;

 ...

 }

 This warning is enabled by default for C and C++ programs.

 -Wsync-nand (C and C++ only)

 Warn when "__sync_fetch_and_nand" and "__sync_nand_and_fetch" built-in functions are

 used. These functions changed semantics in GCC 4.4.

 -Wunused-but-set-parameter

 Warn whenever a function parameter is assigned to, but otherwise unused (aside from

 its declaration).

 To suppress this warning use the "unused" attribute.

 This warning is also enabled by -Wunused together with -Wextra.

 -Wunused-but-set-variable

 Warn whenever a local variable is assigned to, but otherwise unused (aside from its

 declaration). This warning is enabled by -Wall.

 To suppress this warning use the "unused" attribute.

 This warning is also enabled by -Wunused, which is enabled by -Wall.

 -Wunused-function Page 114/576

 Warn whenever a static function is declared but not defined or a non-inline static

 function is unused. This warning is enabled by -Wall.

 -Wunused-label

 Warn whenever a label is declared but not used. This warning is enabled by -Wall.

 To suppress this warning use the "unused" attribute.

 -Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)

 Warn when a typedef locally defined in a function is not used. This warning is

 enabled by -Wall.

 -Wunused-parameter

 Warn whenever a function parameter is unused aside from its declaration.

 To suppress this warning use the "unused" attribute.

 -Wno-unused-result

 Do not warn if a caller of a function marked with attribute "warn_unused_result" does

 not use its return value. The default is -Wunused-result.

 -Wunused-variable

 Warn whenever a local or static variable is unused aside from its declaration. This

 option implies -Wunused-const-variable=1 for C, but not for C++. This warning is

 enabled by -Wall.

 To suppress this warning use the "unused" attribute.

 -Wunused-const-variable

 -Wunused-const-variable=n

 Warn whenever a constant static variable is unused aside from its declaration.

 -Wunused-const-variable=1 is enabled by -Wunused-variable for C, but not for C++. In C

 this declares variable storage, but in C++ this is not an error since const variables

 take the place of "#define"s.

 To suppress this warning use the "unused" attribute.

 -Wunused-const-variable=1

 This is the warning level that is enabled by -Wunused-variable for C. It warns

 only about unused static const variables defined in the main compilation unit, but

 not about static const variables declared in any header included.

 -Wunused-const-variable=2

 This warning level also warns for unused constant static variables in headers

 (excluding system headers). This is the warning level of -Wunused-const-variable Page 115/576

 and must be explicitly requested since in C++ this isn't an error and in C it

 might be harder to clean up all headers included.

 -Wunused-value

 Warn whenever a statement computes a result that is explicitly not used. To suppress

 this warning cast the unused expression to "void". This includes an expression-

 statement or the left-hand side of a comma expression that contains no side effects.

 For example, an expression such as "x[i,j]" causes a warning, while "x[(void)i,j]"

 does not.

 This warning is enabled by -Wall.

 -Wunused

 All the above -Wunused options combined.

 In order to get a warning about an unused function parameter, you must either specify

 -Wextra -Wunused (note that -Wall implies -Wunused), or separately specify

 -Wunused-parameter.

 -Wuninitialized

 Warn if an object with automatic or allocated storage duration is used without having

 been initialized. In C++, also warn if a non-static reference or non-static "const"

 member appears in a class without constructors.

 In addition, passing a pointer (or in C++, a reference) to an uninitialized object to

 a "const"-qualified argument of a built-in function known to read the object is also

 diagnosed by this warning. (-Wmaybe-uninitialized is issued for ordinary functions.)

 If you want to warn about code that uses the uninitialized value of the variable in

 its own initializer, use the -Winit-self option.

 These warnings occur for individual uninitialized elements of structure, union or

 array variables as well as for variables that are uninitialized as a whole. They do

 not occur for variables or elements declared "volatile". Because these warnings

 depend on optimization, the exact variables or elements for which there are warnings

 depend on the precise optimization options and version of GCC used.

 Note that there may be no warning about a variable that is used only to compute a

 value that itself is never used, because such computations may be deleted by data flow

 analysis before the warnings are printed.

 -Wno-invalid-memory-model

 This option controls warnings for invocations of __atomic Builtins, __sync Builtins, Page 116/576

 and the C11 atomic generic functions with a memory consistency argument that is either

 invalid for the operation or outside the range of values of the "memory_order"

 enumeration. For example, since the "__atomic_store" and "__atomic_store_n" built-ins

 are only defined for the relaxed, release, and sequentially consistent memory orders

 the following code is diagnosed:

 void store (int *i)

 {

 __atomic_store_n (i, 0, memory_order_consume);

 }

 -Winvalid-memory-model is enabled by default.

 -Wmaybe-uninitialized

 For an object with automatic or allocated storage duration, if there exists a path

 from the function entry to a use of the object that is initialized, but there exist

 some other paths for which the object is not initialized, the compiler emits a warning

 if it cannot prove the uninitialized paths are not executed at run time.

 In addition, passing a pointer (or in C++, a reference) to an uninitialized object to

 a "const"-qualified function argument is also diagnosed by this warning.

 (-Wuninitialized is issued for built-in functions known to read the object.)

 Annotating the function with attribute "access (none)" indicates that the argument

 isn't used to access the object and avoids the warning.

 These warnings are only possible in optimizing compilation, because otherwise GCC does

 not keep track of the state of variables.

 These warnings are made optional because GCC may not be able to determine when the

 code is correct in spite of appearing to have an error. Here is one example of how

 this can happen:

 {

 int x;

 switch (y)

 {

 case 1: x = 1;

 break;

 case 2: x = 4;

 break; Page 117/576

 case 3: x = 5;

 }

 foo (x);

 }

 If the value of "y" is always 1, 2 or 3, then "x" is always initialized, but GCC

 doesn't know this. To suppress the warning, you need to provide a default case with

 assert(0) or similar code.

 This option also warns when a non-volatile automatic variable might be changed by a

 call to "longjmp". The compiler sees only the calls to "setjmp". It cannot know

 where "longjmp" will be called; in fact, a signal handler could call it at any point

 in the code. As a result, you may get a warning even when there is in fact no problem

 because "longjmp" cannot in fact be called at the place that would cause a problem.

 Some spurious warnings can be avoided if you declare all the functions you use that

 never return as "noreturn".

 This warning is enabled by -Wall or -Wextra.

 -Wunknown-pragmas

 Warn when a "#pragma" directive is encountered that is not understood by GCC. If this

 command-line option is used, warnings are even issued for unknown pragmas in system

 header files. This is not the case if the warnings are only enabled by the -Wall

 command-line option.

 -Wno-pragmas

 Do not warn about misuses of pragmas, such as incorrect parameters, invalid syntax, or

 conflicts between pragmas. See also -Wunknown-pragmas.

 -Wno-prio-ctor-dtor

 Do not warn if a priority from 0 to 100 is used for constructor or destructor. The

 use of constructor and destructor attributes allow you to assign a priority to the

 constructor/destructor to control its order of execution before "main" is called or

 after it returns. The priority values must be greater than 100 as the compiler

 reserves priority values between 0--100 for the implementation.

 -Wstrict-aliasing

 This option is only active when -fstrict-aliasing is active. It warns about code that

 might break the strict aliasing rules that the compiler is using for optimization.

 The warning does not catch all cases, but does attempt to catch the more common Page 118/576

 pitfalls. It is included in -Wall. It is equivalent to -Wstrict-aliasing=3

 -Wstrict-aliasing=n

 This option is only active when -fstrict-aliasing is active. It warns about code that

 might break the strict aliasing rules that the compiler is using for optimization.

 Higher levels correspond to higher accuracy (fewer false positives). Higher levels

 also correspond to more effort, similar to the way -O works. -Wstrict-aliasing is

 equivalent to -Wstrict-aliasing=3.

 Level 1: Most aggressive, quick, least accurate. Possibly useful when higher levels

 do not warn but -fstrict-aliasing still breaks the code, as it has very few false

 negatives. However, it has many false positives. Warns for all pointer conversions

 between possibly incompatible types, even if never dereferenced. Runs in the front

 end only.

 Level 2: Aggressive, quick, not too precise. May still have many false positives (not

 as many as level 1 though), and few false negatives (but possibly more than level 1).

 Unlike level 1, it only warns when an address is taken. Warns about incomplete types.

 Runs in the front end only.

 Level 3 (default for -Wstrict-aliasing): Should have very few false positives and few

 false negatives. Slightly slower than levels 1 or 2 when optimization is enabled.

 Takes care of the common pun+dereference pattern in the front end:

 "*(int*)&some_float". If optimization is enabled, it also runs in the back end, where

 it deals with multiple statement cases using flow-sensitive points-to information.

 Only warns when the converted pointer is dereferenced. Does not warn about incomplete

 types.

 -Wstrict-overflow

 -Wstrict-overflow=n

 This option is only active when signed overflow is undefined. It warns about cases

 where the compiler optimizes based on the assumption that signed overflow does not

 occur. Note that it does not warn about all cases where the code might overflow: it

 only warns about cases where the compiler implements some optimization. Thus this

 warning depends on the optimization level.

 An optimization that assumes that signed overflow does not occur is perfectly safe if

 the values of the variables involved are such that overflow never does, in fact,

 occur. Therefore this warning can easily give a false positive: a warning about code Page 119/576

 that is not actually a problem. To help focus on important issues, several warning

 levels are defined. No warnings are issued for the use of undefined signed overflow

 when estimating how many iterations a loop requires, in particular when determining

 whether a loop will be executed at all.

 -Wstrict-overflow=1

 Warn about cases that are both questionable and easy to avoid. For example the

 compiler simplifies "x + 1 > x" to 1. This level of -Wstrict-overflow is enabled

 by -Wall; higher levels are not, and must be explicitly requested.

 -Wstrict-overflow=2

 Also warn about other cases where a comparison is simplified to a constant. For

 example: "abs (x) >= 0". This can only be simplified when signed integer overflow

 is undefined, because "abs (INT_MIN)" overflows to "INT_MIN", which is less than

 zero. -Wstrict-overflow (with no level) is the same as -Wstrict-overflow=2.

 -Wstrict-overflow=3

 Also warn about other cases where a comparison is simplified. For example: "x + 1

 > 1" is simplified to "x > 0".

 -Wstrict-overflow=4

 Also warn about other simplifications not covered by the above cases. For

 example: "(x * 10) / 5" is simplified to "x * 2".

 -Wstrict-overflow=5

 Also warn about cases where the compiler reduces the magnitude of a constant

 involved in a comparison. For example: "x + 2 > y" is simplified to "x + 1 >= y".

 This is reported only at the highest warning level because this simplification

 applies to many comparisons, so this warning level gives a very large number of

 false positives.

 -Wstring-compare

 Warn for calls to "strcmp" and "strncmp" whose result is determined to be either zero

 or non-zero in tests for such equality owing to the length of one argument being

 greater than the size of the array the other argument is stored in (or the bound in

 the case of "strncmp"). Such calls could be mistakes. For example, the call to

 "strcmp" below is diagnosed because its result is necessarily non-zero irrespective of

 the contents of the array "a".

 extern char a[4]; Page 120/576

 void f (char *d)

 {

 strcpy (d, "string");

 ...

 if (0 == strcmp (a, d)) // cannot be true

 puts ("a and d are the same");

 }

 -Wstring-compare is enabled by -Wextra.

 -Wno-stringop-overflow

 -Wstringop-overflow

 -Wstringop-overflow=type

 Warn for calls to string manipulation functions such as "memcpy" and "strcpy" that are

 determined to overflow the destination buffer. The optional argument is one greater

 than the type of Object Size Checking to perform to determine the size of the

 destination. The argument is meaningful only for functions that operate on character

 arrays but not for raw memory functions like "memcpy" which always make use of Object

 Size type-0. The option also warns for calls that specify a size in excess of the

 largest possible object or at most "SIZE_MAX / 2" bytes. The option produces the best

 results with optimization enabled but can detect a small subset of simple buffer

 overflows even without optimization in calls to the GCC built-in functions like

 "__builtin_memcpy" that correspond to the standard functions. In any case, the option

 warns about just a subset of buffer overflows detected by the corresponding overflow

 checking built-ins. For example, the option issues a warning for the "strcpy" call

 below because it copies at least 5 characters (the string "blue" including the

 terminating NUL) into the buffer of size 4.

 enum Color { blue, purple, yellow };

 const char* f (enum Color clr)

 {

 static char buf [4];

 const char *str;

 switch (clr)

 {

 case blue: str = "blue"; break; Page 121/576

 case purple: str = "purple"; break;

 case yellow: str = "yellow"; break;

 }

 return strcpy (buf, str); // warning here

 }

 Option -Wstringop-overflow=2 is enabled by default.

 -Wstringop-overflow

 -Wstringop-overflow=1

 The -Wstringop-overflow=1 option uses type-zero Object Size Checking to determine

 the sizes of destination objects. At this setting the option does not warn for

 writes past the end of subobjects of larger objects accessed by pointers unless

 the size of the largest surrounding object is known. When the destination may be

 one of several objects it is assumed to be the largest one of them. On Linux

 systems, when optimization is enabled at this setting the option warns for the

 same code as when the "_FORTIFY_SOURCE" macro is defined to a non-zero value.

 -Wstringop-overflow=2

 The -Wstringop-overflow=2 option uses type-one Object Size Checking to determine

 the sizes of destination objects. At this setting the option warns about

 overflows when writing to members of the largest complete objects whose exact size

 is known. However, it does not warn for excessive writes to the same members of

 unknown objects referenced by pointers since they may point to arrays containing

 unknown numbers of elements. This is the default setting of the option.

 -Wstringop-overflow=3

 The -Wstringop-overflow=3 option uses type-two Object Size Checking to determine

 the sizes of destination objects. At this setting the option warns about

 overflowing the smallest object or data member. This is the most restrictive

 setting of the option that may result in warnings for safe code.

 -Wstringop-overflow=4

 The -Wstringop-overflow=4 option uses type-three Object Size Checking to determine

 the sizes of destination objects. At this setting the option warns about

 overflowing any data members, and when the destination is one of several objects

 it uses the size of the largest of them to decide whether to issue a warning.

 Similarly to -Wstringop-overflow=3 this setting of the option may result in Page 122/576

 warnings for benign code.

 -Wno-stringop-overread

 Warn for calls to string manipulation functions such as "memchr", or "strcpy" that are

 determined to read past the end of the source sequence.

 Option -Wstringop-overread is enabled by default.

 -Wno-stringop-truncation

 Do not warn for calls to bounded string manipulation functions such as "strncat",

 "strncpy", and "stpncpy" that may either truncate the copied string or leave the

 destination unchanged.

 In the following example, the call to "strncat" specifies a bound that is less than

 the length of the source string. As a result, the copy of the source will be

 truncated and so the call is diagnosed. To avoid the warning use "bufsize - strlen

 (buf) - 1)" as the bound.

 void append (char *buf, size_t bufsize)

 {

 strncat (buf, ".txt", 3);

 }

 As another example, the following call to "strncpy" results in copying to "d" just the

 characters preceding the terminating NUL, without appending the NUL to the end.

 Assuming the result of "strncpy" is necessarily a NUL-terminated string is a common

 mistake, and so the call is diagnosed. To avoid the warning when the result is not

 expected to be NUL-terminated, call "memcpy" instead.

 void copy (char *d, const char *s)

 {

 strncpy (d, s, strlen (s));

 }

 In the following example, the call to "strncpy" specifies the size of the destination

 buffer as the bound. If the length of the source string is equal to or greater than

 this size the result of the copy will not be NUL-terminated. Therefore, the call is

 also diagnosed. To avoid the warning, specify "sizeof buf - 1" as the bound and set

 the last element of the buffer to "NUL".

 void copy (const char *s)

 { Page 123/576

 char buf[80];

 strncpy (buf, s, sizeof buf);

 ...

 }

 In situations where a character array is intended to store a sequence of bytes with no

 terminating "NUL" such an array may be annotated with attribute "nonstring" to avoid

 this warning. Such arrays, however, are not suitable arguments to functions that

 expect "NUL"-terminated strings. To help detect accidental misuses of such arrays GCC

 issues warnings unless it can prove that the use is safe.

 -Wsuggest-attribute=[pure|const|noreturn|format|cold|malloc]

 Warn for cases where adding an attribute may be beneficial. The attributes currently

 supported are listed below.

 -Wsuggest-attribute=pure

 -Wsuggest-attribute=const

 -Wsuggest-attribute=noreturn

 -Wmissing-noreturn

 -Wsuggest-attribute=malloc

 Warn about functions that might be candidates for attributes "pure", "const" or

 "noreturn" or "malloc". The compiler only warns for functions visible in other

 compilation units or (in the case of "pure" and "const") if it cannot prove that

 the function returns normally. A function returns normally if it doesn't contain

 an infinite loop or return abnormally by throwing, calling "abort" or trapping.

 This analysis requires option -fipa-pure-const, which is enabled by default at -O

 and higher. Higher optimization levels improve the accuracy of the analysis.

 -Wsuggest-attribute=format

 -Wmissing-format-attribute

 Warn about function pointers that might be candidates for "format" attributes.

 Note these are only possible candidates, not absolute ones. GCC guesses that

 function pointers with "format" attributes that are used in assignment,

 initialization, parameter passing or return statements should have a corresponding

 "format" attribute in the resulting type. I.e. the left-hand side of the

 assignment or initialization, the type of the parameter variable, or the return

 type of the containing function respectively should also have a "format" attribute Page 124/576

 to avoid the warning.

 GCC also warns about function definitions that might be candidates for "format"

 attributes. Again, these are only possible candidates. GCC guesses that "format"

 attributes might be appropriate for any function that calls a function like

 "vprintf" or "vscanf", but this might not always be the case, and some functions

 for which "format" attributes are appropriate may not be detected.

 -Wsuggest-attribute=cold

 Warn about functions that might be candidates for "cold" attribute. This is based

 on static detection and generally only warns about functions which always leads to

 a call to another "cold" function such as wrappers of C++ "throw" or fatal error

 reporting functions leading to "abort".

 -Walloc-zero

 Warn about calls to allocation functions decorated with attribute "alloc_size" that

 specify zero bytes, including those to the built-in forms of the functions

 "aligned_alloc", "alloca", "calloc", "malloc", and "realloc". Because the behavior of

 these functions when called with a zero size differs among implementations (and in the

 case of "realloc" has been deprecated) relying on it may result in subtle portability

 bugs and should be avoided.

 -Walloc-size-larger-than=byte-size

 Warn about calls to functions decorated with attribute "alloc_size" that attempt to

 allocate objects larger than the specified number of bytes, or where the result of the

 size computation in an integer type with infinite precision would exceed the value of

 PTRDIFF_MAX on the target. -Walloc-size-larger-than=PTRDIFF_MAX is enabled by

 default. Warnings controlled by the option can be disabled either by specifying byte-

 size of SIZE_MAX or more or by -Wno-alloc-size-larger-than.

 -Wno-alloc-size-larger-than

 Disable -Walloc-size-larger-than= warnings. The option is equivalent to

 -Walloc-size-larger-than=SIZE_MAX or larger.

 -Walloca

 This option warns on all uses of "alloca" in the source.

 -Walloca-larger-than=byte-size

 This option warns on calls to "alloca" with an integer argument whose value is either

 zero, or that is not bounded by a controlling predicate that limits its value to at Page 125/576

 most byte-size. It also warns for calls to "alloca" where the bound value is unknown.

 Arguments of non-integer types are considered unbounded even if they appear to be

 constrained to the expected range.

 For example, a bounded case of "alloca" could be:

 void func (size_t n)

 {

 void *p;

 if (n <= 1000)

 p = alloca (n);

 else

 p = malloc (n);

 f (p);

 }

 In the above example, passing "-Walloca-larger-than=1000" would not issue a warning

 because the call to "alloca" is known to be at most 1000 bytes. However, if

 "-Walloca-larger-than=500" were passed, the compiler would emit a warning.

 Unbounded uses, on the other hand, are uses of "alloca" with no controlling predicate

 constraining its integer argument. For example:

 void func ()

 {

 void *p = alloca (n);

 f (p);

 }

 If "-Walloca-larger-than=500" were passed, the above would trigger a warning, but this

 time because of the lack of bounds checking.

 Note, that even seemingly correct code involving signed integers could cause a

 warning:

 void func (signed int n)

 {

 if (n < 500)

 {

 p = alloca (n);

 f (p); Page 126/576

 }

 }

 In the above example, n could be negative, causing a larger than expected argument to

 be implicitly cast into the "alloca" call.

 This option also warns when "alloca" is used in a loop.

 -Walloca-larger-than=PTRDIFF_MAX is enabled by default but is usually only effective

 when -ftree-vrp is active (default for -O2 and above).

 See also -Wvla-larger-than=byte-size.

 -Wno-alloca-larger-than

 Disable -Walloca-larger-than= warnings. The option is equivalent to

 -Walloca-larger-than=SIZE_MAX or larger.

 -Warith-conversion

 Do warn about implicit conversions from arithmetic operations even when conversion of

 the operands to the same type cannot change their values. This affects warnings from

 -Wconversion, -Wfloat-conversion, and -Wsign-conversion.

 void f (char c, int i)

 {

 c = c + i; // warns with B<-Wconversion>

 c = c + 1; // only warns with B<-Warith-conversion>

 }

 -Warray-bounds

 -Warray-bounds=n

 This option is only active when -ftree-vrp is active (default for -O2 and above). It

 warns about subscripts to arrays that are always out of bounds. This warning is

 enabled by -Wall.

 -Warray-bounds=1

 This is the warning level of -Warray-bounds and is enabled by -Wall; higher levels

 are not, and must be explicitly requested.

 -Warray-bounds=2

 This warning level also warns about out of bounds access for arrays at the end of

 a struct and for arrays accessed through pointers. This warning level may give a

 larger number of false positives and is deactivated by default.

 -Warray-parameter Page 127/576

 -Warray-parameter=n

 Warn about redeclarations of functions involving arguments of array or pointer types

 of inconsistent kinds or forms, and enable the detection of out-of-bounds accesses to

 such parameters by warnings such as -Warray-bounds.

 If the first function declaration uses the array form the bound specified in the array

 is assumed to be the minimum number of elements expected to be provided in calls to

 the function and the maximum number of elements accessed by it. Failing to provide

 arguments of sufficient size or accessing more than the maximum number of elements may

 be diagnosed by warnings such as -Warray-bounds. At level 1 the warning diagnoses

 inconsistencies involving array parameters declared using the "T[static N]" form.

 For example, the warning triggers for the following redeclarations because the first

 one allows an array of any size to be passed to "f" while the second one with the

 keyword "static" specifies that the array argument must have at least four elements.

 void f (int[static 4]);

 void f (int[]); // warning (inconsistent array form)

 void g (void)

 {

 int *p = (int *)malloc (4);

 f (p); // warning (array too small)

 ...

 }

 At level 2 the warning also triggers for redeclarations involving any other

 inconsistency in array or pointer argument forms denoting array sizes. Pointers and

 arrays of unspecified bound are considered equivalent and do not trigger a warning.

 void g (int*);

 void g (int[]); // no warning

 void g (int[8]); // warning (inconsistent array bound)

 -Warray-parameter=2 is included in -Wall. The -Wvla-parameter option triggers

 warnings for similar inconsistencies involving Variable Length Array arguments.

 -Wattribute-alias=n

 -Wno-attribute-alias

 Warn about declarations using the "alias" and similar attributes whose target is

 incompatible with the type of the alias. Page 128/576

 -Wattribute-alias=1

 The default warning level of the -Wattribute-alias option diagnoses

 incompatibilities between the type of the alias declaration and that of its

 target. Such incompatibilities are typically indicative of bugs.

 -Wattribute-alias=2

 At this level -Wattribute-alias also diagnoses cases where the attributes of the

 alias declaration are more restrictive than the attributes applied to its target.

 These mismatches can potentially result in incorrect code generation. In other

 cases they may be benign and could be resolved simply by adding the missing

 attribute to the target. For comparison, see the -Wmissing-attributes option,

 which controls diagnostics when the alias declaration is less restrictive than the

 target, rather than more restrictive.

 Attributes considered include "alloc_align", "alloc_size", "cold", "const", "hot",

 "leaf", "malloc", "nonnull", "noreturn", "nothrow", "pure", "returns_nonnull", and

 "returns_twice".

 -Wattribute-alias is equivalent to -Wattribute-alias=1. This is the default. You can

 disable these warnings with either -Wno-attribute-alias or -Wattribute-alias=0.

 -Wbool-compare

 Warn about boolean expression compared with an integer value different from

 "true"/"false". For instance, the following comparison is always false:

 int n = 5;

 ...

 if ((n > 1) == 2) { ... }

 This warning is enabled by -Wall.

 -Wbool-operation

 Warn about suspicious operations on expressions of a boolean type. For instance,

 bitwise negation of a boolean is very likely a bug in the program. For C, this

 warning also warns about incrementing or decrementing a boolean, which rarely makes

 sense. (In C++, decrementing a boolean is always invalid. Incrementing a boolean is

 invalid in C++17, and deprecated otherwise.)

 This warning is enabled by -Wall.

 -Wduplicated-branches

 Warn when an if-else has identical branches. This warning detects cases like Page 129/576

 if (p != NULL)

 return 0;

 else

 return 0;

 It doesn't warn when both branches contain just a null statement. This warning also

 warn for conditional operators:

 int i = x ? *p : *p;

 -Wduplicated-cond

 Warn about duplicated conditions in an if-else-if chain. For instance, warn for the

 following code:

 if (p->q != NULL) { ... }

 else if (p->q != NULL) { ... }

 -Wframe-address

 Warn when the __builtin_frame_address or __builtin_return_address is called with an

 argument greater than 0. Such calls may return indeterminate values or crash the

 program. The warning is included in -Wall.

 -Wno-discarded-qualifiers (C and Objective-C only)

 Do not warn if type qualifiers on pointers are being discarded. Typically, the

 compiler warns if a "const char *" variable is passed to a function that takes a "char

 *" parameter. This option can be used to suppress such a warning.

 -Wno-discarded-array-qualifiers (C and Objective-C only)

 Do not warn if type qualifiers on arrays which are pointer targets are being

 discarded. Typically, the compiler warns if a "const int (*)[]" variable is passed to

 a function that takes a "int (*)[]" parameter. This option can be used to suppress

 such a warning.

 -Wno-incompatible-pointer-types (C and Objective-C only)

 Do not warn when there is a conversion between pointers that have incompatible types.

 This warning is for cases not covered by -Wno-pointer-sign, which warns for pointer

 argument passing or assignment with different signedness.

 -Wno-int-conversion (C and Objective-C only)

 Do not warn about incompatible integer to pointer and pointer to integer conversions.

 This warning is about implicit conversions; for explicit conversions the warnings

 -Wno-int-to-pointer-cast and -Wno-pointer-to-int-cast may be used. Page 130/576

 -Wzero-length-bounds

 Warn about accesses to elements of zero-length array members that might overlap other

 members of the same object. Declaring interior zero-length arrays is discouraged

 because accesses to them are undefined. See

 For example, the first two stores in function "bad" are diagnosed because the array

 elements overlap the subsequent members "b" and "c". The third store is diagnosed by

 -Warray-bounds because it is beyond the bounds of the enclosing object.

 struct X { int a[0]; int b, c; };

 struct X x;

 void bad (void)

 {

 x.a[0] = 0; // -Wzero-length-bounds

 x.a[1] = 1; // -Wzero-length-bounds

 x.a[2] = 2; // -Warray-bounds

 }

 Option -Wzero-length-bounds is enabled by -Warray-bounds.

 -Wno-div-by-zero

 Do not warn about compile-time integer division by zero. Floating-point division by

 zero is not warned about, as it can be a legitimate way of obtaining infinities and

 NaNs.

 -Wsystem-headers

 Print warning messages for constructs found in system header files. Warnings from

 system headers are normally suppressed, on the assumption that they usually do not

 indicate real problems and would only make the compiler output harder to read. Using

 this command-line option tells GCC to emit warnings from system headers as if they

 occurred in user code. However, note that using -Wall in conjunction with this option

 does not warn about unknown pragmas in system headers---for that, -Wunknown-pragmas

 must also be used.

 -Wtautological-compare

 Warn if a self-comparison always evaluates to true or false. This warning detects

 various mistakes such as:

 int i = 1;

 ... Page 131/576

 if (i > i) { ... }

 This warning also warns about bitwise comparisons that always evaluate to true or

 false, for instance:

 if ((a & 16) == 10) { ... }

 will always be false.

 This warning is enabled by -Wall.

 -Wtrampolines

 Warn about trampolines generated for pointers to nested functions. A trampoline is a

 small piece of data or code that is created at run time on the stack when the address

 of a nested function is taken, and is used to call the nested function indirectly.

 For some targets, it is made up of data only and thus requires no special treatment.

 But, for most targets, it is made up of code and thus requires the stack to be made

 executable in order for the program to work properly.

 -Wfloat-equal

 Warn if floating-point values are used in equality comparisons.

 The idea behind this is that sometimes it is convenient (for the programmer) to

 consider floating-point values as approximations to infinitely precise real numbers.

 If you are doing this, then you need to compute (by analyzing the code, or in some

 other way) the maximum or likely maximum error that the computation introduces, and

 allow for it when performing comparisons (and when producing output, but that's a

 different problem). In particular, instead of testing for equality, you should check

 to see whether the two values have ranges that overlap; and this is done with the

 relational operators, so equality comparisons are probably mistaken.

 -Wtraditional (C and Objective-C only)

 Warn about certain constructs that behave differently in traditional and ISO C. Also

 warn about ISO C constructs that have no traditional C equivalent, and/or problematic

 constructs that should be avoided.

 * Macro parameters that appear within string literals in the macro body. In

 traditional C macro replacement takes place within string literals, but in ISO C

 it does not.

 * In traditional C, some preprocessor directives did not exist. Traditional

 preprocessors only considered a line to be a directive if the # appeared in column

 1 on the line. Therefore -Wtraditional warns about directives that traditional C Page 132/576

 understands but ignores because the # does not appear as the first character on

 the line. It also suggests you hide directives like "#pragma" not understood by

 traditional C by indenting them. Some traditional implementations do not

 recognize "#elif", so this option suggests avoiding it altogether.

 * A function-like macro that appears without arguments.

 * The unary plus operator.

 * The U integer constant suffix, or the F or L floating-point constant suffixes.

 (Traditional C does support the L suffix on integer constants.) Note, these

 suffixes appear in macros defined in the system headers of most modern systems,

 e.g. the _MIN/_MAX macros in "<limits.h>". Use of these macros in user code might

 normally lead to spurious warnings, however GCC's integrated preprocessor has

 enough context to avoid warning in these cases.

 * A function declared external in one block and then used after the end of the

 block.

 * A "switch" statement has an operand of type "long".

 * A non-"static" function declaration follows a "static" one. This construct is not

 accepted by some traditional C compilers.

 * The ISO type of an integer constant has a different width or signedness from its

 traditional type. This warning is only issued if the base of the constant is ten.

 I.e. hexadecimal or octal values, which typically represent bit patterns, are not

 warned about.

 * Usage of ISO string concatenation is detected.

 * Initialization of automatic aggregates.

 * Identifier conflicts with labels. Traditional C lacks a separate namespace for

 labels.

 * Initialization of unions. If the initializer is zero, the warning is omitted.

 This is done under the assumption that the zero initializer in user code appears

 conditioned on e.g. "__STDC__" to avoid missing initializer warnings and relies on

 default initialization to zero in the traditional C case.

 * Conversions by prototypes between fixed/floating-point values and vice versa. The

 absence of these prototypes when compiling with traditional C causes serious

 problems. This is a subset of the possible conversion warnings; for the full set

 use -Wtraditional-conversion. Page 133/576

 * Use of ISO C style function definitions. This warning intentionally is not issued

 for prototype declarations or variadic functions because these ISO C features

 appear in your code when using libiberty's traditional C compatibility macros,

 "PARAMS" and "VPARAMS". This warning is also bypassed for nested functions

 because that feature is already a GCC extension and thus not relevant to

 traditional C compatibility.

 -Wtraditional-conversion (C and Objective-C only)

 Warn if a prototype causes a type conversion that is different from what would happen

 to the same argument in the absence of a prototype. This includes conversions of

 fixed point to floating and vice versa, and conversions changing the width or

 signedness of a fixed-point argument except when the same as the default promotion.

 -Wdeclaration-after-statement (C and Objective-C only)

 Warn when a declaration is found after a statement in a block. This construct, known

 from C++, was introduced with ISO C99 and is by default allowed in GCC. It is not

 supported by ISO C90.

 -Wshadow

 Warn whenever a local variable or type declaration shadows another variable,

 parameter, type, class member (in C++), or instance variable (in Objective-C) or

 whenever a built-in function is shadowed. Note that in C++, the compiler warns if a

 local variable shadows an explicit typedef, but not if it shadows a struct/class/enum.

 If this warning is enabled, it includes also all instances of local shadowing. This

 means that -Wno-shadow=local and -Wno-shadow=compatible-local are ignored when

 -Wshadow is used. Same as -Wshadow=global.

 -Wno-shadow-ivar (Objective-C only)

 Do not warn whenever a local variable shadows an instance variable in an Objective-C

 method.

 -Wshadow=global

 Warn for any shadowing. Same as -Wshadow.

 -Wshadow=local

 Warn when a local variable shadows another local variable or parameter.

 -Wshadow=compatible-local

 Warn when a local variable shadows another local variable or parameter whose type is

 compatible with that of the shadowing variable. In C++, type compatibility here means Page 134/576

 the type of the shadowing variable can be converted to that of the shadowed variable.

 The creation of this flag (in addition to -Wshadow=local) is based on the idea that

 when a local variable shadows another one of incompatible type, it is most likely

 intentional, not a bug or typo, as shown in the following example:

 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)

 {

 for (int i = 0; i < N; ++i)

 {

 ...

 }

 ...

 }

 Since the two variable "i" in the example above have incompatible types, enabling only

 -Wshadow=compatible-local does not emit a warning. Because their types are

 incompatible, if a programmer accidentally uses one in place of the other, type

 checking is expected to catch that and emit an error or warning. Use of this flag

 instead of -Wshadow=local can possibly reduce the number of warnings triggered by

 intentional shadowing. Note that this also means that shadowing "const char *i" by

 "char *i" does not emit a warning.

 This warning is also enabled by -Wshadow=local.

 -Wlarger-than=byte-size

 Warn whenever an object is defined whose size exceeds byte-size.

 -Wlarger-than=PTRDIFF_MAX is enabled by default. Warnings controlled by the option

 can be disabled either by specifying byte-size of SIZE_MAX or more or by

 -Wno-larger-than.

 Also warn for calls to bounded functions such as "memchr" or "strnlen" that specify a

 bound greater than the largest possible object, which is PTRDIFF_MAX bytes by default.

 These warnings can only be disabled by -Wno-larger-than.

 -Wno-larger-than

 Disable -Wlarger-than= warnings. The option is equivalent to -Wlarger-than=SIZE_MAX

 or larger.

 -Wframe-larger-than=byte-size

 Warn if the size of a function frame exceeds byte-size. The computation done to Page 135/576

 determine the stack frame size is approximate and not conservative. The actual

 requirements may be somewhat greater than byte-size even if you do not get a warning.

 In addition, any space allocated via "alloca", variable-length arrays, or related

 constructs is not included by the compiler when determining whether or not to issue a

 warning. -Wframe-larger-than=PTRDIFF_MAX is enabled by default. Warnings controlled

 by the option can be disabled either by specifying byte-size of SIZE_MAX or more or by

 -Wno-frame-larger-than.

 -Wno-frame-larger-than

 Disable -Wframe-larger-than= warnings. The option is equivalent to

 -Wframe-larger-than=SIZE_MAX or larger.

 -Wno-free-nonheap-object

 Warn when attempting to deallocate an object that was either not allocated on the

 heap, or by using a pointer that was not returned from a prior call to the

 corresponding allocation function. For example, because the call to "stpcpy" returns

 a pointer to the terminating nul character and not to the begginning of the object,

 the call to "free" below is diagnosed.

 void f (char *p)

 {

 p = stpcpy (p, "abc");

 // ...

 free (p); // warning

 }

 -Wfree-nonheap-object is enabled by default.

 -Wstack-usage=byte-size

 Warn if the stack usage of a function might exceed byte-size. The computation done to

 determine the stack usage is conservative. Any space allocated via "alloca",

 variable-length arrays, or related constructs is included by the compiler when

 determining whether or not to issue a warning.

 The message is in keeping with the output of -fstack-usage.

 * If the stack usage is fully static but exceeds the specified amount, it's:

 warning: stack usage is 1120 bytes

 * If the stack usage is (partly) dynamic but bounded, it's:

 warning: stack usage might be 1648 bytes Page 136/576

 * If the stack usage is (partly) dynamic and not bounded, it's:

 warning: stack usage might be unbounded

 -Wstack-usage=PTRDIFF_MAX is enabled by default. Warnings controlled by the option

 can be disabled either by specifying byte-size of SIZE_MAX or more or by

 -Wno-stack-usage.

 -Wno-stack-usage

 Disable -Wstack-usage= warnings. The option is equivalent to -Wstack-usage=SIZE_MAX

 or larger.

 -Wunsafe-loop-optimizations

 Warn if the loop cannot be optimized because the compiler cannot assume anything on

 the bounds of the loop indices. With -funsafe-loop-optimizations warn if the compiler

 makes such assumptions.

 -Wno-pedantic-ms-format (MinGW targets only)

 When used in combination with -Wformat and -pedantic without GNU extensions, this

 option disables the warnings about non-ISO "printf" / "scanf" format width specifiers

 "I32", "I64", and "I" used on Windows targets, which depend on the MS runtime.

 -Wpointer-arith

 Warn about anything that depends on the "size of" a function type or of "void". GNU C

 assigns these types a size of 1, for convenience in calculations with "void *"

 pointers and pointers to functions. In C++, warn also when an arithmetic operation

 involves "NULL". This warning is also enabled by -Wpedantic.

 -Wno-pointer-compare

 Do not warn if a pointer is compared with a zero character constant. This usually

 means that the pointer was meant to be dereferenced. For example:

 const char *p = foo ();

 if (p == '\0')

 return 42;

 Note that the code above is invalid in C++11.

 This warning is enabled by default.

 -Wtsan

 Warn about unsupported features in ThreadSanitizer.

 ThreadSanitizer does not support "std::atomic_thread_fence" and can report false

 positives. Page 137/576

 This warning is enabled by default.

 -Wtype-limits

 Warn if a comparison is always true or always false due to the limited range of the

 data type, but do not warn for constant expressions. For example, warn if an unsigned

 variable is compared against zero with "<" or ">=". This warning is also enabled by

 -Wextra.

 -Wabsolute-value (C and Objective-C only)

 Warn for calls to standard functions that compute the absolute value of an argument

 when a more appropriate standard function is available. For example, calling

 "abs(3.14)" triggers the warning because the appropriate function to call to compute

 the absolute value of a double argument is "fabs". The option also triggers warnings

 when the argument in a call to such a function has an unsigned type. This warning can

 be suppressed with an explicit type cast and it is also enabled by -Wextra.

 -Wcomment

 -Wcomments

 Warn whenever a comment-start sequence /* appears in a /* comment, or whenever a

 backslash-newline appears in a // comment. This warning is enabled by -Wall.

 -Wtrigraphs

 Warn if any trigraphs are encountered that might change the meaning of the program.

 Trigraphs within comments are not warned about, except those that would form escaped

 newlines.

 This option is implied by -Wall. If -Wall is not given, this option is still enabled

 unless trigraphs are enabled. To get trigraph conversion without warnings, but get

 the other -Wall warnings, use -trigraphs -Wall -Wno-trigraphs.

 -Wundef

 Warn if an undefined identifier is evaluated in an "#if" directive. Such identifiers

 are replaced with zero.

 -Wexpansion-to-defined

 Warn whenever defined is encountered in the expansion of a macro (including the case

 where the macro is expanded by an #if directive). Such usage is not portable. This

 warning is also enabled by -Wpedantic and -Wextra.

 -Wunused-macros

 Warn about macros defined in the main file that are unused. A macro is used if it is Page 138/576

 expanded or tested for existence at least once. The preprocessor also warns if the

 macro has not been used at the time it is redefined or undefined.

 Built-in macros, macros defined on the command line, and macros defined in include

 files are not warned about.

 Note: If a macro is actually used, but only used in skipped conditional blocks, then

 the preprocessor reports it as unused. To avoid the warning in such a case, you might

 improve the scope of the macro's definition by, for example, moving it into the first

 skipped block. Alternatively, you could provide a dummy use with something like:

 #if defined the_macro_causing_the_warning

 #endif

 -Wno-endif-labels

 Do not warn whenever an "#else" or an "#endif" are followed by text. This sometimes

 happens in older programs with code of the form

 #if FOO

 ...

 #else FOO

 ...

 #endif FOO

 The second and third "FOO" should be in comments. This warning is on by default.

 -Wbad-function-cast (C and Objective-C only)

 Warn when a function call is cast to a non-matching type. For example, warn if a call

 to a function returning an integer type is cast to a pointer type.

 -Wc90-c99-compat (C and Objective-C only)

 Warn about features not present in ISO C90, but present in ISO C99. For instance,

 warn about use of variable length arrays, "long long" type, "bool" type, compound

 literals, designated initializers, and so on. This option is independent of the

 standards mode. Warnings are disabled in the expression that follows "__extension__".

 -Wc99-c11-compat (C and Objective-C only)

 Warn about features not present in ISO C99, but present in ISO C11. For instance,

 warn about use of anonymous structures and unions, "_Atomic" type qualifier,

 "_Thread_local" storage-class specifier, "_Alignas" specifier, "Alignof" operator,

 "_Generic" keyword, and so on. This option is independent of the standards mode.

 Warnings are disabled in the expression that follows "__extension__". Page 139/576

 -Wc11-c2x-compat (C and Objective-C only)

 Warn about features not present in ISO C11, but present in ISO C2X. For instance,

 warn about omitting the string in "_Static_assert", use of [[]] syntax for attributes,

 use of decimal floating-point types, and so on. This option is independent of the

 standards mode. Warnings are disabled in the expression that follows "__extension__".

 -Wc++-compat (C and Objective-C only)

 Warn about ISO C constructs that are outside of the common subset of ISO C and ISO

 C++, e.g. request for implicit conversion from "void *" to a pointer to non-"void"

 type.

 -Wc++11-compat (C++ and Objective-C++ only)

 Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011,

 e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++ 2011. This warning

 turns on -Wnarrowing and is enabled by -Wall.

 -Wc++14-compat (C++ and Objective-C++ only)

 Warn about C++ constructs whose meaning differs between ISO C++ 2011 and ISO C++ 2014.

 This warning is enabled by -Wall.

 -Wc++17-compat (C++ and Objective-C++ only)

 Warn about C++ constructs whose meaning differs between ISO C++ 2014 and ISO C++ 2017.

 This warning is enabled by -Wall.

 -Wc++20-compat (C++ and Objective-C++ only)

 Warn about C++ constructs whose meaning differs between ISO C++ 2017 and ISO C++ 2020.

 This warning is enabled by -Wall.

 -Wcast-qual

 Warn whenever a pointer is cast so as to remove a type qualifier from the target type.

 For example, warn if a "const char *" is cast to an ordinary "char *".

 Also warn when making a cast that introduces a type qualifier in an unsafe way. For

 example, casting "char **" to "const char **" is unsafe, as in this example:

 /* p is char ** value. */

 const char **q = (const char **) p;

 /* Assignment of readonly string to const char * is OK. */

 *q = "string";

 /* Now char** pointer points to read-only memory. */

 **p = 'b'; Page 140/576

 -Wcast-align

 Warn whenever a pointer is cast such that the required alignment of the target is

 increased. For example, warn if a "char *" is cast to an "int *" on machines where

 integers can only be accessed at two- or four-byte boundaries.

 -Wcast-align=strict

 Warn whenever a pointer is cast such that the required alignment of the target is

 increased. For example, warn if a "char *" is cast to an "int *" regardless of the

 target machine.

 -Wcast-function-type

 Warn when a function pointer is cast to an incompatible function pointer. In a cast

 involving function types with a variable argument list only the types of initial

 arguments that are provided are considered. Any parameter of pointer-type matches any

 other pointer-type. Any benign differences in integral types are ignored, like "int"

 vs. "long" on ILP32 targets. Likewise type qualifiers are ignored. The function type

 "void (*) (void)" is special and matches everything, which can be used to suppress

 this warning. In a cast involving pointer to member types this warning warns whenever

 the type cast is changing the pointer to member type. This warning is enabled by

 -Wextra.

 -Wwrite-strings

 When compiling C, give string constants the type "const char[length]" so that copying

 the address of one into a non-"const" "char *" pointer produces a warning. These

 warnings help you find at compile time code that can try to write into a string

 constant, but only if you have been very careful about using "const" in declarations

 and prototypes. Otherwise, it is just a nuisance. This is why we did not make -Wall

 request these warnings.

 When compiling C++, warn about the deprecated conversion from string literals to "char

 *". This warning is enabled by default for C++ programs.

 -Wclobbered

 Warn for variables that might be changed by "longjmp" or "vfork". This warning is

 also enabled by -Wextra.

 -Wconversion

 Warn for implicit conversions that may alter a value. This includes conversions

 between real and integer, like "abs (x)" when "x" is "double"; conversions between Page 141/576

 signed and unsigned, like "unsigned ui = -1"; and conversions to smaller types, like

 "sqrtf (M_PI)". Do not warn for explicit casts like "abs ((int) x)" and "ui =

 (unsigned) -1", or if the value is not changed by the conversion like in "abs (2.0)".

 Warnings about conversions between signed and unsigned integers can be disabled by

 using -Wno-sign-conversion.

 For C++, also warn for confusing overload resolution for user-defined conversions; and

 conversions that never use a type conversion operator: conversions to "void", the same

 type, a base class or a reference to them. Warnings about conversions between signed

 and unsigned integers are disabled by default in C++ unless -Wsign-conversion is

 explicitly enabled.

 Warnings about conversion from arithmetic on a small type back to that type are only

 given with -Warith-conversion.

 -Wdangling-else

 Warn about constructions where there may be confusion to which "if" statement an

 "else" branch belongs. Here is an example of such a case:

 {

 if (a)

 if (b)

 foo ();

 else

 bar ();

 }

 In C/C++, every "else" branch belongs to the innermost possible "if" statement, which

 in this example is "if (b)". This is often not what the programmer expected, as

 illustrated in the above example by indentation the programmer chose. When there is

 the potential for this confusion, GCC issues a warning when this flag is specified.

 To eliminate the warning, add explicit braces around the innermost "if" statement so

 there is no way the "else" can belong to the enclosing "if". The resulting code looks

 like this:

 {

 if (a)

 {

 if (b) Page 142/576

 foo ();

 else

 bar ();

 }

 }

 This warning is enabled by -Wparentheses.

 -Wdate-time

 Warn when macros "__TIME__", "__DATE__" or "__TIMESTAMP__" are encountered as they

 might prevent bit-wise-identical reproducible compilations.

 -Wempty-body

 Warn if an empty body occurs in an "if", "else" or "do while" statement. This warning

 is also enabled by -Wextra.

 -Wno-endif-labels

 Do not warn about stray tokens after "#else" and "#endif".

 -Wenum-compare

 Warn about a comparison between values of different enumerated types. In C++

 enumerated type mismatches in conditional expressions are also diagnosed and the

 warning is enabled by default. In C this warning is enabled by -Wall.

 -Wenum-conversion

 Warn when a value of enumerated type is implicitly converted to a different enumerated

 type. This warning is enabled by -Wextra in C.

 -Wjump-misses-init (C, Objective-C only)

 Warn if a "goto" statement or a "switch" statement jumps forward across the

 initialization of a variable, or jumps backward to a label after the variable has been

 initialized. This only warns about variables that are initialized when they are

 declared. This warning is only supported for C and Objective-C; in C++ this sort of

 branch is an error in any case.

 -Wjump-misses-init is included in -Wc++-compat. It can be disabled with the

 -Wno-jump-misses-init option.

 -Wsign-compare

 Warn when a comparison between signed and unsigned values could produce an incorrect

 result when the signed value is converted to unsigned. In C++, this warning is also

 enabled by -Wall. In C, it is also enabled by -Wextra. Page 143/576

 -Wsign-conversion

 Warn for implicit conversions that may change the sign of an integer value, like

 assigning a signed integer expression to an unsigned integer variable. An explicit

 cast silences the warning. In C, this option is enabled also by -Wconversion.

 -Wfloat-conversion

 Warn for implicit conversions that reduce the precision of a real value. This

 includes conversions from real to integer, and from higher precision real to lower

 precision real values. This option is also enabled by -Wconversion.

 -Wno-scalar-storage-order

 Do not warn on suspicious constructs involving reverse scalar storage order.

 -Wsizeof-array-div

 Warn about divisions of two sizeof operators when the first one is applied to an array

 and the divisor does not equal the size of the array element. In such a case, the

 computation will not yield the number of elements in the array, which is likely what

 the user intended. This warning warns e.g. about

 int fn ()

 {

 int arr[10];

 return sizeof (arr) / sizeof (short);

 }

 This warning is enabled by -Wall.

 -Wsizeof-pointer-div

 Warn for suspicious divisions of two sizeof expressions that divide the pointer size

 by the element size, which is the usual way to compute the array size but won't work

 out correctly with pointers. This warning warns e.g. about "sizeof (ptr) / sizeof

 (ptr[0])" if "ptr" is not an array, but a pointer. This warning is enabled by -Wall.

 -Wsizeof-pointer-memaccess

 Warn for suspicious length parameters to certain string and memory built-in functions

 if the argument uses "sizeof". This warning triggers for example for "memset (ptr, 0,

 sizeof (ptr));" if "ptr" is not an array, but a pointer, and suggests a possible fix,

 or about "memcpy (&foo, ptr, sizeof (&foo));". -Wsizeof-pointer-memaccess also warns

 about calls to bounded string copy functions like "strncat" or "strncpy" that specify

 as the bound a "sizeof" expression of the source array. For example, in the following Page 144/576

 function the call to "strncat" specifies the size of the source string as the bound.

 That is almost certainly a mistake and so the call is diagnosed.

 void make_file (const char *name)

 {

 char path[PATH_MAX];

 strncpy (path, name, sizeof path - 1);

 strncat (path, ".text", sizeof ".text");

 ...

 }

 The -Wsizeof-pointer-memaccess option is enabled by -Wall.

 -Wno-sizeof-array-argument

 Do not warn when the "sizeof" operator is applied to a parameter that is declared as

 an array in a function definition. This warning is enabled by default for C and C++

 programs.

 -Wmemset-elt-size

 Warn for suspicious calls to the "memset" built-in function, if the first argument

 references an array, and the third argument is a number equal to the number of

 elements, but not equal to the size of the array in memory. This indicates that the

 user has omitted a multiplication by the element size. This warning is enabled by

 -Wall.

 -Wmemset-transposed-args

 Warn for suspicious calls to the "memset" built-in function where the second argument

 is not zero and the third argument is zero. For example, the call "memset (buf,

 sizeof buf, 0)" is diagnosed because "memset (buf, 0, sizeof buf)" was meant instead.

 The diagnostic is only emitted if the third argument is a literal zero. Otherwise, if

 it is an expression that is folded to zero, or a cast of zero to some type, it is far

 less likely that the arguments have been mistakenly transposed and no warning is

 emitted. This warning is enabled by -Wall.

 -Waddress

 Warn about suspicious uses of memory addresses. These include using the address of a

 function in a conditional expression, such as "void func(void); if (func)", and

 comparisons against the memory address of a string literal, such as "if (x == "abc")".

 Such uses typically indicate a programmer error: the address of a function always Page 145/576

 evaluates to true, so their use in a conditional usually indicate that the programmer

 forgot the parentheses in a function call; and comparisons against string literals

 result in unspecified behavior and are not portable in C, so they usually indicate

 that the programmer intended to use "strcmp". This warning is enabled by -Wall.

 -Wno-address-of-packed-member

 Do not warn when the address of packed member of struct or union is taken, which

 usually results in an unaligned pointer value. This is enabled by default.

 -Wlogical-op

 Warn about suspicious uses of logical operators in expressions. This includes using

 logical operators in contexts where a bit-wise operator is likely to be expected.

 Also warns when the operands of a logical operator are the same:

 extern int a;

 if (a < 0 && a < 0) { ... }

 -Wlogical-not-parentheses

 Warn about logical not used on the left hand side operand of a comparison. This

 option does not warn if the right operand is considered to be a boolean expression.

 Its purpose is to detect suspicious code like the following:

 int a;

 ...

 if (!a > 1) { ... }

 It is possible to suppress the warning by wrapping the LHS into parentheses:

 if ((!a) > 1) { ... }

 This warning is enabled by -Wall.

 -Waggregate-return

 Warn if any functions that return structures or unions are defined or called. (In

 languages where you can return an array, this also elicits a warning.)

 -Wno-aggressive-loop-optimizations

 Warn if in a loop with constant number of iterations the compiler detects undefined

 behavior in some statement during one or more of the iterations.

 -Wno-attributes

 Do not warn if an unexpected "__attribute__" is used, such as unrecognized attributes,

 function attributes applied to variables, etc. This does not stop errors for

 incorrect use of supported attributes. Page 146/576

 -Wno-builtin-declaration-mismatch

 Warn if a built-in function is declared with an incompatible signature or as a non-

 function, or when a built-in function declared with a type that does not include a

 prototype is called with arguments whose promoted types do not match those expected by

 the function. When -Wextra is specified, also warn when a built-in function that

 takes arguments is declared without a prototype. The -Wbuiltin-declaration-mismatch

 warning is enabled by default. To avoid the warning include the appropriate header to

 bring the prototypes of built-in functions into scope.

 For example, the call to "memset" below is diagnosed by the warning because the

 function expects a value of type "size_t" as its argument but the type of 32 is "int".

 With -Wextra, the declaration of the function is diagnosed as well.

 extern void* memset ();

 void f (void *d)

 {

 memset (d, '\0', 32);

 }

 -Wno-builtin-macro-redefined

 Do not warn if certain built-in macros are redefined. This suppresses warnings for

 redefinition of "__TIMESTAMP__", "__TIME__", "__DATE__", "__FILE__", and

 "__BASE_FILE__".

 -Wstrict-prototypes (C and Objective-C only)

 Warn if a function is declared or defined without specifying the argument types. (An

 old-style function definition is permitted without a warning if preceded by a

 declaration that specifies the argument types.)

 -Wold-style-declaration (C and Objective-C only)

 Warn for obsolescent usages, according to the C Standard, in a declaration. For

 example, warn if storage-class specifiers like "static" are not the first things in a

 declaration. This warning is also enabled by -Wextra.

 -Wold-style-definition (C and Objective-C only)

 Warn if an old-style function definition is used. A warning is given even if there is

 a previous prototype. A definition using () is not considered an old-style definition

 in C2X mode, because it is equivalent to (void) in that case, but is considered an

 old-style definition for older standards. Page 147/576

 -Wmissing-parameter-type (C and Objective-C only)

 A function parameter is declared without a type specifier in K&R-style functions:

 void foo(bar) { }

 This warning is also enabled by -Wextra.

 -Wmissing-prototypes (C and Objective-C only)

 Warn if a global function is defined without a previous prototype declaration. This

 warning is issued even if the definition itself provides a prototype. Use this option

 to detect global functions that do not have a matching prototype declaration in a

 header file. This option is not valid for C++ because all function declarations

 provide prototypes and a non-matching declaration declares an overload rather than

 conflict with an earlier declaration. Use -Wmissing-declarations to detect missing

 declarations in C++.

 -Wmissing-declarations

 Warn if a global function is defined without a previous declaration. Do so even if

 the definition itself provides a prototype. Use this option to detect global

 functions that are not declared in header files. In C, no warnings are issued for

 functions with previous non-prototype declarations; use -Wmissing-prototypes to detect

 missing prototypes. In C++, no warnings are issued for function templates, or for

 inline functions, or for functions in anonymous namespaces.

 -Wmissing-field-initializers

 Warn if a structure's initializer has some fields missing. For example, the following

 code causes such a warning, because "x.h" is implicitly zero:

 struct s { int f, g, h; };

 struct s x = { 3, 4 };

 This option does not warn about designated initializers, so the following modification

 does not trigger a warning:

 struct s { int f, g, h; };

 struct s x = { .f = 3, .g = 4 };

 In C this option does not warn about the universal zero initializer { 0 }:

 struct s { int f, g, h; };

 struct s x = { 0 };

 Likewise, in C++ this option does not warn about the empty { } initializer, for

 example: Page 148/576

 struct s { int f, g, h; };

 s x = { };

 This warning is included in -Wextra. To get other -Wextra warnings without this one,

 use -Wextra -Wno-missing-field-initializers.

 -Wno-multichar

 Do not warn if a multicharacter constant ('FOOF') is used. Usually they indicate a

 typo in the user's code, as they have implementation-defined values, and should not be

 used in portable code.

 -Wnormalized=[none|id|nfc|nfkc]

 In ISO C and ISO C++, two identifiers are different if they are different sequences of

 characters. However, sometimes when characters outside the basic ASCII character set

 are used, you can have two different character sequences that look the same. To avoid

 confusion, the ISO 10646 standard sets out some normalization rules which when applied

 ensure that two sequences that look the same are turned into the same sequence. GCC

 can warn you if you are using identifiers that have not been normalized; this option

 controls that warning.

 There are four levels of warning supported by GCC. The default is -Wnormalized=nfc,

 which warns about any identifier that is not in the ISO 10646 "C" normalized form,

 NFC. NFC is the recommended form for most uses. It is equivalent to -Wnormalized.

 Unfortunately, there are some characters allowed in identifiers by ISO C and ISO C++

 that, when turned into NFC, are not allowed in identifiers. That is, there's no way

 to use these symbols in portable ISO C or C++ and have all your identifiers in NFC.

 -Wnormalized=id suppresses the warning for these characters. It is hoped that future

 versions of the standards involved will correct this, which is why this option is not

 the default.

 You can switch the warning off for all characters by writing -Wnormalized=none or

 -Wno-normalized. You should only do this if you are using some other normalization

 scheme (like "D"), because otherwise you can easily create bugs that are literally

 impossible to see.

 Some characters in ISO 10646 have distinct meanings but look identical in some fonts

 or display methodologies, especially once formatting has been applied. For instance

 "\u207F", "SUPERSCRIPT LATIN SMALL LETTER N", displays just like a regular "n" that

 has been placed in a superscript. ISO 10646 defines the NFKC normalization scheme to Page 149/576

 convert all these into a standard form as well, and GCC warns if your code is not in

 NFKC if you use -Wnormalized=nfkc. This warning is comparable to warning about every

 identifier that contains the letter O because it might be confused with the digit 0,

 and so is not the default, but may be useful as a local coding convention if the

 programming environment cannot be fixed to display these characters distinctly.

 -Wno-attribute-warning

 Do not warn about usage of functions declared with "warning" attribute. By default,

 this warning is enabled. -Wno-attribute-warning can be used to disable the warning or

 -Wno-error=attribute-warning can be used to disable the error when compiled with

 -Werror flag.

 -Wno-deprecated

 Do not warn about usage of deprecated features.

 -Wno-deprecated-declarations

 Do not warn about uses of functions, variables, and types marked as deprecated by

 using the "deprecated" attribute.

 -Wno-overflow

 Do not warn about compile-time overflow in constant expressions.

 -Wno-odr

 Warn about One Definition Rule violations during link-time optimization. Enabled by

 default.

 -Wopenmp-simd

 Warn if the vectorizer cost model overrides the OpenMP simd directive set by user.

 The -fsimd-cost-model=unlimited option can be used to relax the cost model.

 -Woverride-init (C and Objective-C only)

 Warn if an initialized field without side effects is overridden when using designated

 initializers.

 This warning is included in -Wextra. To get other -Wextra warnings without this one,

 use -Wextra -Wno-override-init.

 -Wno-override-init-side-effects (C and Objective-C only)

 Do not warn if an initialized field with side effects is overridden when using

 designated initializers. This warning is enabled by default.

 -Wpacked

 Warn if a structure is given the packed attribute, but the packed attribute has no Page 150/576

 effect on the layout or size of the structure. Such structures may be mis-aligned for

 little benefit. For instance, in this code, the variable "f.x" in "struct bar" is

 misaligned even though "struct bar" does not itself have the packed attribute:

 struct foo {

 int x;

 char a, b, c, d;

 } __attribute__((packed));

 struct bar {

 char z;

 struct foo f;

 };

 -Wnopacked-bitfield-compat

 The 4.1, 4.2 and 4.3 series of GCC ignore the "packed" attribute on bit-fields of type

 "char". This was fixed in GCC 4.4 but the change can lead to differences in the

 structure layout. GCC informs you when the offset of such a field has changed in GCC

 4.4. For example there is no longer a 4-bit padding between field "a" and "b" in this

 structure:

 struct foo

 {

 char a:4;

 char b:8;

 } __attribute__ ((packed));

 This warning is enabled by default. Use -Wno-packed-bitfield-compat to disable this

 warning.

 -Wpacked-not-aligned (C, C++, Objective-C and Objective-C++ only)

 Warn if a structure field with explicitly specified alignment in a packed struct or

 union is misaligned. For example, a warning will be issued on "struct S", like,

 "warning: alignment 1 of 'struct S' is less than 8", in this code:

 struct __attribute__ ((aligned (8))) S8 { char a[8]; };

 struct __attribute__ ((packed)) S {

 struct S8 s8;

 };

 This warning is enabled by -Wall. Page 151/576

 -Wpadded

 Warn if padding is included in a structure, either to align an element of the

 structure or to align the whole structure. Sometimes when this happens it is possible

 to rearrange the fields of the structure to reduce the padding and so make the

 structure smaller.

 -Wredundant-decls

 Warn if anything is declared more than once in the same scope, even in cases where

 multiple declaration is valid and changes nothing.

 -Wrestrict

 Warn when an object referenced by a "restrict"-qualified parameter (or, in C++, a

 "__restrict"-qualified parameter) is aliased by another argument, or when copies

 between such objects overlap. For example, the call to the "strcpy" function below

 attempts to truncate the string by replacing its initial characters with the last

 four. However, because the call writes the terminating NUL into "a[4]", the copies

 overlap and the call is diagnosed.

 void foo (void)

 {

 char a[] = "abcd1234";

 strcpy (a, a + 4);

 ...

 }

 The -Wrestrict option detects some instances of simple overlap even without

 optimization but works best at -O2 and above. It is included in -Wall.

 -Wnested-externs (C and Objective-C only)

 Warn if an "extern" declaration is encountered within a function.

 -Winline

 Warn if a function that is declared as inline cannot be inlined. Even with this

 option, the compiler does not warn about failures to inline functions declared in

 system headers.

 The compiler uses a variety of heuristics to determine whether or not to inline a

 function. For example, the compiler takes into account the size of the function being

 inlined and the amount of inlining that has already been done in the current function.

 Therefore, seemingly insignificant changes in the source program can cause the Page 152/576

 warnings produced by -Winline to appear or disappear.

 -Wint-in-bool-context

 Warn for suspicious use of integer values where boolean values are expected, such as

 conditional expressions (?:) using non-boolean integer constants in boolean context,

 like "if (a <= b ? 2 : 3)". Or left shifting of signed integers in boolean context,

 like "for (a = 0; 1 << a; a++);". Likewise for all kinds of multiplications

 regardless of the data type. This warning is enabled by -Wall.

 -Wno-int-to-pointer-cast

 Suppress warnings from casts to pointer type of an integer of a different size. In

 C++, casting to a pointer type of smaller size is an error. Wint-to-pointer-cast is

 enabled by default.

 -Wno-pointer-to-int-cast (C and Objective-C only)

 Suppress warnings from casts from a pointer to an integer type of a different size.

 -Winvalid-pch

 Warn if a precompiled header is found in the search path but cannot be used.

 -Wlong-long

 Warn if "long long" type is used. This is enabled by either -Wpedantic or

 -Wtraditional in ISO C90 and C++98 modes. To inhibit the warning messages, use

 -Wno-long-long.

 -Wvariadic-macros

 Warn if variadic macros are used in ISO C90 mode, or if the GNU alternate syntax is

 used in ISO C99 mode. This is enabled by either -Wpedantic or -Wtraditional. To

 inhibit the warning messages, use -Wno-variadic-macros.

 -Wno-varargs

 Do not warn upon questionable usage of the macros used to handle variable arguments

 like "va_start". These warnings are enabled by default.

 -Wvector-operation-performance

 Warn if vector operation is not implemented via SIMD capabilities of the architecture.

 Mainly useful for the performance tuning. Vector operation can be implemented

 "piecewise", which means that the scalar operation is performed on every vector

 element; "in parallel", which means that the vector operation is implemented using

 scalars of wider type, which normally is more performance efficient; and "as a single

 scalar", which means that vector fits into a scalar type. Page 153/576

 -Wvla

 Warn if a variable-length array is used in the code. -Wno-vla prevents the -Wpedantic

 warning of the variable-length array.

 -Wvla-larger-than=byte-size

 If this option is used, the compiler warns for declarations of variable-length arrays

 whose size is either unbounded, or bounded by an argument that allows the array size

 to exceed byte-size bytes. This is similar to how -Walloca-larger-than=byte-size

 works, but with variable-length arrays.

 Note that GCC may optimize small variable-length arrays of a known value into plain

 arrays, so this warning may not get triggered for such arrays.

 -Wvla-larger-than=PTRDIFF_MAX is enabled by default but is typically only effective

 when -ftree-vrp is active (default for -O2 and above).

 See also -Walloca-larger-than=byte-size.

 -Wno-vla-larger-than

 Disable -Wvla-larger-than= warnings. The option is equivalent to

 -Wvla-larger-than=SIZE_MAX or larger.

 -Wvla-parameter

 Warn about redeclarations of functions involving arguments of Variable Length Array

 types of inconsistent kinds or forms, and enable the detection of out-of-bounds

 accesses to such parameters by warnings such as -Warray-bounds.

 If the first function declaration uses the VLA form the bound specified in the array

 is assumed to be the minimum number of elements expected to be provided in calls to

 the function and the maximum number of elements accessed by it. Failing to provide

 arguments of sufficient size or accessing more than the maximum number of elements may

 be diagnosed.

 For example, the warning triggers for the following redeclarations because the first

 one allows an array of any size to be passed to "f" while the second one specifies

 that the array argument must have at least "n" elements. In addition, calling "f"

 with the assotiated VLA bound parameter in excess of the actual VLA bound triggers a

 warning as well.

 void f (int n, int[n]);

 void f (int, int[]); // warning: argument 2 previously declared as a VLA

 void g (int n) Page 154/576

 {

 if (n > 4)

 return;

 int a[n];

 f (sizeof a, a); // warning: access to a by f may be out of bounds

 ...

 }

 -Wvla-parameter is included in -Wall. The -Warray-parameter option triggers warnings

 for similar problems involving ordinary array arguments.

 -Wvolatile-register-var

 Warn if a register variable is declared volatile. The volatile modifier does not

 inhibit all optimizations that may eliminate reads and/or writes to register

 variables. This warning is enabled by -Wall.

 -Wdisabled-optimization

 Warn if a requested optimization pass is disabled. This warning does not generally

 indicate that there is anything wrong with your code; it merely indicates that GCC's

 optimizers are unable to handle the code effectively. Often, the problem is that your

 code is too big or too complex; GCC refuses to optimize programs when the optimization

 itself is likely to take inordinate amounts of time.

 -Wpointer-sign (C and Objective-C only)

 Warn for pointer argument passing or assignment with different signedness. This

 option is only supported for C and Objective-C. It is implied by -Wall and by

 -Wpedantic, which can be disabled with -Wno-pointer-sign.

 -Wstack-protector

 This option is only active when -fstack-protector is active. It warns about functions

 that are not protected against stack smashing.

 -Woverlength-strings

 Warn about string constants that are longer than the "minimum maximum" length

 specified in the C standard. Modern compilers generally allow string constants that

 are much longer than the standard's minimum limit, but very portable programs should

 avoid using longer strings.

 The limit applies after string constant concatenation, and does not count the trailing

 NUL. In C90, the limit was 509 characters; in C99, it was raised to 4095. C++98 does Page 155/576

 not specify a normative minimum maximum, so we do not diagnose overlength strings in

 C++.

 This option is implied by -Wpedantic, and can be disabled with

 -Wno-overlength-strings.

 -Wunsuffixed-float-constants (C and Objective-C only)

 Issue a warning for any floating constant that does not have a suffix. When used

 together with -Wsystem-headers it warns about such constants in system header files.

 This can be useful when preparing code to use with the "FLOAT_CONST_DECIMAL64" pragma

 from the decimal floating-point extension to C99.

 -Wno-lto-type-mismatch

 During the link-time optimization, do not warn about type mismatches in global

 declarations from different compilation units. Requires -flto to be enabled. Enabled

 by default.

 -Wno-designated-init (C and Objective-C only)

 Suppress warnings when a positional initializer is used to initialize a structure that

 has been marked with the "designated_init" attribute.

 Options That Control Static Analysis

 -fanalyzer

 This option enables an static analysis of program flow which looks for "interesting"

 interprocedural paths through the code, and issues warnings for problems found on

 them.

 This analysis is much more expensive than other GCC warnings.

 Enabling this option effectively enables the following warnings:

 -Wanalyzer-double-fclose -Wanalyzer-double-free

 -Wanalyzer-exposure-through-output-file -Wanalyzer-file-leak

 -Wanalyzer-free-of-non-heap -Wanalyzer-malloc-leak -Wanalyzer-mismatching-deallocation

 -Wanalyzer-possible-null-argument -Wanalyzer-possible-null-dereference

 -Wanalyzer-null-argument -Wanalyzer-null-dereference -Wanalyzer-shift-count-negative

 -Wanalyzer-shift-count-overflow -Wanalyzer-stale-setjmp-buffer

 -Wanalyzer-tainted-array-index -Wanalyzer-unsafe-call-within-signal-handler

 -Wanalyzer-use-after-free -Wanalyzer-use-of-pointer-in-stale-stack-frame

 -Wanalyzer-write-to-const -Wanalyzer-write-to-string-literal

 This option is only available if GCC was configured with analyzer support enabled. Page 156/576

 -Wanalyzer-too-complex

 If -fanalyzer is enabled, the analyzer uses various heuristics to attempt to explore

 the control flow and data flow in the program, but these can be defeated by

 sufficiently complicated code.

 By default, the analysis silently stops if the code is too complicated for the

 analyzer to fully explore and it reaches an internal limit. The

 -Wanalyzer-too-complex option warns if this occurs.

 -Wno-analyzer-double-fclose

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-double-fclose to

 disable it.

 This diagnostic warns for paths through the code in which a "FILE *" can have "fclose"

 called on it more than once.

 -Wno-analyzer-double-free

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-double-free to

 disable it.

 This diagnostic warns for paths through the code in which a pointer can have a

 deallocator called on it more than once, either "free", or a deallocator referenced by

 attribute "malloc".

 -Wno-analyzer-exposure-through-output-file

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-exposure-through-output-file to disable it.

 This diagnostic warns for paths through the code in which a security-sensitive value

 is written to an output file (such as writing a password to a log file).

 -Wno-analyzer-file-leak

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-file-leak to

 disable it.

 This diagnostic warns for paths through the code in which a "<stdio.h>" "FILE *"

 stream object is leaked.

 -Wno-analyzer-free-of-non-heap

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-free-of-non-heap

 to disable it.

 This diagnostic warns for paths through the code in which "free" is called on a non-

 heap pointer (e.g. an on-stack buffer, or a global). Page 157/576

 -Wno-analyzer-malloc-leak

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-malloc-leak to

 disable it.

 This diagnostic warns for paths through the code in which a pointer allocated via an

 allocator is leaked: either "malloc", or a function marked with attribute "malloc".

 -Wno-analyzer-mismatching-deallocation

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-mismatching-deallocation to disable it.

 This diagnostic warns for paths through the code in which the wrong deallocation

 function is called on a pointer value, based on which function was used to allocate

 the pointer value. The diagnostic will warn about mismatches between "free", scalar

 "delete" and vector "delete[]", and those marked as allocator/deallocator pairs using

 attribute "malloc".

 -Wno-analyzer-possible-null-argument

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-possible-null-argument to disable it.

 This diagnostic warns for paths through the code in which a possibly-NULL value is

 passed to a function argument marked with "__attribute__((nonnull))" as requiring a

 non-NULL value.

 -Wno-analyzer-possible-null-dereference

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-possible-null-dereference to disable it.

 This diagnostic warns for paths through the code in which a possibly-NULL value is

 dereferenced.

 -Wno-analyzer-null-argument

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-null-argument to

 disable it.

 This diagnostic warns for paths through the code in which a value known to be NULL is

 passed to a function argument marked with "__attribute__((nonnull))" as requiring a

 non-NULL value.

 -Wno-analyzer-null-dereference

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-null-dereference

 to disable it. Page 158/576

 This diagnostic warns for paths through the code in which a value known to be NULL is

 dereferenced.

 -Wno-analyzer-shift-count-negative

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-shift-count-negative to disable it.

 This diagnostic warns for paths through the code in which a shift is attempted with a

 negative count. It is analogous to the -Wshift-count-negative diagnostic implemented

 in the C/C++ front ends, but is implemented based on analyzing interprocedural paths,

 rather than merely parsing the syntax tree. However, the analyzer does not prioritize

 detection of such paths, so false negatives are more likely relative to other

 warnings.

 -Wno-analyzer-shift-count-overflow

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-shift-count-overflow to disable it.

 This diagnostic warns for paths through the code in which a shift is attempted with a

 count greater than or equal to the precision of the operand's type. It is analogous

 to the -Wshift-count-overflow diagnostic implemented in the C/C++ front ends, but is

 implemented based on analyzing interprocedural paths, rather than merely parsing the

 syntax tree. However, the analyzer does not prioritize detection of such paths, so

 false negatives are more likely relative to other warnings.

 -Wno-analyzer-stale-setjmp-buffer

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-stale-setjmp-buffer to disable it.

 This diagnostic warns for paths through the code in which "longjmp" is called to

 rewind to a "jmp_buf" relating to a "setjmp" call in a function that has returned.

 When "setjmp" is called on a "jmp_buf" to record a rewind location, it records the

 stack frame. The stack frame becomes invalid when the function containing the

 "setjmp" call returns. Attempting to rewind to it via "longjmp" would reference a

 stack frame that no longer exists, and likely lead to a crash (or worse).

 -Wno-analyzer-tainted-array-index

 This warning requires both -fanalyzer and -fanalyzer-checker=taint to enable it; use

 -Wno-analyzer-tainted-array-index to disable it.

 This diagnostic warns for paths through the code in which a value that could be under Page 159/576

 an attacker's control is used as the index of an array access without being sanitized.

 -Wno-analyzer-unsafe-call-within-signal-handler

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-unsafe-call-within-signal-handler to disable it.

 This diagnostic warns for paths through the code in which a function known to be

 async-signal-unsafe (such as "fprintf") is called from a signal handler.

 -Wno-analyzer-use-after-free

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-use-after-free

 to disable it.

 This diagnostic warns for paths through the code in which a pointer is used after a

 deallocator is called on it: either "free", or a deallocator referenced by attribute

 "malloc".

 -Wno-analyzer-use-of-pointer-in-stale-stack-frame

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-use-of-pointer-in-stale-stack-frame to disable it.

 This diagnostic warns for paths through the code in which a pointer is dereferenced

 that points to a variable in a stale stack frame.

 -Wno-analyzer-write-to-const

 This warning requires -fanalyzer, which enables it; use -Wno-analyzer-write-to-const

 to disable it.

 This diagnostic warns for paths through the code in which the analyzer detects an

 attempt to write through a pointer to a "const" object. However, the analyzer does

 not prioritize detection of such paths, so false negatives are more likely relative to

 other warnings.

 -Wno-analyzer-write-to-string-literal

 This warning requires -fanalyzer, which enables it; use

 -Wno-analyzer-write-to-string-literal to disable it.

 This diagnostic warns for paths through the code in which the analyzer detects an

 attempt to write through a pointer to a string literal. However, the analyzer does

 not prioritize detection of such paths, so false negatives are more likely relative to

 other warnings.

 Pertinent parameters for controlling the exploration are: --param

 analyzer-bb-explosion-factor=value, --param analyzer-max-enodes-per-program-point=value, Page 160/576

 --param analyzer-max-recursion-depth=value, and --param

 analyzer-min-snodes-for-call-summary=value.

 The following options control the analyzer.

 -fanalyzer-call-summaries

 Simplify interprocedural analysis by computing the effect of certain calls, rather

 than exploring all paths through the function from callsite to each possible return.

 If enabled, call summaries are only used for functions with more than one call site,

 and that are sufficiently complicated (as per --param

 analyzer-min-snodes-for-call-summary=value).

 -fanalyzer-checker=name

 Restrict the analyzer to run just the named checker, and enable it.

 Some checkers are disabled by default (even with -fanalyzer), such as the "taint"

 checker that implements -Wanalyzer-tainted-array-index, and this option is required to

 enable them.

 -fno-analyzer-feasibility

 This option is intended for analyzer developers.

 By default the analyzer verifies that there is a feasible control flow path for each

 diagnostic it emits: that the conditions that hold are not mutually exclusive.

 Diagnostics for which no feasible path can be found are rejected. This filtering can

 be suppressed with -fno-analyzer-feasibility, for debugging issues in this code.

 -fanalyzer-fine-grained

 This option is intended for analyzer developers.

 Internally the analyzer builds an "exploded graph" that combines control flow graphs

 with data flow information.

 By default, an edge in this graph can contain the effects of a run of multiple

 statements within a basic block. With -fanalyzer-fine-grained, each statement gets

 its own edge.

 -fanalyzer-show-duplicate-count

 This option is intended for analyzer developers: if multiple diagnostics have been

 detected as being duplicates of each other, it emits a note when reporting the best

 diagnostic, giving the number of additional diagnostics that were suppressed by the

 deduplication logic.

 -fno-analyzer-state-merge Page 161/576

 This option is intended for analyzer developers.

 By default the analyzer attempts to simplify analysis by merging sufficiently similar

 states at each program point as it builds its "exploded graph". With

 -fno-analyzer-state-merge this merging can be suppressed, for debugging state-handling

 issues.

 -fno-analyzer-state-purge

 This option is intended for analyzer developers.

 By default the analyzer attempts to simplify analysis by purging aspects of state at a

 program point that appear to no longer be relevant e.g. the values of locals that

 aren't accessed later in the function and which aren't relevant to leak analysis.

 With -fno-analyzer-state-purge this purging of state can be suppressed, for debugging

 state-handling issues.

 -fanalyzer-transitivity

 This option enables transitivity of constraints within the analyzer.

 -fanalyzer-verbose-edges

 This option is intended for analyzer developers. It enables more verbose, lower-level

 detail in the descriptions of control flow within diagnostic paths.

 -fanalyzer-verbose-state-changes

 This option is intended for analyzer developers. It enables more verbose, lower-level

 detail in the descriptions of events relating to state machines within diagnostic

 paths.

 -fanalyzer-verbosity=level

 This option controls the complexity of the control flow paths that are emitted for

 analyzer diagnostics.

 The level can be one of:

 0 At this level, interprocedural call and return events are displayed, along with

 the most pertinent state-change events relating to a diagnostic. For example, for

 a double-"free" diagnostic, both calls to "free" will be shown.

 1 As per the previous level, but also show events for the entry to each function.

 2 As per the previous level, but also show events relating to control flow that are

 significant to triggering the issue (e.g. "true path taken" at a conditional).

 This level is the default.

 3 As per the previous level, but show all control flow events, not just significant Page 162/576

 ones.

 4 This level is intended for analyzer developers; it adds various other events

 intended for debugging the analyzer.

 -fdump-analyzer

 Dump internal details about what the analyzer is doing to file.analyzer.txt. This

 option is overridden by -fdump-analyzer-stderr.

 -fdump-analyzer-stderr

 Dump internal details about what the analyzer is doing to stderr. This option

 overrides -fdump-analyzer.

 -fdump-analyzer-callgraph

 Dump a representation of the call graph suitable for viewing with GraphViz to

 file.callgraph.dot.

 -fdump-analyzer-exploded-graph

 Dump a representation of the "exploded graph" suitable for viewing with GraphViz to

 file.eg.dot. Nodes are color-coded based on state-machine states to emphasize state

 changes.

 -fdump-analyzer-exploded-nodes

 Emit diagnostics showing where nodes in the "exploded graph" are in relation to the

 program source.

 -fdump-analyzer-exploded-nodes-2

 Dump a textual representation of the "exploded graph" to file.eg.txt.

 -fdump-analyzer-exploded-nodes-3

 Dump a textual representation of the "exploded graph" to one dump file per node, to

 file.eg-id.txt. This is typically a large number of dump files.

 -fdump-analyzer-feasibility

 Dump internal details about the analyzer's search for feasible paths. The details are

 written in a form suitable for viewing with GraphViz to filenames of the form

 file.*.fg.dot and file.*.tg.dot.

 -fdump-analyzer-json

 Dump a compressed JSON representation of analyzer internals to file.analyzer.json.gz.

 The precise format is subject to change.

 -fdump-analyzer-state-purge

 As per -fdump-analyzer-supergraph, dump a representation of the "supergraph" suitable Page 163/576

 for viewing with GraphViz, but annotate the graph with information on what state will

 be purged at each node. The graph is written to file.state-purge.dot.

 -fdump-analyzer-supergraph

 Dump representations of the "supergraph" suitable for viewing with GraphViz to

 file.supergraph.dot and to file.supergraph-eg.dot. These show all of the control flow

 graphs in the program, with interprocedural edges for calls and returns. The second

 dump contains annotations showing nodes in the "exploded graph" and diagnostics

 associated with them.

 Options for Debugging Your Program

 To tell GCC to emit extra information for use by a debugger, in almost all cases you need

 only to add -g to your other options.

 GCC allows you to use -g with -O. The shortcuts taken by optimized code may occasionally

 be surprising: some variables you declared may not exist at all; flow of control may

 briefly move where you did not expect it; some statements may not be executed because they

 compute constant results or their values are already at hand; some statements may execute

 in different places because they have been moved out of loops. Nevertheless it is

 possible to debug optimized output. This makes it reasonable to use the optimizer for

 programs that might have bugs.

 If you are not using some other optimization option, consider using -Og with -g. With no

 -O option at all, some compiler passes that collect information useful for debugging do

 not run at all, so that -Og may result in a better debugging experience.

 -g Produce debugging information in the operating system's native format (stabs, COFF,

 XCOFF, or DWARF). GDB can work with this debugging information.

 On most systems that use stabs format, -g enables use of extra debugging information

 that only GDB can use; this extra information makes debugging work better in GDB but

 probably makes other debuggers crash or refuse to read the program. If you want to

 control for certain whether to generate the extra information, use -gstabs+, -gstabs,

 -gxcoff+, -gxcoff, or -gvms (see below).

 -ggdb

 Produce debugging information for use by GDB. This means to use the most expressive

 format available (DWARF, stabs, or the native format if neither of those are

 supported), including GDB extensions if at all possible.

 -gdwarf Page 164/576

 -gdwarf-version

 Produce debugging information in DWARF format (if that is supported). The value of

 version may be either 2, 3, 4 or 5; the default version for most targets is 5 (with

 the exception of VxWorks, TPF and Darwin/Mac OS X, which default to version 2, and

 AIX, which defaults to version 4).

 Note that with DWARF Version 2, some ports require and always use some non-conflicting

 DWARF 3 extensions in the unwind tables.

 Version 4 may require GDB 7.0 and -fvar-tracking-assignments for maximum benefit.

 Version 5 requires GDB 8.0 or higher.

 GCC no longer supports DWARF Version 1, which is substantially different than Version

 2 and later. For historical reasons, some other DWARF-related options such as

 -fno-dwarf2-cfi-asm) retain a reference to DWARF Version 2 in their names, but apply

 to all currently-supported versions of DWARF.

 -gstabs

 Produce debugging information in stabs format (if that is supported), without GDB

 extensions. This is the format used by DBX on most BSD systems. On MIPS, Alpha and

 System V Release 4 systems this option produces stabs debugging output that is not

 understood by DBX. On System V Release 4 systems this option requires the GNU

 assembler.

 -gstabs+

 Produce debugging information in stabs format (if that is supported), using GNU

 extensions understood only by the GNU debugger (GDB). The use of these extensions is

 likely to make other debuggers crash or refuse to read the program.

 -gxcoff

 Produce debugging information in XCOFF format (if that is supported). This is the

 format used by the DBX debugger on IBM RS/6000 systems.

 -gxcoff+

 Produce debugging information in XCOFF format (if that is supported), using GNU

 extensions understood only by the GNU debugger (GDB). The use of these extensions is

 likely to make other debuggers crash or refuse to read the program, and may cause

 assemblers other than the GNU assembler (GAS) to fail with an error.

 -gvms

 Produce debugging information in Alpha/VMS debug format (if that is supported). This Page 165/576

 is the format used by DEBUG on Alpha/VMS systems.

 -glevel

 -ggdblevel

 -gstabslevel

 -gxcofflevel

 -gvmslevel

 Request debugging information and also use level to specify how much information. The

 default level is 2.

 Level 0 produces no debug information at all. Thus, -g0 negates -g.

 Level 1 produces minimal information, enough for making backtraces in parts of the

 program that you don't plan to debug. This includes descriptions of functions and

 external variables, and line number tables, but no information about local variables.

 Level 3 includes extra information, such as all the macro definitions present in the

 program. Some debuggers support macro expansion when you use -g3.

 If you use multiple -g options, with or without level numbers, the last such option is

 the one that is effective.

 -gdwarf does not accept a concatenated debug level, to avoid confusion with

 -gdwarf-level. Instead use an additional -glevel option to change the debug level for

 DWARF.

 -fno-eliminate-unused-debug-symbols

 By default, no debug information is produced for symbols that are not actually used.

 Use this option if you want debug information for all symbols.

 -femit-class-debug-always

 Instead of emitting debugging information for a C++ class in only one object file,

 emit it in all object files using the class. This option should be used only with

 debuggers that are unable to handle the way GCC normally emits debugging information

 for classes because using this option increases the size of debugging information by

 as much as a factor of two.

 -fno-merge-debug-strings

 Direct the linker to not merge together strings in the debugging information that are

 identical in different object files. Merging is not supported by all assemblers or

 linkers. Merging decreases the size of the debug information in the output file at

 the cost of increasing link processing time. Merging is enabled by default. Page 166/576

 -fdebug-prefix-map=old=new

 When compiling files residing in directory old, record debugging information

 describing them as if the files resided in directory new instead. This can be used to

 replace a build-time path with an install-time path in the debug info. It can also be

 used to change an absolute path to a relative path by using . for new. This can give

 more reproducible builds, which are location independent, but may require an extra

 command to tell GDB where to find the source files. See also -ffile-prefix-map.

 -fvar-tracking

 Run variable tracking pass. It computes where variables are stored at each position

 in code. Better debugging information is then generated (if the debugging information

 format supports this information).

 It is enabled by default when compiling with optimization (-Os, -O, -O2, ...),

 debugging information (-g) and the debug info format supports it.

 -fvar-tracking-assignments

 Annotate assignments to user variables early in the compilation and attempt to carry

 the annotations over throughout the compilation all the way to the end, in an attempt

 to improve debug information while optimizing. Use of -gdwarf-4 is recommended along

 with it.

 It can be enabled even if var-tracking is disabled, in which case annotations are

 created and maintained, but discarded at the end. By default, this flag is enabled

 together with -fvar-tracking, except when selective scheduling is enabled.

 -gsplit-dwarf

 If DWARF debugging information is enabled, separate as much debugging information as

 possible into a separate output file with the extension .dwo. This option allows the

 build system to avoid linking files with debug information. To be useful, this option

 requires a debugger capable of reading .dwo files.

 -gdwarf32

 -gdwarf64

 If DWARF debugging information is enabled, the -gdwarf32 selects the 32-bit DWARF

 format and the -gdwarf64 selects the 64-bit DWARF format. The default is target

 specific, on most targets it is -gdwarf32 though. The 32-bit DWARF format is smaller,

 but can't support more than 2GiB of debug information in any of the DWARF debug

 information sections. The 64-bit DWARF format allows larger debug information and Page 167/576

 might not be well supported by all consumers yet.

 -gdescribe-dies

 Add description attributes to some DWARF DIEs that have no name attribute, such as

 artificial variables, external references and call site parameter DIEs.

 -gpubnames

 Generate DWARF ".debug_pubnames" and ".debug_pubtypes" sections.

 -ggnu-pubnames

 Generate ".debug_pubnames" and ".debug_pubtypes" sections in a format suitable for

 conversion into a GDB index. This option is only useful with a linker that can

 produce GDB index version 7.

 -fdebug-types-section

 When using DWARF Version 4 or higher, type DIEs can be put into their own

 ".debug_types" section instead of making them part of the ".debug_info" section. It

 is more efficient to put them in a separate comdat section since the linker can then

 remove duplicates. But not all DWARF consumers support ".debug_types" sections yet

 and on some objects ".debug_types" produces larger instead of smaller debugging

 information.

 -grecord-gcc-switches

 -gno-record-gcc-switches

 This switch causes the command-line options used to invoke the compiler that may

 affect code generation to be appended to the DW_AT_producer attribute in DWARF

 debugging information. The options are concatenated with spaces separating them from

 each other and from the compiler version. It is enabled by default. See also

 -frecord-gcc-switches for another way of storing compiler options into the object

 file.

 -gstrict-dwarf

 Disallow using extensions of later DWARF standard version than selected with

 -gdwarf-version. On most targets using non-conflicting DWARF extensions from later

 standard versions is allowed.

 -gno-strict-dwarf

 Allow using extensions of later DWARF standard version than selected with

 -gdwarf-version.

 -gas-loc-support Page 168/576

 Inform the compiler that the assembler supports ".loc" directives. It may then use

 them for the assembler to generate DWARF2+ line number tables.

 This is generally desirable, because assembler-generated line-number tables are a lot

 more compact than those the compiler can generate itself.

 This option will be enabled by default if, at GCC configure time, the assembler was

 found to support such directives.

 -gno-as-loc-support

 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+ line number

 tables are to be generated.

 -gas-locview-support

 Inform the compiler that the assembler supports "view" assignment and reset assertion

 checking in ".loc" directives.

 This option will be enabled by default if, at GCC configure time, the assembler was

 found to support them.

 -gno-as-locview-support

 Force GCC to assign view numbers internally, if -gvariable-location-views are

 explicitly requested.

 -gcolumn-info

 -gno-column-info

 Emit location column information into DWARF debugging information, rather than just

 file and line. This option is enabled by default.

 -gstatement-frontiers

 -gno-statement-frontiers

 This option causes GCC to create markers in the internal representation at the

 beginning of statements, and to keep them roughly in place throughout compilation,

 using them to guide the output of "is_stmt" markers in the line number table. This is

 enabled by default when compiling with optimization (-Os, -O, -O2, ...), and

 outputting DWARF 2 debug information at the normal level.

 -gvariable-location-views

 -gvariable-location-views=incompat5

 -gno-variable-location-views

 Augment variable location lists with progressive view numbers implied from the line

 number table. This enables debug information consumers to inspect state at certain Page 169/576

 points of the program, even if no instructions associated with the corresponding

 source locations are present at that point. If the assembler lacks support for view

 numbers in line number tables, this will cause the compiler to emit the line number

 table, which generally makes them somewhat less compact. The augmented line number

 tables and location lists are fully backward-compatible, so they can be consumed by

 debug information consumers that are not aware of these augmentations, but they won't

 derive any benefit from them either.

 This is enabled by default when outputting DWARF 2 debug information at the normal

 level, as long as there is assembler support, -fvar-tracking-assignments is enabled

 and -gstrict-dwarf is not. When assembler support is not available, this may still be

 enabled, but it will force GCC to output internal line number tables, and if

 -ginternal-reset-location-views is not enabled, that will most certainly lead to

 silently mismatching location views.

 There is a proposed representation for view numbers that is not backward compatible

 with the location list format introduced in DWARF 5, that can be enabled with

 -gvariable-location-views=incompat5. This option may be removed in the future, is

 only provided as a reference implementation of the proposed representation. Debug

 information consumers are not expected to support this extended format, and they would

 be rendered unable to decode location lists using it.

 -ginternal-reset-location-views

 -gno-internal-reset-location-views

 Attempt to determine location views that can be omitted from location view lists.

 This requires the compiler to have very accurate insn length estimates, which isn't

 always the case, and it may cause incorrect view lists to be generated silently when

 using an assembler that does not support location view lists. The GNU assembler will

 flag any such error as a "view number mismatch". This is only enabled on ports that

 define a reliable estimation function.

 -ginline-points

 -gno-inline-points

 Generate extended debug information for inlined functions. Location view tracking

 markers are inserted at inlined entry points, so that address and view numbers can be

 computed and output in debug information. This can be enabled independently of

 location views, in which case the view numbers won't be output, but it can only be Page 170/576

 enabled along with statement frontiers, and it is only enabled by default if location

 views are enabled.

 -gz[=type]

 Produce compressed debug sections in DWARF format, if that is supported. If type is

 not given, the default type depends on the capabilities of the assembler and linker

 used. type may be one of none (don't compress debug sections), zlib (use zlib

 compression in ELF gABI format), or zlib-gnu (use zlib compression in traditional GNU

 format). If the linker doesn't support writing compressed debug sections, the option

 is rejected. Otherwise, if the assembler does not support them, -gz is silently

 ignored when producing object files.

 -femit-struct-debug-baseonly

 Emit debug information for struct-like types only when the base name of the

 compilation source file matches the base name of file in which the struct is defined.

 This option substantially reduces the size of debugging information, but at

 significant potential loss in type information to the debugger. See

 -femit-struct-debug-reduced for a less aggressive option. See

 -femit-struct-debug-detailed for more detailed control.

 This option works only with DWARF debug output.

 -femit-struct-debug-reduced

 Emit debug information for struct-like types only when the base name of the

 compilation source file matches the base name of file in which the type is defined,

 unless the struct is a template or defined in a system header.

 This option significantly reduces the size of debugging information, with some

 potential loss in type information to the debugger. See -femit-struct-debug-baseonly

 for a more aggressive option. See -femit-struct-debug-detailed for more detailed

 control.

 This option works only with DWARF debug output.

 -femit-struct-debug-detailed[=spec-list]

 Specify the struct-like types for which the compiler generates debug information. The

 intent is to reduce duplicate struct debug information between different object files

 within the same program.

 This option is a detailed version of -femit-struct-debug-reduced and

 -femit-struct-debug-baseonly, which serves for most needs. Page 171/576

 A specification has the syntax[dir:|ind:][ord:|gen:](any|sys|base|none)

 The optional first word limits the specification to structs that are used directly

 (dir:) or used indirectly (ind:). A struct type is used directly when it is the type

 of a variable, member. Indirect uses arise through pointers to structs. That is,

 when use of an incomplete struct is valid, the use is indirect. An example is struct

 one direct; struct two * indirect;.

 The optional second word limits the specification to ordinary structs (ord:) or

 generic structs (gen:). Generic structs are a bit complicated to explain. For C++,

 these are non-explicit specializations of template classes, or non-template classes

 within the above. Other programming languages have generics, but

 -femit-struct-debug-detailed does not yet implement them.

 The third word specifies the source files for those structs for which the compiler

 should emit debug information. The values none and any have the normal meaning. The

 value base means that the base of name of the file in which the type declaration

 appears must match the base of the name of the main compilation file. In practice,

 this means that when compiling foo.c, debug information is generated for types

 declared in that file and foo.h, but not other header files. The value sys means

 those types satisfying base or declared in system or compiler headers.

 You may need to experiment to determine the best settings for your application.

 The default is -femit-struct-debug-detailed=all.

 This option works only with DWARF debug output.

 -fno-dwarf2-cfi-asm

 Emit DWARF unwind info as compiler generated ".eh_frame" section instead of using GAS

 ".cfi_*" directives.

 -fno-eliminate-unused-debug-types

 Normally, when producing DWARF output, GCC avoids producing debug symbol output for

 types that are nowhere used in the source file being compiled. Sometimes it is useful

 to have GCC emit debugging information for all types declared in a compilation unit,

 regardless of whether or not they are actually used in that compilation unit, for

 example if, in the debugger, you want to cast a value to a type that is not actually

 used in your program (but is declared). More often, however, this results in a

 significant amount of wasted space.

 Options That Control Optimization Page 172/576

 These options control various sorts of optimizations.

 Without any optimization option, the compiler's goal is to reduce the cost of compilation

 and to make debugging produce the expected results. Statements are independent: if you

 stop the program with a breakpoint between statements, you can then assign a new value to

 any variable or change the program counter to any other statement in the function and get

 exactly the results you expect from the source code.

 Turning on optimization flags makes the compiler attempt to improve the performance and/or

 code size at the expense of compilation time and possibly the ability to debug the

 program.

 The compiler performs optimization based on the knowledge it has of the program.

 Compiling multiple files at once to a single output file mode allows the compiler to use

 information gained from all of the files when compiling each of them.

 Not all optimizations are controlled directly by a flag. Only optimizations that have a

 flag are listed in this section.

 Most optimizations are completely disabled at -O0 or if an -O level is not set on the

 command line, even if individual optimization flags are specified. Similarly, -Og

 suppresses many optimization passes.

 Depending on the target and how GCC was configured, a slightly different set of

 optimizations may be enabled at each -O level than those listed here. You can invoke GCC

 with -Q --help=optimizers to find out the exact set of optimizations that are enabled at

 each level.

 -O

 -O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for

 a large function.

 With -O, the compiler tries to reduce code size and execution time, without performing

 any optimizations that take a great deal of compilation time.

 -O turns on the following optimization flags:

 -fauto-inc-dec -fbranch-count-reg -fcombine-stack-adjustments -fcompare-elim

 -fcprop-registers -fdce -fdefer-pop -fdelayed-branch -fdse -fforward-propagate

 -fguess-branch-probability -fif-conversion -fif-conversion2

 -finline-functions-called-once -fipa-modref -fipa-profile -fipa-pure-const

 -fipa-reference -fipa-reference-addressable -fmerge-constants -fmove-loop-invariants

 -fomit-frame-pointer -freorder-blocks -fshrink-wrap -fshrink-wrap-separate Page 173/576

 -fsplit-wide-types -fssa-backprop -fssa-phiopt -ftree-bit-ccp -ftree-ccp -ftree-ch

 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts -ftree-dse

 -ftree-forwprop -ftree-fre -ftree-phiprop -ftree-pta -ftree-scev-cprop -ftree-sink

 -ftree-slsr -ftree-sra -ftree-ter -funit-at-a-time

 -O2 Optimize even more. GCC performs nearly all supported optimizations that do not

 involve a space-speed tradeoff. As compared to -O, this option increases both

 compilation time and the performance of the generated code.

 -O2 turns on all optimization flags specified by -O. It also turns on the following

 optimization flags:

 -falign-functions -falign-jumps -falign-labels -falign-loops -fcaller-saves

 -fcode-hoisting -fcrossjumping -fcse-follow-jumps -fcse-skip-blocks

 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively

 -fexpensive-optimizations -ffinite-loops -fgcse -fgcse-lm -fhoist-adjacent-loads

 -finline-functions -finline-small-functions -findirect-inlining -fipa-bit-cp -fipa-cp

 -fipa-icf -fipa-ra -fipa-sra -fipa-vrp -fisolate-erroneous-paths-dereference

 -flra-remat -foptimize-sibling-calls -foptimize-strlen -fpartial-inlining -fpeephole2

 -freorder-blocks-algorithm=stc -freorder-blocks-and-partition -freorder-functions

 -frerun-cse-after-loop -fschedule-insns -fschedule-insns2 -fsched-interblock

 -fsched-spec -fstore-merging -fstrict-aliasing -fthread-jumps -ftree-builtin-call-dce

 -ftree-pre -ftree-switch-conversion -ftree-tail-merge -ftree-vrp

 Please note the warning under -fgcse about invoking -O2 on programs that use computed

 gotos.

 NOTE: In Ubuntu 8.10 and later versions, -D_FORTIFY_SOURCE=2 is set by default, and is

 activated when -O is set to 2 or higher. This enables additional compile-time and

 run-time checks for several libc functions. To disable, specify either

 -U_FORTIFY_SOURCE or -D_FORTIFY_SOURCE=0.

 -O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on

 the following optimization flags:

 -fgcse-after-reload -fipa-cp-clone -floop-interchange -floop-unroll-and-jam

 -fpeel-loops -fpredictive-commoning -fsplit-loops -fsplit-paths

 -ftree-loop-distribution -ftree-loop-vectorize -ftree-partial-pre -ftree-slp-vectorize

 -funswitch-loops -fvect-cost-model -fvect-cost-model=dynamic

 -fversion-loops-for-strides Page 174/576

 -O0 Reduce compilation time and make debugging produce the expected results. This is the

 default.

 -Os Optimize for size. -Os enables all -O2 optimizations except those that often increase

 code size:

 -falign-functions -falign-jumps -falign-labels -falign-loops -fprefetch-loop-arrays

 -freorder-blocks-algorithm=stc

 It also enables -finline-functions, causes the compiler to tune for code size rather

 than execution speed, and performs further optimizations designed to reduce code size.

 -Ofast

 Disregard strict standards compliance. -Ofast enables all -O3 optimizations. It also

 enables optimizations that are not valid for all standard-compliant programs. It

 turns on -ffast-math, -fallow-store-data-races and the Fortran-specific

 -fstack-arrays, unless -fmax-stack-var-size is specified, and -fno-protect-parens.

 -Og Optimize debugging experience. -Og should be the optimization level of choice for the

 standard edit-compile-debug cycle, offering a reasonable level of optimization while

 maintaining fast compilation and a good debugging experience. It is a better choice

 than -O0 for producing debuggable code because some compiler passes that collect debug

 information are disabled at -O0.

 Like -O0, -Og completely disables a number of optimization passes so that individual

 options controlling them have no effect. Otherwise -Og enables all -O1 optimization

 flags except for those that may interfere with debugging:

 -fbranch-count-reg -fdelayed-branch -fdse -fif-conversion -fif-conversion2

 -finline-functions-called-once -fmove-loop-invariants -fssa-phiopt -ftree-bit-ccp

 -ftree-dse -ftree-pta -ftree-sra

 If you use multiple -O options, with or without level numbers, the last such option is the

 one that is effective.

 Options of the form -fflag specify machine-independent flags. Most flags have both

 positive and negative forms; the negative form of -ffoo is -fno-foo. In the table below,

 only one of the forms is listed---the one you typically use. You can figure out the other

 form by either removing no- or adding it.

 The following options control specific optimizations. They are either activated by -O

 options or are related to ones that are. You can use the following flags in the rare

 cases when "fine-tuning" of optimizations to be performed is desired. Page 175/576

 -fno-defer-pop

 For machines that must pop arguments after a function call, always pop the arguments

 as soon as each function returns. At levels -O1 and higher, -fdefer-pop is the

 default; this allows the compiler to let arguments accumulate on the stack for several

 function calls and pop them all at once.

 -fforward-propagate

 Perform a forward propagation pass on RTL. The pass tries to combine two instructions

 and checks if the result can be simplified. If loop unrolling is active, two passes

 are performed and the second is scheduled after loop unrolling.

 This option is enabled by default at optimization levels -O, -O2, -O3, -Os.

 -ffp-contract=style

 -ffp-contract=off disables floating-point expression contraction. -ffp-contract=fast

 enables floating-point expression contraction such as forming of fused multiply-add

 operations if the target has native support for them. -ffp-contract=on enables

 floating-point expression contraction if allowed by the language standard. This is

 currently not implemented and treated equal to -ffp-contract=off.

 The default is -ffp-contract=fast.

 -fomit-frame-pointer

 Omit the frame pointer in functions that don't need one. This avoids the instructions

 to save, set up and restore the frame pointer; on many targets it also makes an extra

 register available.

 On some targets this flag has no effect because the standard calling sequence always

 uses a frame pointer, so it cannot be omitted.

 Note that -fno-omit-frame-pointer doesn't guarantee the frame pointer is used in all

 functions. Several targets always omit the frame pointer in leaf functions.

 Enabled by default at -O and higher.

 -foptimize-sibling-calls

 Optimize sibling and tail recursive calls.

 Enabled at levels -O2, -O3, -Os.

 -foptimize-strlen

 Optimize various standard C string functions (e.g. "strlen", "strchr" or "strcpy") and

 their "_FORTIFY_SOURCE" counterparts into faster alternatives.

 Enabled at levels -O2, -O3. Page 176/576

 -fno-inline

 Do not expand any functions inline apart from those marked with the "always_inline"

 attribute. This is the default when not optimizing.

 Single functions can be exempted from inlining by marking them with the "noinline"

 attribute.

 -finline-small-functions

 Integrate functions into their callers when their body is smaller than expected

 function call code (so overall size of program gets smaller). The compiler

 heuristically decides which functions are simple enough to be worth integrating in

 this way. This inlining applies to all functions, even those not declared inline.

 Enabled at levels -O2, -O3, -Os.

 -findirect-inlining

 Inline also indirect calls that are discovered to be known at compile time thanks to

 previous inlining. This option has any effect only when inlining itself is turned on

 by the -finline-functions or -finline-small-functions options.

 Enabled at levels -O2, -O3, -Os.

 -finline-functions

 Consider all functions for inlining, even if they are not declared inline. The

 compiler heuristically decides which functions are worth integrating in this way.

 If all calls to a given function are integrated, and the function is declared

 "static", then the function is normally not output as assembler code in its own right.

 Enabled at levels -O2, -O3, -Os. Also enabled by -fprofile-use and -fauto-profile.

 -finline-functions-called-once

 Consider all "static" functions called once for inlining into their caller even if

 they are not marked "inline". If a call to a given function is integrated, then the

 function is not output as assembler code in its own right.

 Enabled at levels -O1, -O2, -O3 and -Os, but not -Og.

 -fearly-inlining

 Inline functions marked by "always_inline" and functions whose body seems smaller than

 the function call overhead early before doing -fprofile-generate instrumentation and

 real inlining pass. Doing so makes profiling significantly cheaper and usually

 inlining faster on programs having large chains of nested wrapper functions.

 Enabled by default. Page 177/576

 -fipa-sra

 Perform interprocedural scalar replacement of aggregates, removal of unused parameters

 and replacement of parameters passed by reference by parameters passed by value.

 Enabled at levels -O2, -O3 and -Os.

 -finline-limit=n

 By default, GCC limits the size of functions that can be inlined. This flag allows

 coarse control of this limit. n is the size of functions that can be inlined in

 number of pseudo instructions.

 Inlining is actually controlled by a number of parameters, which may be specified

 individually by using --param name=value. The -finline-limit=n option sets some of

 these parameters as follows:

 max-inline-insns-single

 is set to n/2.

 max-inline-insns-auto

 is set to n/2.

 See below for a documentation of the individual parameters controlling inlining and

 for the defaults of these parameters.

 Note: there may be no value to -finline-limit that results in default behavior.

 Note: pseudo instruction represents, in this particular context, an abstract

 measurement of function's size. In no way does it represent a count of assembly

 instructions and as such its exact meaning might change from one release to an

 another.

 -fno-keep-inline-dllexport

 This is a more fine-grained version of -fkeep-inline-functions, which applies only to

 functions that are declared using the "dllexport" attribute or declspec.

 -fkeep-inline-functions

 In C, emit "static" functions that are declared "inline" into the object file, even if

 the function has been inlined into all of its callers. This switch does not affect

 functions using the "extern inline" extension in GNU C90. In C++, emit any and all

 inline functions into the object file.

 -fkeep-static-functions

 Emit "static" functions into the object file, even if the function is never used.

 -fkeep-static-consts Page 178/576

 Emit variables declared "static const" when optimization isn't turned on, even if the

 variables aren't referenced.

 GCC enables this option by default. If you want to force the compiler to check if a

 variable is referenced, regardless of whether or not optimization is turned on, use

 the -fno-keep-static-consts option.

 -fmerge-constants

 Attempt to merge identical constants (string constants and floating-point constants)

 across compilation units.

 This option is the default for optimized compilation if the assembler and linker

 support it. Use -fno-merge-constants to inhibit this behavior.

 Enabled at levels -O, -O2, -O3, -Os.

 -fmerge-all-constants

 Attempt to merge identical constants and identical variables.

 This option implies -fmerge-constants. In addition to -fmerge-constants this

 considers e.g. even constant initialized arrays or initialized constant variables with

 integral or floating-point types. Languages like C or C++ require each variable,

 including multiple instances of the same variable in recursive calls, to have distinct

 locations, so using this option results in non-conforming behavior.

 -fmodulo-sched

 Perform swing modulo scheduling immediately before the first scheduling pass. This

 pass looks at innermost loops and reorders their instructions by overlapping different

 iterations.

 -fmodulo-sched-allow-regmoves

 Perform more aggressive SMS-based modulo scheduling with register moves allowed. By

 setting this flag certain anti-dependences edges are deleted, which triggers the

 generation of reg-moves based on the life-range analysis. This option is effective

 only with -fmodulo-sched enabled.

 -fno-branch-count-reg

 Disable the optimization pass that scans for opportunities to use "decrement and

 branch" instructions on a count register instead of instruction sequences that

 decrement a register, compare it against zero, and then branch based upon the result.

 This option is only meaningful on architectures that support such instructions, which

 include x86, PowerPC, IA-64 and S/390. Note that the -fno-branch-count-reg option Page 179/576

 doesn't remove the decrement and branch instructions from the generated instruction

 stream introduced by other optimization passes.

 The default is -fbranch-count-reg at -O1 and higher, except for -Og.

 -fno-function-cse

 Do not put function addresses in registers; make each instruction that calls a

 constant function contain the function's address explicitly.

 This option results in less efficient code, but some strange hacks that alter the

 assembler output may be confused by the optimizations performed when this option is

 not used.

 The default is -ffunction-cse

 -fno-zero-initialized-in-bss

 If the target supports a BSS section, GCC by default puts variables that are

 initialized to zero into BSS. This can save space in the resulting code.

 This option turns off this behavior because some programs explicitly rely on variables

 going to the data section---e.g., so that the resulting executable can find the

 beginning of that section and/or make assumptions based on that.

 The default is -fzero-initialized-in-bss.

 -fthread-jumps

 Perform optimizations that check to see if a jump branches to a location where another

 comparison subsumed by the first is found. If so, the first branch is redirected to

 either the destination of the second branch or a point immediately following it,

 depending on whether the condition is known to be true or false.

 Enabled at levels -O2, -O3, -Os.

 -fsplit-wide-types

 When using a type that occupies multiple registers, such as "long long" on a 32-bit

 system, split the registers apart and allocate them independently. This normally

 generates better code for those types, but may make debugging more difficult.

 Enabled at levels -O, -O2, -O3, -Os.

 -fsplit-wide-types-early

 Fully split wide types early, instead of very late. This option has no effect unless

 -fsplit-wide-types is turned on.

 This is the default on some targets.

 -fcse-follow-jumps Page 180/576

 In common subexpression elimination (CSE), scan through jump instructions when the

 target of the jump is not reached by any other path. For example, when CSE encounters

 an "if" statement with an "else" clause, CSE follows the jump when the condition

 tested is false.

 Enabled at levels -O2, -O3, -Os.

 -fcse-skip-blocks

 This is similar to -fcse-follow-jumps, but causes CSE to follow jumps that

 conditionally skip over blocks. When CSE encounters a simple "if" statement with no

 else clause, -fcse-skip-blocks causes CSE to follow the jump around the body of the

 "if".

 Enabled at levels -O2, -O3, -Os.

 -frerun-cse-after-loop

 Re-run common subexpression elimination after loop optimizations are performed.

 Enabled at levels -O2, -O3, -Os.

 -fgcse

 Perform a global common subexpression elimination pass. This pass also performs

 global constant and copy propagation.

 Note: When compiling a program using computed gotos, a GCC extension, you may get

 better run-time performance if you disable the global common subexpression elimination

 pass by adding -fno-gcse to the command line.

 Enabled at levels -O2, -O3, -Os.

 -fgcse-lm

 When -fgcse-lm is enabled, global common subexpression elimination attempts to move

 loads that are only killed by stores into themselves. This allows a loop containing a

 load/store sequence to be changed to a load outside the loop, and a copy/store within

 the loop.

 Enabled by default when -fgcse is enabled.

 -fgcse-sm

 When -fgcse-sm is enabled, a store motion pass is run after global common

 subexpression elimination. This pass attempts to move stores out of loops. When used

 in conjunction with -fgcse-lm, loops containing a load/store sequence can be changed

 to a load before the loop and a store after the loop.

 Not enabled at any optimization level. Page 181/576

 -fgcse-las

 When -fgcse-las is enabled, the global common subexpression elimination pass

 eliminates redundant loads that come after stores to the same memory location (both

 partial and full redundancies).

 Not enabled at any optimization level.

 -fgcse-after-reload

 When -fgcse-after-reload is enabled, a redundant load elimination pass is performed

 after reload. The purpose of this pass is to clean up redundant spilling.

 Enabled by -fprofile-use and -fauto-profile.

 -faggressive-loop-optimizations

 This option tells the loop optimizer to use language constraints to derive bounds for

 the number of iterations of a loop. This assumes that loop code does not invoke

 undefined behavior by for example causing signed integer overflows or out-of-bound

 array accesses. The bounds for the number of iterations of a loop are used to guide

 loop unrolling and peeling and loop exit test optimizations. This option is enabled

 by default.

 -funconstrained-commons

 This option tells the compiler that variables declared in common blocks (e.g. Fortran)

 may later be overridden with longer trailing arrays. This prevents certain

 optimizations that depend on knowing the array bounds.

 -fcrossjumping

 Perform cross-jumping transformation. This transformation unifies equivalent code and

 saves code size. The resulting code may or may not perform better than without cross-

 jumping.

 Enabled at levels -O2, -O3, -Os.

 -fauto-inc-dec

 Combine increments or decrements of addresses with memory accesses. This pass is

 always skipped on architectures that do not have instructions to support this.

 Enabled by default at -O and higher on architectures that support this.

 -fdce

 Perform dead code elimination (DCE) on RTL. Enabled by default at -O and higher.

 -fdse

 Perform dead store elimination (DSE) on RTL. Enabled by default at -O and higher. Page 182/576

 -fif-conversion

 Attempt to transform conditional jumps into branch-less equivalents. This includes

 use of conditional moves, min, max, set flags and abs instructions, and some tricks

 doable by standard arithmetics. The use of conditional execution on chips where it is

 available is controlled by -fif-conversion2.

 Enabled at levels -O, -O2, -O3, -Os, but not with -Og.

 -fif-conversion2

 Use conditional execution (where available) to transform conditional jumps into

 branch-less equivalents.

 Enabled at levels -O, -O2, -O3, -Os, but not with -Og.

 -fdeclone-ctor-dtor

 The C++ ABI requires multiple entry points for constructors and destructors: one for a

 base subobject, one for a complete object, and one for a virtual destructor that calls

 operator delete afterwards. For a hierarchy with virtual bases, the base and complete

 variants are clones, which means two copies of the function. With this option, the

 base and complete variants are changed to be thunks that call a common implementation.

 Enabled by -Os.

 -fdelete-null-pointer-checks

 Assume that programs cannot safely dereference null pointers, and that no code or data

 element resides at address zero. This option enables simple constant folding

 optimizations at all optimization levels. In addition, other optimization passes in

 GCC use this flag to control global dataflow analyses that eliminate useless checks

 for null pointers; these assume that a memory access to address zero always results in

 a trap, so that if a pointer is checked after it has already been dereferenced, it

 cannot be null.

 Note however that in some environments this assumption is not true. Use

 -fno-delete-null-pointer-checks to disable this optimization for programs that depend

 on that behavior.

 This option is enabled by default on most targets. On Nios II ELF, it defaults to

 off. On AVR, CR16, and MSP430, this option is completely disabled.

 Passes that use the dataflow information are enabled independently at different

 optimization levels.

 -fdevirtualize Page 183/576

 Attempt to convert calls to virtual functions to direct calls. This is done both

 within a procedure and interprocedurally as part of indirect inlining

 (-findirect-inlining) and interprocedural constant propagation (-fipa-cp). Enabled at

 levels -O2, -O3, -Os.

 -fdevirtualize-speculatively

 Attempt to convert calls to virtual functions to speculative direct calls. Based on

 the analysis of the type inheritance graph, determine for a given call the set of

 likely targets. If the set is small, preferably of size 1, change the call into a

 conditional deciding between direct and indirect calls. The speculative calls enable

 more optimizations, such as inlining. When they seem useless after further

 optimization, they are converted back into original form.

 -fdevirtualize-at-ltrans

 Stream extra information needed for aggressive devirtualization when running the link-

 time optimizer in local transformation mode. This option enables more

 devirtualization but significantly increases the size of streamed data. For this

 reason it is disabled by default.

 -fexpensive-optimizations

 Perform a number of minor optimizations that are relatively expensive.

 Enabled at levels -O2, -O3, -Os.

 -free

 Attempt to remove redundant extension instructions. This is especially helpful for

 the x86-64 architecture, which implicitly zero-extends in 64-bit registers after

 writing to their lower 32-bit half.

 Enabled for Alpha, AArch64 and x86 at levels -O2, -O3, -Os.

 -fno-lifetime-dse

 In C++ the value of an object is only affected by changes within its lifetime: when

 the constructor begins, the object has an indeterminate value, and any changes during

 the lifetime of the object are dead when the object is destroyed. Normally dead store

 elimination will take advantage of this; if your code relies on the value of the

 object storage persisting beyond the lifetime of the object, you can use this flag to

 disable this optimization. To preserve stores before the constructor starts (e.g.

 because your operator new clears the object storage) but still treat the object as

 dead after the destructor, you can use -flifetime-dse=1. The default behavior can be Page 184/576

 explicitly selected with -flifetime-dse=2. -flifetime-dse=0 is equivalent to

 -fno-lifetime-dse.

 -flive-range-shrinkage

 Attempt to decrease register pressure through register live range shrinkage. This is

 helpful for fast processors with small or moderate size register sets.

 -fira-algorithm=algorithm

 Use the specified coloring algorithm for the integrated register allocator. The

 algorithm argument can be priority, which specifies Chow's priority coloring, or CB,

 which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented

 for all architectures, but for those targets that do support it, it is the default

 because it generates better code.

 -fira-region=region

 Use specified regions for the integrated register allocator. The region argument

 should be one of the following:

 all Use all loops as register allocation regions. This can give the best results for

 machines with a small and/or irregular register set.

 mixed

 Use all loops except for loops with small register pressure as the regions. This

 value usually gives the best results in most cases and for most architectures, and

 is enabled by default when compiling with optimization for speed (-O, -O2, ...).

 one Use all functions as a single region. This typically results in the smallest code

 size, and is enabled by default for -Os or -O0.

 -fira-hoist-pressure

 Use IRA to evaluate register pressure in the code hoisting pass for decisions to hoist

 expressions. This option usually results in smaller code, but it can slow the

 compiler down.

 This option is enabled at level -Os for all targets.

 -fira-loop-pressure

 Use IRA to evaluate register pressure in loops for decisions to move loop invariants.

 This option usually results in generation of faster and smaller code on machines with

 large register files (>= 32 registers), but it can slow the compiler down.

 This option is enabled at level -O3 for some targets.

 -fno-ira-share-save-slots Page 185/576

 Disable sharing of stack slots used for saving call-used hard registers living through

 a call. Each hard register gets a separate stack slot, and as a result function stack

 frames are larger.

 -fno-ira-share-spill-slots

 Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-register

 that does not get a hard register gets a separate stack slot, and as a result function

 stack frames are larger.

 -flra-remat

 Enable CFG-sensitive rematerialization in LRA. Instead of loading values of spilled

 pseudos, LRA tries to rematerialize (recalculate) values if it is profitable.

 Enabled at levels -O2, -O3, -Os.

 -fdelayed-branch

 If supported for the target machine, attempt to reorder instructions to exploit

 instruction slots available after delayed branch instructions.

 Enabled at levels -O, -O2, -O3, -Os, but not at -Og.

 -fschedule-insns

 If supported for the target machine, attempt to reorder instructions to eliminate

 execution stalls due to required data being unavailable. This helps machines that

 have slow floating point or memory load instructions by allowing other instructions to

 be issued until the result of the load or floating-point instruction is required.

 Enabled at levels -O2, -O3.

 -fschedule-insns2

 Similar to -fschedule-insns, but requests an additional pass of instruction scheduling

 after register allocation has been done. This is especially useful on machines with a

 relatively small number of registers and where memory load instructions take more than

 one cycle.

 Enabled at levels -O2, -O3, -Os.

 -fno-sched-interblock

 Disable instruction scheduling across basic blocks, which is normally enabled when

 scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or

 higher.

 -fno-sched-spec

 Disable speculative motion of non-load instructions, which is normally enabled when Page 186/576

 scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or

 higher.

 -fsched-pressure

 Enable register pressure sensitive insn scheduling before register allocation. This

 only makes sense when scheduling before register allocation is enabled, i.e. with

 -fschedule-insns or at -O2 or higher. Usage of this option can improve the generated

 code and decrease its size by preventing register pressure increase above the number

 of available hard registers and subsequent spills in register allocation.

 -fsched-spec-load

 Allow speculative motion of some load instructions. This only makes sense when

 scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or higher.

 -fsched-spec-load-dangerous

 Allow speculative motion of more load instructions. This only makes sense when

 scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or higher.

 -fsched-stalled-insns

 -fsched-stalled-insns=n

 Define how many insns (if any) can be moved prematurely from the queue of stalled

 insns into the ready list during the second scheduling pass. -fno-sched-stalled-insns

 means that no insns are moved prematurely, -fsched-stalled-insns=0 means there is no

 limit on how many queued insns can be moved prematurely. -fsched-stalled-insns

 without a value is equivalent to -fsched-stalled-insns=1.

 -fsched-stalled-insns-dep

 -fsched-stalled-insns-dep=n

 Define how many insn groups (cycles) are examined for a dependency on a stalled insn

 that is a candidate for premature removal from the queue of stalled insns. This has

 an effect only during the second scheduling pass, and only if -fsched-stalled-insns is

 used. -fno-sched-stalled-insns-dep is equivalent to -fsched-stalled-insns-dep=0.

 -fsched-stalled-insns-dep without a value is equivalent to

 -fsched-stalled-insns-dep=1.

 -fsched2-use-superblocks

 When scheduling after register allocation, use superblock scheduling. This allows

 motion across basic block boundaries, resulting in faster schedules. This option is

 experimental, as not all machine descriptions used by GCC model the CPU closely enough Page 187/576

 to avoid unreliable results from the algorithm.

 This only makes sense when scheduling after register allocation, i.e. with

 -fschedule-insns2 or at -O2 or higher.

 -fsched-group-heuristic

 Enable the group heuristic in the scheduler. This heuristic favors the instruction

 that belongs to a schedule group. This is enabled by default when scheduling is

 enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at -O2 or higher.

 -fsched-critical-path-heuristic

 Enable the critical-path heuristic in the scheduler. This heuristic favors

 instructions on the critical path. This is enabled by default when scheduling is

 enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at -O2 or higher.

 -fsched-spec-insn-heuristic

 Enable the speculative instruction heuristic in the scheduler. This heuristic favors

 speculative instructions with greater dependency weakness. This is enabled by default

 when scheduling is enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at -O2

 or higher.

 -fsched-rank-heuristic

 Enable the rank heuristic in the scheduler. This heuristic favors the instruction

 belonging to a basic block with greater size or frequency. This is enabled by default

 when scheduling is enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at -O2

 or higher.

 -fsched-last-insn-heuristic

 Enable the last-instruction heuristic in the scheduler. This heuristic favors the

 instruction that is less dependent on the last instruction scheduled. This is enabled

 by default when scheduling is enabled, i.e. with -fschedule-insns or -fschedule-insns2

 or at -O2 or higher.

 -fsched-dep-count-heuristic

 Enable the dependent-count heuristic in the scheduler. This heuristic favors the

 instruction that has more instructions depending on it. This is enabled by default

 when scheduling is enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at -O2

 or higher.

 -freschedule-modulo-scheduled-loops

 Modulo scheduling is performed before traditional scheduling. If a loop is modulo Page 188/576

 scheduled, later scheduling passes may change its schedule. Use this option to

 control that behavior.

 -fselective-scheduling

 Schedule instructions using selective scheduling algorithm. Selective scheduling runs

 instead of the first scheduler pass.

 -fselective-scheduling2

 Schedule instructions using selective scheduling algorithm. Selective scheduling runs

 instead of the second scheduler pass.

 -fsel-sched-pipelining

 Enable software pipelining of innermost loops during selective scheduling. This

 option has no effect unless one of -fselective-scheduling or -fselective-scheduling2

 is turned on.

 -fsel-sched-pipelining-outer-loops

 When pipelining loops during selective scheduling, also pipeline outer loops. This

 option has no effect unless -fsel-sched-pipelining is turned on.

 -fsemantic-interposition

 Some object formats, like ELF, allow interposing of symbols by the dynamic linker.

 This means that for symbols exported from the DSO, the compiler cannot perform

 interprocedural propagation, inlining and other optimizations in anticipation that the

 function or variable in question may change. While this feature is useful, for

 example, to rewrite memory allocation functions by a debugging implementation, it is

 expensive in the terms of code quality. With -fno-semantic-interposition the compiler

 assumes that if interposition happens for functions the overwriting function will have

 precisely the same semantics (and side effects). Similarly if interposition happens

 for variables, the constructor of the variable will be the same. The flag has no

 effect for functions explicitly declared inline (where it is never allowed for

 interposition to change semantics) and for symbols explicitly declared weak.

 -fshrink-wrap

 Emit function prologues only before parts of the function that need it, rather than at

 the top of the function. This flag is enabled by default at -O and higher.

 -fshrink-wrap-separate

 Shrink-wrap separate parts of the prologue and epilogue separately, so that those

 parts are only executed when needed. This option is on by default, but has no effect Page 189/576

 unless -fshrink-wrap is also turned on and the target supports this.

 -fcaller-saves

 Enable allocation of values to registers that are clobbered by function calls, by

 emitting extra instructions to save and restore the registers around such calls. Such

 allocation is done only when it seems to result in better code.

 This option is always enabled by default on certain machines, usually those which have

 no call-preserved registers to use instead.

 Enabled at levels -O2, -O3, -Os.

 -fcombine-stack-adjustments

 Tracks stack adjustments (pushes and pops) and stack memory references and then tries

 to find ways to combine them.

 Enabled by default at -O1 and higher.

 -fipa-ra

 Use caller save registers for allocation if those registers are not used by any called

 function. In that case it is not necessary to save and restore them around calls.

 This is only possible if called functions are part of same compilation unit as current

 function and they are compiled before it.

 Enabled at levels -O2, -O3, -Os, however the option is disabled if generated code will

 be instrumented for profiling (-p, or -pg) or if callee's register usage cannot be

 known exactly (this happens on targets that do not expose prologues and epilogues in

 RTL).

 -fconserve-stack

 Attempt to minimize stack usage. The compiler attempts to use less stack space, even

 if that makes the program slower. This option implies setting the large-stack-frame

 parameter to 100 and the large-stack-frame-growth parameter to 400.

 -ftree-reassoc

 Perform reassociation on trees. This flag is enabled by default at -O and higher.

 -fcode-hoisting

 Perform code hoisting. Code hoisting tries to move the evaluation of expressions

 executed on all paths to the function exit as early as possible. This is especially

 useful as a code size optimization, but it often helps for code speed as well. This

 flag is enabled by default at -O2 and higher.

 -ftree-pre Page 190/576

 Perform partial redundancy elimination (PRE) on trees. This flag is enabled by

 default at -O2 and -O3.

 -ftree-partial-pre

 Make partial redundancy elimination (PRE) more aggressive. This flag is enabled by

 default at -O3.

 -ftree-forwprop

 Perform forward propagation on trees. This flag is enabled by default at -O and

 higher.

 -ftree-fre

 Perform full redundancy elimination (FRE) on trees. The difference between FRE and

 PRE is that FRE only considers expressions that are computed on all paths leading to

 the redundant computation. This analysis is faster than PRE, though it exposes fewer

 redundancies. This flag is enabled by default at -O and higher.

 -ftree-phiprop

 Perform hoisting of loads from conditional pointers on trees. This pass is enabled by

 default at -O and higher.

 -fhoist-adjacent-loads

 Speculatively hoist loads from both branches of an if-then-else if the loads are from

 adjacent locations in the same structure and the target architecture has a conditional

 move instruction. This flag is enabled by default at -O2 and higher.

 -ftree-copy-prop

 Perform copy propagation on trees. This pass eliminates unnecessary copy operations.

 This flag is enabled by default at -O and higher.

 -fipa-pure-const

 Discover which functions are pure or constant. Enabled by default at -O and higher.

 -fipa-reference

 Discover which static variables do not escape the compilation unit. Enabled by

 default at -O and higher.

 -fipa-reference-addressable

 Discover read-only, write-only and non-addressable static variables. Enabled by

 default at -O and higher.

 -fipa-stack-alignment

 Reduce stack alignment on call sites if possible. Enabled by default. Page 191/576

 -fipa-pta

 Perform interprocedural pointer analysis and interprocedural modification and

 reference analysis. This option can cause excessive memory and compile-time usage on

 large compilation units. It is not enabled by default at any optimization level.

 -fipa-profile

 Perform interprocedural profile propagation. The functions called only from cold

 functions are marked as cold. Also functions executed once (such as "cold",

 "noreturn", static constructors or destructors) are identified. Cold functions and

 loop less parts of functions executed once are then optimized for size. Enabled by

 default at -O and higher.

 -fipa-modref

 Perform interprocedural mod/ref analysis. This optimization analyzes the side effects

 of functions (memory locations that are modified or referenced) and enables better

 optimization across the function call boundary. This flag is enabled by default at -O

 and higher.

 -fipa-cp

 Perform interprocedural constant propagation. This optimization analyzes the program

 to determine when values passed to functions are constants and then optimizes

 accordingly. This optimization can substantially increase performance if the

 application has constants passed to functions. This flag is enabled by default at

 -O2, -Os and -O3. It is also enabled by -fprofile-use and -fauto-profile.

 -fipa-cp-clone

 Perform function cloning to make interprocedural constant propagation stronger. When

 enabled, interprocedural constant propagation performs function cloning when

 externally visible function can be called with constant arguments. Because this

 optimization can create multiple copies of functions, it may significantly increase

 code size (see --param ipa-cp-unit-growth=value). This flag is enabled by default at

 -O3. It is also enabled by -fprofile-use and -fauto-profile.

 -fipa-bit-cp

 When enabled, perform interprocedural bitwise constant propagation. This flag is

 enabled by default at -O2 and by -fprofile-use and -fauto-profile. It requires that

 -fipa-cp is enabled.

 -fipa-vrp Page 192/576

 When enabled, perform interprocedural propagation of value ranges. This flag is

 enabled by default at -O2. It requires that -fipa-cp is enabled.

 -fipa-icf

 Perform Identical Code Folding for functions and read-only variables. The

 optimization reduces code size and may disturb unwind stacks by replacing a function

 by equivalent one with a different name. The optimization works more effectively with

 link-time optimization enabled.

 Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF works

 on different levels and thus the optimizations are not same - there are equivalences

 that are found only by GCC and equivalences found only by Gold.

 This flag is enabled by default at -O2 and -Os.

 -flive-patching=level

 Control GCC's optimizations to produce output suitable for live-patching.

 If the compiler's optimization uses a function's body or information extracted from

 its body to optimize/change another function, the latter is called an impacted

 function of the former. If a function is patched, its impacted functions should be

 patched too.

 The impacted functions are determined by the compiler's interprocedural optimizations.

 For example, a caller is impacted when inlining a function into its caller, cloning a

 function and changing its caller to call this new clone, or extracting a function's

 pureness/constness information to optimize its direct or indirect callers, etc.

 Usually, the more IPA optimizations enabled, the larger the number of impacted

 functions for each function. In order to control the number of impacted functions and

 more easily compute the list of impacted function, IPA optimizations can be partially

 enabled at two different levels.

 The level argument should be one of the following:

 inline-clone

 Only enable inlining and cloning optimizations, which includes inlining, cloning,

 interprocedural scalar replacement of aggregates and partial inlining. As a

 result, when patching a function, all its callers and its clones' callers are

 impacted, therefore need to be patched as well.

 -flive-patching=inline-clone disables the following optimization flags:

 -fwhole-program -fipa-pta -fipa-reference -fipa-ra -fipa-icf Page 193/576

 -fipa-icf-functions -fipa-icf-variables -fipa-bit-cp -fipa-vrp -fipa-pure-const

 -fipa-reference-addressable -fipa-stack-alignment -fipa-modref

 inline-only-static

 Only enable inlining of static functions. As a result, when patching a static

 function, all its callers are impacted and so need to be patched as well.

 In addition to all the flags that -flive-patching=inline-clone disables,

 -flive-patching=inline-only-static disables the following additional optimization

 flags: -fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp

 When -flive-patching is specified without any value, the default value is inline-

 clone.

 This flag is disabled by default.

 Note that -flive-patching is not supported with link-time optimization (-flto).

 -fisolate-erroneous-paths-dereference

 Detect paths that trigger erroneous or undefined behavior due to dereferencing a null

 pointer. Isolate those paths from the main control flow and turn the statement with

 erroneous or undefined behavior into a trap. This flag is enabled by default at -O2

 and higher and depends on -fdelete-null-pointer-checks also being enabled.

 -fisolate-erroneous-paths-attribute

 Detect paths that trigger erroneous or undefined behavior due to a null value being

 used in a way forbidden by a "returns_nonnull" or "nonnull" attribute. Isolate those

 paths from the main control flow and turn the statement with erroneous or undefined

 behavior into a trap. This is not currently enabled, but may be enabled by -O2 in the

 future.

 -ftree-sink

 Perform forward store motion on trees. This flag is enabled by default at -O and

 higher.

 -ftree-bit-ccp

 Perform sparse conditional bit constant propagation on trees and propagate pointer

 alignment information. This pass only operates on local scalar variables and is

 enabled by default at -O1 and higher, except for -Og. It requires that -ftree-ccp is

 enabled.

 -ftree-ccp

 Perform sparse conditional constant propagation (CCP) on trees. This pass only Page 194/576

 operates on local scalar variables and is enabled by default at -O and higher.

 -fssa-backprop

 Propagate information about uses of a value up the definition chain in order to

 simplify the definitions. For example, this pass strips sign operations if the sign

 of a value never matters. The flag is enabled by default at -O and higher.

 -fssa-phiopt

 Perform pattern matching on SSA PHI nodes to optimize conditional code. This pass is

 enabled by default at -O1 and higher, except for -Og.

 -ftree-switch-conversion

 Perform conversion of simple initializations in a switch to initializations from a

 scalar array. This flag is enabled by default at -O2 and higher.

 -ftree-tail-merge

 Look for identical code sequences. When found, replace one with a jump to the other.

 This optimization is known as tail merging or cross jumping. This flag is enabled by

 default at -O2 and higher. The compilation time in this pass can be limited using

 max-tail-merge-comparisons parameter and max-tail-merge-iterations parameter.

 -ftree-dce

 Perform dead code elimination (DCE) on trees. This flag is enabled by default at -O

 and higher.

 -ftree-builtin-call-dce

 Perform conditional dead code elimination (DCE) for calls to built-in functions that

 may set "errno" but are otherwise free of side effects. This flag is enabled by

 default at -O2 and higher if -Os is not also specified.

 -ffinite-loops

 Assume that a loop with an exit will eventually take the exit and not loop

 indefinitely. This allows the compiler to remove loops that otherwise have no side-

 effects, not considering eventual endless looping as such.

 This option is enabled by default at -O2 for C++ with -std=c++11 or higher.

 -ftree-dominator-opts

 Perform a variety of simple scalar cleanups (constant/copy propagation, redundancy

 elimination, range propagation and expression simplification) based on a dominator

 tree traversal. This also performs jump threading (to reduce jumps to jumps). This

 flag is enabled by default at -O and higher. Page 195/576

 -ftree-dse

 Perform dead store elimination (DSE) on trees. A dead store is a store into a memory

 location that is later overwritten by another store without any intervening loads. In

 this case the earlier store can be deleted. This flag is enabled by default at -O and

 higher.

 -ftree-ch

 Perform loop header copying on trees. This is beneficial since it increases

 effectiveness of code motion optimizations. It also saves one jump. This flag is

 enabled by default at -O and higher. It is not enabled for -Os, since it usually

 increases code size.

 -ftree-loop-optimize

 Perform loop optimizations on trees. This flag is enabled by default at -O and

 higher.

 -ftree-loop-linear

 -floop-strip-mine

 -floop-block

 Perform loop nest optimizations. Same as -floop-nest-optimize. To use this code

 transformation, GCC has to be configured with --with-isl to enable the Graphite loop

 transformation infrastructure.

 -fgraphite-identity

 Enable the identity transformation for graphite. For every SCoP we generate the

 polyhedral representation and transform it back to gimple. Using -fgraphite-identity

 we can check the costs or benefits of the GIMPLE -> GRAPHITE -> GIMPLE transformation.

 Some minimal optimizations are also performed by the code generator isl, like index

 splitting and dead code elimination in loops.

 -floop-nest-optimize

 Enable the isl based loop nest optimizer. This is a generic loop nest optimizer based

 on the Pluto optimization algorithms. It calculates a loop structure optimized for

 data-locality and parallelism. This option is experimental.

 -floop-parallelize-all

 Use the Graphite data dependence analysis to identify loops that can be parallelized.

 Parallelize all the loops that can be analyzed to not contain loop carried dependences

 without checking that it is profitable to parallelize the loops. Page 196/576

 -ftree-coalesce-vars

 While transforming the program out of the SSA representation, attempt to reduce

 copying by coalescing versions of different user-defined variables, instead of just

 compiler temporaries. This may severely limit the ability to debug an optimized

 program compiled with -fno-var-tracking-assignments. In the negated form, this flag

 prevents SSA coalescing of user variables. This option is enabled by default if

 optimization is enabled, and it does very little otherwise.

 -ftree-loop-if-convert

 Attempt to transform conditional jumps in the innermost loops to branch-less

 equivalents. The intent is to remove control-flow from the innermost loops in order

 to improve the ability of the vectorization pass to handle these loops. This is

 enabled by default if vectorization is enabled.

 -ftree-loop-distribution

 Perform loop distribution. This flag can improve cache performance on big loop bodies

 and allow further loop optimizations, like parallelization or vectorization, to take

 place. For example, the loop

 DO I = 1, N

 A(I) = B(I) + C

 D(I) = E(I) * F

 ENDDO

 is transformed to

 DO I = 1, N

 A(I) = B(I) + C

 ENDDO

 DO I = 1, N

 D(I) = E(I) * F

 ENDDO

 This flag is enabled by default at -O3. It is also enabled by -fprofile-use and

 -fauto-profile.

 -ftree-loop-distribute-patterns

 Perform loop distribution of patterns that can be code generated with calls to a

 library. This flag is enabled by default at -O2 and higher, and by -fprofile-use and

 -fauto-profile. Page 197/576

 This pass distributes the initialization loops and generates a call to memset zero.

 For example, the loop

 DO I = 1, N

 A(I) = 0

 B(I) = A(I) + I

 ENDDO

 is transformed to

 DO I = 1, N

 A(I) = 0

 ENDDO

 DO I = 1, N

 B(I) = A(I) + I

 ENDDO

 and the initialization loop is transformed into a call to memset zero. This flag is

 enabled by default at -O3. It is also enabled by -fprofile-use and -fauto-profile.

 -floop-interchange

 Perform loop interchange outside of graphite. This flag can improve cache performance

 on loop nest and allow further loop optimizations, like vectorization, to take place.

 For example, the loop

 for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 c[i][j] = c[i][j] + a[i][k]*b[k][j];

 is transformed to

 for (int i = 0; i < N; i++)

 for (int k = 0; k < N; k++)

 for (int j = 0; j < N; j++)

 c[i][j] = c[i][j] + a[i][k]*b[k][j];

 This flag is enabled by default at -O3. It is also enabled by -fprofile-use and

 -fauto-profile.

 -floop-unroll-and-jam

 Apply unroll and jam transformations on feasible loops. In a loop nest this unrolls

 the outer loop by some factor and fuses the resulting multiple inner loops. This flag Page 198/576

 is enabled by default at -O3. It is also enabled by -fprofile-use and -fauto-profile.

 -ftree-loop-im

 Perform loop invariant motion on trees. This pass moves only invariants that are hard

 to handle at RTL level (function calls, operations that expand to nontrivial sequences

 of insns). With -funswitch-loops it also moves operands of conditions that are

 invariant out of the loop, so that we can use just trivial invariantness analysis in

 loop unswitching. The pass also includes store motion.

 -ftree-loop-ivcanon

 Create a canonical counter for number of iterations in loops for which determining

 number of iterations requires complicated analysis. Later optimizations then may

 determine the number easily. Useful especially in connection with unrolling.

 -ftree-scev-cprop

 Perform final value replacement. If a variable is modified in a loop in such a way

 that its value when exiting the loop can be determined using only its initial value

 and the number of loop iterations, replace uses of the final value by such a

 computation, provided it is sufficiently cheap. This reduces data dependencies and

 may allow further simplifications. Enabled by default at -O and higher.

 -fivopts

 Perform induction variable optimizations (strength reduction, induction variable

 merging and induction variable elimination) on trees.

 -ftree-parallelize-loops=n

 Parallelize loops, i.e., split their iteration space to run in n threads. This is

 only possible for loops whose iterations are independent and can be arbitrarily

 reordered. The optimization is only profitable on multiprocessor machines, for loops

 that are CPU-intensive, rather than constrained e.g. by memory bandwidth. This option

 implies -pthread, and thus is only supported on targets that have support for

 -pthread.

 -ftree-pta

 Perform function-local points-to analysis on trees. This flag is enabled by default

 at -O1 and higher, except for -Og.

 -ftree-sra

 Perform scalar replacement of aggregates. This pass replaces structure references

 with scalars to prevent committing structures to memory too early. This flag is Page 199/576

 enabled by default at -O1 and higher, except for -Og.

 -fstore-merging

 Perform merging of narrow stores to consecutive memory addresses. This pass merges

 contiguous stores of immediate values narrower than a word into fewer wider stores to

 reduce the number of instructions. This is enabled by default at -O2 and higher as

 well as -Os.

 -ftree-ter

 Perform temporary expression replacement during the SSA->normal phase. Single

 use/single def temporaries are replaced at their use location with their defining

 expression. This results in non-GIMPLE code, but gives the expanders much more

 complex trees to work on resulting in better RTL generation. This is enabled by

 default at -O and higher.

 -ftree-slsr

 Perform straight-line strength reduction on trees. This recognizes related

 expressions involving multiplications and replaces them by less expensive calculations

 when possible. This is enabled by default at -O and higher.

 -ftree-vectorize

 Perform vectorization on trees. This flag enables -ftree-loop-vectorize and

 -ftree-slp-vectorize if not explicitly specified.

 -ftree-loop-vectorize

 Perform loop vectorization on trees. This flag is enabled by default at -O3 and by

 -ftree-vectorize, -fprofile-use, and -fauto-profile.

 -ftree-slp-vectorize

 Perform basic block vectorization on trees. This flag is enabled by default at -O3 and

 by -ftree-vectorize, -fprofile-use, and -fauto-profile.

 -fvect-cost-model=model

 Alter the cost model used for vectorization. The model argument should be one of

 unlimited, dynamic, cheap or very-cheap. With the unlimited model the vectorized

 code-path is assumed to be profitable while with the dynamic model a runtime check

 guards the vectorized code-path to enable it only for iteration counts that will

 likely execute faster than when executing the original scalar loop. The cheap model

 disables vectorization of loops where doing so would be cost prohibitive for example

 due to required runtime checks for data dependence or alignment but otherwise is equal Page 200/576

 to the dynamic model. The very-cheap model only allows vectorization if the vector

 code would entirely replace the scalar code that is being vectorized. For example, if

 each iteration of a vectorized loop would only be able to handle exactly four

 iterations of the scalar loop, the very-cheap model would only allow vectorization if

 the scalar iteration count is known to be a multiple of four.

 The default cost model depends on other optimization flags and is either dynamic or

 cheap.

 -fsimd-cost-model=model

 Alter the cost model used for vectorization of loops marked with the OpenMP simd

 directive. The model argument should be one of unlimited, dynamic, cheap. All values

 of model have the same meaning as described in -fvect-cost-model and by default a cost

 model defined with -fvect-cost-model is used.

 -ftree-vrp

 Perform Value Range Propagation on trees. This is similar to the constant propagation

 pass, but instead of values, ranges of values are propagated. This allows the

 optimizers to remove unnecessary range checks like array bound checks and null pointer

 checks. This is enabled by default at -O2 and higher. Null pointer check elimination

 is only done if -fdelete-null-pointer-checks is enabled.

 -fsplit-paths

 Split paths leading to loop backedges. This can improve dead code elimination and

 common subexpression elimination. This is enabled by default at -O3 and above.

 -fsplit-ivs-in-unroller

 Enables expression of values of induction variables in later iterations of the

 unrolled loop using the value in the first iteration. This breaks long dependency

 chains, thus improving efficiency of the scheduling passes.

 A combination of -fweb and CSE is often sufficient to obtain the same effect.

 However, that is not reliable in cases where the loop body is more complicated than a

 single basic block. It also does not work at all on some architectures due to

 restrictions in the CSE pass.

 This optimization is enabled by default.

 -fvariable-expansion-in-unroller

 With this option, the compiler creates multiple copies of some local variables when

 unrolling a loop, which can result in superior code. Page 201/576

 This optimization is enabled by default for PowerPC targets, but disabled by default

 otherwise.

 -fpartial-inlining

 Inline parts of functions. This option has any effect only when inlining itself is

 turned on by the -finline-functions or -finline-small-functions options.

 Enabled at levels -O2, -O3, -Os.

 -fpredictive-commoning

 Perform predictive commoning optimization, i.e., reusing computations (especially

 memory loads and stores) performed in previous iterations of loops.

 This option is enabled at level -O3. It is also enabled by -fprofile-use and

 -fauto-profile.

 -fprefetch-loop-arrays

 If supported by the target machine, generate instructions to prefetch memory to

 improve the performance of loops that access large arrays.

 This option may generate better or worse code; results are highly dependent on the

 structure of loops within the source code.

 Disabled at level -Os.

 -fno-printf-return-value

 Do not substitute constants for known return value of formatted output functions such

 as "sprintf", "snprintf", "vsprintf", and "vsnprintf" (but not "printf" of "fprintf").

 This transformation allows GCC to optimize or even eliminate branches based on the

 known return value of these functions called with arguments that are either constant,

 or whose values are known to be in a range that makes determining the exact return

 value possible. For example, when -fprintf-return-value is in effect, both the branch

 and the body of the "if" statement (but not the call to "snprint") can be optimized

 away when "i" is a 32-bit or smaller integer because the return value is guaranteed to

 be at most 8.

 char buf[9];

 if (snprintf (buf, "%08x", i) >= sizeof buf)

 ...

 The -fprintf-return-value option relies on other optimizations and yields best results

 with -O2 and above. It works in tandem with the -Wformat-overflow and

 -Wformat-truncation options. The -fprintf-return-value option is enabled by default. Page 202/576

 -fno-peephole

 -fno-peephole2

 Disable any machine-specific peephole optimizations. The difference between

 -fno-peephole and -fno-peephole2 is in how they are implemented in the compiler; some

 targets use one, some use the other, a few use both.

 -fpeephole is enabled by default. -fpeephole2 enabled at levels -O2, -O3, -Os.

 -fno-guess-branch-probability

 Do not guess branch probabilities using heuristics.

 GCC uses heuristics to guess branch probabilities if they are not provided by

 profiling feedback (-fprofile-arcs). These heuristics are based on the control flow

 graph. If some branch probabilities are specified by "__builtin_expect", then the

 heuristics are used to guess branch probabilities for the rest of the control flow

 graph, taking the "__builtin_expect" info into account. The interactions between the

 heuristics and "__builtin_expect" can be complex, and in some cases, it may be useful

 to disable the heuristics so that the effects of "__builtin_expect" are easier to

 understand.

 It is also possible to specify expected probability of the expression with

 "__builtin_expect_with_probability" built-in function.

 The default is -fguess-branch-probability at levels -O, -O2, -O3, -Os.

 -freorder-blocks

 Reorder basic blocks in the compiled function in order to reduce number of taken

 branches and improve code locality.

 Enabled at levels -O, -O2, -O3, -Os.

 -freorder-blocks-algorithm=algorithm

 Use the specified algorithm for basic block reordering. The algorithm argument can be

 simple, which does not increase code size (except sometimes due to secondary effects

 like alignment), or stc, the "software trace cache" algorithm, which tries to put all

 often executed code together, minimizing the number of branches executed by making

 extra copies of code.

 The default is simple at levels -O, -Os, and stc at levels -O2, -O3.

 -freorder-blocks-and-partition

 In addition to reordering basic blocks in the compiled function, in order to reduce

 number of taken branches, partitions hot and cold basic blocks into separate sections Page 203/576

 of the assembly and .o files, to improve paging and cache locality performance.

 This optimization is automatically turned off in the presence of exception handling or

 unwind tables (on targets using setjump/longjump or target specific scheme), for

 linkonce sections, for functions with a user-defined section attribute and on any

 architecture that does not support named sections. When -fsplit-stack is used this

 option is not enabled by default (to avoid linker errors), but may be enabled

 explicitly (if using a working linker).

 Enabled for x86 at levels -O2, -O3, -Os.

 -freorder-functions

 Reorder functions in the object file in order to improve code locality. This is

 implemented by using special subsections ".text.hot" for most frequently executed

 functions and ".text.unlikely" for unlikely executed functions. Reordering is done by

 the linker so object file format must support named sections and linker must place

 them in a reasonable way.

 This option isn't effective unless you either provide profile feedback (see

 -fprofile-arcs for details) or manually annotate functions with "hot" or "cold"

 attributes.

 Enabled at levels -O2, -O3, -Os.

 -fstrict-aliasing

 Allow the compiler to assume the strictest aliasing rules applicable to the language

 being compiled. For C (and C++), this activates optimizations based on the type of

 expressions. In particular, an object of one type is assumed never to reside at the

 same address as an object of a different type, unless the types are almost the same.

 For example, an "unsigned int" can alias an "int", but not a "void*" or a "double". A

 character type may alias any other type.

 Pay special attention to code like this:

 union a_union {

 int i;

 double d;

 };

 int f() {

 union a_union t;

 t.d = 3.0; Page 204/576

 return t.i;

 }

 The practice of reading from a different union member than the one most recently

 written to (called "type-punning") is common. Even with -fstrict-aliasing, type-

 punning is allowed, provided the memory is accessed through the union type. So, the

 code above works as expected. However, this code might not:

 int f() {

 union a_union t;

 int* ip;

 t.d = 3.0;

 ip = &t.i;

 return *ip;

 }

 Similarly, access by taking the address, casting the resulting pointer and

 dereferencing the result has undefined behavior, even if the cast uses a union type,

 e.g.:

 int f() {

 double d = 3.0;

 return ((union a_union *) &d)->i;

 }

 The -fstrict-aliasing option is enabled at levels -O2, -O3, -Os.

 -falign-functions

 -falign-functions=n

 -falign-functions=n:m

 -falign-functions=n:m:n2

 -falign-functions=n:m:n2:m2

 Align the start of functions to the next power-of-two greater than or equal to n,

 skipping up to m-1 bytes. This ensures that at least the first m bytes of the

 function can be fetched by the CPU without crossing an n-byte alignment boundary.

 If m is not specified, it defaults to n.

 Examples: -falign-functions=32 aligns functions to the next 32-byte boundary,

 -falign-functions=24 aligns to the next 32-byte boundary only if this can be done by

 skipping 23 bytes or less, -falign-functions=32:7 aligns to the next 32-byte boundary Page 205/576

 only if this can be done by skipping 6 bytes or less.

 The second pair of n2:m2 values allows you to specify a secondary alignment:

 -falign-functions=64:7:32:3 aligns to the next 64-byte boundary if this can be done by

 skipping 6 bytes or less, otherwise aligns to the next 32-byte boundary if this can be

 done by skipping 2 bytes or less. If m2 is not specified, it defaults to n2.

 Some assemblers only support this flag when n is a power of two; in that case, it is

 rounded up.

 -fno-align-functions and -falign-functions=1 are equivalent and mean that functions

 are not aligned.

 If n is not specified or is zero, use a machine-dependent default. The maximum

 allowed n option value is 65536.

 Enabled at levels -O2, -O3.

 -flimit-function-alignment

 If this option is enabled, the compiler tries to avoid unnecessarily overaligning

 functions. It attempts to instruct the assembler to align by the amount specified by

 -falign-functions, but not to skip more bytes than the size of the function.

 -falign-labels

 -falign-labels=n

 -falign-labels=n:m

 -falign-labels=n:m:n2

 -falign-labels=n:m:n2:m2

 Align all branch targets to a power-of-two boundary.

 Parameters of this option are analogous to the -falign-functions option.

 -fno-align-labels and -falign-labels=1 are equivalent and mean that labels are not

 aligned.

 If -falign-loops or -falign-jumps are applicable and are greater than this value, then

 their values are used instead.

 If n is not specified or is zero, use a machine-dependent default which is very likely

 to be 1, meaning no alignment. The maximum allowed n option value is 65536.

 Enabled at levels -O2, -O3.

 -falign-loops

 -falign-loops=n

 -falign-loops=n:m Page 206/576

 -falign-loops=n:m:n2

 -falign-loops=n:m:n2:m2

 Align loops to a power-of-two boundary. If the loops are executed many times, this

 makes up for any execution of the dummy padding instructions.

 If -falign-labels is greater than this value, then its value is used instead.

 Parameters of this option are analogous to the -falign-functions option.

 -fno-align-loops and -falign-loops=1 are equivalent and mean that loops are not

 aligned. The maximum allowed n option value is 65536.

 If n is not specified or is zero, use a machine-dependent default.

 Enabled at levels -O2, -O3.

 -falign-jumps

 -falign-jumps=n

 -falign-jumps=n:m

 -falign-jumps=n:m:n2

 -falign-jumps=n:m:n2:m2

 Align branch targets to a power-of-two boundary, for branch targets where the targets

 can only be reached by jumping. In this case, no dummy operations need be executed.

 If -falign-labels is greater than this value, then its value is used instead.

 Parameters of this option are analogous to the -falign-functions option.

 -fno-align-jumps and -falign-jumps=1 are equivalent and mean that loops are not

 aligned.

 If n is not specified or is zero, use a machine-dependent default. The maximum

 allowed n option value is 65536.

 Enabled at levels -O2, -O3.

 -fno-allocation-dce

 Do not remove unused C++ allocations in dead code elimination.

 -fallow-store-data-races

 Allow the compiler to perform optimizations that may introduce new data races on

 stores, without proving that the variable cannot be concurrently accessed by other

 threads. Does not affect optimization of local data. It is safe to use this option

 if it is known that global data will not be accessed by multiple threads.

 Examples of optimizations enabled by -fallow-store-data-races include hoisting or if-

 conversions that may cause a value that was already in memory to be re-written with Page 207/576

 that same value. Such re-writing is safe in a single threaded context but may be

 unsafe in a multi-threaded context. Note that on some processors, if-conversions may

 be required in order to enable vectorization.

 Enabled at level -Ofast.

 -funit-at-a-time

 This option is left for compatibility reasons. -funit-at-a-time has no effect, while

 -fno-unit-at-a-time implies -fno-toplevel-reorder and -fno-section-anchors.

 Enabled by default.

 -fno-toplevel-reorder

 Do not reorder top-level functions, variables, and "asm" statements. Output them in

 the same order that they appear in the input file. When this option is used,

 unreferenced static variables are not removed. This option is intended to support

 existing code that relies on a particular ordering. For new code, it is better to use

 attributes when possible.

 -ftoplevel-reorder is the default at -O1 and higher, and also at -O0 if

 -fsection-anchors is explicitly requested. Additionally -fno-toplevel-reorder implies

 -fno-section-anchors.

 -fweb

 Constructs webs as commonly used for register allocation purposes and assign each web

 individual pseudo register. This allows the register allocation pass to operate on

 pseudos directly, but also strengthens several other optimization passes, such as CSE,

 loop optimizer and trivial dead code remover. It can, however, make debugging

 impossible, since variables no longer stay in a "home register".

 Enabled by default with -funroll-loops.

 -fwhole-program

 Assume that the current compilation unit represents the whole program being compiled.

 All public functions and variables with the exception of "main" and those merged by

 attribute "externally_visible" become static functions and in effect are optimized

 more aggressively by interprocedural optimizers.

 This option should not be used in combination with -flto. Instead relying on a linker

 plugin should provide safer and more precise information.

 -flto[=n]

 This option runs the standard link-time optimizer. When invoked with source code, it Page 208/576

 generates GIMPLE (one of GCC's internal representations) and writes it to special ELF

 sections in the object file. When the object files are linked together, all the

 function bodies are read from these ELF sections and instantiated as if they had been

 part of the same translation unit.

 To use the link-time optimizer, -flto and optimization options should be specified at

 compile time and during the final link. It is recommended that you compile all the

 files participating in the same link with the same options and also specify those

 options at link time. For example:

 gcc -c -O2 -flto foo.c

 gcc -c -O2 -flto bar.c

 gcc -o myprog -flto -O2 foo.o bar.o

 The first two invocations to GCC save a bytecode representation of GIMPLE into special

 ELF sections inside foo.o and bar.o. The final invocation reads the GIMPLE bytecode

 from foo.o and bar.o, merges the two files into a single internal image, and compiles

 the result as usual. Since both foo.o and bar.o are merged into a single image, this

 causes all the interprocedural analyses and optimizations in GCC to work across the

 two files as if they were a single one. This means, for example, that the inliner is

 able to inline functions in bar.o into functions in foo.o and vice-versa.

 Another (simpler) way to enable link-time optimization is:

 gcc -o myprog -flto -O2 foo.c bar.c

 The above generates bytecode for foo.c and bar.c, merges them together into a single

 GIMPLE representation and optimizes them as usual to produce myprog.

 The important thing to keep in mind is that to enable link-time optimizations you need

 to use the GCC driver to perform the link step. GCC automatically performs link-time

 optimization if any of the objects involved were compiled with the -flto command-line

 option. You can always override the automatic decision to do link-time optimization

 by passing -fno-lto to the link command.

 To make whole program optimization effective, it is necessary to make certain whole

 program assumptions. The compiler needs to know what functions and variables can be

 accessed by libraries and runtime outside of the link-time optimized unit. When

 supported by the linker, the linker plugin (see -fuse-linker-plugin) passes

 information to the compiler about used and externally visible symbols. When the

 linker plugin is not available, -fwhole-program should be used to allow the compiler Page 209/576

 to make these assumptions, which leads to more aggressive optimization decisions.

 When a file is compiled with -flto without -fuse-linker-plugin, the generated object

 file is larger than a regular object file because it contains GIMPLE bytecodes and the

 usual final code (see -ffat-lto-objects). This means that object files with LTO

 information can be linked as normal object files; if -fno-lto is passed to the linker,

 no interprocedural optimizations are applied. Note that when -fno-fat-lto-objects is

 enabled the compile stage is faster but you cannot perform a regular, non-LTO link on

 them.

 When producing the final binary, GCC only applies link-time optimizations to those

 files that contain bytecode. Therefore, you can mix and match object files and

 libraries with GIMPLE bytecodes and final object code. GCC automatically selects

 which files to optimize in LTO mode and which files to link without further

 processing.

 Generally, options specified at link time override those specified at compile time,

 although in some cases GCC attempts to infer link-time options from the settings used

 to compile the input files.

 If you do not specify an optimization level option -O at link time, then GCC uses the

 highest optimization level used when compiling the object files. Note that it is

 generally ineffective to specify an optimization level option only at link time and

 not at compile time, for two reasons. First, compiling without optimization

 suppresses compiler passes that gather information needed for effective optimization

 at link time. Second, some early optimization passes can be performed only at compile

 time and not at link time.

 There are some code generation flags preserved by GCC when generating bytecodes, as

 they need to be used during the final link. Currently, the following options and

 their settings are taken from the first object file that explicitly specifies them:

 -fcommon, -fexceptions, -fnon-call-exceptions, -fgnu-tm and all the -m target flags.

 The following options -fPIC, -fpic, -fpie and -fPIE are combined based on the

 following scheme:

 B<-fPIC> + B<-fpic> = B<-fpic>

 B<-fPIC> + B<-fno-pic> = B<-fno-pic>

 B<-fpic/-fPIC> + (no option) = (no option)

 B<-fPIC> + B<-fPIE> = B<-fPIE> Page 210/576

 B<-fpic> + B<-fPIE> = B<-fpie>

 B<-fPIC/-fpic> + B<-fpie> = B<-fpie>

 Certain ABI-changing flags are required to match in all compilation units, and trying

 to override this at link time with a conflicting value is ignored. This includes

 options such as -freg-struct-return and -fpcc-struct-return.

 Other options such as -ffp-contract, -fno-strict-overflow, -fwrapv, -fno-trapv or

 -fno-strict-aliasing are passed through to the link stage and merged conservatively

 for conflicting translation units. Specifically -fno-strict-overflow, -fwrapv and

 -fno-trapv take precedence; and for example -ffp-contract=off takes precedence over

 -ffp-contract=fast. You can override them at link time.

 Diagnostic options such as -Wstringop-overflow are passed through to the link stage

 and their setting matches that of the compile-step at function granularity. Note that

 this matters only for diagnostics emitted during optimization. Note that code

 transforms such as inlining can lead to warnings being enabled or disabled for regions

 if code not consistent with the setting at compile time.

 When you need to pass options to the assembler via -Wa or -Xassembler make sure to

 either compile such translation units with -fno-lto or consistently use the same

 assembler options on all translation units. You can alternatively also specify

 assembler options at LTO link time.

 To enable debug info generation you need to supply -g at compile time. If any of the

 input files at link time were built with debug info generation enabled the link will

 enable debug info generation as well. Any elaborate debug info settings like the

 dwarf level -gdwarf-5 need to be explicitly repeated at the linker command line and

 mixing different settings in different translation units is discouraged.

 If LTO encounters objects with C linkage declared with incompatible types in separate

 translation units to be linked together (undefined behavior according to ISO C99

 6.2.7), a non-fatal diagnostic may be issued. The behavior is still undefined at run

 time. Similar diagnostics may be raised for other languages.

 Another feature of LTO is that it is possible to apply interprocedural optimizations

 on files written in different languages:

 gcc -c -flto foo.c

 g++ -c -flto bar.cc

 gfortran -c -flto baz.f90 Page 211/576

 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran

 Notice that the final link is done with g++ to get the C++ runtime libraries and

 -lgfortran is added to get the Fortran runtime libraries. In general, when mixing

 languages in LTO mode, you should use the same link command options as when mixing

 languages in a regular (non-LTO) compilation.

 If object files containing GIMPLE bytecode are stored in a library archive, say

 libfoo.a, it is possible to extract and use them in an LTO link if you are using a

 linker with plugin support. To create static libraries suitable for LTO, use gcc-ar

 and gcc-ranlib instead of ar and ranlib; to show the symbols of object files with

 GIMPLE bytecode, use gcc-nm. Those commands require that ar, ranlib and nm have been

 compiled with plugin support. At link time, use the flag -fuse-linker-plugin to

 ensure that the library participates in the LTO optimization process:

 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo

 With the linker plugin enabled, the linker extracts the needed GIMPLE files from

 libfoo.a and passes them on to the running GCC to make them part of the aggregated

 GIMPLE image to be optimized.

 If you are not using a linker with plugin support and/or do not enable the linker

 plugin, then the objects inside libfoo.a are extracted and linked as usual, but they

 do not participate in the LTO optimization process. In order to make a static library

 suitable for both LTO optimization and usual linkage, compile its object files with

 -flto -ffat-lto-objects.

 Link-time optimizations do not require the presence of the whole program to operate.

 If the program does not require any symbols to be exported, it is possible to combine

 -flto and -fwhole-program to allow the interprocedural optimizers to use more

 aggressive assumptions which may lead to improved optimization opportunities. Use of

 -fwhole-program is not needed when linker plugin is active (see -fuse-linker-plugin).

 The current implementation of LTO makes no attempt to generate bytecode that is

 portable between different types of hosts. The bytecode files are versioned and there

 is a strict version check, so bytecode files generated in one version of GCC do not

 work with an older or newer version of GCC.

 Link-time optimization does not work well with generation of debugging information on

 systems other than those using a combination of ELF and DWARF.

 If you specify the optional n, the optimization and code generation done at link time Page 212/576

 is executed in parallel using n parallel jobs by utilizing an installed make program.

 The environment variable MAKE may be used to override the program used.

 You can also specify -flto=jobserver to use GNU make's job server mode to determine

 the number of parallel jobs. This is useful when the Makefile calling GCC is already

 executing in parallel. You must prepend a + to the command recipe in the parent

 Makefile for this to work. This option likely only works if MAKE is GNU make. Even

 without the option value, GCC tries to automatically detect a running GNU make's job

 server.

 Use -flto=auto to use GNU make's job server, if available, or otherwise fall back to

 autodetection of the number of CPU threads present in your system.

 -flto-partition=alg

 Specify the partitioning algorithm used by the link-time optimizer. The value is

 either 1to1 to specify a partitioning mirroring the original source files or balanced

 to specify partitioning into equally sized chunks (whenever possible) or max to create

 new partition for every symbol where possible. Specifying none as an algorithm

 disables partitioning and streaming completely. The default value is balanced. While

 1to1 can be used as an workaround for various code ordering issues, the max

 partitioning is intended for internal testing only. The value one specifies that

 exactly one partition should be used while the value none bypasses partitioning and

 executes the link-time optimization step directly from the WPA phase.

 -flto-compression-level=n

 This option specifies the level of compression used for intermediate language written

 to LTO object files, and is only meaningful in conjunction with LTO mode (-flto). GCC

 currently supports two LTO compression algorithms. For zstd, valid values are 0 (no

 compression) to 19 (maximum compression), while zlib supports values from 0 to 9.

 Values outside this range are clamped to either minimum or maximum of the supported

 values. If the option is not given, a default balanced compression setting is used.

 -fuse-linker-plugin

 Enables the use of a linker plugin during link-time optimization. This option relies

 on plugin support in the linker, which is available in gold or in GNU ld 2.21 or

 newer.

 This option enables the extraction of object files with GIMPLE bytecode out of library

 archives. This improves the quality of optimization by exposing more code to the link- Page 213/576

 time optimizer. This information specifies what symbols can be accessed externally

 (by non-LTO object or during dynamic linking). Resulting code quality improvements on

 binaries (and shared libraries that use hidden visibility) are similar to

 -fwhole-program. See -flto for a description of the effect of this flag and how to

 use it.

 This option is enabled by default when LTO support in GCC is enabled and GCC was

 configured for use with a linker supporting plugins (GNU ld 2.21 or newer or gold).

 -ffat-lto-objects

 Fat LTO objects are object files that contain both the intermediate language and the

 object code. This makes them usable for both LTO linking and normal linking. This

 option is effective only when compiling with -flto and is ignored at link time.

 -fno-fat-lto-objects improves compilation time over plain LTO, but requires the

 complete toolchain to be aware of LTO. It requires a linker with linker plugin support

 for basic functionality. Additionally, nm, ar and ranlib need to support linker

 plugins to allow a full-featured build environment (capable of building static

 libraries etc). GCC provides the gcc-ar, gcc-nm, gcc-ranlib wrappers to pass the

 right options to these tools. With non fat LTO makefiles need to be modified to use

 them.

 Note that modern binutils provide plugin auto-load mechanism. Installing the linker

 plugin into $libdir/bfd-plugins has the same effect as usage of the command wrappers

 (gcc-ar, gcc-nm and gcc-ranlib).

 The default is -fno-fat-lto-objects on targets with linker plugin support.

 -fcompare-elim

 After register allocation and post-register allocation instruction splitting, identify

 arithmetic instructions that compute processor flags similar to a comparison operation

 based on that arithmetic. If possible, eliminate the explicit comparison operation.

 This pass only applies to certain targets that cannot explicitly represent the

 comparison operation before register allocation is complete.

 Enabled at levels -O, -O2, -O3, -Os.

 -fcprop-registers

 After register allocation and post-register allocation instruction splitting, perform

 a copy-propagation pass to try to reduce scheduling dependencies and occasionally

 eliminate the copy. Page 214/576

 Enabled at levels -O, -O2, -O3, -Os.

 -fprofile-correction

 Profiles collected using an instrumented binary for multi-threaded programs may be

 inconsistent due to missed counter updates. When this option is specified, GCC uses

 heuristics to correct or smooth out such inconsistencies. By default, GCC emits an

 error message when an inconsistent profile is detected.

 This option is enabled by -fauto-profile.

 -fprofile-partial-training

 With "-fprofile-use" all portions of programs not executed during train run are

 optimized agressively for size rather than speed. In some cases it is not practical

 to train all possible hot paths in the program. (For example, program may contain

 functions specific for a given hardware and trianing may not cover all hardware

 configurations program is run on.) With "-fprofile-partial-training" profile feedback

 will be ignored for all functions not executed during the train run leading them to be

 optimized as if they were compiled without profile feedback. This leads to better

 performance when train run is not representative but also leads to significantly

 bigger code.

 -fprofile-use

 -fprofile-use=path

 Enable profile feedback-directed optimizations, and the following optimizations, many

 of which are generally profitable only with profile feedback available:

 -fbranch-probabilities -fprofile-values -funroll-loops -fpeel-loops -ftracer -fvpt

 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp -fpredictive-commoning

 -fsplit-loops -funswitch-loops -fgcse-after-reload -ftree-loop-vectorize

 -ftree-slp-vectorize -fvect-cost-model=dynamic -ftree-loop-distribute-patterns

 -fprofile-reorder-functions

 Before you can use this option, you must first generate profiling information.

 By default, GCC emits an error message if the feedback profiles do not match the

 source code. This error can be turned into a warning by using

 -Wno-error=coverage-mismatch. Note this may result in poorly optimized code.

 Additionally, by default, GCC also emits a warning message if the feedback profiles do

 not exist (see -Wmissing-profile).

 If path is specified, GCC looks at the path to find the profile feedback data files. Page 215/576

 See -fprofile-dir.

 -fauto-profile

 -fauto-profile=path

 Enable sampling-based feedback-directed optimizations, and the following

 optimizations, many of which are generally profitable only with profile feedback

 available:

 -fbranch-probabilities -fprofile-values -funroll-loops -fpeel-loops -ftracer -fvpt

 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp -fpredictive-commoning

 -fsplit-loops -funswitch-loops -fgcse-after-reload -ftree-loop-vectorize

 -ftree-slp-vectorize -fvect-cost-model=dynamic -ftree-loop-distribute-patterns

 -fprofile-correction

 path is the name of a file containing AutoFDO profile information. If omitted, it

 defaults to fbdata.afdo in the current directory.

 Producing an AutoFDO profile data file requires running your program with the perf

 utility on a supported GNU/Linux target system. For more information, see

 <https://perf.wiki.kernel.org/>.

 E.g.

 perf record -e br_inst_retired:near_taken -b -o perf.data \

 -- your_program

 Then use the create_gcov tool to convert the raw profile data to a format that can be

 used by GCC. You must also supply the unstripped binary for your program to this

 tool. See <https://github.com/google/autofdo>.

 E.g.

 create_gcov --binary=your_program.unstripped --profile=perf.data \

 --gcov=profile.afdo

 The following options control compiler behavior regarding floating-point arithmetic.

 These options trade off between speed and correctness. All must be specifically enabled.

 -ffloat-store

 Do not store floating-point variables in registers, and inhibit other options that

 might change whether a floating-point value is taken from a register or memory.

 This option prevents undesirable excess precision on machines such as the 68000 where

 the floating registers (of the 68881) keep more precision than a "double" is supposed

 to have. Similarly for the x86 architecture. For most programs, the excess precision Page 216/576

 does only good, but a few programs rely on the precise definition of IEEE floating

 point. Use -ffloat-store for such programs, after modifying them to store all

 pertinent intermediate computations into variables.

 -fexcess-precision=style

 This option allows further control over excess precision on machines where floating-

 point operations occur in a format with more precision or range than the IEEE standard

 and interchange floating-point types. By default, -fexcess-precision=fast is in

 effect; this means that operations may be carried out in a wider precision than the

 types specified in the source if that would result in faster code, and it is

 unpredictable when rounding to the types specified in the source code takes place.

 When compiling C, if -fexcess-precision=standard is specified then excess precision

 follows the rules specified in ISO C99; in particular, both casts and assignments

 cause values to be rounded to their semantic types (whereas -ffloat-store only affects

 assignments). This option is enabled by default for C if a strict conformance option

 such as -std=c99 is used. -ffast-math enables -fexcess-precision=fast by default

 regardless of whether a strict conformance option is used.

 -fexcess-precision=standard is not implemented for languages other than C. On the

 x86, it has no effect if -mfpmath=sse or -mfpmath=sse+387 is specified; in the former

 case, IEEE semantics apply without excess precision, and in the latter, rounding is

 unpredictable.

 -ffast-math

 Sets the options -fno-math-errno, -funsafe-math-optimizations, -ffinite-math-only,

 -fno-rounding-math, -fno-signaling-nans, -fcx-limited-range and

 -fexcess-precision=fast.

 This option causes the preprocessor macro "__FAST_MATH__" to be defined.

 This option is not turned on by any -O option besides -Ofast since it can result in

 incorrect output for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions. It may, however, yield faster code for

 programs that do not require the guarantees of these specifications.

 -fno-math-errno

 Do not set "errno" after calling math functions that are executed with a single

 instruction, e.g., "sqrt". A program that relies on IEEE exceptions for math error

 handling may want to use this flag for speed while maintaining IEEE arithmetic Page 217/576

 compatibility.

 This option is not turned on by any -O option since it can result in incorrect output

 for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions. It may, however, yield faster code for

 programs that do not require the guarantees of these specifications.

 The default is -fmath-errno.

 On Darwin systems, the math library never sets "errno". There is therefore no reason

 for the compiler to consider the possibility that it might, and -fno-math-errno is the

 default.

 -funsafe-math-optimizations

 Allow optimizations for floating-point arithmetic that (a) assume that arguments and

 results are valid and (b) may violate IEEE or ANSI standards. When used at link time,

 it may include libraries or startup files that change the default FPU control word or

 other similar optimizations.

 This option is not turned on by any -O option since it can result in incorrect output

 for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions. It may, however, yield faster code for

 programs that do not require the guarantees of these specifications. Enables

 -fno-signed-zeros, -fno-trapping-math, -fassociative-math and -freciprocal-math.

 The default is -fno-unsafe-math-optimizations.

 -fassociative-math

 Allow re-association of operands in series of floating-point operations. This

 violates the ISO C and C++ language standard by possibly changing computation result.

 NOTE: re-ordering may change the sign of zero as well as ignore NaNs and inhibit or

 create underflow or overflow (and thus cannot be used on code that relies on rounding

 behavior like "(x + 2**52) - 2**52". May also reorder floating-point comparisons and

 thus may not be used when ordered comparisons are required. This option requires that

 both -fno-signed-zeros and -fno-trapping-math be in effect. Moreover, it doesn't make

 much sense with -frounding-math. For Fortran the option is automatically enabled when

 both -fno-signed-zeros and -fno-trapping-math are in effect.

 The default is -fno-associative-math.

 -freciprocal-math

 Allow the reciprocal of a value to be used instead of dividing by the value if this Page 218/576

 enables optimizations. For example "x / y" can be replaced with "x * (1/y)", which is

 useful if "(1/y)" is subject to common subexpression elimination. Note that this

 loses precision and increases the number of flops operating on the value.

 The default is -fno-reciprocal-math.

 -ffinite-math-only

 Allow optimizations for floating-point arithmetic that assume that arguments and

 results are not NaNs or +-Infs.

 This option is not turned on by any -O option since it can result in incorrect output

 for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions. It may, however, yield faster code for

 programs that do not require the guarantees of these specifications.

 The default is -fno-finite-math-only.

 -fno-signed-zeros

 Allow optimizations for floating-point arithmetic that ignore the signedness of zero.

 IEEE arithmetic specifies the behavior of distinct +0.0 and -0.0 values, which then

 prohibits simplification of expressions such as x+0.0 or 0.0*x (even with

 -ffinite-math-only). This option implies that the sign of a zero result isn't

 significant.

 The default is -fsigned-zeros.

 -fno-trapping-math

 Compile code assuming that floating-point operations cannot generate user-visible

 traps. These traps include division by zero, overflow, underflow, inexact result and

 invalid operation. This option requires that -fno-signaling-nans be in effect.

 Setting this option may allow faster code if one relies on "non-stop" IEEE arithmetic,

 for example.

 This option should never be turned on by any -O option since it can result in

 incorrect output for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions.

 The default is -ftrapping-math.

 -frounding-math

 Disable transformations and optimizations that assume default floating-point rounding

 behavior. This is round-to-zero for all floating point to integer conversions, and

 round-to-nearest for all other arithmetic truncations. This option should be Page 219/576

 specified for programs that change the FP rounding mode dynamically, or that may be

 executed with a non-default rounding mode. This option disables constant folding of

 floating-point expressions at compile time (which may be affected by rounding mode)

 and arithmetic transformations that are unsafe in the presence of sign-dependent

 rounding modes.

 The default is -fno-rounding-math.

 This option is experimental and does not currently guarantee to disable all GCC

 optimizations that are affected by rounding mode. Future versions of GCC may provide

 finer control of this setting using C99's "FENV_ACCESS" pragma. This command-line

 option will be used to specify the default state for "FENV_ACCESS".

 -fsignaling-nans

 Compile code assuming that IEEE signaling NaNs may generate user-visible traps during

 floating-point operations. Setting this option disables optimizations that may change

 the number of exceptions visible with signaling NaNs. This option implies

 -ftrapping-math.

 This option causes the preprocessor macro "__SUPPORT_SNAN__" to be defined.

 The default is -fno-signaling-nans.

 This option is experimental and does not currently guarantee to disable all GCC

 optimizations that affect signaling NaN behavior.

 -fno-fp-int-builtin-inexact

 Do not allow the built-in functions "ceil", "floor", "round" and "trunc", and their

 "float" and "long double" variants, to generate code that raises the "inexact"

 floating-point exception for noninteger arguments. ISO C99 and C11 allow these

 functions to raise the "inexact" exception, but ISO/IEC TS 18661-1:2014, the C

 bindings to IEEE 754-2008, as integrated into ISO C2X, does not allow these functions

 to do so.

 The default is -ffp-int-builtin-inexact, allowing the exception to be raised, unless

 C2X or a later C standard is selected. This option does nothing unless

 -ftrapping-math is in effect.

 Even if -fno-fp-int-builtin-inexact is used, if the functions generate a call to a

 library function then the "inexact" exception may be raised if the library

 implementation does not follow TS 18661.

 -fsingle-precision-constant Page 220/576

 Treat floating-point constants as single precision instead of implicitly converting

 them to double-precision constants.

 -fcx-limited-range

 When enabled, this option states that a range reduction step is not needed when

 performing complex division. Also, there is no checking whether the result of a

 complex multiplication or division is "NaN + I*NaN", with an attempt to rescue the

 situation in that case. The default is -fno-cx-limited-range, but is enabled by

 -ffast-math.

 This option controls the default setting of the ISO C99 "CX_LIMITED_RANGE" pragma.

 Nevertheless, the option applies to all languages.

 -fcx-fortran-rules

 Complex multiplication and division follow Fortran rules. Range reduction is done as

 part of complex division, but there is no checking whether the result of a complex

 multiplication or division is "NaN + I*NaN", with an attempt to rescue the situation

 in that case.

 The default is -fno-cx-fortran-rules.

 The following options control optimizations that may improve performance, but are not

 enabled by any -O options. This section includes experimental options that may produce

 broken code.

 -fbranch-probabilities

 After running a program compiled with -fprofile-arcs, you can compile it a second time

 using -fbranch-probabilities, to improve optimizations based on the number of times

 each branch was taken. When a program compiled with -fprofile-arcs exits, it saves

 arc execution counts to a file called sourcename.gcda for each source file. The

 information in this data file is very dependent on the structure of the generated

 code, so you must use the same source code and the same optimization options for both

 compilations.

 With -fbranch-probabilities, GCC puts a REG_BR_PROB note on each JUMP_INSN and

 CALL_INSN. These can be used to improve optimization. Currently, they are only used

 in one place: in reorg.c, instead of guessing which path a branch is most likely to

 take, the REG_BR_PROB values are used to exactly determine which path is taken more

 often.

 Enabled by -fprofile-use and -fauto-profile. Page 221/576

 -fprofile-values

 If combined with -fprofile-arcs, it adds code so that some data about values of

 expressions in the program is gathered.

 With -fbranch-probabilities, it reads back the data gathered from profiling values of

 expressions for usage in optimizations.

 Enabled by -fprofile-generate, -fprofile-use, and -fauto-profile.

 -fprofile-reorder-functions

 Function reordering based on profile instrumentation collects first time of execution

 of a function and orders these functions in ascending order.

 Enabled with -fprofile-use.

 -fvpt

 If combined with -fprofile-arcs, this option instructs the compiler to add code to

 gather information about values of expressions.

 With -fbranch-probabilities, it reads back the data gathered and actually performs the

 optimizations based on them. Currently the optimizations include specialization of

 division operations using the knowledge about the value of the denominator.

 Enabled with -fprofile-use and -fauto-profile.

 -frename-registers

 Attempt to avoid false dependencies in scheduled code by making use of registers left

 over after register allocation. This optimization most benefits processors with lots

 of registers. Depending on the debug information format adopted by the target,

 however, it can make debugging impossible, since variables no longer stay in a "home

 register".

 Enabled by default with -funroll-loops.

 -fschedule-fusion

 Performs a target dependent pass over the instruction stream to schedule instructions

 of same type together because target machine can execute them more efficiently if they

 are adjacent to each other in the instruction flow.

 Enabled at levels -O2, -O3, -Os.

 -ftracer

 Perform tail duplication to enlarge superblock size. This transformation simplifies

 the control flow of the function allowing other optimizations to do a better job.

 Enabled by -fprofile-use and -fauto-profile. Page 222/576

 -funroll-loops

 Unroll loops whose number of iterations can be determined at compile time or upon

 entry to the loop. -funroll-loops implies -frerun-cse-after-loop, -fweb and

 -frename-registers. It also turns on complete loop peeling (i.e. complete removal of

 loops with a small constant number of iterations). This option makes code larger, and

 may or may not make it run faster.

 Enabled by -fprofile-use and -fauto-profile.

 -funroll-all-loops

 Unroll all loops, even if their number of iterations is uncertain when the loop is

 entered. This usually makes programs run more slowly. -funroll-all-loops implies the

 same options as -funroll-loops.

 -fpeel-loops

 Peels loops for which there is enough information that they do not roll much (from

 profile feedback or static analysis). It also turns on complete loop peeling (i.e.

 complete removal of loops with small constant number of iterations).

 Enabled by -O3, -fprofile-use, and -fauto-profile.

 -fmove-loop-invariants

 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at level

 -O1 and higher, except for -Og.

 -fsplit-loops

 Split a loop into two if it contains a condition that's always true for one side of

 the iteration space and false for the other.

 Enabled by -fprofile-use and -fauto-profile.

 -funswitch-loops

 Move branches with loop invariant conditions out of the loop, with duplicates of the

 loop on both branches (modified according to result of the condition).

 Enabled by -fprofile-use and -fauto-profile.

 -fversion-loops-for-strides

 If a loop iterates over an array with a variable stride, create another version of the

 loop that assumes the stride is always one. For example:

 for (int i = 0; i < n; ++i)

 x[i * stride] = ...;

 becomes: Page 223/576

 if (stride == 1)

 for (int i = 0; i < n; ++i)

 x[i] = ...;

 else

 for (int i = 0; i < n; ++i)

 x[i * stride] = ...;

 This is particularly useful for assumed-shape arrays in Fortran where (for example) it

 allows better vectorization assuming contiguous accesses. This flag is enabled by

 default at -O3. It is also enabled by -fprofile-use and -fauto-profile.

 -ffunction-sections

 -fdata-sections

 Place each function or data item into its own section in the output file if the target

 supports arbitrary sections. The name of the function or the name of the data item

 determines the section's name in the output file.

 Use these options on systems where the linker can perform optimizations to improve

 locality of reference in the instruction space. Most systems using the ELF object

 format have linkers with such optimizations. On AIX, the linker rearranges sections

 (CSECTs) based on the call graph. The performance impact varies.

 Together with a linker garbage collection (linker --gc-sections option) these options

 may lead to smaller statically-linked executables (after stripping).

 On ELF/DWARF systems these options do not degenerate the quality of the debug

 information. There could be issues with other object files/debug info formats.

 Only use these options when there are significant benefits from doing so. When you

 specify these options, the assembler and linker create larger object and executable

 files and are also slower. These options affect code generation. They prevent

 optimizations by the compiler and assembler using relative locations inside a

 translation unit since the locations are unknown until link time. An example of such

 an optimization is relaxing calls to short call instructions.

 -fstdarg-opt

 Optimize the prologue of variadic argument functions with respect to usage of those

 arguments.

 NOTE: In Ubuntu 14.10 and later versions, -fstack-protector-strong is enabled by

 default for C, C++, ObjC, ObjC++, if none of -fno-stack-protector, -nostdlib, nor Page 224/576

 -ffreestanding are found.

 -fsection-anchors

 Try to reduce the number of symbolic address calculations by using shared "anchor"

 symbols to address nearby objects. This transformation can help to reduce the number

 of GOT entries and GOT accesses on some targets.

 For example, the implementation of the following function "foo":

 static int a, b, c;

 int foo (void) { return a + b + c; }

 usually calculates the addresses of all three variables, but if you compile it with

 -fsection-anchors, it accesses the variables from a common anchor point instead. The

 effect is similar to the following pseudocode (which isn't valid C):

 int foo (void)

 {

 register int *xr = &x;

 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

 }

 Not all targets support this option.

 -fzero-call-used-regs=choice

 Zero call-used registers at function return to increase program security by either

 mitigating Return-Oriented Programming (ROP) attacks or preventing information leakage

 through registers.

 The possible values of choice are the same as for the "zero_call_used_regs" attribute.

 The default is skip.

 You can control this behavior for a specific function by using the function attribute

 "zero_call_used_regs".

 --param name=value

 In some places, GCC uses various constants to control the amount of optimization that

 is done. For example, GCC does not inline functions that contain more than a certain

 number of instructions. You can control some of these constants on the command line

 using the --param option.

 The names of specific parameters, and the meaning of the values, are tied to the

 internals of the compiler, and are subject to change without notice in future

 releases. Page 225/576

 In order to get minimal, maximal and default value of a parameter, one can use

 --help=param -Q options.

 In each case, the value is an integer. The following choices of name are recognized

 for all targets:

 predictable-branch-outcome

 When branch is predicted to be taken with probability lower than this threshold

 (in percent), then it is considered well predictable.

 max-rtl-if-conversion-insns

 RTL if-conversion tries to remove conditional branches around a block and replace

 them with conditionally executed instructions. This parameter gives the maximum

 number of instructions in a block which should be considered for if-conversion.

 The compiler will also use other heuristics to decide whether if-conversion is

 likely to be profitable.

 max-rtl-if-conversion-predictable-cost

 RTL if-conversion will try to remove conditional branches around a block and

 replace them with conditionally executed instructions. These parameters give the

 maximum permissible cost for the sequence that would be generated by if-conversion

 depending on whether the branch is statically determined to be predictable or not.

 The units for this parameter are the same as those for the GCC internal seq_cost

 metric. The compiler will try to provide a reasonable default for this parameter

 using the BRANCH_COST target macro.

 max-crossjump-edges

 The maximum number of incoming edges to consider for cross-jumping. The algorithm

 used by -fcrossjumping is O(N^2) in the number of edges incoming to each block.

 Increasing values mean more aggressive optimization, making the compilation time

 increase with probably small improvement in executable size.

 min-crossjump-insns

 The minimum number of instructions that must be matched at the end of two blocks

 before cross-jumping is performed on them. This value is ignored in the case

 where all instructions in the block being cross-jumped from are matched.

 max-grow-copy-bb-insns

 The maximum code size expansion factor when copying basic blocks instead of

 jumping. The expansion is relative to a jump instruction. Page 226/576

 max-goto-duplication-insns

 The maximum number of instructions to duplicate to a block that jumps to a

 computed goto. To avoid O(N^2) behavior in a number of passes, GCC factors

 computed gotos early in the compilation process, and unfactors them as late as

 possible. Only computed jumps at the end of a basic blocks with no more than max-

 goto-duplication-insns are unfactored.

 max-delay-slot-insn-search

 The maximum number of instructions to consider when looking for an instruction to

 fill a delay slot. If more than this arbitrary number of instructions are

 searched, the time savings from filling the delay slot are minimal, so stop

 searching. Increasing values mean more aggressive optimization, making the

 compilation time increase with probably small improvement in execution time.

 max-delay-slot-live-search

 When trying to fill delay slots, the maximum number of instructions to consider

 when searching for a block with valid live register information. Increasing this

 arbitrarily chosen value means more aggressive optimization, increasing the

 compilation time. This parameter should be removed when the delay slot code is

 rewritten to maintain the control-flow graph.

 max-gcse-memory

 The approximate maximum amount of memory in "kB" that can be allocated in order to

 perform the global common subexpression elimination optimization. If more memory

 than specified is required, the optimization is not done.

 max-gcse-insertion-ratio

 If the ratio of expression insertions to deletions is larger than this value for

 any expression, then RTL PRE inserts or removes the expression and thus leaves

 partially redundant computations in the instruction stream.

 max-pending-list-length

 The maximum number of pending dependencies scheduling allows before flushing the

 current state and starting over. Large functions with few branches or calls can

 create excessively large lists which needlessly consume memory and resources.

 max-modulo-backtrack-attempts

 The maximum number of backtrack attempts the scheduler should make when modulo

 scheduling a loop. Larger values can exponentially increase compilation time. Page 227/576

 max-inline-insns-single

 Several parameters control the tree inliner used in GCC. This number sets the

 maximum number of instructions (counted in GCC's internal representation) in a

 single function that the tree inliner considers for inlining. This only affects

 functions declared inline and methods implemented in a class declaration (C++).

 max-inline-insns-auto

 When you use -finline-functions (included in -O3), a lot of functions that would

 otherwise not be considered for inlining by the compiler are investigated. To

 those functions, a different (more restrictive) limit compared to functions

 declared inline can be applied (--param max-inline-insns-auto).

 max-inline-insns-small

 This is bound applied to calls which are considered relevant with

 -finline-small-functions.

 max-inline-insns-size

 This is bound applied to calls which are optimized for size. Small growth may be

 desirable to anticipate optimization oppurtunities exposed by inlining.

 uninlined-function-insns

 Number of instructions accounted by inliner for function overhead such as function

 prologue and epilogue.

 uninlined-function-time

 Extra time accounted by inliner for function overhead such as time needed to

 execute function prologue and epilogue

 inline-heuristics-hint-percent

 The scale (in percents) applied to inline-insns-single, inline-insns-single-O2,

 inline-insns-auto when inline heuristics hints that inlining is very profitable

 (will enable later optimizations).

 uninlined-thunk-insns

 uninlined-thunk-time

 Same as --param uninlined-function-insns and --param uninlined-function-time but

 applied to function thunks

 inline-min-speedup

 When estimated performance improvement of caller + callee runtime exceeds this

 threshold (in percent), the function can be inlined regardless of the limit on Page 228/576

 --param max-inline-insns-single and --param max-inline-insns-auto.

 large-function-insns

 The limit specifying really large functions. For functions larger than this limit

 after inlining, inlining is constrained by --param large-function-growth. This

 parameter is useful primarily to avoid extreme compilation time caused by non-

 linear algorithms used by the back end.

 large-function-growth

 Specifies maximal growth of large function caused by inlining in percents. For

 example, parameter value 100 limits large function growth to 2.0 times the

 original size.

 large-unit-insns

 The limit specifying large translation unit. Growth caused by inlining of units

 larger than this limit is limited by --param inline-unit-growth. For small units

 this might be too tight. For example, consider a unit consisting of function A

 that is inline and B that just calls A three times. If B is small relative to A,

 the growth of unit is 300\% and yet such inlining is very sane. For very large

 units consisting of small inlineable functions, however, the overall unit growth

 limit is needed to avoid exponential explosion of code size. Thus for smaller

 units, the size is increased to --param large-unit-insns before applying --param

 inline-unit-growth.

 lazy-modules

 Maximum number of concurrently open C++ module files when lazy loading.

 inline-unit-growth

 Specifies maximal overall growth of the compilation unit caused by inlining. For

 example, parameter value 20 limits unit growth to 1.2 times the original size.

 Cold functions (either marked cold via an attribute or by profile feedback) are

 not accounted into the unit size.

 ipa-cp-unit-growth

 Specifies maximal overall growth of the compilation unit caused by interprocedural

 constant propagation. For example, parameter value 10 limits unit growth to 1.1

 times the original size.

 ipa-cp-large-unit-insns

 The size of translation unit that IPA-CP pass considers large. Page 229/576

 large-stack-frame

 The limit specifying large stack frames. While inlining the algorithm is trying

 to not grow past this limit too much.

 large-stack-frame-growth

 Specifies maximal growth of large stack frames caused by inlining in percents.

 For example, parameter value 1000 limits large stack frame growth to 11 times the

 original size.

 max-inline-insns-recursive

 max-inline-insns-recursive-auto

 Specifies the maximum number of instructions an out-of-line copy of a self-

 recursive inline function can grow into by performing recursive inlining.

 --param max-inline-insns-recursive applies to functions declared inline. For

 functions not declared inline, recursive inlining happens only when

 -finline-functions (included in -O3) is enabled; --param max-inline-insns-

 recursive-auto applies instead.

 max-inline-recursive-depth

 max-inline-recursive-depth-auto

 Specifies the maximum recursion depth used for recursive inlining.

 --param max-inline-recursive-depth applies to functions declared inline. For

 functions not declared inline, recursive inlining happens only when

 -finline-functions (included in -O3) is enabled; --param max-inline-recursive-

 depth-auto applies instead.

 min-inline-recursive-probability

 Recursive inlining is profitable only for function having deep recursion in

 average and can hurt for function having little recursion depth by increasing the

 prologue size or complexity of function body to other optimizers.

 When profile feedback is available (see -fprofile-generate) the actual recursion

 depth can be guessed from the probability that function recurses via a given call

 expression. This parameter limits inlining only to call expressions whose

 probability exceeds the given threshold (in percents).

 early-inlining-insns

 Specify growth that the early inliner can make. In effect it increases the amount

 of inlining for code having a large abstraction penalty. Page 230/576

 max-early-inliner-iterations

 Limit of iterations of the early inliner. This basically bounds the number of

 nested indirect calls the early inliner can resolve. Deeper chains are still

 handled by late inlining.

 comdat-sharing-probability

 Probability (in percent) that C++ inline function with comdat visibility are

 shared across multiple compilation units.

 modref-max-bases

 modref-max-refs

 modref-max-accesses

 Specifies the maximal number of base pointers, references and accesses stored for

 a single function by mod/ref analysis.

 modref-max-tests

 Specifies the maxmal number of tests alias oracle can perform to disambiguate

 memory locations using the mod/ref information. This parameter ought to be bigger

 than --param modref-max-bases and --param modref-max-refs.

 modref-max-depth

 Specifies the maximum depth of DFS walk used by modref escape analysis. Setting

 to 0 disables the analysis completely.

 modref-max-escape-points

 Specifies the maximum number of escape points tracked by modref per SSA-name.

 profile-func-internal-id

 A parameter to control whether to use function internal id in profile database

 lookup. If the value is 0, the compiler uses an id that is based on function

 assembler name and filename, which makes old profile data more tolerant to source

 changes such as function reordering etc.

 min-vect-loop-bound

 The minimum number of iterations under which loops are not vectorized when

 -ftree-vectorize is used. The number of iterations after vectorization needs to

 be greater than the value specified by this option to allow vectorization.

 gcse-cost-distance-ratio

 Scaling factor in calculation of maximum distance an expression can be moved by

 GCSE optimizations. This is currently supported only in the code hoisting pass. Page 231/576

 The bigger the ratio, the more aggressive code hoisting is with simple

 expressions, i.e., the expressions that have cost less than gcse-unrestricted-

 cost. Specifying 0 disables hoisting of simple expressions.

 gcse-unrestricted-cost

 Cost, roughly measured as the cost of a single typical machine instruction, at

 which GCSE optimizations do not constrain the distance an expression can travel.

 This is currently supported only in the code hoisting pass. The lesser the cost,

 the more aggressive code hoisting is. Specifying 0 allows all expressions to

 travel unrestricted distances.

 max-hoist-depth

 The depth of search in the dominator tree for expressions to hoist. This is used

 to avoid quadratic behavior in hoisting algorithm. The value of 0 does not limit

 on the search, but may slow down compilation of huge functions.

 max-tail-merge-comparisons

 The maximum amount of similar bbs to compare a bb with. This is used to avoid

 quadratic behavior in tree tail merging.

 max-tail-merge-iterations

 The maximum amount of iterations of the pass over the function. This is used to

 limit compilation time in tree tail merging.

 store-merging-allow-unaligned

 Allow the store merging pass to introduce unaligned stores if it is legal to do

 so.

 max-stores-to-merge

 The maximum number of stores to attempt to merge into wider stores in the store

 merging pass.

 max-store-chains-to-track

 The maximum number of store chains to track at the same time in the attempt to

 merge them into wider stores in the store merging pass.

 max-stores-to-track

 The maximum number of stores to track at the same time in the attemt to to merge

 them into wider stores in the store merging pass.

 max-unrolled-insns

 The maximum number of instructions that a loop may have to be unrolled. If a loop Page 232/576

 is unrolled, this parameter also determines how many times the loop code is

 unrolled.

 max-average-unrolled-insns

 The maximum number of instructions biased by probabilities of their execution that

 a loop may have to be unrolled. If a loop is unrolled, this parameter also

 determines how many times the loop code is unrolled.

 max-unroll-times

 The maximum number of unrollings of a single loop.

 max-peeled-insns

 The maximum number of instructions that a loop may have to be peeled. If a loop

 is peeled, this parameter also determines how many times the loop code is peeled.

 max-peel-times

 The maximum number of peelings of a single loop.

 max-peel-branches

 The maximum number of branches on the hot path through the peeled sequence.

 max-completely-peeled-insns

 The maximum number of insns of a completely peeled loop.

 max-completely-peel-times

 The maximum number of iterations of a loop to be suitable for complete peeling.

 max-completely-peel-loop-nest-depth

 The maximum depth of a loop nest suitable for complete peeling.

 max-unswitch-insns

 The maximum number of insns of an unswitched loop.

 max-unswitch-level

 The maximum number of branches unswitched in a single loop.

 lim-expensive

 The minimum cost of an expensive expression in the loop invariant motion.

 min-loop-cond-split-prob

 When FDO profile information is available, min-loop-cond-split-prob specifies

 minimum threshold for probability of semi-invariant condition statement to trigger

 loop split.

 iv-consider-all-candidates-bound

 Bound on number of candidates for induction variables, below which all candidates Page 233/576

 are considered for each use in induction variable optimizations. If there are

 more candidates than this, only the most relevant ones are considered to avoid

 quadratic time complexity.

 iv-max-considered-uses

 The induction variable optimizations give up on loops that contain more induction

 variable uses.

 iv-always-prune-cand-set-bound

 If the number of candidates in the set is smaller than this value, always try to

 remove unnecessary ivs from the set when adding a new one.

 avg-loop-niter

 Average number of iterations of a loop.

 dse-max-object-size

 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.

 Larger values may result in larger compilation times.

 dse-max-alias-queries-per-store

 Maximum number of queries into the alias oracle per store. Larger values result

 in larger compilation times and may result in more removed dead stores.

 scev-max-expr-size

 Bound on size of expressions used in the scalar evolutions analyzer. Large

 expressions slow the analyzer.

 scev-max-expr-complexity

 Bound on the complexity of the expressions in the scalar evolutions analyzer.

 Complex expressions slow the analyzer.

 max-tree-if-conversion-phi-args

 Maximum number of arguments in a PHI supported by TREE if conversion unless the

 loop is marked with simd pragma.

 vect-max-version-for-alignment-checks

 The maximum number of run-time checks that can be performed when doing loop

 versioning for alignment in the vectorizer.

 vect-max-version-for-alias-checks

 The maximum number of run-time checks that can be performed when doing loop

 versioning for alias in the vectorizer.

 vect-max-peeling-for-alignment Page 234/576

 The maximum number of loop peels to enhance access alignment for vectorizer. Value

 -1 means no limit.

 max-iterations-to-track

 The maximum number of iterations of a loop the brute-force algorithm for analysis

 of the number of iterations of the loop tries to evaluate.

 hot-bb-count-fraction

 The denominator n of fraction 1/n of the maximal execution count of a basic block

 in the entire program that a basic block needs to at least have in order to be

 considered hot. The default is 10000, which means that a basic block is

 considered hot if its execution count is greater than 1/10000 of the maximal

 execution count. 0 means that it is never considered hot. Used in non-LTO mode.

 hot-bb-count-ws-permille

 The number of most executed permilles, ranging from 0 to 1000, of the profiled

 execution of the entire program to which the execution count of a basic block must

 be part of in order to be considered hot. The default is 990, which means that a

 basic block is considered hot if its execution count contributes to the upper 990

 permilles, or 99.0%, of the profiled execution of the entire program. 0 means

 that it is never considered hot. Used in LTO mode.

 hot-bb-frequency-fraction

 The denominator n of fraction 1/n of the execution frequency of the entry block of

 a function that a basic block of this function needs to at least have in order to

 be considered hot. The default is 1000, which means that a basic block is

 considered hot in a function if it is executed more frequently than 1/1000 of the

 frequency of the entry block of the function. 0 means that it is never considered

 hot.

 unlikely-bb-count-fraction

 The denominator n of fraction 1/n of the number of profiled runs of the entire

 program below which the execution count of a basic block must be in order for the

 basic block to be considered unlikely executed. The default is 20, which means

 that a basic block is considered unlikely executed if it is executed in fewer than

 1/20, or 5%, of the runs of the program. 0 means that it is always considered

 unlikely executed.

 max-predicted-iterations Page 235/576

 The maximum number of loop iterations we predict statically. This is useful in

 cases where a function contains a single loop with known bound and another loop

 with unknown bound. The known number of iterations is predicted correctly, while

 the unknown number of iterations average to roughly 10. This means that the loop

 without bounds appears artificially cold relative to the other one.

 builtin-expect-probability

 Control the probability of the expression having the specified value. This

 parameter takes a percentage (i.e. 0 ... 100) as input.

 builtin-string-cmp-inline-length

 The maximum length of a constant string for a builtin string cmp call eligible for

 inlining.

 align-threshold

 Select fraction of the maximal frequency of executions of a basic block in a

 function to align the basic block.

 align-loop-iterations

 A loop expected to iterate at least the selected number of iterations is aligned.

 tracer-dynamic-coverage

 tracer-dynamic-coverage-feedback

 This value is used to limit superblock formation once the given percentage of

 executed instructions is covered. This limits unnecessary code size expansion.

 The tracer-dynamic-coverage-feedback parameter is used only when profile feedback

 is available. The real profiles (as opposed to statically estimated ones) are

 much less balanced allowing the threshold to be larger value.

 tracer-max-code-growth

 Stop tail duplication once code growth has reached given percentage. This is a

 rather artificial limit, as most of the duplicates are eliminated later in cross

 jumping, so it may be set to much higher values than is the desired code growth.

 tracer-min-branch-ratio

 Stop reverse growth when the reverse probability of best edge is less than this

 threshold (in percent).

 tracer-min-branch-probability

 tracer-min-branch-probability-feedback

 Stop forward growth if the best edge has probability lower than this threshold. Page 236/576

 Similarly to tracer-dynamic-coverage two parameters are provided. tracer-min-

 branch-probability-feedback is used for compilation with profile feedback and

 tracer-min-branch-probability compilation without. The value for compilation with

 profile feedback needs to be more conservative (higher) in order to make tracer

 effective.

 stack-clash-protection-guard-size

 Specify the size of the operating system provided stack guard as 2 raised to num

 bytes. Higher values may reduce the number of explicit probes, but a value larger

 than the operating system provided guard will leave code vulnerable to stack clash

 style attacks.

 stack-clash-protection-probe-interval

 Stack clash protection involves probing stack space as it is allocated. This

 param controls the maximum distance between probes into the stack as 2 raised to

 num bytes. Higher values may reduce the number of explicit probes, but a value

 larger than the operating system provided guard will leave code vulnerable to

 stack clash style attacks.

 max-cse-path-length

 The maximum number of basic blocks on path that CSE considers.

 max-cse-insns

 The maximum number of instructions CSE processes before flushing.

 ggc-min-expand

 GCC uses a garbage collector to manage its own memory allocation. This parameter

 specifies the minimum percentage by which the garbage collector's heap should be

 allowed to expand between collections. Tuning this may improve compilation speed;

 it has no effect on code generation.

 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when RAM >= 1GB.

 If "getrlimit" is available, the notion of "RAM" is the smallest of actual RAM and

 "RLIMIT_DATA" or "RLIMIT_AS". If GCC is not able to calculate RAM on a particular

 platform, the lower bound of 30% is used. Setting this parameter and ggc-min-

 heapsize to zero causes a full collection to occur at every opportunity. This is

 extremely slow, but can be useful for debugging.

 ggc-min-heapsize

 Minimum size of the garbage collector's heap before it begins bothering to collect Page 237/576

 garbage. The first collection occurs after the heap expands by ggc-min-expand%

 beyond ggc-min-heapsize. Again, tuning this may improve compilation speed, and

 has no effect on code generation.

 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that tries to ensure

 that RLIMIT_DATA or RLIMIT_AS are not exceeded, but with a lower bound of 4096

 (four megabytes) and an upper bound of 131072 (128 megabytes). If GCC is not able

 to calculate RAM on a particular platform, the lower bound is used. Setting this

 parameter very large effectively disables garbage collection. Setting this

 parameter and ggc-min-expand to zero causes a full collection to occur at every

 opportunity.

 max-reload-search-insns

 The maximum number of instruction reload should look backward for equivalent

 register. Increasing values mean more aggressive optimization, making the

 compilation time increase with probably slightly better performance.

 max-cselib-memory-locations

 The maximum number of memory locations cselib should take into account.

 Increasing values mean more aggressive optimization, making the compilation time

 increase with probably slightly better performance.

 max-sched-ready-insns

 The maximum number of instructions ready to be issued the scheduler should

 consider at any given time during the first scheduling pass. Increasing values

 mean more thorough searches, making the compilation time increase with probably

 little benefit.

 max-sched-region-blocks

 The maximum number of blocks in a region to be considered for interblock

 scheduling.

 max-pipeline-region-blocks

 The maximum number of blocks in a region to be considered for pipelining in the

 selective scheduler.

 max-sched-region-insns

 The maximum number of insns in a region to be considered for interblock

 scheduling.

 max-pipeline-region-insns Page 238/576

 The maximum number of insns in a region to be considered for pipelining in the

 selective scheduler.

 min-spec-prob

 The minimum probability (in percents) of reaching a source block for interblock

 speculative scheduling.

 max-sched-extend-regions-iters

 The maximum number of iterations through CFG to extend regions. A value of 0

 disables region extensions.

 max-sched-insn-conflict-delay

 The maximum conflict delay for an insn to be considered for speculative motion.

 sched-spec-prob-cutoff

 The minimal probability of speculation success (in percents), so that speculative

 insns are scheduled.

 sched-state-edge-prob-cutoff

 The minimum probability an edge must have for the scheduler to save its state

 across it.

 sched-mem-true-dep-cost

 Minimal distance (in CPU cycles) between store and load targeting same memory

 locations.

 selsched-max-lookahead

 The maximum size of the lookahead window of selective scheduling. It is a depth

 of search for available instructions.

 selsched-max-sched-times

 The maximum number of times that an instruction is scheduled during selective

 scheduling. This is the limit on the number of iterations through which the

 instruction may be pipelined.

 selsched-insns-to-rename

 The maximum number of best instructions in the ready list that are considered for

 renaming in the selective scheduler.

 sms-min-sc

 The minimum value of stage count that swing modulo scheduler generates.

 max-last-value-rtl

 The maximum size measured as number of RTLs that can be recorded in an expression Page 239/576

 in combiner for a pseudo register as last known value of that register.

 max-combine-insns

 The maximum number of instructions the RTL combiner tries to combine.

 integer-share-limit

 Small integer constants can use a shared data structure, reducing the compiler's

 memory usage and increasing its speed. This sets the maximum value of a shared

 integer constant.

 ssp-buffer-size

 The minimum size of buffers (i.e. arrays) that receive stack smashing protection

 when -fstack-protection is used.

 This default before Ubuntu 10.10 was "8". Currently it is "4", to increase the

 number of functions protected by the stack protector.

 min-size-for-stack-sharing

 The minimum size of variables taking part in stack slot sharing when not

 optimizing.

 max-jump-thread-duplication-stmts

 Maximum number of statements allowed in a block that needs to be duplicated when

 threading jumps.

 max-fields-for-field-sensitive

 Maximum number of fields in a structure treated in a field sensitive manner during

 pointer analysis.

 prefetch-latency

 Estimate on average number of instructions that are executed before prefetch

 finishes. The distance prefetched ahead is proportional to this constant.

 Increasing this number may also lead to less streams being prefetched (see

 simultaneous-prefetches).

 simultaneous-prefetches

 Maximum number of prefetches that can run at the same time.

 l1-cache-line-size

 The size of cache line in L1 data cache, in bytes.

 l1-cache-size

 The size of L1 data cache, in kilobytes.

 l2-cache-size Page 240/576

 The size of L2 data cache, in kilobytes.

 prefetch-dynamic-strides

 Whether the loop array prefetch pass should issue software prefetch hints for

 strides that are non-constant. In some cases this may be beneficial, though the

 fact the stride is non-constant may make it hard to predict when there is clear

 benefit to issuing these hints.

 Set to 1 if the prefetch hints should be issued for non-constant strides. Set to

 0 if prefetch hints should be issued only for strides that are known to be

 constant and below prefetch-minimum-stride.

 prefetch-minimum-stride

 Minimum constant stride, in bytes, to start using prefetch hints for. If the

 stride is less than this threshold, prefetch hints will not be issued.

 This setting is useful for processors that have hardware prefetchers, in which

 case there may be conflicts between the hardware prefetchers and the software

 prefetchers. If the hardware prefetchers have a maximum stride they can handle,

 it should be used here to improve the use of software prefetchers.

 A value of -1 means we don't have a threshold and therefore prefetch hints can be

 issued for any constant stride.

 This setting is only useful for strides that are known and constant.

 loop-interchange-max-num-stmts

 The maximum number of stmts in a loop to be interchanged.

 loop-interchange-stride-ratio

 The minimum ratio between stride of two loops for interchange to be profitable.

 min-insn-to-prefetch-ratio

 The minimum ratio between the number of instructions and the number of prefetches

 to enable prefetching in a loop.

 prefetch-min-insn-to-mem-ratio

 The minimum ratio between the number of instructions and the number of memory

 references to enable prefetching in a loop.

 use-canonical-types

 Whether the compiler should use the "canonical" type system. Should always be 1,

 which uses a more efficient internal mechanism for comparing types in C++ and

 Objective-C++. However, if bugs in the canonical type system are causing Page 241/576

 compilation failures, set this value to 0 to disable canonical types.

 switch-conversion-max-branch-ratio

 Switch initialization conversion refuses to create arrays that are bigger than

 switch-conversion-max-branch-ratio times the number of branches in the switch.

 max-partial-antic-length

 Maximum length of the partial antic set computed during the tree partial

 redundancy elimination optimization (-ftree-pre) when optimizing at -O3 and above.

 For some sorts of source code the enhanced partial redundancy elimination

 optimization can run away, consuming all of the memory available on the host

 machine. This parameter sets a limit on the length of the sets that are computed,

 which prevents the runaway behavior. Setting a value of 0 for this parameter

 allows an unlimited set length.

 rpo-vn-max-loop-depth

 Maximum loop depth that is value-numbered optimistically. When the limit hits the

 innermost rpo-vn-max-loop-depth loops and the outermost loop in the loop nest are

 value-numbered optimistically and the remaining ones not.

 sccvn-max-alias-queries-per-access

 Maximum number of alias-oracle queries we perform when looking for redundancies

 for loads and stores. If this limit is hit the search is aborted and the load or

 store is not considered redundant. The number of queries is algorithmically

 limited to the number of stores on all paths from the load to the function entry.

 ira-max-loops-num

 IRA uses regional register allocation by default. If a function contains more

 loops than the number given by this parameter, only at most the given number of

 the most frequently-executed loops form regions for regional register allocation.

 ira-max-conflict-table-size

 Although IRA uses a sophisticated algorithm to compress the conflict table, the

 table can still require excessive amounts of memory for huge functions. If the

 conflict table for a function could be more than the size in MB given by this

 parameter, the register allocator instead uses a faster, simpler, and lower-

 quality algorithm that does not require building a pseudo-register conflict table.

 ira-loop-reserved-regs

 IRA can be used to evaluate more accurate register pressure in loops for decisions Page 242/576

 to move loop invariants (see -O3). The number of available registers reserved for

 some other purposes is given by this parameter. Default of the parameter is the

 best found from numerous experiments.

 lra-inheritance-ebb-probability-cutoff

 LRA tries to reuse values reloaded in registers in subsequent insns. This

 optimization is called inheritance. EBB is used as a region to do this

 optimization. The parameter defines a minimal fall-through edge probability in

 percentage used to add BB to inheritance EBB in LRA. The default value was chosen

 from numerous runs of SPEC2000 on x86-64.

 loop-invariant-max-bbs-in-loop

 Loop invariant motion can be very expensive, both in compilation time and in

 amount of needed compile-time memory, with very large loops. Loops with more

 basic blocks than this parameter won't have loop invariant motion optimization

 performed on them.

 loop-max-datarefs-for-datadeps

 Building data dependencies is expensive for very large loops. This parameter

 limits the number of data references in loops that are considered for data

 dependence analysis. These large loops are no handled by the optimizations using

 loop data dependencies.

 max-vartrack-size

 Sets a maximum number of hash table slots to use during variable tracking dataflow

 analysis of any function. If this limit is exceeded with variable tracking at

 assignments enabled, analysis for that function is retried without it, after

 removing all debug insns from the function. If the limit is exceeded even without

 debug insns, var tracking analysis is completely disabled for the function.

 Setting the parameter to zero makes it unlimited.

 max-vartrack-expr-depth

 Sets a maximum number of recursion levels when attempting to map variable names or

 debug temporaries to value expressions. This trades compilation time for more

 complete debug information. If this is set too low, value expressions that are

 available and could be represented in debug information may end up not being used;

 setting this higher may enable the compiler to find more complex debug

 expressions, but compile time and memory use may grow. Page 243/576

 max-debug-marker-count

 Sets a threshold on the number of debug markers (e.g. begin stmt markers) to avoid

 complexity explosion at inlining or expanding to RTL. If a function has more such

 gimple stmts than the set limit, such stmts will be dropped from the inlined copy

 of a function, and from its RTL expansion.

 min-nondebug-insn-uid

 Use uids starting at this parameter for nondebug insns. The range below the

 parameter is reserved exclusively for debug insns created by

 -fvar-tracking-assignments, but debug insns may get (non-overlapping) uids above

 it if the reserved range is exhausted.

 ipa-sra-ptr-growth-factor

 IPA-SRA replaces a pointer to an aggregate with one or more new parameters only

 when their cumulative size is less or equal to ipa-sra-ptr-growth-factor times the

 size of the original pointer parameter.

 ipa-sra-max-replacements

 Maximum pieces of an aggregate that IPA-SRA tracks. As a consequence, it is also

 the maximum number of replacements of a formal parameter.

 sra-max-scalarization-size-Ospeed

 sra-max-scalarization-size-Osize

 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to replace

 scalar parts of aggregates with uses of independent scalar variables. These

 parameters control the maximum size, in storage units, of aggregate which is

 considered for replacement when compiling for speed (sra-max-scalarization-size-

 Ospeed) or size (sra-max-scalarization-size-Osize) respectively.

 sra-max-propagations

 The maximum number of artificial accesses that Scalar Replacement of Aggregates

 (SRA) will track, per one local variable, in order to facilitate copy propagation.

 tm-max-aggregate-size

 When making copies of thread-local variables in a transaction, this parameter

 specifies the size in bytes after which variables are saved with the logging

 functions as opposed to save/restore code sequence pairs. This option only

 applies when using -fgnu-tm.

 graphite-max-nb-scop-params Page 244/576

 To avoid exponential effects in the Graphite loop transforms, the number of

 parameters in a Static Control Part (SCoP) is bounded. A value of zero can be

 used to lift the bound. A variable whose value is unknown at compilation time and

 defined outside a SCoP is a parameter of the SCoP.

 loop-block-tile-size

 Loop blocking or strip mining transforms, enabled with -floop-block or

 -floop-strip-mine, strip mine each loop in the loop nest by a given number of

 iterations. The strip length can be changed using the loop-block-tile-size

 parameter.

 ipa-jump-function-lookups

 Specifies number of statements visited during jump function offset discovery.

 ipa-cp-value-list-size

 IPA-CP attempts to track all possible values and types passed to a function's

 parameter in order to propagate them and perform devirtualization. ipa-cp-value-

 list-size is the maximum number of values and types it stores per one formal

 parameter of a function.

 ipa-cp-eval-threshold

 IPA-CP calculates its own score of cloning profitability heuristics and performs

 those cloning opportunities with scores that exceed ipa-cp-eval-threshold.

 ipa-cp-max-recursive-depth

 Maximum depth of recursive cloning for self-recursive function.

 ipa-cp-min-recursive-probability

 Recursive cloning only when the probability of call being executed exceeds the

 parameter.

 ipa-cp-recursion-penalty

 Percentage penalty the recursive functions will receive when they are evaluated

 for cloning.

 ipa-cp-single-call-penalty

 Percentage penalty functions containing a single call to another function will

 receive when they are evaluated for cloning.

 ipa-max-agg-items

 IPA-CP is also capable to propagate a number of scalar values passed in an

 aggregate. ipa-max-agg-items controls the maximum number of such values per one Page 245/576

 parameter.

 ipa-cp-loop-hint-bonus

 When IPA-CP determines that a cloning candidate would make the number of

 iterations of a loop known, it adds a bonus of ipa-cp-loop-hint-bonus to the

 profitability score of the candidate.

 ipa-max-loop-predicates

 The maximum number of different predicates IPA will use to describe when loops in

 a function have known properties.

 ipa-max-aa-steps

 During its analysis of function bodies, IPA-CP employs alias analysis in order to

 track values pointed to by function parameters. In order not spend too much time

 analyzing huge functions, it gives up and consider all memory clobbered after

 examining ipa-max-aa-steps statements modifying memory.

 ipa-max-switch-predicate-bounds

 Maximal number of boundary endpoints of case ranges of switch statement. For

 switch exceeding this limit, IPA-CP will not construct cloning cost predicate,

 which is used to estimate cloning benefit, for default case of the switch

 statement.

 ipa-max-param-expr-ops

 IPA-CP will analyze conditional statement that references some function parameter

 to estimate benefit for cloning upon certain constant value. But if number of

 operations in a parameter expression exceeds ipa-max-param-expr-ops, the

 expression is treated as complicated one, and is not handled by IPA analysis.

 lto-partitions

 Specify desired number of partitions produced during WHOPR compilation. The

 number of partitions should exceed the number of CPUs used for compilation.

 lto-min-partition

 Size of minimal partition for WHOPR (in estimated instructions). This prevents

 expenses of splitting very small programs into too many partitions.

 lto-max-partition

 Size of max partition for WHOPR (in estimated instructions). to provide an upper

 bound for individual size of partition. Meant to be used only with balanced

 partitioning. Page 246/576

 lto-max-streaming-parallelism

 Maximal number of parallel processes used for LTO streaming.

 cxx-max-namespaces-for-diagnostic-help

 The maximum number of namespaces to consult for suggestions when C++ name lookup

 fails for an identifier.

 sink-frequency-threshold

 The maximum relative execution frequency (in percents) of the target block

 relative to a statement's original block to allow statement sinking of a

 statement. Larger numbers result in more aggressive statement sinking. A small

 positive adjustment is applied for statements with memory operands as those are

 even more profitable so sink.

 max-stores-to-sink

 The maximum number of conditional store pairs that can be sunk. Set to 0 if

 either vectorization (-ftree-vectorize) or if-conversion (-ftree-loop-if-convert)

 is disabled.

 case-values-threshold

 The smallest number of different values for which it is best to use a jump-table

 instead of a tree of conditional branches. If the value is 0, use the default for

 the machine.

 jump-table-max-growth-ratio-for-size

 The maximum code size growth ratio when expanding into a jump table (in percent).

 The parameter is used when optimizing for size.

 jump-table-max-growth-ratio-for-speed

 The maximum code size growth ratio when expanding into a jump table (in percent).

 The parameter is used when optimizing for speed.

 tree-reassoc-width

 Set the maximum number of instructions executed in parallel in reassociated tree.

 This parameter overrides target dependent heuristics used by default if has non

 zero value.

 sched-pressure-algorithm

 Choose between the two available implementations of -fsched-pressure. Algorithm 1

 is the original implementation and is the more likely to prevent instructions from

 being reordered. Algorithm 2 was designed to be a compromise between the Page 247/576

 relatively conservative approach taken by algorithm 1 and the rather aggressive

 approach taken by the default scheduler. It relies more heavily on having a

 regular register file and accurate register pressure classes. See haifa-sched.c

 in the GCC sources for more details.

 The default choice depends on the target.

 max-slsr-cand-scan

 Set the maximum number of existing candidates that are considered when seeking a

 basis for a new straight-line strength reduction candidate.

 asan-globals

 Enable buffer overflow detection for global objects. This kind of protection is

 enabled by default if you are using -fsanitize=address option. To disable global

 objects protection use --param asan-globals=0.

 asan-stack

 Enable buffer overflow detection for stack objects. This kind of protection is

 enabled by default when using -fsanitize=address. To disable stack protection use

 --param asan-stack=0 option.

 asan-instrument-reads

 Enable buffer overflow detection for memory reads. This kind of protection is

 enabled by default when using -fsanitize=address. To disable memory reads

 protection use --param asan-instrument-reads=0.

 asan-instrument-writes

 Enable buffer overflow detection for memory writes. This kind of protection is

 enabled by default when using -fsanitize=address. To disable memory writes

 protection use --param asan-instrument-writes=0 option.

 asan-memintrin

 Enable detection for built-in functions. This kind of protection is enabled by

 default when using -fsanitize=address. To disable built-in functions protection

 use --param asan-memintrin=0.

 asan-use-after-return

 Enable detection of use-after-return. This kind of protection is enabled by

 default when using the -fsanitize=address option. To disable it use --param

 asan-use-after-return=0.

 Note: By default the check is disabled at run time. To enable it, add Page 248/576

 "detect_stack_use_after_return=1" to the environment variable ASAN_OPTIONS.

 asan-instrumentation-with-call-threshold

 If number of memory accesses in function being instrumented is greater or equal to

 this number, use callbacks instead of inline checks. E.g. to disable inline code

 use --param asan-instrumentation-with-call-threshold=0.

 hwasan-instrument-stack

 Enable hwasan instrumentation of statically sized stack-allocated variables. This

 kind of instrumentation is enabled by default when using -fsanitize=hwaddress and

 disabled by default when using -fsanitize=kernel-hwaddress. To disable stack

 instrumentation use --param hwasan-instrument-stack=0, and to enable it use

 --param hwasan-instrument-stack=1.

 hwasan-random-frame-tag

 When using stack instrumentation, decide tags for stack variables using a

 deterministic sequence beginning at a random tag for each frame. With this

 parameter unset tags are chosen using the same sequence but beginning from 1.

 This is enabled by default for -fsanitize=hwaddress and unavailable for

 -fsanitize=kernel-hwaddress. To disable it use --param hwasan-random-frame-tag=0.

 hwasan-instrument-allocas

 Enable hwasan instrumentation of dynamically sized stack-allocated variables.

 This kind of instrumentation is enabled by default when using -fsanitize=hwaddress

 and disabled by default when using -fsanitize=kernel-hwaddress. To disable

 instrumentation of such variables use --param hwasan-instrument-allocas=0, and to

 enable it use --param hwasan-instrument-allocas=1.

 hwasan-instrument-reads

 Enable hwasan checks on memory reads. Instrumentation of reads is enabled by

 default for both -fsanitize=hwaddress and -fsanitize=kernel-hwaddress. To disable

 checking memory reads use --param hwasan-instrument-reads=0.

 hwasan-instrument-writes

 Enable hwasan checks on memory writes. Instrumentation of writes is enabled by

 default for both -fsanitize=hwaddress and -fsanitize=kernel-hwaddress. To disable

 checking memory writes use --param hwasan-instrument-writes=0.

 hwasan-instrument-mem-intrinsics

 Enable hwasan instrumentation of builtin functions. Instrumentation of these Page 249/576

 builtin functions is enabled by default for both -fsanitize=hwaddress and

 -fsanitize=kernel-hwaddress. To disable instrumentation of builtin functions use

 --param hwasan-instrument-mem-intrinsics=0.

 use-after-scope-direct-emission-threshold

 If the size of a local variable in bytes is smaller or equal to this number,

 directly poison (or unpoison) shadow memory instead of using run-time callbacks.

 tsan-distinguish-volatile

 Emit special instrumentation for accesses to volatiles.

 tsan-instrument-func-entry-exit

 Emit instrumentation calls to __tsan_func_entry() and __tsan_func_exit().

 max-fsm-thread-path-insns

 Maximum number of instructions to copy when duplicating blocks on a finite state

 automaton jump thread path.

 max-fsm-thread-length

 Maximum number of basic blocks on a finite state automaton jump thread path.

 max-fsm-thread-paths

 Maximum number of new jump thread paths to create for a finite state automaton.

 parloops-chunk-size

 Chunk size of omp schedule for loops parallelized by parloops.

 parloops-schedule

 Schedule type of omp schedule for loops parallelized by parloops (static, dynamic,

 guided, auto, runtime).

 parloops-min-per-thread

 The minimum number of iterations per thread of an innermost parallelized loop for

 which the parallelized variant is preferred over the single threaded one. Note

 that for a parallelized loop nest the minimum number of iterations of the

 outermost loop per thread is two.

 max-ssa-name-query-depth

 Maximum depth of recursion when querying properties of SSA names in things like

 fold routines. One level of recursion corresponds to following a use-def chain.

 max-speculative-devirt-maydefs

 The maximum number of may-defs we analyze when looking for a must-def specifying

 the dynamic type of an object that invokes a virtual call we may be able to Page 250/576

 devirtualize speculatively.

 max-vrp-switch-assertions

 The maximum number of assertions to add along the default edge of a switch

 statement during VRP.

 evrp-mode

 Specifies the mode Early VRP should operate in.

 unroll-jam-min-percent

 The minimum percentage of memory references that must be optimized away for the

 unroll-and-jam transformation to be considered profitable.

 unroll-jam-max-unroll

 The maximum number of times the outer loop should be unrolled by the unroll-and-

 jam transformation.

 max-rtl-if-conversion-unpredictable-cost

 Maximum permissible cost for the sequence that would be generated by the RTL if-

 conversion pass for a branch that is considered unpredictable.

 max-variable-expansions-in-unroller

 If -fvariable-expansion-in-unroller is used, the maximum number of times that an

 individual variable will be expanded during loop unrolling.

 tracer-min-branch-probability-feedback

 Stop forward growth if the probability of best edge is less than this threshold

 (in percent). Used when profile feedback is available.

 partial-inlining-entry-probability

 Maximum probability of the entry BB of split region (in percent relative to entry

 BB of the function) to make partial inlining happen.

 max-tracked-strlens

 Maximum number of strings for which strlen optimization pass will track string

 lengths.

 gcse-after-reload-partial-fraction

 The threshold ratio for performing partial redundancy elimination after reload.

 gcse-after-reload-critical-fraction

 The threshold ratio of critical edges execution count that permit performing

 redundancy elimination after reload.

 max-loop-header-insns Page 251/576

 The maximum number of insns in loop header duplicated by the copy loop headers

 pass.

 vect-epilogues-nomask

 Enable loop epilogue vectorization using smaller vector size.

 vect-partial-vector-usage

 Controls when the loop vectorizer considers using partial vector loads and stores

 as an alternative to falling back to scalar code. 0 stops the vectorizer from

 ever using partial vector loads and stores. 1 allows partial vector loads and

 stores if vectorization removes the need for the code to iterate. 2 allows

 partial vector loads and stores in all loops. The parameter only has an effect on

 targets that support partial vector loads and stores.

 avoid-fma-max-bits

 Maximum number of bits for which we avoid creating FMAs.

 sms-loop-average-count-threshold

 A threshold on the average loop count considered by the swing modulo scheduler.

 sms-dfa-history

 The number of cycles the swing modulo scheduler considers when checking conflicts

 using DFA.

 max-inline-insns-recursive-auto

 The maximum number of instructions non-inline function can grow to via recursive

 inlining.

 graphite-allow-codegen-errors

 Whether codegen errors should be ICEs when -fchecking.

 sms-max-ii-factor

 A factor for tuning the upper bound that swing modulo scheduler uses for

 scheduling a loop.

 lra-max-considered-reload-pseudos

 The max number of reload pseudos which are considered during spilling a non-reload

 pseudo.

 max-pow-sqrt-depth

 Maximum depth of sqrt chains to use when synthesizing exponentiation by a real

 constant.

 max-dse-active-local-stores Page 252/576

 Maximum number of active local stores in RTL dead store elimination.

 asan-instrument-allocas

 Enable asan allocas/VLAs protection.

 max-iterations-computation-cost

 Bound on the cost of an expression to compute the number of iterations.

 max-isl-operations

 Maximum number of isl operations, 0 means unlimited.

 graphite-max-arrays-per-scop

 Maximum number of arrays per scop.

 max-vartrack-reverse-op-size

 Max. size of loc list for which reverse ops should be added.

 tracer-dynamic-coverage-feedback

 The percentage of function, weighted by execution frequency, that must be covered

 by trace formation. Used when profile feedback is available.

 max-inline-recursive-depth-auto

 The maximum depth of recursive inlining for non-inline functions.

 fsm-scale-path-stmts

 Scale factor to apply to the number of statements in a threading path when

 comparing to the number of (scaled) blocks.

 fsm-maximum-phi-arguments

 Maximum number of arguments a PHI may have before the FSM threader will not try to

 thread through its block.

 uninit-control-dep-attempts

 Maximum number of nested calls to search for control dependencies during

 uninitialized variable analysis.

 sra-max-scalarization-size-Osize

 Maximum size, in storage units, of an aggregate which should be considered for

 scalarization when compiling for size.

 fsm-scale-path-blocks

 Scale factor to apply to the number of blocks in a threading path when comparing

 to the number of (scaled) statements.

 sched-autopref-queue-depth

 Hardware autoprefetcher scheduler model control flag. Number of lookahead cycles Page 253/576

 the model looks into; at ' ' only enable instruction sorting heuristic.

 loop-versioning-max-inner-insns

 The maximum number of instructions that an inner loop can have before the loop

 versioning pass considers it too big to copy.

 loop-versioning-max-outer-insns

 The maximum number of instructions that an outer loop can have before the loop

 versioning pass considers it too big to copy, discounting any instructions in

 inner loops that directly benefit from versioning.

 ssa-name-def-chain-limit

 The maximum number of SSA_NAME assignments to follow in determining a property of

 a variable such as its value. This limits the number of iterations or recursive

 calls GCC performs when optimizing certain statements or when determining their

 validity prior to issuing diagnostics.

 store-merging-max-size

 Maximum size of a single store merging region in bytes.

 hash-table-verification-limit

 The number of elements for which hash table verification is done for each searched

 element.

 max-find-base-term-values

 Maximum number of VALUEs handled during a single find_base_term call.

 analyzer-max-enodes-per-program-point

 The maximum number of exploded nodes per program point within the analyzer, before

 terminating analysis of that point.

 analyzer-max-constraints

 The maximum number of constraints per state.

 analyzer-min-snodes-for-call-summary

 The minimum number of supernodes within a function for the analyzer to consider

 summarizing its effects at call sites.

 analyzer-max-enodes-for-full-dump

 The maximum depth of exploded nodes that should appear in a dot dump before

 switching to a less verbose format.

 analyzer-max-recursion-depth

 The maximum number of times a callsite can appear in a call stack within the Page 254/576

 analyzer, before terminating analysis of a call that would recurse deeper.

 analyzer-max-svalue-depth

 The maximum depth of a symbolic value, before approximating the value as unknown.

 analyzer-max-infeasible-edges

 The maximum number of infeasible edges to reject before declaring a diagnostic as

 infeasible.

 gimple-fe-computed-hot-bb-threshold

 The number of executions of a basic block which is considered hot. The parameter

 is used only in GIMPLE FE.

 analyzer-bb-explosion-factor

 The maximum number of 'after supernode' exploded nodes within the analyzer per

 supernode, before terminating analysis.

 ranger-logical-depth

 Maximum depth of logical expression evaluation ranger will look through when

 evaluating outgoing edge ranges.

 openacc-kernels

 Specify mode of OpenACC `kernels' constructs handling. With

 --param=openacc-kernels=decompose, OpenACC `kernels' constructs are decomposed

 into parts, a sequence of compute constructs, each then handled individually.

 This is work in progress. With --param=openacc-kernels=parloops, OpenACC

 `kernels' constructs are handled by the parloops pass, en bloc. This is the

 current default.

 The following choices of name are available on AArch64 targets:

 aarch64-sve-compare-costs

 When vectorizing for SVE, consider using "unpacked" vectors for smaller elements

 and use the cost model to pick the cheapest approach. Also use the cost model to

 choose between SVE and Advanced SIMD vectorization.

 Using unpacked vectors includes storing smaller elements in larger containers and

 accessing elements with extending loads and truncating stores.

 aarch64-float-recp-precision

 The number of Newton iterations for calculating the reciprocal for float type.

 The precision of division is proportional to this param when division

 approximation is enabled. The default value is 1. Page 255/576

 aarch64-double-recp-precision

 The number of Newton iterations for calculating the reciprocal for double type.

 The precision of division is propotional to this param when division approximation

 is enabled. The default value is 2.

 aarch64-autovec-preference

 Force an ISA selection strategy for auto-vectorization. Accepts values from 0 to

 4, inclusive.

 0 Use the default heuristics.

 1 Use only Advanced SIMD for auto-vectorization.

 2 Use only SVE for auto-vectorization.

 3 Use both Advanced SIMD and SVE. Prefer Advanced SIMD when the costs are

 deemed equal.

 4 Use both Advanced SIMD and SVE. Prefer SVE when the costs are deemed equal.

 The default value is 0.

 aarch64-loop-vect-issue-rate-niters

 The tuning for some AArch64 CPUs tries to take both latencies and issue rates into

 account when deciding whether a loop should be vectorized using SVE, vectorized

 using Advanced SIMD, or not vectorized at all. If this parameter is set to n, GCC

 will not use this heuristic for loops that are known to execute in fewer than n

 Advanced SIMD iterations.

 Program Instrumentation Options

 GCC supports a number of command-line options that control adding run-time instrumentation

 to the code it normally generates. For example, one purpose of instrumentation is collect

 profiling statistics for use in finding program hot spots, code coverage analysis, or

 profile-guided optimizations. Another class of program instrumentation is adding run-time

 checking to detect programming errors like invalid pointer dereferences or out-of-bounds

 array accesses, as well as deliberately hostile attacks such as stack smashing or C++

 vtable hijacking. There is also a general hook which can be used to implement other forms

 of tracing or function-level instrumentation for debug or program analysis purposes.

 -p

 -pg Generate extra code to write profile information suitable for the analysis program

 prof (for -p) or gprof (for -pg). You must use this option when compiling the source

 files you want data about, and you must also use it when linking. Page 256/576

 You can use the function attribute "no_instrument_function" to suppress profiling of

 individual functions when compiling with these options.

 -fprofile-arcs

 Add code so that program flow arcs are instrumented. During execution the program

 records how many times each branch and call is executed and how many times it is taken

 or returns. On targets that support constructors with priority support, profiling

 properly handles constructors, destructors and C++ constructors (and destructors) of

 classes which are used as a type of a global variable.

 When the compiled program exits it saves this data to a file called auxname.gcda for

 each source file. The data may be used for profile-directed optimizations

 (-fbranch-probabilities), or for test coverage analysis (-ftest-coverage). Each

 object file's auxname is generated from the name of the output file, if explicitly

 specified and it is not the final executable, otherwise it is the basename of the

 source file. In both cases any suffix is removed (e.g. foo.gcda for input file

 dir/foo.c, or dir/foo.gcda for output file specified as -o dir/foo.o).

 --coverage

 This option is used to compile and link code instrumented for coverage analysis. The

 option is a synonym for -fprofile-arcs -ftest-coverage (when compiling) and -lgcov

 (when linking). See the documentation for those options for more details.

 * Compile the source files with -fprofile-arcs plus optimization and code generation

 options. For test coverage analysis, use the additional -ftest-coverage option.

 You do not need to profile every source file in a program.

 * Compile the source files additionally with -fprofile-abs-path to create absolute

 path names in the .gcno files. This allows gcov to find the correct sources in

 projects where compilations occur with different working directories.

 * Link your object files with -lgcov or -fprofile-arcs (the latter implies the

 former).

 * Run the program on a representative workload to generate the arc profile

 information. This may be repeated any number of times. You can run concurrent

 instances of your program, and provided that the file system supports locking, the

 data files will be correctly updated. Unless a strict ISO C dialect option is in

 effect, "fork" calls are detected and correctly handled without double counting.

 * For profile-directed optimizations, compile the source files again with the same Page 257/576

 optimization and code generation options plus -fbranch-probabilities.

 * For test coverage analysis, use gcov to produce human readable information from

 the .gcno and .gcda files. Refer to the gcov documentation for further

 information.

 With -fprofile-arcs, for each function of your program GCC creates a program flow

 graph, then finds a spanning tree for the graph. Only arcs that are not on the

 spanning tree have to be instrumented: the compiler adds code to count the number of

 times that these arcs are executed. When an arc is the only exit or only entrance to

 a block, the instrumentation code can be added to the block; otherwise, a new basic

 block must be created to hold the instrumentation code.

 -ftest-coverage

 Produce a notes file that the gcov code-coverage utility can use to show program

 coverage. Each source file's note file is called auxname.gcno. Refer to the

 -fprofile-arcs option above for a description of auxname and instructions on how to

 generate test coverage data. Coverage data matches the source files more closely if

 you do not optimize.

 -fprofile-abs-path

 Automatically convert relative source file names to absolute path names in the .gcno

 files. This allows gcov to find the correct sources in projects where compilations

 occur with different working directories.

 -fprofile-dir=path

 Set the directory to search for the profile data files in to path. This option

 affects only the profile data generated by -fprofile-generate, -ftest-coverage,

 -fprofile-arcs and used by -fprofile-use and -fbranch-probabilities and its related

 options. Both absolute and relative paths can be used. By default, GCC uses the

 current directory as path, thus the profile data file appears in the same directory as

 the object file. In order to prevent the file name clashing, if the object file name

 is not an absolute path, we mangle the absolute path of the sourcename.gcda file and

 use it as the file name of a .gcda file. See similar option -fprofile-note.

 When an executable is run in a massive parallel environment, it is recommended to save

 profile to different folders. That can be done with variables in path that are

 exported during run-time:

 %p process ID. Page 258/576

 %q{VAR}

 value of environment variable VAR

 -fprofile-generate

 -fprofile-generate=path

 Enable options usually used for instrumenting application to produce profile useful

 for later recompilation with profile feedback based optimization. You must use

 -fprofile-generate both when compiling and when linking your program.

 The following options are enabled: -fprofile-arcs, -fprofile-values,

 -finline-functions, and -fipa-bit-cp.

 If path is specified, GCC looks at the path to find the profile feedback data files.

 See -fprofile-dir.

 To optimize the program based on the collected profile information, use -fprofile-use.

 -fprofile-info-section

 -fprofile-info-section=name

 Register the profile information in the specified section instead of using a

 constructor/destructor. The section name is name if it is specified, otherwise the

 section name defaults to ".gcov_info". A pointer to the profile information generated

 by -fprofile-arcs or -ftest-coverage is placed in the specified section for each

 translation unit. This option disables the profile information registration through a

 constructor and it disables the profile information processing through a destructor.

 This option is not intended to be used in hosted environments such as GNU/Linux. It

 targets systems with limited resources which do not support constructors and

 destructors. The linker could collect the input sections in a continuous memory block

 and define start and end symbols. The runtime support could dump the profiling

 information registered in this linker set during program termination to a serial line

 for example. A GNU linker script example which defines a linker output section

 follows:

 .gcov_info :

 {

 PROVIDE (__gcov_info_start = .);

 KEEP (*(.gcov_info))

 PROVIDE (__gcov_info_end = .);

 } Page 259/576

 -fprofile-note=path

 If path is specified, GCC saves .gcno file into path location. If you combine the

 option with multiple source files, the .gcno file will be overwritten.

 -fprofile-prefix-path=path

 This option can be used in combination with profile-generate=profile_dir and

 profile-use=profile_dir to inform GCC where is the base directory of built source

 tree. By default profile_dir will contain files with mangled absolute paths of all

 object files in the built project. This is not desirable when directory used to build

 the instrumented binary differs from the directory used to build the binary optimized

 with profile feedback because the profile data will not be found during the optimized

 build. In such setups -fprofile-prefix-path=path with path pointing to the base

 directory of the build can be used to strip the irrelevant part of the path and keep

 all file names relative to the main build directory.

 -fprofile-update=method

 Alter the update method for an application instrumented for profile feedback based

 optimization. The method argument should be one of single, atomic or prefer-atomic.

 The first one is useful for single-threaded applications, while the second one

 prevents profile corruption by emitting thread-safe code.

 Warning: When an application does not properly join all threads (or creates an

 detached thread), a profile file can be still corrupted.

 Using prefer-atomic would be transformed either to atomic, when supported by a target,

 or to single otherwise. The GCC driver automatically selects prefer-atomic when

 -pthread is present in the command line.

 -fprofile-filter-files=regex

 Instrument only functions from files whose name matches any of the regular expressions

 (separated by semi-colons).

 For example, -fprofile-filter-files=main\.c;module.*\.c will instrument only main.c

 and all C files starting with 'module'.

 -fprofile-exclude-files=regex

 Instrument only functions from files whose name does not match any of the regular

 expressions (separated by semi-colons).

 For example, -fprofile-exclude-files=/usr/.* will prevent instrumentation of all files

 that are located in the /usr/ folder. Page 260/576

 -fprofile-reproducible=[multithreaded|parallel-runs|serial]

 Control level of reproducibility of profile gathered by "-fprofile-generate". This

 makes it possible to rebuild program with same outcome which is useful, for example,

 for distribution packages.

 With -fprofile-reproducible=serial the profile gathered by -fprofile-generate is

 reproducible provided the trained program behaves the same at each invocation of the

 train run, it is not multi-threaded and profile data streaming is always done in the

 same order. Note that profile streaming happens at the end of program run but also

 before "fork" function is invoked.

 Note that it is quite common that execution counts of some part of programs depends,

 for example, on length of temporary file names or memory space randomization (that may

 affect hash-table collision rate). Such non-reproducible part of programs may be

 annotated by "no_instrument_function" function attribute. gcov-dump with -l can be

 used to dump gathered data and verify that they are indeed reproducible.

 With -fprofile-reproducible=parallel-runs collected profile stays reproducible

 regardless the order of streaming of the data into gcda files. This setting makes it

 possible to run multiple instances of instrumented program in parallel (such as with

 "make -j"). This reduces quality of gathered data, in particular of indirect call

 profiling.

 -fsanitize=address

 Enable AddressSanitizer, a fast memory error detector. Memory access instructions are

 instrumented to detect out-of-bounds and use-after-free bugs. The option enables

 -fsanitize-address-use-after-scope. See

 <https://github.com/google/sanitizers/wiki/AddressSanitizer> for more details. The

 run-time behavior can be influenced using the ASAN_OPTIONS environment variable. When

 set to "help=1", the available options are shown at startup of the instrumented

 program. See

 <https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags> for a

 list of supported options. The option cannot be combined with -fsanitize=thread or

 -fsanitize=hwaddress. Note that the only target -fsanitize=hwaddress is currently

 supported on is AArch64.

 -fsanitize=kernel-address

 Enable AddressSanitizer for Linux kernel. See <https://github.com/google/kasan> for Page 261/576

 more details.

 -fsanitize=hwaddress

 Enable Hardware-assisted AddressSanitizer, which uses a hardware ability to ignore the

 top byte of a pointer to allow the detection of memory errors with a low memory

 overhead. Memory access instructions are instrumented to detect out-of-bounds and

 use-after-free bugs. The option enables -fsanitize-address-use-after-scope. See

 <https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html> for more

 details. The run-time behavior can be influenced using the HWASAN_OPTIONS environment

 variable. When set to "help=1", the available options are shown at startup of the

 instrumented program. The option cannot be combined with -fsanitize=thread or

 -fsanitize=address, and is currently only available on AArch64.

 -fsanitize=kernel-hwaddress

 Enable Hardware-assisted AddressSanitizer for compilation of the Linux kernel.

 Similar to -fsanitize=kernel-address but using an alternate instrumentation method,

 and similar to -fsanitize=hwaddress but with instrumentation differences necessary for

 compiling the Linux kernel. These differences are to avoid hwasan library

 initialization calls and to account for the stack pointer having a different value in

 its top byte.

 Note: This option has different defaults to the -fsanitize=hwaddress. Instrumenting

 the stack and alloca calls are not on by default but are still possible by specifying

 the command-line options --param hwasan-instrument-stack=1 and --param

 hwasan-instrument-allocas=1 respectively. Using a random frame tag is not implemented

 for kernel instrumentation.

 -fsanitize=pointer-compare

 Instrument comparison operation (<, <=, >, >=) with pointer operands. The option must

 be combined with either -fsanitize=kernel-address or -fsanitize=address The option

 cannot be combined with -fsanitize=thread. Note: By default the check is disabled at

 run time. To enable it, add "detect_invalid_pointer_pairs=2" to the environment

 variable ASAN_OPTIONS. Using "detect_invalid_pointer_pairs=1" detects invalid

 operation only when both pointers are non-null.

 -fsanitize=pointer-subtract

 Instrument subtraction with pointer operands. The option must be combined with either

 -fsanitize=kernel-address or -fsanitize=address The option cannot be combined with Page 262/576

 -fsanitize=thread. Note: By default the check is disabled at run time. To enable it,

 add "detect_invalid_pointer_pairs=2" to the environment variable ASAN_OPTIONS. Using

 "detect_invalid_pointer_pairs=1" detects invalid operation only when both pointers are

 non-null.

 -fsanitize=thread

 Enable ThreadSanitizer, a fast data race detector. Memory access instructions are

 instrumented to detect data race bugs. See

 <https://github.com/google/sanitizers/wiki#threadsanitizer> for more details. The run-

 time behavior can be influenced using the TSAN_OPTIONS environment variable; see

 <https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags> for a list of

 supported options. The option cannot be combined with -fsanitize=address,

 -fsanitize=leak.

 Note that sanitized atomic builtins cannot throw exceptions when operating on invalid

 memory addresses with non-call exceptions (-fnon-call-exceptions).

 -fsanitize=leak

 Enable LeakSanitizer, a memory leak detector. This option only matters for linking of

 executables and the executable is linked against a library that overrides "malloc" and

 other allocator functions. See

 <https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer> for more

 details. The run-time behavior can be influenced using the LSAN_OPTIONS environment

 variable. The option cannot be combined with -fsanitize=thread.

 -fsanitize=undefined

 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Various

 computations are instrumented to detect undefined behavior at runtime. See

 <https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html> for more details. The

 run-time behavior can be influenced using the UBSAN_OPTIONS environment variable.

 Current suboptions are:

 -fsanitize=shift

 This option enables checking that the result of a shift operation is not

 undefined. Note that what exactly is considered undefined differs slightly

 between C and C++, as well as between ISO C90 and C99, etc. This option has two

 suboptions, -fsanitize=shift-base and -fsanitize=shift-exponent.

 -fsanitize=shift-exponent Page 263/576

 This option enables checking that the second argument of a shift operation is not

 negative and is smaller than the precision of the promoted first argument.

 -fsanitize=shift-base

 If the second argument of a shift operation is within range, check that the result

 of a shift operation is not undefined. Note that what exactly is considered

 undefined differs slightly between C and C++, as well as between ISO C90 and C99,

 etc.

 -fsanitize=integer-divide-by-zero

 Detect integer division by zero as well as "INT_MIN / -1" division.

 -fsanitize=unreachable

 With this option, the compiler turns the "__builtin_unreachable" call into a

 diagnostics message call instead. When reaching the "__builtin_unreachable" call,

 the behavior is undefined.

 -fsanitize=vla-bound

 This option instructs the compiler to check that the size of a variable length

 array is positive.

 -fsanitize=null

 This option enables pointer checking. Particularly, the application built with

 this option turned on will issue an error message when it tries to dereference a

 NULL pointer, or if a reference (possibly an rvalue reference) is bound to a NULL

 pointer, or if a method is invoked on an object pointed by a NULL pointer.

 -fsanitize=return

 This option enables return statement checking. Programs built with this option

 turned on will issue an error message when the end of a non-void function is

 reached without actually returning a value. This option works in C++ only.

 -fsanitize=signed-integer-overflow

 This option enables signed integer overflow checking. We check that the result of

 "+", "*", and both unary and binary "-" does not overflow in the signed

 arithmetics. Note, integer promotion rules must be taken into account. That is,

 the following is not an overflow:

 signed char a = SCHAR_MAX;

 a++;

 -fsanitize=bounds Page 264/576

 This option enables instrumentation of array bounds. Various out of bounds

 accesses are detected. Flexible array members, flexible array member-like arrays,

 and initializers of variables with static storage are not instrumented.

 -fsanitize=bounds-strict

 This option enables strict instrumentation of array bounds. Most out of bounds

 accesses are detected, including flexible array members and flexible array member-

 like arrays. Initializers of variables with static storage are not instrumented.

 -fsanitize=alignment

 This option enables checking of alignment of pointers when they are dereferenced,

 or when a reference is bound to insufficiently aligned target, or when a method or

 constructor is invoked on insufficiently aligned object.

 -fsanitize=object-size

 This option enables instrumentation of memory references using the

 "__builtin_object_size" function. Various out of bounds pointer accesses are

 detected.

 -fsanitize=float-divide-by-zero

 Detect floating-point division by zero. Unlike other similar options,

 -fsanitize=float-divide-by-zero is not enabled by -fsanitize=undefined, since

 floating-point division by zero can be a legitimate way of obtaining infinities

 and NaNs.

 -fsanitize=float-cast-overflow

 This option enables floating-point type to integer conversion checking. We check

 that the result of the conversion does not overflow. Unlike other similar

 options, -fsanitize=float-cast-overflow is not enabled by -fsanitize=undefined.

 This option does not work well with "FE_INVALID" exceptions enabled.

 -fsanitize=nonnull-attribute

 This option enables instrumentation of calls, checking whether null values are not

 passed to arguments marked as requiring a non-null value by the "nonnull" function

 attribute.

 -fsanitize=returns-nonnull-attribute

 This option enables instrumentation of return statements in functions marked with

 "returns_nonnull" function attribute, to detect returning of null values from such

 functions. Page 265/576

 -fsanitize=bool

 This option enables instrumentation of loads from bool. If a value other than 0/1

 is loaded, a run-time error is issued.

 -fsanitize=enum

 This option enables instrumentation of loads from an enum type. If a value

 outside the range of values for the enum type is loaded, a run-time error is

 issued.

 -fsanitize=vptr

 This option enables instrumentation of C++ member function calls, member accesses

 and some conversions between pointers to base and derived classes, to verify the

 referenced object has the correct dynamic type.

 -fsanitize=pointer-overflow

 This option enables instrumentation of pointer arithmetics. If the pointer

 arithmetics overflows, a run-time error is issued.

 -fsanitize=builtin

 This option enables instrumentation of arguments to selected builtin functions.

 If an invalid value is passed to such arguments, a run-time error is issued. E.g.

 passing 0 as the argument to "__builtin_ctz" or "__builtin_clz" invokes undefined

 behavior and is diagnosed by this option.

 While -ftrapv causes traps for signed overflows to be emitted, -fsanitize=undefined

 gives a diagnostic message. This currently works only for the C family of languages.

 -fno-sanitize=all

 This option disables all previously enabled sanitizers. -fsanitize=all is not

 allowed, as some sanitizers cannot be used together.

 -fasan-shadow-offset=number

 This option forces GCC to use custom shadow offset in AddressSanitizer checks. It is

 useful for experimenting with different shadow memory layouts in Kernel

 AddressSanitizer.

 -fsanitize-sections=s1,s2,...

 Sanitize global variables in selected user-defined sections. si may contain

 wildcards.

 -fsanitize-recover[=opts]

 -fsanitize-recover= controls error recovery mode for sanitizers mentioned in comma- Page 266/576

 separated list of opts. Enabling this option for a sanitizer component causes it to

 attempt to continue running the program as if no error happened. This means multiple

 runtime errors can be reported in a single program run, and the exit code of the

 program may indicate success even when errors have been reported. The

 -fno-sanitize-recover= option can be used to alter this behavior: only the first

 detected error is reported and program then exits with a non-zero exit code.

 Currently this feature only works for -fsanitize=undefined (and its suboptions except

 for -fsanitize=unreachable and -fsanitize=return), -fsanitize=float-cast-overflow,

 -fsanitize=float-divide-by-zero, -fsanitize=bounds-strict, -fsanitize=kernel-address

 and -fsanitize=address. For these sanitizers error recovery is turned on by default,

 except -fsanitize=address, for which this feature is experimental.

 -fsanitize-recover=all and -fno-sanitize-recover=all is also accepted, the former

 enables recovery for all sanitizers that support it, the latter disables recovery for

 all sanitizers that support it.

 Even if a recovery mode is turned on the compiler side, it needs to be also enabled on

 the runtime library side, otherwise the failures are still fatal. The runtime library

 defaults to "halt_on_error=0" for ThreadSanitizer and UndefinedBehaviorSanitizer,

 while default value for AddressSanitizer is "halt_on_error=1". This can be overridden

 through setting the "halt_on_error" flag in the corresponding environment variable.

 Syntax without an explicit opts parameter is deprecated. It is equivalent to

 specifying an opts list of:

 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict

 -fsanitize-address-use-after-scope

 Enable sanitization of local variables to detect use-after-scope bugs. The option

 sets -fstack-reuse to none.

 -fsanitize-undefined-trap-on-error

 The -fsanitize-undefined-trap-on-error option instructs the compiler to report

 undefined behavior using "__builtin_trap" rather than a "libubsan" library routine.

 The advantage of this is that the "libubsan" library is not needed and is not linked

 in, so this is usable even in freestanding environments.

 -fsanitize-coverage=trace-pc

 Enable coverage-guided fuzzing code instrumentation. Inserts a call to

 "__sanitizer_cov_trace_pc" into every basic block. Page 267/576

 -fsanitize-coverage=trace-cmp

 Enable dataflow guided fuzzing code instrumentation. Inserts a call to

 "__sanitizer_cov_trace_cmp1", "__sanitizer_cov_trace_cmp2",

 "__sanitizer_cov_trace_cmp4" or "__sanitizer_cov_trace_cmp8" for integral comparison

 with both operands variable or "__sanitizer_cov_trace_const_cmp1",

 "__sanitizer_cov_trace_const_cmp2", "__sanitizer_cov_trace_const_cmp4" or

 "__sanitizer_cov_trace_const_cmp8" for integral comparison with one operand constant,

 "__sanitizer_cov_trace_cmpf" or "__sanitizer_cov_trace_cmpd" for float or double

 comparisons and "__sanitizer_cov_trace_switch" for switch statements.

 -fcf-protection=[full|branch|return|none|check]

 Enable code instrumentation of control-flow transfers to increase program security by

 checking that target addresses of control-flow transfer instructions (such as indirect

 function call, function return, indirect jump) are valid. This prevents diverting the

 flow of control to an unexpected target. This is intended to protect against such

 threats as Return-oriented Programming (ROP), and similarly call/jmp-oriented

 programming (COP/JOP).

 The value "branch" tells the compiler to implement checking of validity of control-

 flow transfer at the point of indirect branch instructions, i.e. call/jmp

 instructions. The value "return" implements checking of validity at the point of

 returning from a function. The value "full" is an alias for specifying both "branch"

 and "return". The value "none" turns off instrumentation.

 The value "check" is used for the final link with link-time optimization (LTO). An

 error is issued if LTO object files are compiled with different -fcf-protection

 values. The value "check" is ignored at the compile time.

 The macro "__CET__" is defined when -fcf-protection is used. The first bit of

 "__CET__" is set to 1 for the value "branch" and the second bit of "__CET__" is set to

 1 for the "return".

 You can also use the "nocf_check" attribute to identify which functions and calls

 should be skipped from instrumentation.

 Currently the x86 GNU/Linux target provides an implementation based on Intel Control-

 flow Enforcement Technology (CET) which works for i686 processor or newer.

 NOTE: In Ubuntu 19.10 and later versions, -fcf-protection is enabled by default for C,

 C++, ObjC, ObjC++, if none of -fno-cf-protection nor -fcf-protection=* are found. Page 268/576

 -fstack-protector

 Emit extra code to check for buffer overflows, such as stack smashing attacks. This

 is done by adding a guard variable to functions with vulnerable objects. This

 includes functions that call "alloca", and functions with buffers larger than or equal

 to 8 bytes. The guards are initialized when a function is entered and then checked

 when the function exits. If a guard check fails, an error message is printed and the

 program exits. Only variables that are actually allocated on the stack are

 considered, optimized away variables or variables allocated in registers don't count.

 -fstack-protector-all

 Like -fstack-protector except that all functions are protected.

 -fstack-protector-strong

 Like -fstack-protector but includes additional functions to be protected --- those

 that have local array definitions, or have references to local frame addresses. Only

 variables that are actually allocated on the stack are considered, optimized away

 variables or variables allocated in registers don't count.

 -fstack-protector-explicit

 Like -fstack-protector but only protects those functions which have the

 "stack_protect" attribute.

 -fstack-check

 Generate code to verify that you do not go beyond the boundary of the stack. You

 should specify this flag if you are running in an environment with multiple threads,

 but you only rarely need to specify it in a single-threaded environment since stack

 overflow is automatically detected on nearly all systems if there is only one stack.

 Note that this switch does not actually cause checking to be done; the operating

 system or the language runtime must do that. The switch causes generation of code to

 ensure that they see the stack being extended.

 You can additionally specify a string parameter: no means no checking, generic means

 force the use of old-style checking, specific means use the best checking method and

 is equivalent to bare -fstack-check.

 Old-style checking is a generic mechanism that requires no specific target support in

 the compiler but comes with the following drawbacks:

 1. Modified allocation strategy for large objects: they are always allocated

 dynamically if their size exceeds a fixed threshold. Note this may change the Page 269/576

 semantics of some code.

 2. Fixed limit on the size of the static frame of functions: when it is topped by a

 particular function, stack checking is not reliable and a warning is issued by the

 compiler.

 3. Inefficiency: because of both the modified allocation strategy and the generic

 implementation, code performance is hampered.

 Note that old-style stack checking is also the fallback method for specific if no

 target support has been added in the compiler.

 -fstack-check= is designed for Ada's needs to detect infinite recursion and stack

 overflows. specific is an excellent choice when compiling Ada code. It is not

 generally sufficient to protect against stack-clash attacks. To protect against those

 you want -fstack-clash-protection.

 -fstack-clash-protection

 Generate code to prevent stack clash style attacks. When this option is enabled, the

 compiler will only allocate one page of stack space at a time and each page is

 accessed immediately after allocation. Thus, it prevents allocations from jumping

 over any stack guard page provided by the operating system.

 Most targets do not fully support stack clash protection. However, on those targets

 -fstack-clash-protection will protect dynamic stack allocations.

 -fstack-clash-protection may also provide limited protection for static stack

 allocations if the target supports -fstack-check=specific.

 NOTE: In Ubuntu 19.10 and later versions, -fstack-clash-protection is enabled by

 default for C, C++, ObjC, ObjC++, unless -fno-stack-clash-protection is found.

 -fstack-limit-register=reg

 -fstack-limit-symbol=sym

 -fno-stack-limit

 Generate code to ensure that the stack does not grow beyond a certain value, either

 the value of a register or the address of a symbol. If a larger stack is required, a

 signal is raised at run time. For most targets, the signal is raised before the stack

 overruns the boundary, so it is possible to catch the signal without taking special

 precautions.

 For instance, if the stack starts at absolute address 0x80000000 and grows downwards,

 you can use the flags -fstack-limit-symbol=__stack_limit and Page 270/576

 -Wl,--defsym,__stack_limit=0x7ffe0000 to enforce a stack limit of 128KB. Note that

 this may only work with the GNU linker.

 You can locally override stack limit checking by using the "no_stack_limit" function

 attribute.

 -fsplit-stack

 Generate code to automatically split the stack before it overflows. The resulting

 program has a discontiguous stack which can only overflow if the program is unable to

 allocate any more memory. This is most useful when running threaded programs, as it

 is no longer necessary to calculate a good stack size to use for each thread. This is

 currently only implemented for the x86 targets running GNU/Linux.

 When code compiled with -fsplit-stack calls code compiled without -fsplit-stack, there

 may not be much stack space available for the latter code to run. If compiling all

 code, including library code, with -fsplit-stack is not an option, then the linker can

 fix up these calls so that the code compiled without -fsplit-stack always has a large

 stack. Support for this is implemented in the gold linker in GNU binutils release

 2.21 and later.

 -fvtable-verify=[std|preinit|none]

 This option is only available when compiling C++ code. It turns on (or off, if using

 -fvtable-verify=none) the security feature that verifies at run time, for every

 virtual call, that the vtable pointer through which the call is made is valid for the

 type of the object, and has not been corrupted or overwritten. If an invalid vtable

 pointer is detected at run time, an error is reported and execution of the program is

 immediately halted.

 This option causes run-time data structures to be built at program startup, which are

 used for verifying the vtable pointers. The options std and preinit control the

 timing of when these data structures are built. In both cases the data structures are

 built before execution reaches "main". Using -fvtable-verify=std causes the data

 structures to be built after shared libraries have been loaded and initialized.

 -fvtable-verify=preinit causes them to be built before shared libraries have been

 loaded and initialized.

 If this option appears multiple times in the command line with different values

 specified, none takes highest priority over both std and preinit; preinit takes

 priority over std. Page 271/576

 -fvtv-debug

 When used in conjunction with -fvtable-verify=std or -fvtable-verify=preinit, causes

 debug versions of the runtime functions for the vtable verification feature to be

 called. This flag also causes the compiler to log information about which vtable

 pointers it finds for each class. This information is written to a file named

 vtv_set_ptr_data.log in the directory named by the environment variable VTV_LOGS_DIR

 if that is defined or the current working directory otherwise.

 Note: This feature appends data to the log file. If you want a fresh log file, be

 sure to delete any existing one.

 -fvtv-counts

 This is a debugging flag. When used in conjunction with -fvtable-verify=std or

 -fvtable-verify=preinit, this causes the compiler to keep track of the total number of

 virtual calls it encounters and the number of verifications it inserts. It also

 counts the number of calls to certain run-time library functions that it inserts and

 logs this information for each compilation unit. The compiler writes this information

 to a file named vtv_count_data.log in the directory named by the environment variable

 VTV_LOGS_DIR if that is defined or the current working directory otherwise. It also

 counts the size of the vtable pointer sets for each class, and writes this information

 to vtv_class_set_sizes.log in the same directory.

 Note: This feature appends data to the log files. To get fresh log files, be sure to

 delete any existing ones.

 -finstrument-functions

 Generate instrumentation calls for entry and exit to functions. Just after function

 entry and just before function exit, the following profiling functions are called with

 the address of the current function and its call site. (On some platforms,

 "__builtin_return_address" does not work beyond the current function, so the call site

 information may not be available to the profiling functions otherwise.)

 void __cyg_profile_func_enter (void *this_fn,

 void *call_site);

 void __cyg_profile_func_exit (void *this_fn,

 void *call_site);

 The first argument is the address of the start of the current function, which may be

 looked up exactly in the symbol table. Page 272/576

 This instrumentation is also done for functions expanded inline in other functions.

 The profiling calls indicate where, conceptually, the inline function is entered and

 exited. This means that addressable versions of such functions must be available. If

 all your uses of a function are expanded inline, this may mean an additional expansion

 of code size. If you use "extern inline" in your C code, an addressable version of

 such functions must be provided. (This is normally the case anyway, but if you get

 lucky and the optimizer always expands the functions inline, you might have gotten

 away without providing static copies.)

 A function may be given the attribute "no_instrument_function", in which case this

 instrumentation is not done. This can be used, for example, for the profiling

 functions listed above, high-priority interrupt routines, and any functions from which

 the profiling functions cannot safely be called (perhaps signal handlers, if the

 profiling routines generate output or allocate memory).

 -finstrument-functions-exclude-file-list=file,file,...

 Set the list of functions that are excluded from instrumentation (see the description

 of -finstrument-functions). If the file that contains a function definition matches

 with one of file, then that function is not instrumented. The match is done on

 substrings: if the file parameter is a substring of the file name, it is considered to

 be a match.

 For example:

 -finstrument-functions-exclude-file-list=/bits/stl,include/sys

 excludes any inline function defined in files whose pathnames contain /bits/stl or

 include/sys.

 If, for some reason, you want to include letter , in one of sym, write ,. For example,

 -finstrument-functions-exclude-file-list=',,tmp' (note the single quote surrounding

 the option).

 -finstrument-functions-exclude-function-list=sym,sym,...

 This is similar to -finstrument-functions-exclude-file-list, but this option sets the

 list of function names to be excluded from instrumentation. The function name to be

 matched is its user-visible name, such as "vector<int> blah(const vector<int> &)", not

 the internal mangled name (e.g., "_Z4blahRSt6vectorIiSaIiEE"). The match is done on

 substrings: if the sym parameter is a substring of the function name, it is considered

 to be a match. For C99 and C++ extended identifiers, the function name must be given Page 273/576

 in UTF-8, not using universal character names.

 -fpatchable-function-entry=N[,M]

 Generate N NOPs right at the beginning of each function, with the function entry point

 before the Mth NOP. If M is omitted, it defaults to 0 so the function entry points to

 the address just at the first NOP. The NOP instructions reserve extra space which can

 be used to patch in any desired instrumentation at run time, provided that the code

 segment is writable. The amount of space is controllable indirectly via the number of

 NOPs; the NOP instruction used corresponds to the instruction emitted by the internal

 GCC back-end interface "gen_nop". This behavior is target-specific and may also

 depend on the architecture variant and/or other compilation options.

 For run-time identification, the starting addresses of these areas, which correspond

 to their respective function entries minus M, are additionally collected in the

 "__patchable_function_entries" section of the resulting binary.

 Note that the value of "__attribute__ ((patchable_function_entry (N,M)))" takes

 precedence over command-line option -fpatchable-function-entry=N,M. This can be used

 to increase the area size or to remove it completely on a single function. If "N=0",

 no pad location is recorded.

 The NOP instructions are inserted at---and maybe before, depending on M---the function

 entry address, even before the prologue.

 The maximum value of N and M is 65535.

 Options Controlling the Preprocessor

 These options control the C preprocessor, which is run on each C source file before actual

 compilation.

 If you use the -E option, nothing is done except preprocessing. Some of these options

 make sense only together with -E because they cause the preprocessor output to be

 unsuitable for actual compilation.

 In addition to the options listed here, there are a number of options to control search

 paths for include files documented in Directory Options. Options to control preprocessor

 diagnostics are listed in Warning Options.

 -D name

 Predefine name as a macro, with definition 1.

 -D name=definition

 The contents of definition are tokenized and processed as if they appeared during Page 274/576

 translation phase three in a #define directive. In particular, the definition is

 truncated by embedded newline characters.

 If you are invoking the preprocessor from a shell or shell-like program you may need

 to use the shell's quoting syntax to protect characters such as spaces that have a

 meaning in the shell syntax.

 If you wish to define a function-like macro on the command line, write its argument

 list with surrounding parentheses before the equals sign (if any). Parentheses are

 meaningful to most shells, so you should quote the option. With sh and csh,

 -D'name(args...)=definition' works.

 -D and -U options are processed in the order they are given on the command line. All

 -imacros file and -include file options are processed after all -D and -U options.

 -U name

 Cancel any previous definition of name, either built in or provided with a -D option.

 -include file

 Process file as if "#include "file"" appeared as the first line of the primary source

 file. However, the first directory searched for file is the preprocessor's working

 directory instead of the directory containing the main source file. If not found

 there, it is searched for in the remainder of the "#include "..."" search chain as

 normal.

 If multiple -include options are given, the files are included in the order they

 appear on the command line.

 -imacros file

 Exactly like -include, except that any output produced by scanning file is thrown

 away. Macros it defines remain defined. This allows you to acquire all the macros

 from a header without also processing its declarations.

 All files specified by -imacros are processed before all files specified by -include.

 -undef

 Do not predefine any system-specific or GCC-specific macros. The standard predefined

 macros remain defined.

 -pthread

 Define additional macros required for using the POSIX threads library. You should use

 this option consistently for both compilation and linking. This option is supported

 on GNU/Linux targets, most other Unix derivatives, and also on x86 Cygwin and MinGW Page 275/576

 targets.

 -M Instead of outputting the result of preprocessing, output a rule suitable for make

 describing the dependencies of the main source file. The preprocessor outputs one

 make rule containing the object file name for that source file, a colon, and the names

 of all the included files, including those coming from -include or -imacros command-

 line options.

 Unless specified explicitly (with -MT or -MQ), the object file name consists of the

 name of the source file with any suffix replaced with object file suffix and with any

 leading directory parts removed. If there are many included files then the rule is

 split into several lines using \-newline. The rule has no commands.

 This option does not suppress the preprocessor's debug output, such as -dM. To avoid

 mixing such debug output with the dependency rules you should explicitly specify the

 dependency output file with -MF, or use an environment variable like

 DEPENDENCIES_OUTPUT. Debug output is still sent to the regular output stream as

 normal.

 Passing -M to the driver implies -E, and suppresses warnings with an implicit -w.

 -MM Like -M but do not mention header files that are found in system header directories,

 nor header files that are included, directly or indirectly, from such a header.

 This implies that the choice of angle brackets or double quotes in an #include

 directive does not in itself determine whether that header appears in -MM dependency

 output.

 -MF file

 When used with -M or -MM, specifies a file to write the dependencies to. If no -MF

 switch is given the preprocessor sends the rules to the same place it would send

 preprocessed output.

 When used with the driver options -MD or -MMD, -MF overrides the default dependency

 output file.

 If file is -, then the dependencies are written to stdout.

 -MG In conjunction with an option such as -M requesting dependency generation, -MG assumes

 missing header files are generated files and adds them to the dependency list without

 raising an error. The dependency filename is taken directly from the "#include"

 directive without prepending any path. -MG also suppresses preprocessed output, as a

 missing header file renders this useless. Page 276/576

 This feature is used in automatic updating of makefiles.

 -Mno-modules

 Disable dependency generation for compiled module interfaces.

 -MP This option instructs CPP to add a phony target for each dependency other than the

 main file, causing each to depend on nothing. These dummy rules work around errors

 make gives if you remove header files without updating the Makefile to match.

 This is typical output:

 test.o: test.c test.h

 test.h:

 -MT target

 Change the target of the rule emitted by dependency generation. By default CPP takes

 the name of the main input file, deletes any directory components and any file suffix

 such as .c, and appends the platform's usual object suffix. The result is the target.

 An -MT option sets the target to be exactly the string you specify. If you want

 multiple targets, you can specify them as a single argument to -MT, or use multiple

 -MT options.

 For example, -MT '$(objpfx)foo.o' might give

 $(objpfx)foo.o: foo.c

 -MQ target

 Same as -MT, but it quotes any characters which are special to Make.

 -MQ '$(objpfx)foo.o' gives

 $$(objpfx)foo.o: foo.c

 The default target is automatically quoted, as if it were given with -MQ.

 -MD -MD is equivalent to -M -MF file, except that -E is not implied. The driver

 determines file based on whether an -o option is given. If it is, the driver uses its

 argument but with a suffix of .d, otherwise it takes the name of the input file,

 removes any directory components and suffix, and applies a .d suffix.

 If -MD is used in conjunction with -E, any -o switch is understood to specify the

 dependency output file, but if used without -E, each -o is understood to specify a

 target object file.

 Since -E is not implied, -MD can be used to generate a dependency output file as a

 side effect of the compilation process.

 -MMD Page 277/576

 Like -MD except mention only user header files, not system header files.

 -fpreprocessed

 Indicate to the preprocessor that the input file has already been preprocessed. This

 suppresses things like macro expansion, trigraph conversion, escaped newline splicing,

 and processing of most directives. The preprocessor still recognizes and removes

 comments, so that you can pass a file preprocessed with -C to the compiler without

 problems. In this mode the integrated preprocessor is little more than a tokenizer

 for the front ends.

 -fpreprocessed is implicit if the input file has one of the extensions .i, .ii or .mi.

 These are the extensions that GCC uses for preprocessed files created by -save-temps.

 -fdirectives-only

 When preprocessing, handle directives, but do not expand macros.

 The option's behavior depends on the -E and -fpreprocessed options.

 With -E, preprocessing is limited to the handling of directives such as "#define",

 "#ifdef", and "#error". Other preprocessor operations, such as macro expansion and

 trigraph conversion are not performed. In addition, the -dD option is implicitly

 enabled.

 With -fpreprocessed, predefinition of command line and most builtin macros is

 disabled. Macros such as "__LINE__", which are contextually dependent, are handled

 normally. This enables compilation of files previously preprocessed with "-E

 -fdirectives-only".

 With both -E and -fpreprocessed, the rules for -fpreprocessed take precedence. This

 enables full preprocessing of files previously preprocessed with "-E

 -fdirectives-only".

 -fdollars-in-identifiers

 Accept $ in identifiers.

 -fextended-identifiers

 Accept universal character names and extended characters in identifiers. This option

 is enabled by default for C99 (and later C standard versions) and C++.

 -fno-canonical-system-headers

 When preprocessing, do not shorten system header paths with canonicalization.

 -fmax-include-depth=depth

 Set the maximum depth of the nested #include. The default is 200. Page 278/576

 -ftabstop=width

 Set the distance between tab stops. This helps the preprocessor report correct column

 numbers in warnings or errors, even if tabs appear on the line. If the value is less

 than 1 or greater than 100, the option is ignored. The default is 8.

 -ftrack-macro-expansion[=level]

 Track locations of tokens across macro expansions. This allows the compiler to emit

 diagnostic about the current macro expansion stack when a compilation error occurs in

 a macro expansion. Using this option makes the preprocessor and the compiler consume

 more memory. The level parameter can be used to choose the level of precision of token

 location tracking thus decreasing the memory consumption if necessary. Value 0 of

 level de-activates this option. Value 1 tracks tokens locations in a degraded mode for

 the sake of minimal memory overhead. In this mode all tokens resulting from the

 expansion of an argument of a function-like macro have the same location. Value 2

 tracks tokens locations completely. This value is the most memory hungry. When this

 option is given no argument, the default parameter value is 2.

 Note that "-ftrack-macro-expansion=2" is activated by default.

 -fmacro-prefix-map=old=new

 When preprocessing files residing in directory old, expand the "__FILE__" and

 "__BASE_FILE__" macros as if the files resided in directory new instead. This can be

 used to change an absolute path to a relative path by using . for new which can result

 in more reproducible builds that are location independent. This option also affects

 "__builtin_FILE()" during compilation. See also -ffile-prefix-map.

 -fexec-charset=charset

 Set the execution character set, used for string and character constants. The default

 is UTF-8. charset can be any encoding supported by the system's "iconv" library

 routine.

 -fwide-exec-charset=charset

 Set the wide execution character set, used for wide string and character constants.

 The default is one of UTF-32BE, UTF-32LE, UTF-16BE, or UTF-16LE, whichever corresponds

 to the width of "wchar_t" and the big-endian or little-endian byte order being used

 for code generation. As with -fexec-charset, charset can be any encoding supported by

 the system's "iconv" library routine; however, you will have problems with encodings

 that do not fit exactly in "wchar_t". Page 279/576

 -finput-charset=charset

 Set the input character set, used for translation from the character set of the input

 file to the source character set used by GCC. If the locale does not specify, or GCC

 cannot get this information from the locale, the default is UTF-8. This can be

 overridden by either the locale or this command-line option. Currently the command-

 line option takes precedence if there's a conflict. charset can be any encoding

 supported by the system's "iconv" library routine.

 -fpch-deps

 When using precompiled headers, this flag causes the dependency-output flags to also

 list the files from the precompiled header's dependencies. If not specified, only the

 precompiled header are listed and not the files that were used to create it, because

 those files are not consulted when a precompiled header is used.

 -fpch-preprocess

 This option allows use of a precompiled header together with -E. It inserts a special

 "#pragma", "#pragma GCC pch_preprocess "filename"" in the output to mark the place

 where the precompiled header was found, and its filename. When -fpreprocessed is in

 use, GCC recognizes this "#pragma" and loads the PCH.

 This option is off by default, because the resulting preprocessed output is only

 really suitable as input to GCC. It is switched on by -save-temps.

 You should not write this "#pragma" in your own code, but it is safe to edit the

 filename if the PCH file is available in a different location. The filename may be

 absolute or it may be relative to GCC's current directory.

 -fworking-directory

 Enable generation of linemarkers in the preprocessor output that let the compiler know

 the current working directory at the time of preprocessing. When this option is

 enabled, the preprocessor emits, after the initial linemarker, a second linemarker

 with the current working directory followed by two slashes. GCC uses this directory,

 when it's present in the preprocessed input, as the directory emitted as the current

 working directory in some debugging information formats. This option is implicitly

 enabled if debugging information is enabled, but this can be inhibited with the

 negated form -fno-working-directory. If the -P flag is present in the command line,

 this option has no effect, since no "#line" directives are emitted whatsoever.

 -A predicate=answer Page 280/576

 Make an assertion with the predicate predicate and answer answer. This form is

 preferred to the older form -A predicate(answer), which is still supported, because it

 does not use shell special characters.

 -A -predicate=answer

 Cancel an assertion with the predicate predicate and answer answer.

 -C Do not discard comments. All comments are passed through to the output file, except

 for comments in processed directives, which are deleted along with the directive.

 You should be prepared for side effects when using -C; it causes the preprocessor to

 treat comments as tokens in their own right. For example, comments appearing at the

 start of what would be a directive line have the effect of turning that line into an

 ordinary source line, since the first token on the line is no longer a #.

 -CC Do not discard comments, including during macro expansion. This is like -C, except

 that comments contained within macros are also passed through to the output file where

 the macro is expanded.

 In addition to the side effects of the -C option, the -CC option causes all C++-style

 comments inside a macro to be converted to C-style comments. This is to prevent later

 use of that macro from inadvertently commenting out the remainder of the source line.

 The -CC option is generally used to support lint comments.

 -P Inhibit generation of linemarkers in the output from the preprocessor. This might be

 useful when running the preprocessor on something that is not C code, and will be sent

 to a program which might be confused by the linemarkers.

 -traditional

 -traditional-cpp

 Try to imitate the behavior of pre-standard C preprocessors, as opposed to ISO C

 preprocessors. See the GNU CPP manual for details.

 Note that GCC does not otherwise attempt to emulate a pre-standard C compiler, and

 these options are only supported with the -E switch, or when invoking CPP explicitly.

 -trigraphs

 Support ISO C trigraphs. These are three-character sequences, all starting with ??,

 that are defined by ISO C to stand for single characters. For example, ??/ stands for

 \, so '??/n' is a character constant for a newline.

 The nine trigraphs and their replacements are

 Trigraph: ??(??) ??< ??> ??= ??/ ??' ??! ??- Page 281/576

 Replacement: [] { } # \ ^ | ~

 By default, GCC ignores trigraphs, but in standard-conforming modes it converts them.

 See the -std and -ansi options.

 -remap

 Enable special code to work around file systems which only permit very short file

 names, such as MS-DOS.

 -H Print the name of each header file used, in addition to other normal activities. Each

 name is indented to show how deep in the #include stack it is. Precompiled header

 files are also printed, even if they are found to be invalid; an invalid precompiled

 header file is printed with ...x and a valid one with ...! .

 -dletters

 Says to make debugging dumps during compilation as specified by letters. The flags

 documented here are those relevant to the preprocessor. Other letters are interpreted

 by the compiler proper, or reserved for future versions of GCC, and so are silently

 ignored. If you specify letters whose behavior conflicts, the result is undefined.

 -dM Instead of the normal output, generate a list of #define directives for all the

 macros defined during the execution of the preprocessor, including predefined

 macros. This gives you a way of finding out what is predefined in your version of

 the preprocessor. Assuming you have no file foo.h, the command

 touch foo.h; cpp -dM foo.h

 shows all the predefined macros.

 If you use -dM without the -E option, -dM is interpreted as a synonym for

 -fdump-rtl-mach.

 -dD Like -dM except in two respects: it does not include the predefined macros, and it

 outputs both the #define directives and the result of preprocessing. Both kinds

 of output go to the standard output file.

 -dN Like -dD, but emit only the macro names, not their expansions.

 -dI Output #include directives in addition to the result of preprocessing.

 -dU Like -dD except that only macros that are expanded, or whose definedness is tested

 in preprocessor directives, are output; the output is delayed until the use or

 test of the macro; and #undef directives are also output for macros tested but

 undefined at the time.

 -fdebug-cpp Page 282/576

 This option is only useful for debugging GCC. When used from CPP or with -E, it dumps

 debugging information about location maps. Every token in the output is preceded by

 the dump of the map its location belongs to.

 When used from GCC without -E, this option has no effect.

 -Wp,option

 You can use -Wp,option to bypass the compiler driver and pass option directly through

 to the preprocessor. If option contains commas, it is split into multiple options at

 the commas. However, many options are modified, translated or interpreted by the

 compiler driver before being passed to the preprocessor, and -Wp forcibly bypasses

 this phase. The preprocessor's direct interface is undocumented and subject to

 change, so whenever possible you should avoid using -Wp and let the driver handle the

 options instead.

 -Xpreprocessor option

 Pass option as an option to the preprocessor. You can use this to supply system-

 specific preprocessor options that GCC does not recognize.

 If you want to pass an option that takes an argument, you must use -Xpreprocessor

 twice, once for the option and once for the argument.

 -no-integrated-cpp

 Perform preprocessing as a separate pass before compilation. By default, GCC performs

 preprocessing as an integrated part of input tokenization and parsing. If this option

 is provided, the appropriate language front end (cc1, cc1plus, or cc1obj for C, C++,

 and Objective-C, respectively) is instead invoked twice, once for preprocessing only

 and once for actual compilation of the preprocessed input. This option may be useful

 in conjunction with the -B or -wrapper options to specify an alternate preprocessor or

 perform additional processing of the program source between normal preprocessing and

 compilation.

 -flarge-source-files

 Adjust GCC to expect large source files, at the expense of slower compilation and

 higher memory usage.

 Specifically, GCC normally tracks both column numbers and line numbers within source

 files and it normally prints both of these numbers in diagnostics. However, once it

 has processed a certain number of source lines, it stops tracking column numbers and

 only tracks line numbers. This means that diagnostics for later lines do not include Page 283/576

 column numbers. It also means that options like -Wmisleading-indentation cease to

 work at that point, although the compiler prints a note if this happens. Passing

 -flarge-source-files significantly increases the number of source lines that GCC can

 process before it stops tracking columns.

 Passing Options to the Assembler

 You can pass options to the assembler.

 -Wa,option

 Pass option as an option to the assembler. If option contains commas, it is split

 into multiple options at the commas.

 -Xassembler option

 Pass option as an option to the assembler. You can use this to supply system-specific

 assembler options that GCC does not recognize.

 If you want to pass an option that takes an argument, you must use -Xassembler twice,

 once for the option and once for the argument.

 Options for Linking

 These options come into play when the compiler links object files into an executable

 output file. They are meaningless if the compiler is not doing a link step.

 object-file-name

 A file name that does not end in a special recognized suffix is considered to name an

 object file or library. (Object files are distinguished from libraries by the linker

 according to the file contents.) If linking is done, these object files are used as

 input to the linker.

 -c

 -S

 -E If any of these options is used, then the linker is not run, and object file names

 should not be used as arguments.

 -flinker-output=type

 This option controls code generation of the link-time optimizer. By default the

 linker output is automatically determined by the linker plugin. For debugging the

 compiler and if incremental linking with a non-LTO object file is desired, it may be

 useful to control the type manually.

 If type is exec, code generation produces a static binary. In this case -fpic and

 -fpie are both disabled. Page 284/576

 If type is dyn, code generation produces a shared library. In this case -fpic or

 -fPIC is preserved, but not enabled automatically. This allows to build shared

 libraries without position-independent code on architectures where this is possible,

 i.e. on x86.

 If type is pie, code generation produces an -fpie executable. This results in similar

 optimizations as exec except that -fpie is not disabled if specified at compilation

 time.

 If type is rel, the compiler assumes that incremental linking is done. The sections

 containing intermediate code for link-time optimization are merged, pre-optimized, and

 output to the resulting object file. In addition, if -ffat-lto-objects is specified,

 binary code is produced for future non-LTO linking. The object file produced by

 incremental linking is smaller than a static library produced from the same object

 files. At link time the result of incremental linking also loads faster than a static

 library assuming that the majority of objects in the library are used.

 Finally nolto-rel configures the compiler for incremental linking where code

 generation is forced, a final binary is produced, and the intermediate code for later

 link-time optimization is stripped. When multiple object files are linked together the

 resulting code is better optimized than with link-time optimizations disabled (for

 example, cross-module inlining happens), but most of benefits of whole program

 optimizations are lost.

 During the incremental link (by -r) the linker plugin defaults to rel. With current

 interfaces to GNU Binutils it is however not possible to incrementally link LTO

 objects and non-LTO objects into a single mixed object file. If any of object files

 in incremental link cannot be used for link-time optimization, the linker plugin

 issues a warning and uses nolto-rel. To maintain whole program optimization, it is

 recommended to link such objects into static library instead. Alternatively it is

 possible to use H.J. Lu's binutils with support for mixed objects.

 -fuse-ld=bfd

 Use the bfd linker instead of the default linker.

 -fuse-ld=gold

 Use the gold linker instead of the default linker.

 -fuse-ld=lld

 Use the LLVM lld linker instead of the default linker. Page 285/576

 -fuse-ld=mold

 Use the Modern Linker (mold) instead of the default linker.

 -llibrary

 -l library

 Search the library named library when linking. (The second alternative with the

 library as a separate argument is only for POSIX compliance and is not recommended.)

 The -l option is passed directly to the linker by GCC. Refer to your linker

 documentation for exact details. The general description below applies to the GNU

 linker.

 The linker searches a standard list of directories for the library. The directories

 searched include several standard system directories plus any that you specify with

 -L.

 Static libraries are archives of object files, and have file names like liblibrary.a.

 Some targets also support shared libraries, which typically have names like

 liblibrary.so. If both static and shared libraries are found, the linker gives

 preference to linking with the shared library unless the -static option is used.

 It makes a difference where in the command you write this option; the linker searches

 and processes libraries and object files in the order they are specified. Thus, foo.o

 -lz bar.o searches library z after file foo.o but before bar.o. If bar.o refers to

 functions in z, those functions may not be loaded.

 -lobjc

 You need this special case of the -l option in order to link an Objective-C or

 Objective-C++ program.

 -nostartfiles

 Do not use the standard system startup files when linking. The standard system

 libraries are used normally, unless -nostdlib, -nolibc, or -nodefaultlibs is used.

 -nodefaultlibs

 Do not use the standard system libraries when linking. Only the libraries you specify

 are passed to the linker, and options specifying linkage of the system libraries, such

 as -static-libgcc or -shared-libgcc, are ignored. The standard startup files are used

 normally, unless -nostartfiles is used.

 The compiler may generate calls to "memcmp", "memset", "memcpy" and "memmove". These

 entries are usually resolved by entries in libc. These entry points should be Page 286/576

 supplied through some other mechanism when this option is specified.

 -nolibc

 Do not use the C library or system libraries tightly coupled with it when linking.

 Still link with the startup files, libgcc or toolchain provided language support

 libraries such as libgnat, libgfortran or libstdc++ unless options preventing their

 inclusion are used as well. This typically removes -lc from the link command line, as

 well as system libraries that normally go with it and become meaningless when absence

 of a C library is assumed, for example -lpthread or -lm in some configurations. This

 is intended for bare-board targets when there is indeed no C library available.

 -nostdlib

 Do not use the standard system startup files or libraries when linking. No startup

 files and only the libraries you specify are passed to the linker, and options

 specifying linkage of the system libraries, such as -static-libgcc or -shared-libgcc,

 are ignored.

 The compiler may generate calls to "memcmp", "memset", "memcpy" and "memmove". These

 entries are usually resolved by entries in libc. These entry points should be

 supplied through some other mechanism when this option is specified.

 One of the standard libraries bypassed by -nostdlib and -nodefaultlibs is libgcc.a, a

 library of internal subroutines which GCC uses to overcome shortcomings of particular

 machines, or special needs for some languages.

 In most cases, you need libgcc.a even when you want to avoid other standard libraries.

 In other words, when you specify -nostdlib or -nodefaultlibs you should usually

 specify -lgcc as well. This ensures that you have no unresolved references to

 internal GCC library subroutines. (An example of such an internal subroutine is

 "__main", used to ensure C++ constructors are called.)

 -e entry

 --entry=entry

 Specify that the program entry point is entry. The argument is interpreted by the

 linker; the GNU linker accepts either a symbol name or an address.

 -pie

 Produce a dynamically linked position independent executable on targets that support

 it. For predictable results, you must also specify the same set of options used for

 compilation (-fpie, -fPIE, or model suboptions) when you specify this linker option. Page 287/576

 -no-pie

 Don't produce a dynamically linked position independent executable.

 -static-pie

 Produce a static position independent executable on targets that support it. A static

 position independent executable is similar to a static executable, but can be loaded

 at any address without a dynamic linker. For predictable results, you must also

 specify the same set of options used for compilation (-fpie, -fPIE, or model

 suboptions) when you specify this linker option.

 -pthread

 Link with the POSIX threads library. This option is supported on GNU/Linux targets,

 most other Unix derivatives, and also on x86 Cygwin and MinGW targets. On some

 targets this option also sets flags for the preprocessor, so it should be used

 consistently for both compilation and linking.

 -r Produce a relocatable object as output. This is also known as partial linking.

 -rdynamic

 Pass the flag -export-dynamic to the ELF linker, on targets that support it. This

 instructs the linker to add all symbols, not only used ones, to the dynamic symbol

 table. This option is needed for some uses of "dlopen" or to allow obtaining

 backtraces from within a program.

 -s Remove all symbol table and relocation information from the executable.

 -static

 On systems that support dynamic linking, this overrides -pie and prevents linking with

 the shared libraries. On other systems, this option has no effect.

 -shared

 Produce a shared object which can then be linked with other objects to form an

 executable. Not all systems support this option. For predictable results, you must

 also specify the same set of options used for compilation (-fpic, -fPIC, or model

 suboptions) when you specify this linker option.[1]

 -shared-libgcc

 -static-libgcc

 On systems that provide libgcc as a shared library, these options force the use of

 either the shared or static version, respectively. If no shared version of libgcc was

 built when the compiler was configured, these options have no effect. Page 288/576

 There are several situations in which an application should use the shared libgcc

 instead of the static version. The most common of these is when the application

 wishes to throw and catch exceptions across different shared libraries. In that case,

 each of the libraries as well as the application itself should use the shared libgcc.

 Therefore, the G++ driver automatically adds -shared-libgcc whenever you build a

 shared library or a main executable, because C++ programs typically use exceptions, so

 this is the right thing to do.

 If, instead, you use the GCC driver to create shared libraries, you may find that they

 are not always linked with the shared libgcc. If GCC finds, at its configuration

 time, that you have a non-GNU linker or a GNU linker that does not support option

 --eh-frame-hdr, it links the shared version of libgcc into shared libraries by

 default. Otherwise, it takes advantage of the linker and optimizes away the linking

 with the shared version of libgcc, linking with the static version of libgcc by

 default. This allows exceptions to propagate through such shared libraries, without

 incurring relocation costs at library load time.

 However, if a library or main executable is supposed to throw or catch exceptions, you

 must link it using the G++ driver, or using the option -shared-libgcc, such that it is

 linked with the shared libgcc.

 -static-libasan

 When the -fsanitize=address option is used to link a program, the GCC driver

 automatically links against libasan. If libasan is available as a shared library, and

 the -static option is not used, then this links against the shared version of libasan.

 The -static-libasan option directs the GCC driver to link libasan statically, without

 necessarily linking other libraries statically.

 -static-libtsan

 When the -fsanitize=thread option is used to link a program, the GCC driver

 automatically links against libtsan. If libtsan is available as a shared library, and

 the -static option is not used, then this links against the shared version of libtsan.

 The -static-libtsan option directs the GCC driver to link libtsan statically, without

 necessarily linking other libraries statically.

 -static-liblsan

 When the -fsanitize=leak option is used to link a program, the GCC driver

 automatically links against liblsan. If liblsan is available as a shared library, and Page 289/576

 the -static option is not used, then this links against the shared version of liblsan.

 The -static-liblsan option directs the GCC driver to link liblsan statically, without

 necessarily linking other libraries statically.

 -static-libubsan

 When the -fsanitize=undefined option is used to link a program, the GCC driver

 automatically links against libubsan. If libubsan is available as a shared library,

 and the -static option is not used, then this links against the shared version of

 libubsan. The -static-libubsan option directs the GCC driver to link libubsan

 statically, without necessarily linking other libraries statically.

 -static-libstdc++

 When the g++ program is used to link a C++ program, it normally automatically links

 against libstdc++. If libstdc++ is available as a shared library, and the -static

 option is not used, then this links against the shared version of libstdc++. That is

 normally fine. However, it is sometimes useful to freeze the version of libstdc++

 used by the program without going all the way to a fully static link. The

 -static-libstdc++ option directs the g++ driver to link libstdc++ statically, without

 necessarily linking other libraries statically.

 -symbolic

 Bind references to global symbols when building a shared object. Warn about any

 unresolved references (unless overridden by the link editor option -Xlinker -z

 -Xlinker defs). Only a few systems support this option.

 -T script

 Use script as the linker script. This option is supported by most systems using the

 GNU linker. On some targets, such as bare-board targets without an operating system,

 the -T option may be required when linking to avoid references to undefined symbols.

 -Xlinker option

 Pass option as an option to the linker. You can use this to supply system-specific

 linker options that GCC does not recognize.

 If you want to pass an option that takes a separate argument, you must use -Xlinker

 twice, once for the option and once for the argument. For example, to pass -assert

 definitions, you must write -Xlinker -assert -Xlinker definitions. It does not work

 to write -Xlinker "-assert definitions", because this passes the entire string as a

 single argument, which is not what the linker expects. Page 290/576

 When using the GNU linker, it is usually more convenient to pass arguments to linker

 options using the option=value syntax than as separate arguments. For example, you

 can specify -Xlinker -Map=output.map rather than -Xlinker -Map -Xlinker output.map.

 Other linkers may not support this syntax for command-line options.

 -Wl,option

 Pass option as an option to the linker. If option contains commas, it is split into

 multiple options at the commas. You can use this syntax to pass an argument to the

 option. For example, -Wl,-Map,output.map passes -Map output.map to the linker. When

 using the GNU linker, you can also get the same effect with -Wl,-Map=output.map.

 NOTE: In Ubuntu 8.10 and later versions, for LDFLAGS, the option -Wl,-z,relro is used.

 To disable, use -Wl,-z,norelro.

 -u symbol

 Pretend the symbol symbol is undefined, to force linking of library modules to define

 it. You can use -u multiple times with different symbols to force loading of

 additional library modules.

 -z keyword

 -z is passed directly on to the linker along with the keyword keyword. See the section

 in the documentation of your linker for permitted values and their meanings.

 Options for Directory Search

 These options specify directories to search for header files, for libraries and for parts

 of the compiler:

 -I dir

 -iquote dir

 -isystem dir

 -idirafter dir

 Add the directory dir to the list of directories to be searched for header files

 during preprocessing. If dir begins with = or $SYSROOT, then the = or $SYSROOT is

 replaced by the sysroot prefix; see --sysroot and -isysroot.

 Directories specified with -iquote apply only to the quote form of the directive,

 "#include "file"". Directories specified with -I, -isystem, or -idirafter apply to

 lookup for both the "#include "file"" and "#include <file>" directives.

 You can specify any number or combination of these options on the command line to

 search for header files in several directories. The lookup order is as follows: Page 291/576

 1. For the quote form of the include directive, the directory of the current file is

 searched first.

 2. For the quote form of the include directive, the directories specified by -iquote

 options are searched in left-to-right order, as they appear on the command line.

 3. Directories specified with -I options are scanned in left-to-right order.

 4. Directories specified with -isystem options are scanned in left-to-right order.

 5. Standard system directories are scanned.

 6. Directories specified with -idirafter options are scanned in left-to-right order.

 You can use -I to override a system header file, substituting your own version, since

 these directories are searched before the standard system header file directories.

 However, you should not use this option to add directories that contain vendor-

 supplied system header files; use -isystem for that.

 The -isystem and -idirafter options also mark the directory as a system directory, so

 that it gets the same special treatment that is applied to the standard system

 directories.

 If a standard system include directory, or a directory specified with -isystem, is

 also specified with -I, the -I option is ignored. The directory is still searched but

 as a system directory at its normal position in the system include chain. This is to

 ensure that GCC's procedure to fix buggy system headers and the ordering for the

 "#include_next" directive are not inadvertently changed. If you really need to change

 the search order for system directories, use the -nostdinc and/or -isystem options.

 -I- Split the include path. This option has been deprecated. Please use -iquote instead

 for -I directories before the -I- and remove the -I- option.

 Any directories specified with -I options before -I- are searched only for headers

 requested with "#include "file""; they are not searched for "#include <file>". If

 additional directories are specified with -I options after the -I-, those directories

 are searched for all #include directives.

 In addition, -I- inhibits the use of the directory of the current file directory as

 the first search directory for "#include "file"". There is no way to override this

 effect of -I-.

 -iprefix prefix

 Specify prefix as the prefix for subsequent -iwithprefix options. If the prefix

 represents a directory, you should include the final /. Page 292/576

 -iwithprefix dir

 -iwithprefixbefore dir

 Append dir to the prefix specified previously with -iprefix, and add the resulting

 directory to the include search path. -iwithprefixbefore puts it in the same place -I

 would; -iwithprefix puts it where -idirafter would.

 -isysroot dir

 This option is like the --sysroot option, but applies only to header files (except for

 Darwin targets, where it applies to both header files and libraries). See the

 --sysroot option for more information.

 -imultilib dir

 Use dir as a subdirectory of the directory containing target-specific C++ headers.

 -nostdinc

 Do not search the standard system directories for header files. Only the directories

 explicitly specified with -I, -iquote, -isystem, and/or -idirafter options (and the

 directory of the current file, if appropriate) are searched.

 -nostdinc++

 Do not search for header files in the C++-specific standard directories, but do still

 search the other standard directories. (This option is used when building the C++

 library.)

 -iplugindir=dir

 Set the directory to search for plugins that are passed by -fplugin=name instead of

 -fplugin=path/name.so. This option is not meant to be used by the user, but only

 passed by the driver.

 -Ldir

 Add directory dir to the list of directories to be searched for -l.

 -Bprefix

 This option specifies where to find the executables, libraries, include files, and

 data files of the compiler itself.

 The compiler driver program runs one or more of the subprograms cpp, cc1, as and ld.

 It tries prefix as a prefix for each program it tries to run, both with and without

 machine/version/ for the corresponding target machine and compiler version.

 For each subprogram to be run, the compiler driver first tries the -B prefix, if any.

 If that name is not found, or if -B is not specified, the driver tries two standard Page 293/576

 prefixes, /usr/lib/gcc/ and /usr/local/lib/gcc/. If neither of those results in a

 file name that is found, the unmodified program name is searched for using the

 directories specified in your PATH environment variable.

 The compiler checks to see if the path provided by -B refers to a directory, and if

 necessary it adds a directory separator character at the end of the path.

 -B prefixes that effectively specify directory names also apply to libraries in the

 linker, because the compiler translates these options into -L options for the linker.

 They also apply to include files in the preprocessor, because the compiler translates

 these options into -isystem options for the preprocessor. In this case, the compiler

 appends include to the prefix.

 The runtime support file libgcc.a can also be searched for using the -B prefix, if

 needed. If it is not found there, the two standard prefixes above are tried, and that

 is all. The file is left out of the link if it is not found by those means.

 Another way to specify a prefix much like the -B prefix is to use the environment

 variable GCC_EXEC_PREFIX.

 As a special kludge, if the path provided by -B is [dir/]stageN/, where N is a number

 in the range 0 to 9, then it is replaced by [dir/]include. This is to help with boot-

 strapping the compiler.

 -no-canonical-prefixes

 Do not expand any symbolic links, resolve references to /../ or /./, or make the path

 absolute when generating a relative prefix.

 --sysroot=dir

 Use dir as the logical root directory for headers and libraries. For example, if the

 compiler normally searches for headers in /usr/include and libraries in /usr/lib, it

 instead searches dir/usr/include and dir/usr/lib.

 If you use both this option and the -isysroot option, then the --sysroot option

 applies to libraries, but the -isysroot option applies to header files.

 The GNU linker (beginning with version 2.16) has the necessary support for this

 option. If your linker does not support this option, the header file aspect of

 --sysroot still works, but the library aspect does not.

 --no-sysroot-suffix

 For some targets, a suffix is added to the root directory specified with --sysroot,

 depending on the other options used, so that headers may for example be found in Page 294/576

 dir/suffix/usr/include instead of dir/usr/include. This option disables the addition

 of such a suffix.

 Options for Code Generation Conventions

 These machine-independent options control the interface conventions used in code

 generation.

 Most of them have both positive and negative forms; the negative form of -ffoo is

 -fno-foo. In the table below, only one of the forms is listed---the one that is not the

 default. You can figure out the other form by either removing no- or adding it.

 -fstack-reuse=reuse-level

 This option controls stack space reuse for user declared local/auto variables and

 compiler generated temporaries. reuse_level can be all, named_vars, or none. all

 enables stack reuse for all local variables and temporaries, named_vars enables the

 reuse only for user defined local variables with names, and none disables stack reuse

 completely. The default value is all. The option is needed when the program extends

 the lifetime of a scoped local variable or a compiler generated temporary beyond the

 end point defined by the language. When a lifetime of a variable ends, and if the

 variable lives in memory, the optimizing compiler has the freedom to reuse its stack

 space with other temporaries or scoped local variables whose live range does not

 overlap with it. Legacy code extending local lifetime is likely to break with the

 stack reuse optimization.

 For example,

 int *p;

 {

 int local1;

 p = &local1;

 local1 = 10;

 }

 {

 int local2;

 local2 = 20;

 ...

 } Page 295/576

 if (*p == 10) // out of scope use of local1

 {

 }

 Another example:

 struct A

 {

 A(int k) : i(k), j(k) { }

 int i;

 int j;

 };

 A *ap;

 void foo(const A& ar)

 {

 ap = &ar;

 }

 void bar()

 {

 foo(A(10)); // temp object's lifetime ends when foo returns

 {

 A a(20);

 }

 ap->i+= 10; // ap references out of scope temp whose space

 // is reused with a. What is the value of ap->i?

 }

 The lifetime of a compiler generated temporary is well defined by the C++ standard.

 When a lifetime of a temporary ends, and if the temporary lives in memory, the

 optimizing compiler has the freedom to reuse its stack space with other temporaries or

 scoped local variables whose live range does not overlap with it. However some of the

 legacy code relies on the behavior of older compilers in which temporaries' stack

 space is not reused, the aggressive stack reuse can lead to runtime errors. This

 option is used to control the temporary stack reuse optimization.

 -ftrapv Page 296/576

 This option generates traps for signed overflow on addition, subtraction,

 multiplication operations. The options -ftrapv and -fwrapv override each other, so

 using -ftrapv -fwrapv on the command-line results in -fwrapv being effective. Note

 that only active options override, so using -ftrapv -fwrapv -fno-wrapv on the command-

 line results in -ftrapv being effective.

 -fwrapv

 This option instructs the compiler to assume that signed arithmetic overflow of

 addition, subtraction and multiplication wraps around using twos-complement

 representation. This flag enables some optimizations and disables others. The

 options -ftrapv and -fwrapv override each other, so using -ftrapv -fwrapv on the

 command-line results in -fwrapv being effective. Note that only active options

 override, so using -ftrapv -fwrapv -fno-wrapv on the command-line results in -ftrapv

 being effective.

 -fwrapv-pointer

 This option instructs the compiler to assume that pointer arithmetic overflow on

 addition and subtraction wraps around using twos-complement representation. This flag

 disables some optimizations which assume pointer overflow is invalid.

 -fstrict-overflow

 This option implies -fno-wrapv -fno-wrapv-pointer and when negated implies -fwrapv

 -fwrapv-pointer.

 -fexceptions

 Enable exception handling. Generates extra code needed to propagate exceptions. For

 some targets, this implies GCC generates frame unwind information for all functions,

 which can produce significant data size overhead, although it does not affect

 execution. If you do not specify this option, GCC enables it by default for languages

 like C++ that normally require exception handling, and disables it for languages like

 C that do not normally require it. However, you may need to enable this option when

 compiling C code that needs to interoperate properly with exception handlers written

 in C++. You may also wish to disable this option if you are compiling older C++

 programs that don't use exception handling.

 -fnon-call-exceptions

 Generate code that allows trapping instructions to throw exceptions. Note that this

 requires platform-specific runtime support that does not exist everywhere. Moreover, Page 297/576

 it only allows trapping instructions to throw exceptions, i.e. memory references or

 floating-point instructions. It does not allow exceptions to be thrown from arbitrary

 signal handlers such as "SIGALRM".

 -fdelete-dead-exceptions

 Consider that instructions that may throw exceptions but don't otherwise contribute to

 the execution of the program can be optimized away. This option is enabled by default

 for the Ada compiler, as permitted by the Ada language specification. Optimization

 passes that cause dead exceptions to be removed are enabled independently at different

 optimization levels.

 -funwind-tables

 Similar to -fexceptions, except that it just generates any needed static data, but

 does not affect the generated code in any other way. You normally do not need to

 enable this option; instead, a language processor that needs this handling enables it

 on your behalf.

 -fasynchronous-unwind-tables

 Generate unwind table in DWARF format, if supported by target machine. The table is

 exact at each instruction boundary, so it can be used for stack unwinding from

 asynchronous events (such as debugger or garbage collector).

 -fno-gnu-unique

 On systems with recent GNU assembler and C library, the C++ compiler uses the

 "STB_GNU_UNIQUE" binding to make sure that definitions of template static data members

 and static local variables in inline functions are unique even in the presence of

 "RTLD_LOCAL"; this is necessary to avoid problems with a library used by two different

 "RTLD_LOCAL" plugins depending on a definition in one of them and therefore

 disagreeing with the other one about the binding of the symbol. But this causes

 "dlclose" to be ignored for affected DSOs; if your program relies on reinitialization

 of a DSO via "dlclose" and "dlopen", you can use -fno-gnu-unique.

 -fpcc-struct-return

 Return "short" "struct" and "union" values in memory like longer ones, rather than in

 registers. This convention is less efficient, but it has the advantage of allowing

 intercallability between GCC-compiled files and files compiled with other compilers,

 particularly the Portable C Compiler (pcc).

 The precise convention for returning structures in memory depends on the target Page 298/576

 configuration macros.

 Short structures and unions are those whose size and alignment match that of some

 integer type.

 Warning: code compiled with the -fpcc-struct-return switch is not binary compatible

 with code compiled with the -freg-struct-return switch. Use it to conform to a non-

 default application binary interface.

 -freg-struct-return

 Return "struct" and "union" values in registers when possible. This is more efficient

 for small structures than -fpcc-struct-return.

 If you specify neither -fpcc-struct-return nor -freg-struct-return, GCC defaults to

 whichever convention is standard for the target. If there is no standard convention,

 GCC defaults to -fpcc-struct-return, except on targets where GCC is the principal

 compiler. In those cases, we can choose the standard, and we chose the more efficient

 register return alternative.

 Warning: code compiled with the -freg-struct-return switch is not binary compatible

 with code compiled with the -fpcc-struct-return switch. Use it to conform to a non-

 default application binary interface.

 -fshort-enums

 Allocate to an "enum" type only as many bytes as it needs for the declared range of

 possible values. Specifically, the "enum" type is equivalent to the smallest integer

 type that has enough room.

 Warning: the -fshort-enums switch causes GCC to generate code that is not binary

 compatible with code generated without that switch. Use it to conform to a non-

 default application binary interface.

 -fshort-wchar

 Override the underlying type for "wchar_t" to be "short unsigned int" instead of the

 default for the target. This option is useful for building programs to run under

 WINE.

 Warning: the -fshort-wchar switch causes GCC to generate code that is not binary

 compatible with code generated without that switch. Use it to conform to a non-

 default application binary interface.

 -fcommon

 In C code, this option controls the placement of global variables defined without an Page 299/576

 initializer, known as tentative definitions in the C standard. Tentative definitions

 are distinct from declarations of a variable with the "extern" keyword, which do not

 allocate storage.

 The default is -fno-common, which specifies that the compiler places uninitialized

 global variables in the BSS section of the object file. This inhibits the merging of

 tentative definitions by the linker so you get a multiple-definition error if the same

 variable is accidentally defined in more than one compilation unit.

 The -fcommon places uninitialized global variables in a common block. This allows the

 linker to resolve all tentative definitions of the same variable in different

 compilation units to the same object, or to a non-tentative definition. This behavior

 is inconsistent with C++, and on many targets implies a speed and code size penalty on

 global variable references. It is mainly useful to enable legacy code to link without

 errors.

 -fno-ident

 Ignore the "#ident" directive.

 -finhibit-size-directive

 Don't output a ".size" assembler directive, or anything else that would cause trouble

 if the function is split in the middle, and the two halves are placed at locations far

 apart in memory. This option is used when compiling crtstuff.c; you should not need

 to use it for anything else.

 -fverbose-asm

 Put extra commentary information in the generated assembly code to make it more

 readable. This option is generally only of use to those who actually need to read the

 generated assembly code (perhaps while debugging the compiler itself).

 -fno-verbose-asm, the default, causes the extra information to be omitted and is

 useful when comparing two assembler files.

 The added comments include:

 * information on the compiler version and command-line options,

 * the source code lines associated with the assembly instructions, in the form

 FILENAME:LINENUMBER:CONTENT OF LINE,

 * hints on which high-level expressions correspond to the various assembly

 instruction operands.

 For example, given this C source file: Page 300/576

 int test (int n)

 {

 int i;

 int total = 0;

 for (i = 0; i < n; i++)

 total += i * i;

 return total;

 }

 compiling to (x86_64) assembly via -S and emitting the result direct to stdout via -o

 -

 gcc -S test.c -fverbose-asm -Os -o -

 gives output similar to this:

 .file "test.c"

 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)

 [...snip...]

 # options passed:

 [...snip...]

 .text

 .globl test

 .type test, @function

 test:

 .LFB0:

 .cfi_startproc

 # test.c:4: int total = 0;

 xorl %eax, %eax # <retval>

 # test.c:6: for (i = 0; i < n; i++)

 xorl %edx, %edx # i

 .L2:

 # test.c:6: for (i = 0; i < n; i++)

 cmpl %edi, %edx # n, i

 jge .L5 #,

 # test.c:7: total += i * i;

 movl %edx, %ecx # i, tmp92 Page 301/576

 imull %edx, %ecx # i, tmp92

 # test.c:6: for (i = 0; i < n; i++)

 incl %edx # i

 # test.c:7: total += i * i;

 addl %ecx, %eax # tmp92, <retval>

 jmp .L2 #

 .L5:

 # test.c:10: }

 ret

 .cfi_endproc

 .LFE0:

 .size test, .-test

 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"

 .section .note.GNU-stack,"",@progbits

 The comments are intended for humans rather than machines and hence the precise format

 of the comments is subject to change.

 -frecord-gcc-switches

 This switch causes the command line used to invoke the compiler to be recorded into

 the object file that is being created. This switch is only implemented on some

 targets and the exact format of the recording is target and binary file format

 dependent, but it usually takes the form of a section containing ASCII text. This

 switch is related to the -fverbose-asm switch, but that switch only records

 information in the assembler output file as comments, so it never reaches the object

 file. See also -grecord-gcc-switches for another way of storing compiler options into

 the object file.

 -fpic

 Generate position-independent code (PIC) suitable for use in a shared library, if

 supported for the target machine. Such code accesses all constant addresses through a

 global offset table (GOT). The dynamic loader resolves the GOT entries when the

 program starts (the dynamic loader is not part of GCC; it is part of the operating

 system). If the GOT size for the linked executable exceeds a machine-specific maximum

 size, you get an error message from the linker indicating that -fpic does not work; in

 that case, recompile with -fPIC instead. (These maximums are 8k on the SPARC, 28k on Page 302/576

 AArch64 and 32k on the m68k and RS/6000. The x86 has no such limit.)

 Position-independent code requires special support, and therefore works only on

 certain machines. For the x86, GCC supports PIC for System V but not for the Sun

 386i. Code generated for the IBM RS/6000 is always position-independent.

 When this flag is set, the macros "__pic__" and "__PIC__" are defined to 1.

 -fPIC

 If supported for the target machine, emit position-independent code, suitable for

 dynamic linking and avoiding any limit on the size of the global offset table. This

 option makes a difference on AArch64, m68k, PowerPC and SPARC.

 Position-independent code requires special support, and therefore works only on

 certain machines.

 When this flag is set, the macros "__pic__" and "__PIC__" are defined to 2.

 -fpie

 -fPIE

 These options are similar to -fpic and -fPIC, but the generated position-independent

 code can be only linked into executables. Usually these options are used to compile

 code that will be linked using the -pie GCC option.

 -fpie and -fPIE both define the macros "__pie__" and "__PIE__". The macros have the

 value 1 for -fpie and 2 for -fPIE.

 -fno-plt

 Do not use the PLT for external function calls in position-independent code. Instead,

 load the callee address at call sites from the GOT and branch to it. This leads to

 more efficient code by eliminating PLT stubs and exposing GOT loads to optimizations.

 On architectures such as 32-bit x86 where PLT stubs expect the GOT pointer in a

 specific register, this gives more register allocation freedom to the compiler. Lazy

 binding requires use of the PLT; with -fno-plt all external symbols are resolved at

 load time.

 Alternatively, the function attribute "noplt" can be used to avoid calls through the

 PLT for specific external functions.

 In position-dependent code, a few targets also convert calls to functions that are

 marked to not use the PLT to use the GOT instead.

 -fno-jump-tables

 Do not use jump tables for switch statements even where it would be more efficient Page 303/576

 than other code generation strategies. This option is of use in conjunction with

 -fpic or -fPIC for building code that forms part of a dynamic linker and cannot

 reference the address of a jump table. On some targets, jump tables do not require a

 GOT and this option is not needed.

 -fno-bit-tests

 Do not use bit tests for switch statements even where it would be more efficient than

 other code generation strategies.

 -ffixed-reg

 Treat the register named reg as a fixed register; generated code should never refer to

 it (except perhaps as a stack pointer, frame pointer or in some other fixed role).

 reg must be the name of a register. The register names accepted are machine-specific

 and are defined in the "REGISTER_NAMES" macro in the machine description macro file.

 This flag does not have a negative form, because it specifies a three-way choice.

 -fcall-used-reg

 Treat the register named reg as an allocable register that is clobbered by function

 calls. It may be allocated for temporaries or variables that do not live across a

 call. Functions compiled this way do not save and restore the register reg.

 It is an error to use this flag with the frame pointer or stack pointer. Use of this

 flag for other registers that have fixed pervasive roles in the machine's execution

 model produces disastrous results.

 This flag does not have a negative form, because it specifies a three-way choice.

 -fcall-saved-reg

 Treat the register named reg as an allocable register saved by functions. It may be

 allocated even for temporaries or variables that live across a call. Functions

 compiled this way save and restore the register reg if they use it.

 It is an error to use this flag with the frame pointer or stack pointer. Use of this

 flag for other registers that have fixed pervasive roles in the machine's execution

 model produces disastrous results.

 A different sort of disaster results from the use of this flag for a register in which

 function values may be returned.

 This flag does not have a negative form, because it specifies a three-way choice.

 -fpack-struct[=n]

 Without a value specified, pack all structure members together without holes. When a Page 304/576

 value is specified (which must be a small power of two), pack structure members

 according to this value, representing the maximum alignment (that is, objects with

 default alignment requirements larger than this are output potentially unaligned at

 the next fitting location.

 Warning: the -fpack-struct switch causes GCC to generate code that is not binary

 compatible with code generated without that switch. Additionally, it makes the code

 suboptimal. Use it to conform to a non-default application binary interface.

 -fleading-underscore

 This option and its counterpart, -fno-leading-underscore, forcibly change the way C

 symbols are represented in the object file. One use is to help link with legacy

 assembly code.

 Warning: the -fleading-underscore switch causes GCC to generate code that is not

 binary compatible with code generated without that switch. Use it to conform to a

 non-default application binary interface. Not all targets provide complete support

 for this switch.

 -ftls-model=model

 Alter the thread-local storage model to be used. The model argument should be one of

 global-dynamic, local-dynamic, initial-exec or local-exec. Note that the choice is

 subject to optimization: the compiler may use a more efficient model for symbols not

 visible outside of the translation unit, or if -fpic is not given on the command line.

 The default without -fpic is initial-exec; with -fpic the default is global-dynamic.

 -ftrampolines

 For targets that normally need trampolines for nested functions, always generate them

 instead of using descriptors. Otherwise, for targets that do not need them, like for

 example HP-PA or IA-64, do nothing.

 A trampoline is a small piece of code that is created at run time on the stack when

 the address of a nested function is taken, and is used to call the nested function

 indirectly. Therefore, it requires the stack to be made executable in order for the

 program to work properly.

 -fno-trampolines is enabled by default on a language by language basis to let the

 compiler avoid generating them, if it computes that this is safe, and replace them

 with descriptors. Descriptors are made up of data only, but the generated code must

 be prepared to deal with them. As of this writing, -fno-trampolines is enabled by Page 305/576

 default only for Ada.

 Moreover, code compiled with -ftrampolines and code compiled with -fno-trampolines are

 not binary compatible if nested functions are present. This option must therefore be

 used on a program-wide basis and be manipulated with extreme care.

 -fvisibility=[default|internal|hidden|protected]

 Set the default ELF image symbol visibility to the specified option---all symbols are

 marked with this unless overridden within the code. Using this feature can very

 substantially improve linking and load times of shared object libraries, produce more

 optimized code, provide near-perfect API export and prevent symbol clashes. It is

 strongly recommended that you use this in any shared objects you distribute.

 Despite the nomenclature, default always means public; i.e., available to be linked

 against from outside the shared object. protected and internal are pretty useless in

 real-world usage so the only other commonly used option is hidden. The default if

 -fvisibility isn't specified is default, i.e., make every symbol public.

 A good explanation of the benefits offered by ensuring ELF symbols have the correct

 visibility is given by "How To Write Shared Libraries" by Ulrich Drepper (which can be

 found at <https://www.akkadia.org/drepper/>)---however a superior solution made

 possible by this option to marking things hidden when the default is public is to make

 the default hidden and mark things public. This is the norm with DLLs on Windows and

 with -fvisibility=hidden and "__attribute__ ((visibility("default")))" instead of

 "__declspec(dllexport)" you get almost identical semantics with identical syntax.

 This is a great boon to those working with cross-platform projects.

 For those adding visibility support to existing code, you may find "#pragma GCC

 visibility" of use. This works by you enclosing the declarations you wish to set

 visibility for with (for example) "#pragma GCC visibility push(hidden)" and "#pragma

 GCC visibility pop". Bear in mind that symbol visibility should be viewed as part of

 the API interface contract and thus all new code should always specify visibility when

 it is not the default; i.e., declarations only for use within the local DSO should

 always be marked explicitly as hidden as so to avoid PLT indirection

 overheads---making this abundantly clear also aids readability and self-documentation

 of the code. Note that due to ISO C++ specification requirements, "operator new" and

 "operator delete" must always be of default visibility.

 Be aware that headers from outside your project, in particular system headers and Page 306/576

 headers from any other library you use, may not be expecting to be compiled with

 visibility other than the default. You may need to explicitly say "#pragma GCC

 visibility push(default)" before including any such headers.

 "extern" declarations are not affected by -fvisibility, so a lot of code can be

 recompiled with -fvisibility=hidden with no modifications. However, this means that

 calls to "extern" functions with no explicit visibility use the PLT, so it is more

 effective to use "__attribute ((visibility))" and/or "#pragma GCC visibility" to tell

 the compiler which "extern" declarations should be treated as hidden.

 Note that -fvisibility does affect C++ vague linkage entities. This means that, for

 instance, an exception class that is be thrown between DSOs must be explicitly marked

 with default visibility so that the type_info nodes are unified between the DSOs.

 An overview of these techniques, their benefits and how to use them is at

 <http://gcc.gnu.org/wiki/Visibility>.

 -fstrict-volatile-bitfields

 This option should be used if accesses to volatile bit-fields (or other structure

 fields, although the compiler usually honors those types anyway) should use a single

 access of the width of the field's type, aligned to a natural alignment if possible.

 For example, targets with memory-mapped peripheral registers might require all such

 accesses to be 16 bits wide; with this flag you can declare all peripheral bit-fields

 as "unsigned short" (assuming short is 16 bits on these targets) to force GCC to use

 16-bit accesses instead of, perhaps, a more efficient 32-bit access.

 If this option is disabled, the compiler uses the most efficient instruction. In the

 previous example, that might be a 32-bit load instruction, even though that accesses

 bytes that do not contain any portion of the bit-field, or memory-mapped registers

 unrelated to the one being updated.

 In some cases, such as when the "packed" attribute is applied to a structure field, it

 may not be possible to access the field with a single read or write that is correctly

 aligned for the target machine. In this case GCC falls back to generating multiple

 accesses rather than code that will fault or truncate the result at run time.

 Note: Due to restrictions of the C/C++11 memory model, write accesses are not allowed

 to touch non bit-field members. It is therefore recommended to define all bits of the

 field's type as bit-field members.

 The default value of this option is determined by the application binary interface for Page 307/576

 the target processor.

 -fsync-libcalls

 This option controls whether any out-of-line instance of the "__sync" family of

 functions may be used to implement the C++11 "__atomic" family of functions.

 The default value of this option is enabled, thus the only useful form of the option

 is -fno-sync-libcalls. This option is used in the implementation of the libatomic

 runtime library.

 GCC Developer Options

 This section describes command-line options that are primarily of interest to GCC

 developers, including options to support compiler testing and investigation of compiler

 bugs and compile-time performance problems. This includes options that produce debug

 dumps at various points in the compilation; that print statistics such as memory use and

 execution time; and that print information about GCC's configuration, such as where it

 searches for libraries. You should rarely need to use any of these options for ordinary

 compilation and linking tasks.

 Many developer options that cause GCC to dump output to a file take an optional =filename

 suffix. You can specify stdout or - to dump to standard output, and stderr for standard

 error.

 If =filename is omitted, a default dump file name is constructed by concatenating the base

 dump file name, a pass number, phase letter, and pass name. The base dump file name is

 the name of output file produced by the compiler if explicitly specified and not an

 executable; otherwise it is the source file name. The pass number is determined by the

 order passes are registered with the compiler's pass manager. This is generally the same

 as the order of execution, but passes registered by plugins, target-specific passes, or

 passes that are otherwise registered late are numbered higher than the pass named final,

 even if they are executed earlier. The phase letter is one of i (inter-procedural

 analysis), l (language-specific), r (RTL), or t (tree). The files are created in the

 directory of the output file.

 -fcallgraph-info

 -fcallgraph-info=MARKERS

 Makes the compiler output callgraph information for the program, on a per-object-file

 basis. The information is generated in the common VCG format. It can be decorated

 with additional, per-node and/or per-edge information, if a list of comma-separated Page 308/576

 markers is additionally specified. When the "su" marker is specified, the callgraph

 is decorated with stack usage information; it is equivalent to -fstack-usage. When

 the "da" marker is specified, the callgraph is decorated with information about

 dynamically allocated objects.

 When compiling with -flto, no callgraph information is output along with the object

 file. At LTO link time, -fcallgraph-info may generate multiple callgraph information

 files next to intermediate LTO output files.

 -dletters

 -fdump-rtl-pass

 -fdump-rtl-pass=filename

 Says to make debugging dumps during compilation at times specified by letters. This

 is used for debugging the RTL-based passes of the compiler.

 Some -dletters switches have different meaning when -E is used for preprocessing.

 Debug dumps can be enabled with a -fdump-rtl switch or some -d option letters. Here

 are the possible letters for use in pass and letters, and their meanings:

 -fdump-rtl-alignments

 Dump after branch alignments have been computed.

 -fdump-rtl-asmcons

 Dump after fixing rtl statements that have unsatisfied in/out constraints.

 -fdump-rtl-auto_inc_dec

 Dump after auto-inc-dec discovery. This pass is only run on architectures that

 have auto inc or auto dec instructions.

 -fdump-rtl-barriers

 Dump after cleaning up the barrier instructions.

 -fdump-rtl-bbpart

 Dump after partitioning hot and cold basic blocks.

 -fdump-rtl-bbro

 Dump after block reordering.

 -fdump-rtl-btl1

 -fdump-rtl-btl2

 -fdump-rtl-btl1 and -fdump-rtl-btl2 enable dumping after the two branch target

 load optimization passes.

 -fdump-rtl-bypass Page 309/576

 Dump after jump bypassing and control flow optimizations.

 -fdump-rtl-combine

 Dump after the RTL instruction combination pass.

 -fdump-rtl-compgotos

 Dump after duplicating the computed gotos.

 -fdump-rtl-ce1

 -fdump-rtl-ce2

 -fdump-rtl-ce3

 -fdump-rtl-ce1, -fdump-rtl-ce2, and -fdump-rtl-ce3 enable dumping after the three

 if conversion passes.

 -fdump-rtl-cprop_hardreg

 Dump after hard register copy propagation.

 -fdump-rtl-csa

 Dump after combining stack adjustments.

 -fdump-rtl-cse1

 -fdump-rtl-cse2

 -fdump-rtl-cse1 and -fdump-rtl-cse2 enable dumping after the two common

 subexpression elimination passes.

 -fdump-rtl-dce

 Dump after the standalone dead code elimination passes.

 -fdump-rtl-dbr

 Dump after delayed branch scheduling.

 -fdump-rtl-dce1

 -fdump-rtl-dce2

 -fdump-rtl-dce1 and -fdump-rtl-dce2 enable dumping after the two dead store

 elimination passes.

 -fdump-rtl-eh

 Dump after finalization of EH handling code.

 -fdump-rtl-eh_ranges

 Dump after conversion of EH handling range regions.

 -fdump-rtl-expand

 Dump after RTL generation.

 -fdump-rtl-fwprop1 Page 310/576

 -fdump-rtl-fwprop2

 -fdump-rtl-fwprop1 and -fdump-rtl-fwprop2 enable dumping after the two forward

 propagation passes.

 -fdump-rtl-gcse1

 -fdump-rtl-gcse2

 -fdump-rtl-gcse1 and -fdump-rtl-gcse2 enable dumping after global common

 subexpression elimination.

 -fdump-rtl-init-regs

 Dump after the initialization of the registers.

 -fdump-rtl-initvals

 Dump after the computation of the initial value sets.

 -fdump-rtl-into_cfglayout

 Dump after converting to cfglayout mode.

 -fdump-rtl-ira

 Dump after iterated register allocation.

 -fdump-rtl-jump

 Dump after the second jump optimization.

 -fdump-rtl-loop2

 -fdump-rtl-loop2 enables dumping after the rtl loop optimization passes.

 -fdump-rtl-mach

 Dump after performing the machine dependent reorganization pass, if that pass

 exists.

 -fdump-rtl-mode_sw

 Dump after removing redundant mode switches.

 -fdump-rtl-rnreg

 Dump after register renumbering.

 -fdump-rtl-outof_cfglayout

 Dump after converting from cfglayout mode.

 -fdump-rtl-peephole2

 Dump after the peephole pass.

 -fdump-rtl-postreload

 Dump after post-reload optimizations.

 -fdump-rtl-pro_and_epilogue Page 311/576

 Dump after generating the function prologues and epilogues.

 -fdump-rtl-sched1

 -fdump-rtl-sched2

 -fdump-rtl-sched1 and -fdump-rtl-sched2 enable dumping after the basic block

 scheduling passes.

 -fdump-rtl-ree

 Dump after sign/zero extension elimination.

 -fdump-rtl-seqabstr

 Dump after common sequence discovery.

 -fdump-rtl-shorten

 Dump after shortening branches.

 -fdump-rtl-sibling

 Dump after sibling call optimizations.

 -fdump-rtl-split1

 -fdump-rtl-split2

 -fdump-rtl-split3

 -fdump-rtl-split4

 -fdump-rtl-split5

 These options enable dumping after five rounds of instruction splitting.

 -fdump-rtl-sms

 Dump after modulo scheduling. This pass is only run on some architectures.

 -fdump-rtl-stack

 Dump after conversion from GCC's "flat register file" registers to the x87's

 stack-like registers. This pass is only run on x86 variants.

 -fdump-rtl-subreg1

 -fdump-rtl-subreg2

 -fdump-rtl-subreg1 and -fdump-rtl-subreg2 enable dumping after the two subreg

 expansion passes.

 -fdump-rtl-unshare

 Dump after all rtl has been unshared.

 -fdump-rtl-vartrack

 Dump after variable tracking.

 -fdump-rtl-vregs Page 312/576

 Dump after converting virtual registers to hard registers.

 -fdump-rtl-web

 Dump after live range splitting.

 -fdump-rtl-regclass

 -fdump-rtl-subregs_of_mode_init

 -fdump-rtl-subregs_of_mode_finish

 -fdump-rtl-dfinit

 -fdump-rtl-dfinish

 These dumps are defined but always produce empty files.

 -da

 -fdump-rtl-all

 Produce all the dumps listed above.

 -dA Annotate the assembler output with miscellaneous debugging information.

 -dD Dump all macro definitions, at the end of preprocessing, in addition to normal

 output.

 -dH Produce a core dump whenever an error occurs.

 -dp Annotate the assembler output with a comment indicating which pattern and

 alternative is used. The length and cost of each instruction are also printed.

 -dP Dump the RTL in the assembler output as a comment before each instruction. Also

 turns on -dp annotation.

 -dx Just generate RTL for a function instead of compiling it. Usually used with

 -fdump-rtl-expand.

 -fdump-debug

 Dump debugging information generated during the debug generation phase.

 -fdump-earlydebug

 Dump debugging information generated during the early debug generation phase.

 -fdump-noaddr

 When doing debugging dumps, suppress address output. This makes it more feasible to

 use diff on debugging dumps for compiler invocations with different compiler binaries

 and/or different text / bss / data / heap / stack / dso start locations.

 -freport-bug

 Collect and dump debug information into a temporary file if an internal compiler error

 (ICE) occurs. Page 313/576

 -fdump-unnumbered

 When doing debugging dumps, suppress instruction numbers and address output. This

 makes it more feasible to use diff on debugging dumps for compiler invocations with

 different options, in particular with and without -g.

 -fdump-unnumbered-links

 When doing debugging dumps (see -d option above), suppress instruction numbers for the

 links to the previous and next instructions in a sequence.

 -fdump-ipa-switch

 -fdump-ipa-switch-options

 Control the dumping at various stages of inter-procedural analysis language tree to a

 file. The file name is generated by appending a switch specific suffix to the source

 file name, and the file is created in the same directory as the output file. The

 following dumps are possible:

 all Enables all inter-procedural analysis dumps.

 cgraph

 Dumps information about call-graph optimization, unused function removal, and

 inlining decisions.

 inline

 Dump after function inlining.

 Additionally, the options -optimized, -missed, -note, and -all can be provided, with

 the same meaning as for -fopt-info, defaulting to -optimized.

 For example, -fdump-ipa-inline-optimized-missed will emit information on callsites

 that were inlined, along with callsites that were not inlined.

 By default, the dump will contain messages about successful optimizations (equivalent

 to -optimized) together with low-level details about the analysis.

 -fdump-lang

 Dump language-specific information. The file name is made by appending .lang to the

 source file name.

 -fdump-lang-all

 -fdump-lang-switch

 -fdump-lang-switch-options

 -fdump-lang-switch-options=filename

 Control the dumping of language-specific information. The options and filename Page 314/576

 portions behave as described in the -fdump-tree option. The following switch values

 are accepted:

 all Enable all language-specific dumps.

 class

 Dump class hierarchy information. Virtual table information is emitted unless

 'slim' is specified. This option is applicable to C++ only.

 module

 Dump module information. Options lineno (locations), graph (reachability), blocks

 (clusters), uid (serialization), alias (mergeable), asmname (Elrond), eh (mapper)

 & vops (macros) may provide additional information. This option is applicable to

 C++ only.

 raw Dump the raw internal tree data. This option is applicable to C++ only.

 -fdump-passes

 Print on stderr the list of optimization passes that are turned on and off by the

 current command-line options.

 -fdump-statistics-option

 Enable and control dumping of pass statistics in a separate file. The file name is

 generated by appending a suffix ending in .statistics to the source file name, and the

 file is created in the same directory as the output file. If the -option form is

 used, -stats causes counters to be summed over the whole compilation unit while

 -details dumps every event as the passes generate them. The default with no option is

 to sum counters for each function compiled.

 -fdump-tree-all

 -fdump-tree-switch

 -fdump-tree-switch-options

 -fdump-tree-switch-options=filename

 Control the dumping at various stages of processing the intermediate language tree to

 a file. If the -options form is used, options is a list of - separated options which

 control the details of the dump. Not all options are applicable to all dumps; those

 that are not meaningful are ignored. The following options are available

 address

 Print the address of each node. Usually this is not meaningful as it changes

 according to the environment and source file. Its primary use is for tying up a Page 315/576

 dump file with a debug environment.

 asmname

 If "DECL_ASSEMBLER_NAME" has been set for a given decl, use that in the dump

 instead of "DECL_NAME". Its primary use is ease of use working backward from

 mangled names in the assembly file.

 slim

 When dumping front-end intermediate representations, inhibit dumping of members of

 a scope or body of a function merely because that scope has been reached. Only

 dump such items when they are directly reachable by some other path.

 When dumping pretty-printed trees, this option inhibits dumping the bodies of

 control structures.

 When dumping RTL, print the RTL in slim (condensed) form instead of the default

 LISP-like representation.

 raw Print a raw representation of the tree. By default, trees are pretty-printed into

 a C-like representation.

 details

 Enable more detailed dumps (not honored by every dump option). Also include

 information from the optimization passes.

 stats

 Enable dumping various statistics about the pass (not honored by every dump

 option).

 blocks

 Enable showing basic block boundaries (disabled in raw dumps).

 graph

 For each of the other indicated dump files (-fdump-rtl-pass), dump a

 representation of the control flow graph suitable for viewing with GraphViz to

 file.passid.pass.dot. Each function in the file is pretty-printed as a subgraph,

 so that GraphViz can render them all in a single plot.

 This option currently only works for RTL dumps, and the RTL is always dumped in

 slim form.

 vops

 Enable showing virtual operands for every statement.

 lineno Page 316/576

 Enable showing line numbers for statements.

 uid Enable showing the unique ID ("DECL_UID") for each variable.

 verbose

 Enable showing the tree dump for each statement.

 eh Enable showing the EH region number holding each statement.

 scev

 Enable showing scalar evolution analysis details.

 optimized

 Enable showing optimization information (only available in certain passes).

 missed

 Enable showing missed optimization information (only available in certain passes).

 note

 Enable other detailed optimization information (only available in certain passes).

 all Turn on all options, except raw, slim, verbose and lineno.

 optall

 Turn on all optimization options, i.e., optimized, missed, and note.

 To determine what tree dumps are available or find the dump for a pass of interest

 follow the steps below.

 1. Invoke GCC with -fdump-passes and in the stderr output look for a code that

 corresponds to the pass you are interested in. For example, the codes

 "tree-evrp", "tree-vrp1", and "tree-vrp2" correspond to the three Value Range

 Propagation passes. The number at the end distinguishes distinct invocations of

 the same pass.

 2. To enable the creation of the dump file, append the pass code to the -fdump-

 option prefix and invoke GCC with it. For example, to enable the dump from the

 Early Value Range Propagation pass, invoke GCC with the -fdump-tree-evrp option.

 Optionally, you may specify the name of the dump file. If you don't specify one,

 GCC creates as described below.

 3. Find the pass dump in a file whose name is composed of three components separated

 by a period: the name of the source file GCC was invoked to compile, a numeric

 suffix indicating the pass number followed by the letter t for tree passes (and

 the letter r for RTL passes), and finally the pass code. For example, the Early

 VRP pass dump might be in a file named myfile.c.038t.evrp in the current working Page 317/576

 directory. Note that the numeric codes are not stable and may change from one

 version of GCC to another.

 -fopt-info

 -fopt-info-options

 -fopt-info-options=filename

 Controls optimization dumps from various optimization passes. If the -options form is

 used, options is a list of - separated option keywords to select the dump details and

 optimizations.

 The options can be divided into three groups:

 1. options describing what kinds of messages should be emitted,

 2. options describing the verbosity of the dump, and

 3. options describing which optimizations should be included.

 The options from each group can be freely mixed as they are non-overlapping. However,

 in case of any conflicts, the later options override the earlier options on the

 command line.

 The following options control which kinds of messages should be emitted:

 optimized

 Print information when an optimization is successfully applied. It is up to a pass

 to decide which information is relevant. For example, the vectorizer passes print

 the source location of loops which are successfully vectorized.

 missed

 Print information about missed optimizations. Individual passes control which

 information to include in the output.

 note

 Print verbose information about optimizations, such as certain transformations,

 more detailed messages about decisions etc.

 all Print detailed optimization information. This includes optimized, missed, and

 note.

 The following option controls the dump verbosity:

 internals

 By default, only "high-level" messages are emitted. This option enables

 additional, more detailed, messages, which are likely to only be of interest to

 GCC developers. Page 318/576

 One or more of the following option keywords can be used to describe a group of

 optimizations:

 ipa Enable dumps from all interprocedural optimizations.

 loop

 Enable dumps from all loop optimizations.

 inline

 Enable dumps from all inlining optimizations.

 omp Enable dumps from all OMP (Offloading and Multi Processing) optimizations.

 vec Enable dumps from all vectorization optimizations.

 optall

 Enable dumps from all optimizations. This is a superset of the optimization groups

 listed above.

 If options is omitted, it defaults to optimized-optall, which means to dump messages

 about successful optimizations from all the passes, omitting messages that are treated

 as "internals".

 If the filename is provided, then the dumps from all the applicable optimizations are

 concatenated into the filename. Otherwise the dump is output onto stderr. Though

 multiple -fopt-info options are accepted, only one of them can include a filename. If

 other filenames are provided then all but the first such option are ignored.

 Note that the output filename is overwritten in case of multiple translation units. If

 a combined output from multiple translation units is desired, stderr should be used

 instead.

 In the following example, the optimization info is output to stderr:

 gcc -O3 -fopt-info

 This example:

 gcc -O3 -fopt-info-missed=missed.all

 outputs missed optimization report from all the passes into missed.all, and this one:

 gcc -O2 -ftree-vectorize -fopt-info-vec-missed

 prints information about missed optimization opportunities from vectorization passes

 on stderr. Note that -fopt-info-vec-missed is equivalent to -fopt-info-missed-vec.

 The order of the optimization group names and message types listed after -fopt-info

 does not matter.

 As another example, Page 319/576

 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt

 outputs information about missed optimizations as well as optimized locations from all

 the inlining passes into inline.txt.

 Finally, consider:

 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt

 Here the two output filenames vec.miss and loop.opt are in conflict since only one

 output file is allowed. In this case, only the first option takes effect and the

 subsequent options are ignored. Thus only vec.miss is produced which contains dumps

 from the vectorizer about missed opportunities.

 -fsave-optimization-record

 Write a SRCFILE.opt-record.json.gz file detailing what optimizations were performed,

 for those optimizations that support -fopt-info.

 This option is experimental and the format of the data within the compressed JSON file

 is subject to change.

 It is roughly equivalent to a machine-readable version of -fopt-info-all, as a

 collection of messages with source file, line number and column number, with the

 following additional data for each message:

 * the execution count of the code being optimized, along with metadata about whether

 this was from actual profile data, or just an estimate, allowing consumers to

 prioritize messages by code hotness,

 * the function name of the code being optimized, where applicable,

 * the "inlining chain" for the code being optimized, so that when a function is

 inlined into several different places (which might themselves be inlined), the

 reader can distinguish between the copies,

 * objects identifying those parts of the message that refer to expressions,

 statements or symbol-table nodes, which of these categories they are, and, when

 available, their source code location,

 * the GCC pass that emitted the message, and

 * the location in GCC's own code from which the message was emitted

 Additionally, some messages are logically nested within other messages, reflecting

 implementation details of the optimization passes.

 -fsched-verbose=n

 On targets that use instruction scheduling, this option controls the amount of Page 320/576

 debugging output the scheduler prints to the dump files.

 For n greater than zero, -fsched-verbose outputs the same information as

 -fdump-rtl-sched1 and -fdump-rtl-sched2. For n greater than one, it also output basic

 block probabilities, detailed ready list information and unit/insn info. For n

 greater than two, it includes RTL at abort point, control-flow and regions info. And

 for n over four, -fsched-verbose also includes dependence info.

 -fenable-kind-pass

 -fdisable-kind-pass=range-list

 This is a set of options that are used to explicitly disable/enable optimization

 passes. These options are intended for use for debugging GCC. Compiler users should

 use regular options for enabling/disabling passes instead.

 -fdisable-ipa-pass

 Disable IPA pass pass. pass is the pass name. If the same pass is statically

 invoked in the compiler multiple times, the pass name should be appended with a

 sequential number starting from 1.

 -fdisable-rtl-pass

 -fdisable-rtl-pass=range-list

 Disable RTL pass pass. pass is the pass name. If the same pass is statically

 invoked in the compiler multiple times, the pass name should be appended with a

 sequential number starting from 1. range-list is a comma-separated list of

 function ranges or assembler names. Each range is a number pair separated by a

 colon. The range is inclusive in both ends. If the range is trivial, the number

 pair can be simplified as a single number. If the function's call graph node's

 uid falls within one of the specified ranges, the pass is disabled for that

 function. The uid is shown in the function header of a dump file, and the pass

 names can be dumped by using option -fdump-passes.

 -fdisable-tree-pass

 -fdisable-tree-pass=range-list

 Disable tree pass pass. See -fdisable-rtl for the description of option

 arguments.

 -fenable-ipa-pass

 Enable IPA pass pass. pass is the pass name. If the same pass is statically

 invoked in the compiler multiple times, the pass name should be appended with a Page 321/576

 sequential number starting from 1.

 -fenable-rtl-pass

 -fenable-rtl-pass=range-list

 Enable RTL pass pass. See -fdisable-rtl for option argument description and

 examples.

 -fenable-tree-pass

 -fenable-tree-pass=range-list

 Enable tree pass pass. See -fdisable-rtl for the description of option arguments.

 Here are some examples showing uses of these options.

 # disable ccp1 for all functions

 -fdisable-tree-ccp1

 # disable complete unroll for function whose cgraph node uid is 1

 -fenable-tree-cunroll=1

 # disable gcse2 for functions at the following ranges [1,1],

 # [300,400], and [400,1000]

 # disable gcse2 for functions foo and foo2

 -fdisable-rtl-gcse2=foo,foo2

 # disable early inlining

 -fdisable-tree-einline

 # disable ipa inlining

 -fdisable-ipa-inline

 # enable tree full unroll

 -fenable-tree-unroll

 -fchecking

 -fchecking=n

 Enable internal consistency checking. The default depends on the compiler

 configuration. -fchecking=2 enables further internal consistency checking that might

 affect code generation.

 -frandom-seed=string

 This option provides a seed that GCC uses in place of random numbers in generating

 certain symbol names that have to be different in every compiled file. It is also

 used to place unique stamps in coverage data files and the object files that produce

 them. You can use the -frandom-seed option to produce reproducibly identical object Page 322/576

 files.

 The string can either be a number (decimal, octal or hex) or an arbitrary string (in

 which case it's converted to a number by computing CRC32).

 The string should be different for every file you compile.

 -save-temps

 Store the usual "temporary" intermediate files permanently; name them as auxiliary

 output files, as specified described under -dumpbase and -dumpdir.

 When used in combination with the -x command-line option, -save-temps is sensible

 enough to avoid overwriting an input source file with the same extension as an

 intermediate file. The corresponding intermediate file may be obtained by renaming

 the source file before using -save-temps.

 -save-temps=cwd

 Equivalent to -save-temps -dumpdir ./.

 -save-temps=obj

 Equivalent to -save-temps -dumpdir outdir/, where outdir/ is the directory of the

 output file specified after the -o option, including any directory separators. If the

 -o option is not used, the -save-temps=obj switch behaves like -save-temps=cwd.

 -time[=file]

 Report the CPU time taken by each subprocess in the compilation sequence. For C

 source files, this is the compiler proper and assembler (plus the linker if linking is

 done).

 Without the specification of an output file, the output looks like this:

 # cc1 0.12 0.01

 # as 0.00 0.01

 The first number on each line is the "user time", that is time spent executing the

 program itself. The second number is "system time", time spent executing operating

 system routines on behalf of the program. Both numbers are in seconds.

 With the specification of an output file, the output is appended to the named file,

 and it looks like this:

 0.12 0.01 cc1 <options>

 0.00 0.01 as <options>

 The "user time" and the "system time" are moved before the program name, and the

 options passed to the program are displayed, so that one can later tell what file was Page 323/576

 being compiled, and with which options.

 -fdump-final-insns[=file]

 Dump the final internal representation (RTL) to file. If the optional argument is

 omitted (or if file is "."), the name of the dump file is determined by appending

 ".gkd" to the dump base name, see -dumpbase.

 -fcompare-debug[=opts]

 If no error occurs during compilation, run the compiler a second time, adding opts and

 -fcompare-debug-second to the arguments passed to the second compilation. Dump the

 final internal representation in both compilations, and print an error if they differ.

 If the equal sign is omitted, the default -gtoggle is used.

 The environment variable GCC_COMPARE_DEBUG, if defined, non-empty and nonzero,

 implicitly enables -fcompare-debug. If GCC_COMPARE_DEBUG is defined to a string

 starting with a dash, then it is used for opts, otherwise the default -gtoggle is

 used.

 -fcompare-debug=, with the equal sign but without opts, is equivalent to

 -fno-compare-debug, which disables the dumping of the final representation and the

 second compilation, preventing even GCC_COMPARE_DEBUG from taking effect.

 To verify full coverage during -fcompare-debug testing, set GCC_COMPARE_DEBUG to say

 -fcompare-debug-not-overridden, which GCC rejects as an invalid option in any actual

 compilation (rather than preprocessing, assembly or linking). To get just a warning,

 setting GCC_COMPARE_DEBUG to -w%n-fcompare-debug not overridden will do.

 -fcompare-debug-second

 This option is implicitly passed to the compiler for the second compilation requested

 by -fcompare-debug, along with options to silence warnings, and omitting other options

 that would cause the compiler to produce output to files or to standard output as a

 side effect. Dump files and preserved temporary files are renamed so as to contain

 the ".gk" additional extension during the second compilation, to avoid overwriting

 those generated by the first.

 When this option is passed to the compiler driver, it causes the first compilation to

 be skipped, which makes it useful for little other than debugging the compiler proper.

 -gtoggle

 Turn off generation of debug info, if leaving out this option generates it, or turn it

 on at level 2 otherwise. The position of this argument in the command line does not Page 324/576

 matter; it takes effect after all other options are processed, and it does so only

 once, no matter how many times it is given. This is mainly intended to be used with

 -fcompare-debug.

 -fvar-tracking-assignments-toggle

 Toggle -fvar-tracking-assignments, in the same way that -gtoggle toggles -g.

 -Q Makes the compiler print out each function name as it is compiled, and print some

 statistics about each pass when it finishes.

 -ftime-report

 Makes the compiler print some statistics about the time consumed by each pass when it

 finishes.

 -ftime-report-details

 Record the time consumed by infrastructure parts separately for each pass.

 -fira-verbose=n

 Control the verbosity of the dump file for the integrated register allocator. The

 default value is 5. If the value n is greater or equal to 10, the dump output is sent

 to stderr using the same format as n minus 10.

 -flto-report

 Prints a report with internal details on the workings of the link-time optimizer. The

 contents of this report vary from version to version. It is meant to be useful to GCC

 developers when processing object files in LTO mode (via -flto).

 Disabled by default.

 -flto-report-wpa

 Like -flto-report, but only print for the WPA phase of link-time optimization.

 -fmem-report

 Makes the compiler print some statistics about permanent memory allocation when it

 finishes.

 -fmem-report-wpa

 Makes the compiler print some statistics about permanent memory allocation for the WPA

 phase only.

 -fpre-ipa-mem-report

 -fpost-ipa-mem-report

 Makes the compiler print some statistics about permanent memory allocation before or

 after interprocedural optimization. Page 325/576

 -fprofile-report

 Makes the compiler print some statistics about consistency of the (estimated) profile

 and effect of individual passes.

 -fstack-usage

 Makes the compiler output stack usage information for the program, on a per-function

 basis. The filename for the dump is made by appending .su to the auxname. auxname is

 generated from the name of the output file, if explicitly specified and it is not an

 executable, otherwise it is the basename of the source file. An entry is made up of

 three fields:

 * The name of the function.

 * A number of bytes.

 * One or more qualifiers: "static", "dynamic", "bounded".

 The qualifier "static" means that the function manipulates the stack statically: a

 fixed number of bytes are allocated for the frame on function entry and released on

 function exit; no stack adjustments are otherwise made in the function. The second

 field is this fixed number of bytes.

 The qualifier "dynamic" means that the function manipulates the stack dynamically: in

 addition to the static allocation described above, stack adjustments are made in the

 body of the function, for example to push/pop arguments around function calls. If the

 qualifier "bounded" is also present, the amount of these adjustments is bounded at

 compile time and the second field is an upper bound of the total amount of stack used

 by the function. If it is not present, the amount of these adjustments is not bounded

 at compile time and the second field only represents the bounded part.

 -fstats

 Emit statistics about front-end processing at the end of the compilation. This option

 is supported only by the C++ front end, and the information is generally only useful

 to the G++ development team.

 -fdbg-cnt-list

 Print the name and the counter upper bound for all debug counters.

 -fdbg-cnt=counter-value-list

 Set the internal debug counter lower and upper bound. counter-value-list is a comma-

 separated list of name:lower_bound1-upper_bound1 [:lower_bound2-upper_bound2...]

 tuples which sets the name of the counter and list of closed intervals. The Page 326/576

 lower_bound is optional and is zero initialized if not set. For example, with

 -fdbg-cnt=dce:2-4:10-11,tail_call:10, "dbg_cnt(dce)" returns true only for second,

 third, fourth, tenth and eleventh invocation. For "dbg_cnt(tail_call)" true is

 returned for first 10 invocations.

 -print-file-name=library

 Print the full absolute name of the library file library that would be used when

 linking---and don't do anything else. With this option, GCC does not compile or link

 anything; it just prints the file name.

 -print-multi-directory

 Print the directory name corresponding to the multilib selected by any other switches

 present in the command line. This directory is supposed to exist in GCC_EXEC_PREFIX.

 -print-multi-lib

 Print the mapping from multilib directory names to compiler switches that enable them.

 The directory name is separated from the switches by ;, and each switch starts with an

 @ instead of the -, without spaces between multiple switches. This is supposed to

 ease shell processing.

 -print-multi-os-directory

 Print the path to OS libraries for the selected multilib, relative to some lib

 subdirectory. If OS libraries are present in the lib subdirectory and no multilibs

 are used, this is usually just ., if OS libraries are present in libsuffix sibling

 directories this prints e.g. ../lib64, ../lib or ../lib32, or if OS libraries are

 present in lib/subdir subdirectories it prints e.g. amd64, sparcv9 or ev6.

 -print-multiarch

 Print the path to OS libraries for the selected multiarch, relative to some lib

 subdirectory.

 -print-prog-name=program

 Like -print-file-name, but searches for a program such as cpp.

 -print-libgcc-file-name

 Same as -print-file-name=libgcc.a.

 This is useful when you use -nostdlib or -nodefaultlibs but you do want to link with

 libgcc.a. You can do:

 gcc -nostdlib <files>... `gcc -print-libgcc-file-name`

 -print-search-dirs Page 327/576

 Print the name of the configured installation directory and a list of program and

 library directories gcc searches---and don't do anything else.

 This is useful when gcc prints the error message installation problem, cannot exec

 cpp0: No such file or directory. To resolve this you either need to put cpp0 and the

 other compiler components where gcc expects to find them, or you can set the

 environment variable GCC_EXEC_PREFIX to the directory where you installed them. Don't

 forget the trailing /.

 -print-sysroot

 Print the target sysroot directory that is used during compilation. This is the

 target sysroot specified either at configure time or using the --sysroot option,

 possibly with an extra suffix that depends on compilation options. If no target

 sysroot is specified, the option prints nothing.

 -print-sysroot-headers-suffix

 Print the suffix added to the target sysroot when searching for headers, or give an

 error if the compiler is not configured with such a suffix---and don't do anything

 else.

 -dumpmachine

 Print the compiler's target machine (for example, i686-pc-linux-gnu)---and don't do

 anything else.

 -dumpversion

 Print the compiler version (for example, 3.0, 6.3.0 or 7)---and don't do anything

 else. This is the compiler version used in filesystem paths and specs. Depending on

 how the compiler has been configured it can be just a single number (major version),

 two numbers separated by a dot (major and minor version) or three numbers separated by

 dots (major, minor and patchlevel version).

 -dumpfullversion

 Print the full compiler version---and don't do anything else. The output is always

 three numbers separated by dots, major, minor and patchlevel version.

 -dumpspecs

 Print the compiler's built-in specs---and don't do anything else. (This is used when

 GCC itself is being built.)

 Machine-Dependent Options

 Each target machine supported by GCC can have its own options---for example, to allow you Page 328/576

 to compile for a particular processor variant or ABI, or to control optimizations specific

 to that machine. By convention, the names of machine-specific options start with -m.

 Some configurations of the compiler also support additional target-specific options,

 usually for compatibility with other compilers on the same platform.

 AArch64 Options

 These options are defined for AArch64 implementations:

 -mabi=name

 Generate code for the specified data model. Permissible values are ilp32 for SysV-

 like data model where int, long int and pointers are 32 bits, and lp64 for SysV-like

 data model where int is 32 bits, but long int and pointers are 64 bits.

 The default depends on the specific target configuration. Note that the LP64 and

 ILP32 ABIs are not link-compatible; you must compile your entire program with the same

 ABI, and link with a compatible set of libraries.

 -mbig-endian

 Generate big-endian code. This is the default when GCC is configured for an

 aarch64_be-*-* target.

 -mgeneral-regs-only

 Generate code which uses only the general-purpose registers. This will prevent the

 compiler from using floating-point and Advanced SIMD registers but will not impose any

 restrictions on the assembler.

 -mlittle-endian

 Generate little-endian code. This is the default when GCC is configured for an

 aarch64-*-* but not an aarch64_be-*-* target.

 -mcmodel=tiny

 Generate code for the tiny code model. The program and its statically defined symbols

 must be within 1MB of each other. Programs can be statically or dynamically linked.

 -mcmodel=small

 Generate code for the small code model. The program and its statically defined

 symbols must be within 4GB of each other. Programs can be statically or dynamically

 linked. This is the default code model.

 -mcmodel=large

 Generate code for the large code model. This makes no assumptions about addresses and

 sizes of sections. Programs can be statically linked only. The -mcmodel=large option Page 329/576

 is incompatible with -mabi=ilp32, -fpic and -fPIC.

 -mstrict-align

 -mno-strict-align

 Avoid or allow generating memory accesses that may not be aligned on a natural object

 boundary as described in the architecture specification.

 -momit-leaf-frame-pointer

 -mno-omit-leaf-frame-pointer

 Omit or keep the frame pointer in leaf functions. The former behavior is the default.

 -mstack-protector-guard=guard

 -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset

 Generate stack protection code using canary at guard. Supported locations are global

 for a global canary or sysreg for a canary in an appropriate system register.

 With the latter choice the options -mstack-protector-guard-reg=reg and

 -mstack-protector-guard-offset=offset furthermore specify which system register to use

 as base register for reading the canary, and from what offset from that base register.

 There is no default register or offset as this is entirely for use within the Linux

 kernel.

 -mtls-dialect=desc

 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses of TLS

 variables. This is the default.

 -mtls-dialect=traditional

 Use traditional TLS as the thread-local storage mechanism for dynamic accesses of TLS

 variables.

 -mtls-size=size

 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48. This

 option requires binutils 2.26 or newer.

 -mfix-cortex-a53-835769

 -mno-fix-cortex-a53-835769

 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769. This

 involves inserting a NOP instruction between memory instructions and 64-bit integer

 multiply-accumulate instructions.

 -mfix-cortex-a53-843419 Page 330/576

 -mno-fix-cortex-a53-843419

 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419. This

 erratum workaround is made at link time and this will only pass the corresponding flag

 to the linker.

 -mlow-precision-recip-sqrt

 -mno-low-precision-recip-sqrt

 Enable or disable the reciprocal square root approximation. This option only has an

 effect if -ffast-math or -funsafe-math-optimizations is used as well. Enabling this

 reduces precision of reciprocal square root results to about 16 bits for single

 precision and to 32 bits for double precision.

 -mlow-precision-sqrt

 -mno-low-precision-sqrt

 Enable or disable the square root approximation. This option only has an effect if

 -ffast-math or -funsafe-math-optimizations is used as well. Enabling this reduces

 precision of square root results to about 16 bits for single precision and to 32 bits

 for double precision. If enabled, it implies -mlow-precision-recip-sqrt.

 -mlow-precision-div

 -mno-low-precision-div

 Enable or disable the division approximation. This option only has an effect if

 -ffast-math or -funsafe-math-optimizations is used as well. Enabling this reduces

 precision of division results to about 16 bits for single precision and to 32 bits for

 double precision.

 -mtrack-speculation

 -mno-track-speculation

 Enable or disable generation of additional code to track speculative execution through

 conditional branches. The tracking state can then be used by the compiler when

 expanding calls to "__builtin_speculation_safe_copy" to permit a more efficient code

 sequence to be generated.

 -moutline-atomics

 -mno-outline-atomics

 Enable or disable calls to out-of-line helpers to implement atomic operations. These

 helpers will, at runtime, determine if the LSE instructions from ARMv8.1-A can be

 used; if not, they will use the load/store-exclusive instructions that are present in Page 331/576

 the base ARMv8.0 ISA.

 This option is only applicable when compiling for the base ARMv8.0 instruction set.

 If using a later revision, e.g. -march=armv8.1-a or -march=armv8-a+lse, the

 ARMv8.1-Atomics instructions will be used directly. The same applies when using

 -mcpu= when the selected cpu supports the lse feature. This option is on by default.

 -march=name

 Specify the name of the target architecture and, optionally, one or more feature

 modifiers. This option has the form -march=arch{+[no]feature}*.

 The table below summarizes the permissible values for arch and the features that they

 enable by default:

 arch value : Architecture : Includes by default

 armv8-a : Armv8-A : +fp, +simd

 armv8.1-a : Armv8.1-A : armv8-a, +crc, +lse, +rdma

 armv8.2-a : Armv8.2-A : armv8.1-a

 armv8.3-a : Armv8.3-A : armv8.2-a, +pauth

 armv8.4-a : Armv8.4-A : armv8.3-a, +flagm, +fp16fml, +dotprod

 armv8.5-a : Armv8.5-A : armv8.4-a, +sb, +ssbs, +predres

 armv8.6-a : Armv8.6-A : armv8.5-a, +bf16, +i8mm

 armv8-r : Armv8-R : armv8-r

 The value native is available on native AArch64 GNU/Linux and causes the compiler to

 pick the architecture of the host system. This option has no effect if the compiler

 is unable to recognize the architecture of the host system,

 The permissible values for feature are listed in the sub-section on

 aarch64-feature-modifiers,,-march and -mcpu Feature Modifiers. Where conflicting

 feature modifiers are specified, the right-most feature is used.

 GCC uses name to determine what kind of instructions it can emit when generating

 assembly code. If -march is specified without either of -mtune or -mcpu also being

 specified, the code is tuned to perform well across a range of target processors

 implementing the target architecture.

 -mtune=name

 Specify the name of the target processor for which GCC should tune the performance of

 the code. Permissible values for this option are: generic, cortex-a35, cortex-a53,

 cortex-a55, cortex-a57, cortex-a72, cortex-a73, cortex-a75, cortex-a76, cortex-a76ae, Page 332/576

 cortex-a77, cortex-a65, cortex-a65ae, cortex-a34, cortex-a78, cortex-a78ae,

 cortex-a78c, ares, exynos-m1, emag, falkor, neoverse-512tvb, neoverse-e1, neoverse-n1,

 neoverse-n2, neoverse-v1,neoverse-v2, qdf24xx, saphira, phecda, xgene1, vulcan,

 octeontx, octeontx81, octeontx83, octeontx2, octeontx2t98, octeontx2t96 octeontx2t93,

 octeontx2f95, octeontx2f95n, octeontx2f95mm, a64fx, thunderx, thunderxt88,

 thunderxt88p1, thunderxt81, tsv110, thunderxt83, thunderx2t99, thunderx3t110, zeus,

 cortex-a57.cortex-a53, cortex-a72.cortex-a53, cortex-a73.cortex-a35,

 cortex-a73.cortex-a53, cortex-a75.cortex-a55, cortex-a76.cortex-a55, cortex-r82,

 cortex-x1, ampere1, ampere1a, native.

 The values cortex-a57.cortex-a53, cortex-a72.cortex-a53, cortex-a73.cortex-a35,

 cortex-a73.cortex-a53, cortex-a75.cortex-a55, cortex-a76.cortex-a55 specify that GCC

 should tune for a big.LITTLE system.

 The value neoverse-512tvb specifies that GCC should tune for Neoverse cores that (a)

 implement SVE and (b) have a total vector bandwidth of 512 bits per cycle. In other

 words, the option tells GCC to tune for Neoverse cores that can execute 4 128-bit

 Advanced SIMD arithmetic instructions a cycle and that can execute an equivalent

 number of SVE arithmetic instructions per cycle (2 for 256-bit SVE, 4 for 128-bit

 SVE). This is more general than tuning for a specific core like Neoverse V1 but is

 more specific than the default tuning described below.

 Additionally on native AArch64 GNU/Linux systems the value native tunes performance to

 the host system. This option has no effect if the compiler is unable to recognize the

 processor of the host system.

 Where none of -mtune=, -mcpu= or -march= are specified, the code is tuned to perform

 well across a range of target processors.

 This option cannot be suffixed by feature modifiers.

 -mcpu=name

 Specify the name of the target processor, optionally suffixed by one or more feature

 modifiers. This option has the form -mcpu=cpu{+[no]feature}*, where the permissible

 values for cpu are the same as those available for -mtune. The permissible values for

 feature are documented in the sub-section on aarch64-feature-modifiers,,-march and

 -mcpu Feature Modifiers. Where conflicting feature modifiers are specified, the

 right-most feature is used.

 GCC uses name to determine what kind of instructions it can emit when generating Page 333/576

 assembly code (as if by -march) and to determine the target processor for which to

 tune for performance (as if by -mtune). Where this option is used in conjunction with

 -march or -mtune, those options take precedence over the appropriate part of this

 option.

 -mcpu=neoverse-512tvb is special in that it does not refer to a specific core, but

 instead refers to all Neoverse cores that (a) implement SVE and (b) have a total

 vector bandwidth of 512 bits a cycle. Unless overridden by -march,

 -mcpu=neoverse-512tvb generates code that can run on a Neoverse V1 core, since

 Neoverse V1 is the first Neoverse core with these properties. Unless overridden by

 -mtune, -mcpu=neoverse-512tvb tunes code in the same way as for

 -mtune=neoverse-512tvb.

 -moverride=string

 Override tuning decisions made by the back-end in response to a -mtune= switch. The

 syntax, semantics, and accepted values for string in this option are not guaranteed to

 be consistent across releases.

 This option is only intended to be useful when developing GCC.

 -mverbose-cost-dump

 Enable verbose cost model dumping in the debug dump files. This option is provided

 for use in debugging the compiler.

 -mpc-relative-literal-loads

 -mno-pc-relative-literal-loads

 Enable or disable PC-relative literal loads. With this option literal pools are

 accessed using a single instruction and emitted after each function. This limits the

 maximum size of functions to 1MB. This is enabled by default for -mcmodel=tiny.

 -msign-return-address=scope

 Select the function scope on which return address signing will be applied.

 Permissible values are none, which disables return address signing, non-leaf, which

 enables pointer signing for functions which are not leaf functions, and all, which

 enables pointer signing for all functions. The default value is none. This option has

 been deprecated by -mbranch-protection.

 -mbranch-protection=none|standard|pac-ret[+leaf+b-key]|bti

 Select the branch protection features to use. none is the default and turns off all

 types of branch protection. standard turns on all types of branch protection Page 334/576

 features. If a feature has additional tuning options, then standard sets it to its

 standard level. pac-ret[+leaf] turns on return address signing to its standard level:

 signing functions that save the return address to memory (non-leaf functions will

 practically always do this) using the a-key. The optional argument leaf can be used

 to extend the signing to include leaf functions. The optional argument b-key can be

 used to sign the functions with the B-key instead of the A-key. bti turns on branch

 target identification mechanism.

 -mharden-sls=opts

 Enable compiler hardening against straight line speculation (SLS). opts is a comma-

 separated list of the following options:

 retbr

 blr

 In addition, -mharden-sls=all enables all SLS hardening while -mharden-sls=none

 disables all SLS hardening.

 -msve-vector-bits=bits

 Specify the number of bits in an SVE vector register. This option only has an effect

 when SVE is enabled.

 GCC supports two forms of SVE code generation: "vector-length agnostic" output that

 works with any size of vector register and "vector-length specific" output that allows

 GCC to make assumptions about the vector length when it is useful for optimization

 reasons. The possible values of bits are: scalable, 128, 256, 512, 1024 and 2048.

 Specifying scalable selects vector-length agnostic output. At present

 -msve-vector-bits=128 also generates vector-length agnostic output for big-endian

 targets. All other values generate vector-length specific code. The behavior of

 these values may change in future releases and no value except scalable should be

 relied on for producing code that is portable across different hardware SVE vector

 lengths.

 The default is -msve-vector-bits=scalable, which produces vector-length agnostic code.

 -march and -mcpu Feature Modifiers

 Feature modifiers used with -march and -mcpu can be any of the following and their

 inverses nofeature:

 crc Enable CRC extension. This is on by default for -march=armv8.1-a.

 crypto Page 335/576

 Enable Crypto extension. This also enables Advanced SIMD and floating-point

 instructions.

 fp Enable floating-point instructions. This is on by default for all possible values for

 options -march and -mcpu.

 simd

 Enable Advanced SIMD instructions. This also enables floating-point instructions.

 This is on by default for all possible values for options -march and -mcpu.

 sve Enable Scalable Vector Extension instructions. This also enables Advanced SIMD and

 floating-point instructions.

 lse Enable Large System Extension instructions. This is on by default for

 -march=armv8.1-a.

 rdma

 Enable Round Double Multiply Accumulate instructions. This is on by default for

 -march=armv8.1-a.

 fp16

 Enable FP16 extension. This also enables floating-point instructions.

 fp16fml

 Enable FP16 fmla extension. This also enables FP16 extensions and floating-point

 instructions. This option is enabled by default for -march=armv8.4-a. Use of this

 option with architectures prior to Armv8.2-A is not supported.

 rcpc

 Enable the RcPc extension. This does not change code generation from GCC, but is

 passed on to the assembler, enabling inline asm statements to use instructions from

 the RcPc extension.

 dotprod

 Enable the Dot Product extension. This also enables Advanced SIMD instructions.

 aes Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced SIMD

 instructions.

 sha2

 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD

 instructions.

 sha3

 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD Page 336/576

 instructions. Use of this option with architectures prior to Armv8.2-A is not

 supported.

 sm4 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD

 instructions. Use of this option with architectures prior to Armv8.2-A is not

 supported.

 profile

 Enable the Statistical Profiling extension. This option is only to enable the

 extension at the assembler level and does not affect code generation.

 rng Enable the Armv8.5-a Random Number instructions. This option is only to enable the

 extension at the assembler level and does not affect code generation.

 memtag

 Enable the Armv8.5-a Memory Tagging Extensions. Use of this option with architectures

 prior to Armv8.5-A is not supported.

 sb Enable the Armv8-a Speculation Barrier instruction. This option is only to enable the

 extension at the assembler level and does not affect code generation. This option is

 enabled by default for -march=armv8.5-a.

 ssbs

 Enable the Armv8-a Speculative Store Bypass Safe instruction. This option is only to

 enable the extension at the assembler level and does not affect code generation. This

 option is enabled by default for -march=armv8.5-a.

 predres

 Enable the Armv8-a Execution and Data Prediction Restriction instructions. This

 option is only to enable the extension at the assembler level and does not affect code

 generation. This option is enabled by default for -march=armv8.5-a.

 sve2

 Enable the Armv8-a Scalable Vector Extension 2. This also enables SVE instructions.

 sve2-bitperm

 Enable SVE2 bitperm instructions. This also enables SVE2 instructions.

 sve2-sm4

 Enable SVE2 sm4 instructions. This also enables SVE2 instructions.

 sve2-aes

 Enable SVE2 aes instructions. This also enables SVE2 instructions.

 sve2-sha3 Page 337/576

 Enable SVE2 sha3 instructions. This also enables SVE2 instructions.

 tme Enable the Transactional Memory Extension.

 i8mm

 Enable 8-bit Integer Matrix Multiply instructions. This also enables Advanced SIMD

 and floating-point instructions. This option is enabled by default for

 -march=armv8.6-a. Use of this option with architectures prior to Armv8.2-A is not

 supported.

 f32mm

 Enable 32-bit Floating point Matrix Multiply instructions. This also enables SVE

 instructions. Use of this option with architectures prior to Armv8.2-A is not

 supported.

 f64mm

 Enable 64-bit Floating point Matrix Multiply instructions. This also enables SVE

 instructions. Use of this option with architectures prior to Armv8.2-A is not

 supported.

 bf16

 Enable brain half-precision floating-point instructions. This also enables Advanced

 SIMD and floating-point instructions. This option is enabled by default for

 -march=armv8.6-a. Use of this option with architectures prior to Armv8.2-A is not

 supported.

 flagm

 Enable the Flag Manipulation instructions Extension.

 pauth

 Enable the Pointer Authentication Extension.

 Feature crypto implies aes, sha2, and simd, which implies fp. Conversely, nofp implies

 nosimd, which implies nocrypto, noaes and nosha2.

 Adapteva Epiphany Options

 These -m options are defined for Adapteva Epiphany:

 -mhalf-reg-file

 Don't allocate any register in the range "r32"..."r63". That allows code to run on

 hardware variants that lack these registers.

 -mprefer-short-insn-regs

 Preferentially allocate registers that allow short instruction generation. This can Page 338/576

 result in increased instruction count, so this may either reduce or increase overall

 code size.

 -mbranch-cost=num

 Set the cost of branches to roughly num "simple" instructions. This cost is only a

 heuristic and is not guaranteed to produce consistent results across releases.

 -mcmove

 Enable the generation of conditional moves.

 -mnops=num

 Emit num NOPs before every other generated instruction.

 -mno-soft-cmpsf

 For single-precision floating-point comparisons, emit an "fsub" instruction and test

 the flags. This is faster than a software comparison, but can get incorrect results

 in the presence of NaNs, or when two different small numbers are compared such that

 their difference is calculated as zero. The default is -msoft-cmpsf, which uses

 slower, but IEEE-compliant, software comparisons.

 -mstack-offset=num

 Set the offset between the top of the stack and the stack pointer. E.g., a value of 8

 means that the eight bytes in the range "sp+0...sp+7" can be used by leaf functions

 without stack allocation. Values other than 8 or 16 are untested and unlikely to

 work. Note also that this option changes the ABI; compiling a program with a

 different stack offset than the libraries have been compiled with generally does not

 work. This option can be useful if you want to evaluate if a different stack offset

 would give you better code, but to actually use a different stack offset to build

 working programs, it is recommended to configure the toolchain with the appropriate

 --with-stack-offset=num option.

 -mno-round-nearest

 Make the scheduler assume that the rounding mode has been set to truncating. The

 default is -mround-nearest.

 -mlong-calls

 If not otherwise specified by an attribute, assume all calls might be beyond the

 offset range of the "b" / "bl" instructions, and therefore load the function address

 into a register before performing a (otherwise direct) call. This is the default.

 -mshort-calls Page 339/576

 If not otherwise specified by an attribute, assume all direct calls are in the range

 of the "b" / "bl" instructions, so use these instructions for direct calls. The

 default is -mlong-calls.

 -msmall16

 Assume addresses can be loaded as 16-bit unsigned values. This does not apply to

 function addresses for which -mlong-calls semantics are in effect.

 -mfp-mode=mode

 Set the prevailing mode of the floating-point unit. This determines the floating-

 point mode that is provided and expected at function call and return time. Making

 this mode match the mode you predominantly need at function start can make your

 programs smaller and faster by avoiding unnecessary mode switches.

 mode can be set to one the following values:

 caller

 Any mode at function entry is valid, and retained or restored when the function

 returns, and when it calls other functions. This mode is useful for compiling

 libraries or other compilation units you might want to incorporate into different

 programs with different prevailing FPU modes, and the convenience of being able to

 use a single object file outweighs the size and speed overhead for any extra mode

 switching that might be needed, compared with what would be needed with a more

 specific choice of prevailing FPU mode.

 truncate

 This is the mode used for floating-point calculations with truncating (i.e. round

 towards zero) rounding mode. That includes conversion from floating point to

 integer.

 round-nearest

 This is the mode used for floating-point calculations with round-to-nearest-or-

 even rounding mode.

 int This is the mode used to perform integer calculations in the FPU, e.g. integer

 multiply, or integer multiply-and-accumulate.

 The default is -mfp-mode=caller

 -mno-split-lohi

 -mno-postinc

 -mno-postmodify Page 340/576

 Code generation tweaks that disable, respectively, splitting of 32-bit loads,

 generation of post-increment addresses, and generation of post-modify addresses. The

 defaults are msplit-lohi, -mpost-inc, and -mpost-modify.

 -mnovect-double

 Change the preferred SIMD mode to SImode. The default is -mvect-double, which uses

 DImode as preferred SIMD mode.

 -max-vect-align=num

 The maximum alignment for SIMD vector mode types. num may be 4 or 8. The default is

 8. Note that this is an ABI change, even though many library function interfaces are

 unaffected if they don't use SIMD vector modes in places that affect size and/or

 alignment of relevant types.

 -msplit-vecmove-early

 Split vector moves into single word moves before reload. In theory this can give

 better register allocation, but so far the reverse seems to be generally the case.

 -m1reg-reg

 Specify a register to hold the constant -1, which makes loading small negative

 constants and certain bitmasks faster. Allowable values for reg are r43 and r63,

 which specify use of that register as a fixed register, and none, which means that no

 register is used for this purpose. The default is -m1reg-none.

 AMD GCN Options

 These options are defined specifically for the AMD GCN port.

 -march=gpu

 -mtune=gpu

 Set architecture type or tuning for gpu. Supported values for gpu are

 fiji

 Compile for GCN3 Fiji devices (gfx803).

 gfx900

 Compile for GCN5 Vega 10 devices (gfx900).

 gfx906

 Compile for GCN5 Vega 20 devices (gfx906).

 -msram-ecc=on

 -msram-ecc=off

 -msram-ecc=any Page 341/576

 Compile binaries suitable for devices with the SRAM-ECC feature enabled, disabled, or

 either mode. This feature can be enabled per-process on some devices. The compiled

 code must match the device mode. The default is any, for devices that support it.

 -mstack-size=bytes

 Specify how many bytes of stack space will be requested for each GPU thread (wave-

 front). Beware that there may be many threads and limited memory available. The size

 of the stack allocation may also have an impact on run-time performance. The default

 is 32KB when using OpenACC or OpenMP, and 1MB otherwise.

 -mxnack

 Compile binaries suitable for devices with the XNACK feature enabled. Some devices

 always require XNACK and some allow the user to configure XNACK. The compiled code

 must match the device mode. The default is -mno-xnack. At present this option is a

 placeholder for support that is not yet implemented.

 ARC Options

 The following options control the architecture variant for which code is being compiled:

 -mbarrel-shifter

 Generate instructions supported by barrel shifter. This is the default unless

 -mcpu=ARC601 or -mcpu=ARCEM is in effect.

 -mjli-always

 Force to call a function using jli_s instruction. This option is valid only for ARCv2

 architecture.

 -mcpu=cpu

 Set architecture type, register usage, and instruction scheduling parameters for cpu.

 There are also shortcut alias options available for backward compatibility and

 convenience. Supported values for cpu are

 arc600

 Compile for ARC600. Aliases: -mA6, -mARC600.

 arc601

 Compile for ARC601. Alias: -mARC601.

 arc700

 Compile for ARC700. Aliases: -mA7, -mARC700. This is the default when configured

 with --with-cpu=arc700.

 arcem Page 342/576

 Compile for ARC EM.

 archs

 Compile for ARC HS.

 em Compile for ARC EM CPU with no hardware extensions.

 em4 Compile for ARC EM4 CPU.

 em4_dmips

 Compile for ARC EM4 DMIPS CPU.

 em4_fpus

 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point extension.

 em4_fpuda

 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and double

 assist instructions.

 hs Compile for ARC HS CPU with no hardware extensions except the atomic instructions.

 hs34

 Compile for ARC HS34 CPU.

 hs38

 Compile for ARC HS38 CPU.

 hs38_linux

 Compile for ARC HS38 CPU with all hardware extensions on.

 arc600_norm

 Compile for ARC 600 CPU with "norm" instructions enabled.

 arc600_mul32x16

 Compile for ARC 600 CPU with "norm" and 32x16-bit multiply instructions enabled.

 arc600_mul64

 Compile for ARC 600 CPU with "norm" and "mul64"-family instructions enabled.

 arc601_norm

 Compile for ARC 601 CPU with "norm" instructions enabled.

 arc601_mul32x16

 Compile for ARC 601 CPU with "norm" and 32x16-bit multiply instructions enabled.

 arc601_mul64

 Compile for ARC 601 CPU with "norm" and "mul64"-family instructions enabled.

 nps400

 Compile for ARC 700 on NPS400 chip. Page 343/576

 em_mini

 Compile for ARC EM minimalist configuration featuring reduced register set.

 -mdpfp

 -mdpfp-compact

 Generate double-precision FPX instructions, tuned for the compact implementation.

 -mdpfp-fast

 Generate double-precision FPX instructions, tuned for the fast implementation.

 -mno-dpfp-lrsr

 Disable "lr" and "sr" instructions from using FPX extension aux registers.

 -mea

 Generate extended arithmetic instructions. Currently only "divaw", "adds", "subs",

 and "sat16" are supported. Only valid for -mcpu=ARC700.

 -mno-mpy

 Do not generate "mpy"-family instructions for ARC700. This option is deprecated.

 -mmul32x16

 Generate 32x16-bit multiply and multiply-accumulate instructions.

 -mmul64

 Generate "mul64" and "mulu64" instructions. Only valid for -mcpu=ARC600.

 -mnorm

 Generate "norm" instructions. This is the default if -mcpu=ARC700 is in effect.

 -mspfp

 -mspfp-compact

 Generate single-precision FPX instructions, tuned for the compact implementation.

 -mspfp-fast

 Generate single-precision FPX instructions, tuned for the fast implementation.

 -msimd

 Enable generation of ARC SIMD instructions via target-specific builtins. Only valid

 for -mcpu=ARC700.

 -msoft-float

 This option ignored; it is provided for compatibility purposes only. Software

 floating-point code is emitted by default, and this default can overridden by FPX

 options; -mspfp, -mspfp-compact, or -mspfp-fast for single precision, and -mdpfp,

 -mdpfp-compact, or -mdpfp-fast for double precision. Page 344/576

 -mswap

 Generate "swap" instructions.

 -matomic

 This enables use of the locked load/store conditional extension to implement atomic

 memory built-in functions. Not available for ARC 6xx or ARC EM cores.

 -mdiv-rem

 Enable "div" and "rem" instructions for ARCv2 cores.

 -mcode-density

 Enable code density instructions for ARC EM. This option is on by default for ARC HS.

 -mll64

 Enable double load/store operations for ARC HS cores.

 -mtp-regno=regno

 Specify thread pointer register number.

 -mmpy-option=multo

 Compile ARCv2 code with a multiplier design option. You can specify the option using

 either a string or numeric value for multo. wlh1 is the default value. The

 recognized values are:

 0

 none

 No multiplier available.

 1

 w 16x16 multiplier, fully pipelined. The following instructions are enabled: "mpyw"

 and "mpyuw".

 2

 wlh1

 32x32 multiplier, fully pipelined (1 stage). The following instructions are

 additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 3

 wlh2

 32x32 multiplier, fully pipelined (2 stages). The following instructions are

 additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 4

 wlh3 Page 345/576

 Two 16x16 multipliers, blocking, sequential. The following instructions are

 additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 5

 wlh4

 One 16x16 multiplier, blocking, sequential. The following instructions are

 additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 6

 wlh5

 One 32x4 multiplier, blocking, sequential. The following instructions are

 additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 7

 plus_dmpy

 ARC HS SIMD support.

 8

 plus_macd

 ARC HS SIMD support.

 9

 plus_qmacw

 ARC HS SIMD support.

 This option is only available for ARCv2 cores.

 -mfpu=fpu

 Enables support for specific floating-point hardware extensions for ARCv2 cores.

 Supported values for fpu are:

 fpus

 Enables support for single-precision floating-point hardware extensions.

 fpud

 Enables support for double-precision floating-point hardware extensions. The

 single-precision floating-point extension is also enabled. Not available for ARC

 EM.

 fpuda

 Enables support for double-precision floating-point hardware extensions using

 double-precision assist instructions. The single-precision floating-point

 extension is also enabled. This option is only available for ARC EM. Page 346/576

 fpuda_div

 Enables support for double-precision floating-point hardware extensions using

 double-precision assist instructions. The single-precision floating-point,

 square-root, and divide extensions are also enabled. This option is only

 available for ARC EM.

 fpuda_fma

 Enables support for double-precision floating-point hardware extensions using

 double-precision assist instructions. The single-precision floating-point and

 fused multiply and add hardware extensions are also enabled. This option is only

 available for ARC EM.

 fpuda_all

 Enables support for double-precision floating-point hardware extensions using

 double-precision assist instructions. All single-precision floating-point

 hardware extensions are also enabled. This option is only available for ARC EM.

 fpus_div

 Enables support for single-precision floating-point, square-root and divide

 hardware extensions.

 fpud_div

 Enables support for double-precision floating-point, square-root and divide

 hardware extensions. This option includes option fpus_div. Not available for ARC

 EM.

 fpus_fma

 Enables support for single-precision floating-point and fused multiply and add

 hardware extensions.

 fpud_fma

 Enables support for double-precision floating-point and fused multiply and add

 hardware extensions. This option includes option fpus_fma. Not available for ARC

 EM.

 fpus_all

 Enables support for all single-precision floating-point hardware extensions.

 fpud_all

 Enables support for all single- and double-precision floating-point hardware

 extensions. Not available for ARC EM. Page 347/576

 -mirq-ctrl-saved=register-range, blink, lp_count

 Specifies general-purposes registers that the processor automatically saves/restores

 on interrupt entry and exit. register-range is specified as two registers separated

 by a dash. The register range always starts with "r0", the upper limit is "fp"

 register. blink and lp_count are optional. This option is only valid for ARC EM and

 ARC HS cores.

 -mrgf-banked-regs=number

 Specifies the number of registers replicated in second register bank on entry to fast

 interrupt. Fast interrupts are interrupts with the highest priority level P0. These

 interrupts save only PC and STATUS32 registers to avoid memory transactions during

 interrupt entry and exit sequences. Use this option when you are using fast

 interrupts in an ARC V2 family processor. Permitted values are 4, 8, 16, and 32.

 -mlpc-width=width

 Specify the width of the "lp_count" register. Valid values for width are 8, 16, 20,

 24, 28 and 32 bits. The default width is fixed to 32 bits. If the width is less than

 32, the compiler does not attempt to transform loops in your program to use the zero-

 delay loop mechanism unless it is known that the "lp_count" register can hold the

 required loop-counter value. Depending on the width specified, the compiler and run-

 time library might continue to use the loop mechanism for various needs. This option

 defines macro "__ARC_LPC_WIDTH__" with the value of width.

 -mrf16

 This option instructs the compiler to generate code for a 16-entry register file.

 This option defines the "__ARC_RF16__" preprocessor macro.

 -mbranch-index

 Enable use of "bi" or "bih" instructions to implement jump tables.

 The following options are passed through to the assembler, and also define preprocessor

 macro symbols.

 -mdsp-packa

 Passed down to the assembler to enable the DSP Pack A extensions. Also sets the

 preprocessor symbol "__Xdsp_packa". This option is deprecated.

 -mdvbf

 Passed down to the assembler to enable the dual Viterbi butterfly extension. Also

 sets the preprocessor symbol "__Xdvbf". This option is deprecated. Page 348/576

 -mlock

 Passed down to the assembler to enable the locked load/store conditional extension.

 Also sets the preprocessor symbol "__Xlock".

 -mmac-d16

 Passed down to the assembler. Also sets the preprocessor symbol "__Xxmac_d16". This

 option is deprecated.

 -mmac-24

 Passed down to the assembler. Also sets the preprocessor symbol "__Xxmac_24". This

 option is deprecated.

 -mrtsc

 Passed down to the assembler to enable the 64-bit time-stamp counter extension

 instruction. Also sets the preprocessor symbol "__Xrtsc". This option is deprecated.

 -mswape

 Passed down to the assembler to enable the swap byte ordering extension instruction.

 Also sets the preprocessor symbol "__Xswape".

 -mtelephony

 Passed down to the assembler to enable dual- and single-operand instructions for

 telephony. Also sets the preprocessor symbol "__Xtelephony". This option is

 deprecated.

 -mxy

 Passed down to the assembler to enable the XY memory extension. Also sets the

 preprocessor symbol "__Xxy".

 The following options control how the assembly code is annotated:

 -misize

 Annotate assembler instructions with estimated addresses.

 -mannotate-align

 Explain what alignment considerations lead to the decision to make an instruction

 short or long.

 The following options are passed through to the linker:

 -marclinux

 Passed through to the linker, to specify use of the "arclinux" emulation. This option

 is enabled by default in tool chains built for "arc-linux-uclibc" and

 "arceb-linux-uclibc" targets when profiling is not requested. Page 349/576

 -marclinux_prof

 Passed through to the linker, to specify use of the "arclinux_prof" emulation. This

 option is enabled by default in tool chains built for "arc-linux-uclibc" and

 "arceb-linux-uclibc" targets when profiling is requested.

 The following options control the semantics of generated code:

 -mlong-calls

 Generate calls as register indirect calls, thus providing access to the full 32-bit

 address range.

 -mmedium-calls

 Don't use less than 25-bit addressing range for calls, which is the offset available

 for an unconditional branch-and-link instruction. Conditional execution of function

 calls is suppressed, to allow use of the 25-bit range, rather than the 21-bit range

 with conditional branch-and-link. This is the default for tool chains built for

 "arc-linux-uclibc" and "arceb-linux-uclibc" targets.

 -G num

 Put definitions of externally-visible data in a small data section if that data is no

 bigger than num bytes. The default value of num is 4 for any ARC configuration, or 8

 when we have double load/store operations.

 -mno-sdata

 Do not generate sdata references. This is the default for tool chains built for

 "arc-linux-uclibc" and "arceb-linux-uclibc" targets.

 -mvolatile-cache

 Use ordinarily cached memory accesses for volatile references. This is the default.

 -mno-volatile-cache

 Enable cache bypass for volatile references.

 The following options fine tune code generation:

 -malign-call

 Do alignment optimizations for call instructions.

 -mauto-modify-reg

 Enable the use of pre/post modify with register displacement.

 -mbbit-peephole

 Enable bbit peephole2.

 -mno-brcc Page 350/576

 This option disables a target-specific pass in arc_reorg to generate compare-and-

 branch ("brcc") instructions. It has no effect on generation of these instructions

 driven by the combiner pass.

 -mcase-vector-pcrel

 Use PC-relative switch case tables to enable case table shortening. This is the

 default for -Os.

 -mcompact-casesi

 Enable compact "casesi" pattern. This is the default for -Os, and only available for

 ARCv1 cores. This option is deprecated.

 -mno-cond-exec

 Disable the ARCompact-specific pass to generate conditional execution instructions.

 Due to delay slot scheduling and interactions between operand numbers, literal sizes,

 instruction lengths, and the support for conditional execution, the target-independent

 pass to generate conditional execution is often lacking, so the ARC port has kept a

 special pass around that tries to find more conditional execution generation

 opportunities after register allocation, branch shortening, and delay slot scheduling

 have been done. This pass generally, but not always, improves performance and code

 size, at the cost of extra compilation time, which is why there is an option to switch

 it off. If you have a problem with call instructions exceeding their allowable offset

 range because they are conditionalized, you should consider using -mmedium-calls

 instead.

 -mearly-cbranchsi

 Enable pre-reload use of the "cbranchsi" pattern.

 -mexpand-adddi

 Expand "adddi3" and "subdi3" at RTL generation time into "add.f", "adc" etc. This

 option is deprecated.

 -mindexed-loads

 Enable the use of indexed loads. This can be problematic because some optimizers then

 assume that indexed stores exist, which is not the case.

 -mlra

 Enable Local Register Allocation. This is still experimental for ARC, so by default

 the compiler uses standard reload (i.e. -mno-lra).

 -mlra-priority-none Page 351/576

 Don't indicate any priority for target registers.

 -mlra-priority-compact

 Indicate target register priority for r0..r3 / r12..r15.

 -mlra-priority-noncompact

 Reduce target register priority for r0..r3 / r12..r15.

 -mmillicode

 When optimizing for size (using -Os), prologues and epilogues that have to save or

 restore a large number of registers are often shortened by using call to a special

 function in libgcc; this is referred to as a millicode call. As these calls can pose

 performance issues, and/or cause linking issues when linking in a nonstandard way,

 this option is provided to turn on or off millicode call generation.

 -mcode-density-frame

 This option enable the compiler to emit "enter" and "leave" instructions. These

 instructions are only valid for CPUs with code-density feature.

 -mmixed-code

 Tweak register allocation to help 16-bit instruction generation. This generally has

 the effect of decreasing the average instruction size while increasing the instruction

 count.

 -mq-class

 Ths option is deprecated. Enable q instruction alternatives. This is the default for

 -Os.

 -mRcq

 Enable Rcq constraint handling. Most short code generation depends on this. This is

 the default.

 -mRcw

 Enable Rcw constraint handling. Most ccfsm condexec mostly depends on this. This is

 the default.

 -msize-level=level

 Fine-tune size optimization with regards to instruction lengths and alignment. The

 recognized values for level are:

 0 No size optimization. This level is deprecated and treated like 1.

 1 Short instructions are used opportunistically.

 2 In addition, alignment of loops and of code after barriers are dropped. Page 352/576

 3 In addition, optional data alignment is dropped, and the option Os is enabled.

 This defaults to 3 when -Os is in effect. Otherwise, the behavior when this is not

 set is equivalent to level 1.

 -mtune=cpu

 Set instruction scheduling parameters for cpu, overriding any implied by -mcpu=.

 Supported values for cpu are

 ARC600

 Tune for ARC600 CPU.

 ARC601

 Tune for ARC601 CPU.

 ARC700

 Tune for ARC700 CPU with standard multiplier block.

 ARC700-xmac

 Tune for ARC700 CPU with XMAC block.

 ARC725D

 Tune for ARC725D CPU.

 ARC750D

 Tune for ARC750D CPU.

 -mmultcost=num

 Cost to assume for a multiply instruction, with 4 being equal to a normal instruction.

 -munalign-prob-threshold=probability

 Set probability threshold for unaligning branches. When tuning for ARC700 and

 optimizing for speed, branches without filled delay slot are preferably emitted

 unaligned and long, unless profiling indicates that the probability for the branch to

 be taken is below probability. The default is (REG_BR_PROB_BASE/2), i.e. 5000.

 The following options are maintained for backward compatibility, but are now deprecated

 and will be removed in a future release:

 -margonaut

 Obsolete FPX.

 -mbig-endian

 -EB Compile code for big-endian targets. Use of these options is now deprecated. Big-

 endian code is supported by configuring GCC to build "arceb-elf32" and

 "arceb-linux-uclibc" targets, for which big endian is the default. Page 353/576

 -mlittle-endian

 -EL Compile code for little-endian targets. Use of these options is now deprecated.

 Little-endian code is supported by configuring GCC to build "arc-elf32" and

 "arc-linux-uclibc" targets, for which little endian is the default.

 -mbarrel_shifter

 Replaced by -mbarrel-shifter.

 -mdpfp_compact

 Replaced by -mdpfp-compact.

 -mdpfp_fast

 Replaced by -mdpfp-fast.

 -mdsp_packa

 Replaced by -mdsp-packa.

 -mEA

 Replaced by -mea.

 -mmac_24

 Replaced by -mmac-24.

 -mmac_d16

 Replaced by -mmac-d16.

 -mspfp_compact

 Replaced by -mspfp-compact.

 -mspfp_fast

 Replaced by -mspfp-fast.

 -mtune=cpu

 Values arc600, arc601, arc700 and arc700-xmac for cpu are replaced by ARC600, ARC601,

 ARC700 and ARC700-xmac respectively.

 -multcost=num

 Replaced by -mmultcost.

 ARM Options

 These -m options are defined for the ARM port:

 -mabi=name

 Generate code for the specified ABI. Permissible values are: apcs-gnu, atpcs, aapcs,

 aapcs-linux and iwmmxt.

 -mapcs-frame Page 354/576

 Generate a stack frame that is compliant with the ARM Procedure Call Standard for all

 functions, even if this is not strictly necessary for correct execution of the code.

 Specifying -fomit-frame-pointer with this option causes the stack frames not to be

 generated for leaf functions. The default is -mno-apcs-frame. This option is

 deprecated.

 -mapcs

 This is a synonym for -mapcs-frame and is deprecated.

 -mthumb-interwork

 Generate code that supports calling between the ARM and Thumb instruction sets.

 Without this option, on pre-v5 architectures, the two instruction sets cannot be

 reliably used inside one program. The default is -mno-thumb-interwork, since slightly

 larger code is generated when -mthumb-interwork is specified. In AAPCS configurations

 this option is meaningless.

 -mno-sched-prolog

 Prevent the reordering of instructions in the function prologue, or the merging of

 those instruction with the instructions in the function's body. This means that all

 functions start with a recognizable set of instructions (or in fact one of a choice

 from a small set of different function prologues), and this information can be used to

 locate the start of functions inside an executable piece of code. The default is

 -msched-prolog.

 -mfloat-abi=name

 Specifies which floating-point ABI to use. Permissible values are: soft, softfp and

 hard.

 Specifying soft causes GCC to generate output containing library calls for floating-

 point operations. softfp allows the generation of code using hardware floating-point

 instructions, but still uses the soft-float calling conventions. hard allows

 generation of floating-point instructions and uses FPU-specific calling conventions.

 The default depends on the specific target configuration. Note that the hard-float

 and soft-float ABIs are not link-compatible; you must compile your entire program with

 the same ABI, and link with a compatible set of libraries.

 -mgeneral-regs-only

 Generate code which uses only the general-purpose registers. This will prevent the

 compiler from using floating-point and Advanced SIMD registers but will not impose any Page 355/576

 restrictions on the assembler.

 -mlittle-endian

 Generate code for a processor running in little-endian mode. This is the default for

 all standard configurations.

 -mbig-endian

 Generate code for a processor running in big-endian mode; the default is to compile

 code for a little-endian processor.

 -mbe8

 -mbe32

 When linking a big-endian image select between BE8 and BE32 formats. The option has

 no effect for little-endian images and is ignored. The default is dependent on the

 selected target architecture. For ARMv6 and later architectures the default is BE8,

 for older architectures the default is BE32. BE32 format has been deprecated by ARM.

 -march=name[+extension...]

 This specifies the name of the target ARM architecture. GCC uses this name to

 determine what kind of instructions it can emit when generating assembly code. This

 option can be used in conjunction with or instead of the -mcpu= option.

 Permissible names are: armv4t, armv5t, armv5te, armv6, armv6j, armv6k, armv6kz,

 armv6t2, armv6z, armv6zk, armv7, armv7-a, armv7ve, armv8-a, armv8.1-a, armv8.2-a,

 armv8.3-a, armv8.4-a, armv8.5-a, armv8.6-a, armv7-r, armv8-r, armv6-m, armv6s-m,

 armv7-m, armv7e-m, armv8-m.base, armv8-m.main, armv8.1-m.main, iwmmxt and iwmmxt2.

 Additionally, the following architectures, which lack support for the Thumb execution

 state, are recognized but support is deprecated: armv4.

 Many of the architectures support extensions. These can be added by appending

 +extension to the architecture name. Extension options are processed in order and

 capabilities accumulate. An extension will also enable any necessary base extensions

 upon which it depends. For example, the +crypto extension will always enable the

 +simd extension. The exception to the additive construction is for extensions that

 are prefixed with +no...: these extensions disable the specified option and any other

 extensions that may depend on the presence of that extension.

 For example, -march=armv7-a+simd+nofp+vfpv4 is equivalent to writing

 -march=armv7-a+vfpv4 since the +simd option is entirely disabled by the +nofp option

 that follows it. Page 356/576

 Most extension names are generically named, but have an effect that is dependent upon

 the architecture to which it is applied. For example, the +simd option can be applied

 to both armv7-a and armv8-a architectures, but will enable the original ARMv7-A

 Advanced SIMD (Neon) extensions for armv7-a and the ARMv8-A variant for armv8-a.

 The table below lists the supported extensions for each architecture. Architectures

 not mentioned do not support any extensions.

 armv5te

 armv6

 armv6j

 armv6k

 armv6kz

 armv6t2

 armv6z

 armv6zk

 +fp The VFPv2 floating-point instructions. The extension +vfpv2 can be used as an

 alias for this extension.

 +nofp

 Disable the floating-point instructions.

 armv7

 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.

 +fp The VFPv3 floating-point instructions, with 16 double-precision registers.

 The extension +vfpv3-d16 can be used as an alias for this extension. Note

 that floating-point is not supported by the base ARMv7-M architecture, but is

 compatible with both the ARMv7-A and ARMv7-R architectures.

 +nofp

 Disable the floating-point instructions.

 armv7-a

 +mp The multiprocessing extension.

 +sec

 The security extension.

 +fp The VFPv3 floating-point instructions, with 16 double-precision registers.

 The extension +vfpv3-d16 can be used as an alias for this extension.

 +simd Page 357/576

 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions. The

 extensions +neon and +neon-vfpv3 can be used as aliases for this extension.

 +vfpv3

 The VFPv3 floating-point instructions, with 32 double-precision registers.

 +vfpv3-d16-fp16

 The VFPv3 floating-point instructions, with 16 double-precision registers and

 the half-precision floating-point conversion operations.

 +vfpv3-fp16

 The VFPv3 floating-point instructions, with 32 double-precision registers and

 the half-precision floating-point conversion operations.

 +vfpv4-d16

 The VFPv4 floating-point instructions, with 16 double-precision registers.

 +vfpv4

 The VFPv4 floating-point instructions, with 32 double-precision registers.

 +neon-fp16

 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with

 the half-precision floating-point conversion operations.

 +neon-vfpv4

 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.

 +nosimd

 Disable the Advanced SIMD instructions (does not disable floating point).

 +nofp

 Disable the floating-point and Advanced SIMD instructions.

 armv7ve

 The extended version of the ARMv7-A architecture with support for virtualization.

 +fp The VFPv4 floating-point instructions, with 16 double-precision registers.

 The extension +vfpv4-d16 can be used as an alias for this extension.

 +simd

 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The

 extension +neon-vfpv4 can be used as an alias for this extension.

 +vfpv3-d16

 The VFPv3 floating-point instructions, with 16 double-precision registers.

 +vfpv3 Page 358/576

 The VFPv3 floating-point instructions, with 32 double-precision registers.

 +vfpv3-d16-fp16

 The VFPv3 floating-point instructions, with 16 double-precision registers and

 the half-precision floating-point conversion operations.

 +vfpv3-fp16

 The VFPv3 floating-point instructions, with 32 double-precision registers and

 the half-precision floating-point conversion operations.

 +vfpv4-d16

 The VFPv4 floating-point instructions, with 16 double-precision registers.

 +vfpv4

 The VFPv4 floating-point instructions, with 32 double-precision registers.

 +neon

 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions. The

 extension +neon-vfpv3 can be used as an alias for this extension.

 +neon-fp16

 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with

 the half-precision floating-point conversion operations.

 +nosimd

 Disable the Advanced SIMD instructions (does not disable floating point).

 +nofp

 Disable the floating-point and Advanced SIMD instructions.

 armv8-a

 +crc

 The Cyclic Redundancy Check (CRC) instructions.

 +simd

 The ARMv8-A Advanced SIMD and floating-point instructions.

 +crypto

 The cryptographic instructions.

 +nocrypto

 Disable the cryptographic instructions.

 +nofp

 Disable the floating-point, Advanced SIMD and cryptographic instructions.

 +sb Speculation Barrier Instruction. Page 359/576

 +predres

 Execution and Data Prediction Restriction Instructions.

 armv8.1-a

 +simd

 The ARMv8.1-A Advanced SIMD and floating-point instructions.

 +crypto

 The cryptographic instructions. This also enables the Advanced SIMD and

 floating-point instructions.

 +nocrypto

 Disable the cryptographic instructions.

 +nofp

 Disable the floating-point, Advanced SIMD and cryptographic instructions.

 +sb Speculation Barrier Instruction.

 +predres

 Execution and Data Prediction Restriction Instructions.

 armv8.2-a

 armv8.3-a

 +fp16

 The half-precision floating-point data processing instructions. This also

 enables the Advanced SIMD and floating-point instructions.

 +fp16fml

 The half-precision floating-point fmla extension. This also enables the half-

 precision floating-point extension and Advanced SIMD and floating-point

 instructions.

 +simd

 The ARMv8.1-A Advanced SIMD and floating-point instructions.

 +crypto

 The cryptographic instructions. This also enables the Advanced SIMD and

 floating-point instructions.

 +dotprod

 Enable the Dot Product extension. This also enables Advanced SIMD

 instructions.

 +nocrypto Page 360/576

 Disable the cryptographic extension.

 +nofp

 Disable the floating-point, Advanced SIMD and cryptographic instructions.

 +sb Speculation Barrier Instruction.

 +predres

 Execution and Data Prediction Restriction Instructions.

 +i8mm

 8-bit Integer Matrix Multiply instructions. This also enables Advanced SIMD

 and floating-point instructions.

 +bf16

 Brain half-precision floating-point instructions. This also enables Advanced

 SIMD and floating-point instructions.

 armv8.4-a

 +fp16

 The half-precision floating-point data processing instructions. This also

 enables the Advanced SIMD and floating-point instructions as well as the Dot

 Product extension and the half-precision floating-point fmla extension.

 +simd

 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the Dot

 Product extension.

 +crypto

 The cryptographic instructions. This also enables the Advanced SIMD and

 floating-point instructions as well as the Dot Product extension.

 +nocrypto

 Disable the cryptographic extension.

 +nofp

 Disable the floating-point, Advanced SIMD and cryptographic instructions.

 +sb Speculation Barrier Instruction.

 +predres

 Execution and Data Prediction Restriction Instructions.

 +i8mm

 8-bit Integer Matrix Multiply instructions. This also enables Advanced SIMD

 and floating-point instructions. Page 361/576

 +bf16

 Brain half-precision floating-point instructions. This also enables Advanced

 SIMD and floating-point instructions.

 armv8.5-a

 +fp16

 The half-precision floating-point data processing instructions. This also

 enables the Advanced SIMD and floating-point instructions as well as the Dot

 Product extension and the half-precision floating-point fmla extension.

 +simd

 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the Dot

 Product extension.

 +crypto

 The cryptographic instructions. This also enables the Advanced SIMD and

 floating-point instructions as well as the Dot Product extension.

 +nocrypto

 Disable the cryptographic extension.

 +nofp

 Disable the floating-point, Advanced SIMD and cryptographic instructions.

 +i8mm

 8-bit Integer Matrix Multiply instructions. This also enables Advanced SIMD

 and floating-point instructions.

 +bf16

 Brain half-precision floating-point instructions. This also enables Advanced

 SIMD and floating-point instructions.

 armv8.6-a

 +fp16

 The half-precision floating-point data processing instructions. This also

 enables the Advanced SIMD and floating-point instructions as well as the Dot

 Product extension and the half-precision floating-point fmla extension.

 +simd

 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the Dot

 Product extension.

 +crypto Page 362/576

 The cryptographic instructions. This also enables the Advanced SIMD and

 floating-point instructions as well as the Dot Product extension.

 +nocrypto

 Disable the cryptographic extension.

 +nofp

 Disable the floating-point, Advanced SIMD and cryptographic instructions.

 +i8mm

 8-bit Integer Matrix Multiply instructions. This also enables Advanced SIMD

 and floating-point instructions.

 +bf16

 Brain half-precision floating-point instructions. This also enables Advanced

 SIMD and floating-point instructions.

 armv7-r

 +fp.sp

 The single-precision VFPv3 floating-point instructions. The extension

 +vfpv3xd can be used as an alias for this extension.

 +fp The VFPv3 floating-point instructions with 16 double-precision registers. The

 extension +vfpv3-d16 can be used as an alias for this extension.

 +vfpv3xd-d16-fp16

 The single-precision VFPv3 floating-point instructions with 16 double-

 precision registers and the half-precision floating-point conversion

 operations.

 +vfpv3-d16-fp16

 The VFPv3 floating-point instructions with 16 double-precision registers and

 the half-precision floating-point conversion operations.

 +nofp

 Disable the floating-point extension.

 +idiv

 The ARM-state integer division instructions.

 +noidiv

 Disable the ARM-state integer division extension.

 armv7e-m

 +fp The single-precision VFPv4 floating-point instructions. Page 363/576

 +fpv5

 The single-precision FPv5 floating-point instructions.

 +fp.dp

 The single- and double-precision FPv5 floating-point instructions.

 +nofp

 Disable the floating-point extensions.

 armv8.1-m.main

 +dsp

 The DSP instructions.

 +mve

 The M-Profile Vector Extension (MVE) integer instructions.

 +mve.fp

 The M-Profile Vector Extension (MVE) integer and single precision floating-

 point instructions.

 +fp The single-precision floating-point instructions.

 +fp.dp

 The single- and double-precision floating-point instructions.

 +nofp

 Disable the floating-point extension.

 +cdecp0, +cdecp1, ... , +cdecp7

 Enable the Custom Datapath Extension (CDE) on selected coprocessors according

 to the numbers given in the options in the range 0 to 7.

 armv8-m.main

 +dsp

 The DSP instructions.

 +nodsp

 Disable the DSP extension.

 +fp The single-precision floating-point instructions.

 +fp.dp

 The single- and double-precision floating-point instructions.

 +nofp

 Disable the floating-point extension.

 +cdecp0, +cdecp1, ... , +cdecp7 Page 364/576

 Enable the Custom Datapath Extension (CDE) on selected coprocessors according

 to the numbers given in the options in the range 0 to 7.

 armv8-r

 +crc

 The Cyclic Redundancy Check (CRC) instructions.

 +fp.sp

 The single-precision FPv5 floating-point instructions.

 +simd

 The ARMv8-A Advanced SIMD and floating-point instructions.

 +crypto

 The cryptographic instructions.

 +nocrypto

 Disable the cryptographic instructions.

 +nofp

 Disable the floating-point, Advanced SIMD and cryptographic instructions.

 -march=native causes the compiler to auto-detect the architecture of the build

 computer. At present, this feature is only supported on GNU/Linux, and not all

 architectures are recognized. If the auto-detect is unsuccessful the option has no

 effect.

 -mtune=name

 This option specifies the name of the target ARM processor for which GCC should tune

 the performance of the code. For some ARM implementations better performance can be

 obtained by using this option. Permissible names are: arm7tdmi, arm7tdmi-s, arm710t,

 arm720t, arm740t, strongarm, strongarm110, strongarm1100, 0strongarm1110, arm8,

 arm810, arm9, arm9e, arm920, arm920t, arm922t, arm946e-s, arm966e-s, arm968e-s,

 arm926ej-s, arm940t, arm9tdmi, arm10tdmi, arm1020t, arm1026ej-s, arm10e, arm1020e,

 arm1022e, arm1136j-s, arm1136jf-s, mpcore, mpcorenovfp, arm1156t2-s, arm1156t2f-s,

 arm1176jz-s, arm1176jzf-s, generic-armv7-a, cortex-a5, cortex-a7, cortex-a8,

 cortex-a9, cortex-a12, cortex-a15, cortex-a17, cortex-a32, cortex-a35, cortex-a53,

 cortex-a55, cortex-a57, cortex-a72, cortex-a73, cortex-a75, cortex-a76, cortex-a76ae,

 cortex-a77, cortex-a78, cortex-a78ae, cortex-a78c, ares, cortex-r4, cortex-r4f,

 cortex-r5, cortex-r7, cortex-r8, cortex-r52, cortex-m0, cortex-m0plus, cortex-m1,

 cortex-m3, cortex-m4, cortex-m7, cortex-m23, cortex-m33, cortex-m35p, cortex-m55, Page 365/576

 cortex-x1, cortex-m1.small-multiply, cortex-m0.small-multiply,

 cortex-m0plus.small-multiply, exynos-m1, marvell-pj4, neoverse-n1, neoverse-n2,

 neoverse-v1, xscale, iwmmxt, iwmmxt2, ep9312, fa526, fa626, fa606te, fa626te, fmp626,

 fa726te, xgene1.

 Additionally, this option can specify that GCC should tune the performance of the code

 for a big.LITTLE system. Permissible names are: cortex-a15.cortex-a7,

 cortex-a17.cortex-a7, cortex-a57.cortex-a53, cortex-a72.cortex-a53,

 cortex-a72.cortex-a35, cortex-a73.cortex-a53, cortex-a75.cortex-a55,

 cortex-a76.cortex-a55.

 -mtune=generic-arch specifies that GCC should tune the performance for a blend of

 processors within architecture arch. The aim is to generate code that run well on the

 current most popular processors, balancing between optimizations that benefit some

 CPUs in the range, and avoiding performance pitfalls of other CPUs. The effects of

 this option may change in future GCC versions as CPU models come and go.

 -mtune permits the same extension options as -mcpu, but the extension options do not

 affect the tuning of the generated code.

 -mtune=native causes the compiler to auto-detect the CPU of the build computer. At

 present, this feature is only supported on GNU/Linux, and not all architectures are

 recognized. If the auto-detect is unsuccessful the option has no effect.

 -mcpu=name[+extension...]

 This specifies the name of the target ARM processor. GCC uses this name to derive the

 name of the target ARM architecture (as if specified by -march) and the ARM processor

 type for which to tune for performance (as if specified by -mtune). Where this option

 is used in conjunction with -march or -mtune, those options take precedence over the

 appropriate part of this option.

 Many of the supported CPUs implement optional architectural extensions. Where this is

 so the architectural extensions are normally enabled by default. If implementations

 that lack the extension exist, then the extension syntax can be used to disable those

 extensions that have been omitted. For floating-point and Advanced SIMD (Neon)

 instructions, the settings of the options -mfloat-abi and -mfpu must also be

 considered: floating-point and Advanced SIMD instructions will only be used if

 -mfloat-abi is not set to soft; and any setting of -mfpu other than auto will override

 the available floating-point and SIMD extension instructions. Page 366/576

 For example, cortex-a9 can be found in three major configurations: integer only, with

 just a floating-point unit or with floating-point and Advanced SIMD. The default is

 to enable all the instructions, but the extensions +nosimd and +nofp can be used to

 disable just the SIMD or both the SIMD and floating-point instructions respectively.

 Permissible names for this option are the same as those for -mtune.

 The following extension options are common to the listed CPUs:

 +nodsp

 Disable the DSP instructions on cortex-m33, cortex-m35p.

 +nofp

 Disables the floating-point instructions on arm9e, arm946e-s, arm966e-s,

 arm968e-s, arm10e, arm1020e, arm1022e, arm926ej-s, arm1026ej-s, cortex-r5,

 cortex-r7, cortex-r8, cortex-m4, cortex-m7, cortex-m33 and cortex-m35p. Disables

 the floating-point and SIMD instructions on generic-armv7-a, cortex-a5, cortex-a7,

 cortex-a8, cortex-a9, cortex-a12, cortex-a15, cortex-a17, cortex-a15.cortex-a7,

 cortex-a17.cortex-a7, cortex-a32, cortex-a35, cortex-a53 and cortex-a55.

 +nofp.dp

 Disables the double-precision component of the floating-point instructions on

 cortex-r5, cortex-r7, cortex-r8, cortex-r52 and cortex-m7.

 +nosimd

 Disables the SIMD (but not floating-point) instructions on generic-armv7-a,

 cortex-a5, cortex-a7 and cortex-a9.

 +crypto

 Enables the cryptographic instructions on cortex-a32, cortex-a35, cortex-a53,

 cortex-a55, cortex-a57, cortex-a72, cortex-a73, cortex-a75, exynos-m1, xgene1,

 cortex-a57.cortex-a53, cortex-a72.cortex-a53, cortex-a73.cortex-a35,

 cortex-a73.cortex-a53 and cortex-a75.cortex-a55.

 Additionally the generic-armv7-a pseudo target defaults to VFPv3 with 16 double-

 precision registers. It supports the following extension options: mp, sec, vfpv3-d16,

 vfpv3, vfpv3-d16-fp16, vfpv3-fp16, vfpv4-d16, vfpv4, neon, neon-vfpv3, neon-fp16,

 neon-vfpv4. The meanings are the same as for the extensions to -march=armv7-a.

 -mcpu=generic-arch is also permissible, and is equivalent to -march=arch

 -mtune=generic-arch. See -mtune for more information.

 -mcpu=native causes the compiler to auto-detect the CPU of the build computer. At Page 367/576

 present, this feature is only supported on GNU/Linux, and not all architectures are

 recognized. If the auto-detect is unsuccessful the option has no effect.

 -mfpu=name

 This specifies what floating-point hardware (or hardware emulation) is available on

 the target. Permissible names are: auto, vfpv2, vfpv3, vfpv3-fp16, vfpv3-d16,

 vfpv3-d16-fp16, vfpv3xd, vfpv3xd-fp16, neon-vfpv3, neon-fp16, vfpv4, vfpv4-d16,

 fpv4-sp-d16, neon-vfpv4, fpv5-d16, fpv5-sp-d16, fp-armv8, neon-fp-armv8 and

 crypto-neon-fp-armv8. Note that neon is an alias for neon-vfpv3 and vfp is an alias

 for vfpv2.

 The setting auto is the default and is special. It causes the compiler to select the

 floating-point and Advanced SIMD instructions based on the settings of -mcpu and

 -march.

 If the selected floating-point hardware includes the NEON extension (e.g. -mfpu=neon),

 note that floating-point operations are not generated by GCC's auto-vectorization pass

 unless -funsafe-math-optimizations is also specified. This is because NEON hardware

 does not fully implement the IEEE 754 standard for floating-point arithmetic (in

 particular denormal values are treated as zero), so the use of NEON instructions may

 lead to a loss of precision.

 You can also set the fpu name at function level by using the "target("fpu=")" function

 attributes or pragmas.

 -mfp16-format=name

 Specify the format of the "__fp16" half-precision floating-point type. Permissible

 names are none, ieee, and alternative; the default is none, in which case the "__fp16"

 type is not defined.

 -mstructure-size-boundary=n

 The sizes of all structures and unions are rounded up to a multiple of the number of

 bits set by this option. Permissible values are 8, 32 and 64. The default value

 varies for different toolchains. For the COFF targeted toolchain the default value is

 8. A value of 64 is only allowed if the underlying ABI supports it.

 Specifying a larger number can produce faster, more efficient code, but can also

 increase the size of the program. Different values are potentially incompatible.

 Code compiled with one value cannot necessarily expect to work with code or libraries

 compiled with another value, if they exchange information using structures or unions. Page 368/576

 This option is deprecated.

 -mabort-on-noreturn

 Generate a call to the function "abort" at the end of a "noreturn" function. It is

 executed if the function tries to return.

 -mlong-calls

 -mno-long-calls

 Tells the compiler to perform function calls by first loading the address of the

 function into a register and then performing a subroutine call on this register. This

 switch is needed if the target function lies outside of the 64-megabyte addressing

 range of the offset-based version of subroutine call instruction.

 Even if this switch is enabled, not all function calls are turned into long calls.

 The heuristic is that static functions, functions that have the "short_call"

 attribute, functions that are inside the scope of a "#pragma no_long_calls" directive,

 and functions whose definitions have already been compiled within the current

 compilation unit are not turned into long calls. The exceptions to this rule are that

 weak function definitions, functions with the "long_call" attribute or the "section"

 attribute, and functions that are within the scope of a "#pragma long_calls" directive

 are always turned into long calls.

 This feature is not enabled by default. Specifying -mno-long-calls restores the

 default behavior, as does placing the function calls within the scope of a "#pragma

 long_calls_off" directive. Note these switches have no effect on how the compiler

 generates code to handle function calls via function pointers.

 -msingle-pic-base

 Treat the register used for PIC addressing as read-only, rather than loading it in the

 prologue for each function. The runtime system is responsible for initializing this

 register with an appropriate value before execution begins.

 -mpic-register=reg

 Specify the register to be used for PIC addressing. For standard PIC base case, the

 default is any suitable register determined by compiler. For single PIC base case,

 the default is R9 if target is EABI based or stack-checking is enabled, otherwise the

 default is R10.

 -mpic-data-is-text-relative

 Assume that the displacement between the text and data segments is fixed at static Page 369/576

 link time. This permits using PC-relative addressing operations to access data known

 to be in the data segment. For non-VxWorks RTP targets, this option is enabled by

 default. When disabled on such targets, it will enable -msingle-pic-base by default.

 -mpoke-function-name

 Write the name of each function into the text section, directly preceding the function

 prologue. The generated code is similar to this:

 t0

 .ascii "arm_poke_function_name", 0

 .align

 t1

 .word 0xff000000 + (t1 - t0)

 arm_poke_function_name

 mov ip, sp

 stmfd sp!, {fp, ip, lr, pc}

 sub fp, ip, #4

 When performing a stack backtrace, code can inspect the value of "pc" stored at "fp +

 0". If the trace function then looks at location "pc - 12" and the top 8 bits are

 set, then we know that there is a function name embedded immediately preceding this

 location and has length "((pc[-3]) & 0xff000000)".

 -mthumb

 -marm

 Select between generating code that executes in ARM and Thumb states. The default for

 most configurations is to generate code that executes in ARM state, but the default

 can be changed by configuring GCC with the --with-mode=state configure option.

 You can also override the ARM and Thumb mode for each function by using the

 "target("thumb")" and "target("arm")" function attributes or pragmas.

 -mflip-thumb

 Switch ARM/Thumb modes on alternating functions. This option is provided for

 regression testing of mixed Thumb/ARM code generation, and is not intended for

 ordinary use in compiling code.

 -mtpcs-frame

 Generate a stack frame that is compliant with the Thumb Procedure Call Standard for

 all non-leaf functions. (A leaf function is one that does not call any other Page 370/576

 functions.) The default is -mno-tpcs-frame.

 -mtpcs-leaf-frame

 Generate a stack frame that is compliant with the Thumb Procedure Call Standard for

 all leaf functions. (A leaf function is one that does not call any other functions.)

 The default is -mno-apcs-leaf-frame.

 -mcallee-super-interworking

 Gives all externally visible functions in the file being compiled an ARM instruction

 set header which switches to Thumb mode before executing the rest of the function.

 This allows these functions to be called from non-interworking code. This option is

 not valid in AAPCS configurations because interworking is enabled by default.

 -mcaller-super-interworking

 Allows calls via function pointers (including virtual functions) to execute correctly

 regardless of whether the target code has been compiled for interworking or not.

 There is a small overhead in the cost of executing a function pointer if this option

 is enabled. This option is not valid in AAPCS configurations because interworking is

 enabled by default.

 -mtp=name

 Specify the access model for the thread local storage pointer. The valid models are

 soft, which generates calls to "__aeabi_read_tp", cp15, which fetches the thread

 pointer from "cp15" directly (supported in the arm6k architecture), and auto, which

 uses the best available method for the selected processor. The default setting is

 auto.

 -mtls-dialect=dialect

 Specify the dialect to use for accessing thread local storage. Two dialects are

 supported---gnu and gnu2. The gnu dialect selects the original GNU scheme for

 supporting local and global dynamic TLS models. The gnu2 dialect selects the GNU

 descriptor scheme, which provides better performance for shared libraries. The GNU

 descriptor scheme is compatible with the original scheme, but does require new

 assembler, linker and library support. Initial and local exec TLS models are

 unaffected by this option and always use the original scheme.

 -mword-relocations

 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32). This is

 enabled by default on targets (uClinux, SymbianOS) where the runtime loader imposes Page 371/576

 this restriction, and when -fpic or -fPIC is specified. This option conflicts with

 -mslow-flash-data.

 -mfix-cortex-m3-ldrd

 Some Cortex-M3 cores can cause data corruption when "ldrd" instructions with

 overlapping destination and base registers are used. This option avoids generating

 these instructions. This option is enabled by default when -mcpu=cortex-m3 is

 specified.

 -munaligned-access

 -mno-unaligned-access

 Enables (or disables) reading and writing of 16- and 32- bit values from addresses

 that are not 16- or 32- bit aligned. By default unaligned access is disabled for all

 pre-ARMv6, all ARMv6-M and for ARMv8-M Baseline architectures, and enabled for all

 other architectures. If unaligned access is not enabled then words in packed data

 structures are accessed a byte at a time.

 The ARM attribute "Tag_CPU_unaligned_access" is set in the generated object file to

 either true or false, depending upon the setting of this option. If unaligned access

 is enabled then the preprocessor symbol "__ARM_FEATURE_UNALIGNED" is also defined.

 -mneon-for-64bits

 This option is deprecated and has no effect.

 -mslow-flash-data

 Assume loading data from flash is slower than fetching instruction. Therefore literal

 load is minimized for better performance. This option is only supported when

 compiling for ARMv7 M-profile and off by default. It conflicts with

 -mword-relocations.

 -masm-syntax-unified

 Assume inline assembler is using unified asm syntax. The default is currently off

 which implies divided syntax. This option has no impact on Thumb2. However, this may

 change in future releases of GCC. Divided syntax should be considered deprecated.

 -mrestrict-it

 Restricts generation of IT blocks to conform to the rules of ARMv8-A. IT blocks can

 only contain a single 16-bit instruction from a select set of instructions. This

 option is on by default for ARMv8-A Thumb mode.

 -mprint-tune-info Page 372/576

 Print CPU tuning information as comment in assembler file. This is an option used

 only for regression testing of the compiler and not intended for ordinary use in

 compiling code. This option is disabled by default.

 -mverbose-cost-dump

 Enable verbose cost model dumping in the debug dump files. This option is provided

 for use in debugging the compiler.

 -mpure-code

 Do not allow constant data to be placed in code sections. Additionally, when

 compiling for ELF object format give all text sections the ELF processor-specific

 section attribute "SHF_ARM_PURECODE". This option is only available when generating

 non-pic code for M-profile targets.

 -mcmse

 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on

 Development Tools Engineering Specification", which can be found on

 <https://developer.arm.com/documentation/ecm0359818/latest/>.

 -mfix-cmse-cve-2021-35465

 Mitigate against a potential security issue with the "VLLDM" instruction in some

 M-profile devices when using CMSE (CVE-2021-365465). This option is enabled by

 default when the option -mcpu= is used with "cortex-m33", "cortex-m35p" or

 "cortex-m55". The option -mno-fix-cmse-cve-2021-35465 can be used to disable the

 mitigation.

 -mfdpic

 -mno-fdpic

 Select the FDPIC ABI, which uses 64-bit function descriptors to represent pointers to

 functions. When the compiler is configured for "arm-*-uclinuxfdpiceabi" targets, this

 option is on by default and implies -fPIE if none of the PIC/PIE-related options is

 provided. On other targets, it only enables the FDPIC-specific code generation

 features, and the user should explicitly provide the PIC/PIE-related options as

 needed.

 Note that static linking is not supported because it would still involve the dynamic

 linker when the program self-relocates. If such behavior is acceptable, use -static

 and -Wl,-dynamic-linker options.

 The opposite -mno-fdpic option is useful (and required) to build the Linux kernel Page 373/576

 using the same ("arm-*-uclinuxfdpiceabi") toolchain as the one used to build the

 userland programs.

 AVR Options

 These options are defined for AVR implementations:

 -mmcu=mcu

 Specify Atmel AVR instruction set architectures (ISA) or MCU type.

 The default for this option is avr2.

 GCC supports the following AVR devices and ISAs:

 "avr2"

 "Classic" devices with up to 8 KiB of program memory. mcu = "attiny22",

 "attiny26", "at90s2313", "at90s2323", "at90s2333", "at90s2343", "at90s4414",

 "at90s4433", "at90s4434", "at90c8534", "at90s8515", "at90s8535".

 "avr25"

 "Classic" devices with up to 8 KiB of program memory and with the "MOVW"

 instruction. mcu = "attiny13", "attiny13a", "attiny24", "attiny24a", "attiny25",

 "attiny261", "attiny261a", "attiny2313", "attiny2313a", "attiny43u", "attiny44",

 "attiny44a", "attiny45", "attiny48", "attiny441", "attiny461", "attiny461a",

 "attiny4313", "attiny84", "attiny84a", "attiny85", "attiny87", "attiny88",

 "attiny828", "attiny841", "attiny861", "attiny861a", "ata5272", "ata6616c",

 "at86rf401".

 "avr3"

 "Classic" devices with 16 KiB up to 64 KiB of program memory. mcu = "at76c711",

 "at43usb355".

 "avr31"

 "Classic" devices with 128 KiB of program memory. mcu = "atmega103",

 "at43usb320".

 "avr35"

 "Classic" devices with 16 KiB up to 64 KiB of program memory and with the "MOVW"

 instruction. mcu = "attiny167", "attiny1634", "atmega8u2", "atmega16u2",

 "atmega32u2", "ata5505", "ata6617c", "ata664251", "at90usb82", "at90usb162".

 "avr4"

 "Enhanced" devices with up to 8 KiB of program memory. mcu = "atmega48",

 "atmega48a", "atmega48p", "atmega48pa", "atmega48pb", "atmega8", "atmega8a", Page 374/576

 "atmega8hva", "atmega88", "atmega88a", "atmega88p", "atmega88pa", "atmega88pb",

 "atmega8515", "atmega8535", "ata6285", "ata6286", "ata6289", "ata6612c",

 "at90pwm1", "at90pwm2", "at90pwm2b", "at90pwm3", "at90pwm3b", "at90pwm81".

 "avr5"

 "Enhanced" devices with 16 KiB up to 64 KiB of program memory. mcu = "atmega16",

 "atmega16a", "atmega16hva", "atmega16hva2", "atmega16hvb", "atmega16hvbrevb",

 "atmega16m1", "atmega16u4", "atmega161", "atmega162", "atmega163", "atmega164a",

 "atmega164p", "atmega164pa", "atmega165", "atmega165a", "atmega165p",

 "atmega165pa", "atmega168", "atmega168a", "atmega168p", "atmega168pa",

 "atmega168pb", "atmega169", "atmega169a", "atmega169p", "atmega169pa", "atmega32",

 "atmega32a", "atmega32c1", "atmega32hvb", "atmega32hvbrevb", "atmega32m1",

 "atmega32u4", "atmega32u6", "atmega323", "atmega324a", "atmega324p",

 "atmega324pa", "atmega325", "atmega325a", "atmega325p", "atmega325pa",

 "atmega328", "atmega328p", "atmega328pb", "atmega329", "atmega329a", "atmega329p",

 "atmega329pa", "atmega3250", "atmega3250a", "atmega3250p", "atmega3250pa",

 "atmega3290", "atmega3290a", "atmega3290p", "atmega3290pa", "atmega406",

 "atmega64", "atmega64a", "atmega64c1", "atmega64hve", "atmega64hve2",

 "atmega64m1", "atmega64rfr2", "atmega640", "atmega644", "atmega644a",

 "atmega644p", "atmega644pa", "atmega644rfr2", "atmega645", "atmega645a",

 "atmega645p", "atmega649", "atmega649a", "atmega649p", "atmega6450",

 "atmega6450a", "atmega6450p", "atmega6490", "atmega6490a", "atmega6490p",

 "ata5795", "ata5790", "ata5790n", "ata5791", "ata6613c", "ata6614q", "ata5782",

 "ata5831", "ata8210", "ata8510", "ata5702m322", "at90pwm161", "at90pwm216",

 "at90pwm316", "at90can32", "at90can64", "at90scr100", "at90usb646", "at90usb647",

 "at94k", "m3000".

 "avr51"

 "Enhanced" devices with 128 KiB of program memory. mcu = "atmega128",

 "atmega128a", "atmega128rfa1", "atmega128rfr2", "atmega1280", "atmega1281",

 "atmega1284", "atmega1284p", "atmega1284rfr2", "at90can128", "at90usb1286",

 "at90usb1287".

 "avr6"

 "Enhanced" devices with 3-byte PC, i.e. with more than 128 KiB of program memory.

 mcu = "atmega256rfr2", "atmega2560", "atmega2561", "atmega2564rfr2". Page 375/576

 "avrxmega2"

 "XMEGA" devices with more than 8 KiB and up to 64 KiB of program memory. mcu =

 "atxmega8e5", "atxmega16a4", "atxmega16a4u", "atxmega16c4", "atxmega16d4",

 "atxmega16e5", "atxmega32a4", "atxmega32a4u", "atxmega32c3", "atxmega32c4",

 "atxmega32d3", "atxmega32d4", "atxmega32e5".

 "avrxmega3"

 "XMEGA" devices with up to 64 KiB of combined program memory and RAM, and with

 program memory visible in the RAM address space. mcu = "attiny202", "attiny204",

 "attiny212", "attiny214", "attiny402", "attiny404", "attiny406", "attiny412",

 "attiny414", "attiny416", "attiny417", "attiny804", "attiny806", "attiny807",

 "attiny814", "attiny816", "attiny817", "attiny1604", "attiny1606", "attiny1607",

 "attiny1614", "attiny1616", "attiny1617", "attiny3214", "attiny3216",

 "attiny3217", "atmega808", "atmega809", "atmega1608", "atmega1609", "atmega3208",

 "atmega3209", "atmega4808", "atmega4809".

 "avrxmega4"

 "XMEGA" devices with more than 64 KiB and up to 128 KiB of program memory. mcu =

 "atxmega64a3", "atxmega64a3u", "atxmega64a4u", "atxmega64b1", "atxmega64b3",

 "atxmega64c3", "atxmega64d3", "atxmega64d4".

 "avrxmega5"

 "XMEGA" devices with more than 64 KiB and up to 128 KiB of program memory and more

 than 64 KiB of RAM. mcu = "atxmega64a1", "atxmega64a1u".

 "avrxmega6"

 "XMEGA" devices with more than 128 KiB of program memory. mcu = "atxmega128a3",

 "atxmega128a3u", "atxmega128b1", "atxmega128b3", "atxmega128c3", "atxmega128d3",

 "atxmega128d4", "atxmega192a3", "atxmega192a3u", "atxmega192c3", "atxmega192d3",

 "atxmega256a3", "atxmega256a3b", "atxmega256a3bu", "atxmega256a3u",

 "atxmega256c3", "atxmega256d3", "atxmega384c3", "atxmega384d3".

 "avrxmega7"

 "XMEGA" devices with more than 128 KiB of program memory and more than 64 KiB of

 RAM. mcu = "atxmega128a1", "atxmega128a1u", "atxmega128a4u".

 "avrtiny"

 "TINY" Tiny core devices with 512 B up to 4 KiB of program memory. mcu =

 "attiny4", "attiny5", "attiny9", "attiny10", "attiny20", "attiny40". Page 376/576

 "avr1"

 This ISA is implemented by the minimal AVR core and supported for assembler only.

 mcu = "attiny11", "attiny12", "attiny15", "attiny28", "at90s1200".

 -mabsdata

 Assume that all data in static storage can be accessed by LDS / STS instructions.

 This option has only an effect on reduced Tiny devices like ATtiny40. See also the

 "absdata" AVR Variable Attributes,variable attribute.

 -maccumulate-args

 Accumulate outgoing function arguments and acquire/release the needed stack space for

 outgoing function arguments once in function prologue/epilogue. Without this option,

 outgoing arguments are pushed before calling a function and popped afterwards.

 Popping the arguments after the function call can be expensive on AVR so that

 accumulating the stack space might lead to smaller executables because arguments need

 not be removed from the stack after such a function call.

 This option can lead to reduced code size for functions that perform several calls to

 functions that get their arguments on the stack like calls to printf-like functions.

 -mbranch-cost=cost

 Set the branch costs for conditional branch instructions to cost. Reasonable values

 for cost are small, non-negative integers. The default branch cost is 0.

 -mcall-prologues

 Functions prologues/epilogues are expanded as calls to appropriate subroutines. Code

 size is smaller.

 -mdouble=bits

 -mlong-double=bits

 Set the size (in bits) of the "double" or "long double" type, respectively. Possible

 values for bits are 32 and 64. Whether or not a specific value for bits is allowed

 depends on the "--with-double=" and "--with-long-double=" configure options

 ("https://gcc.gnu.org/install/configure.html#avr"), and the same applies for the

 default values of the options.

 -mgas-isr-prologues

 Interrupt service routines (ISRs) may use the "__gcc_isr" pseudo instruction supported

 by GNU Binutils. If this option is on, the feature can still be disabled for

 individual ISRs by means of the AVR Function Attributes,,"no_gccisr" function Page 377/576

 attribute. This feature is activated per default if optimization is on (but not with

 -Og, @pxref{Optimize Options}), and if GNU Binutils support PR21683

 ("https://sourceware.org/PR21683").

 -mint8

 Assume "int" to be 8-bit integer. This affects the sizes of all types: a "char" is 1

 byte, an "int" is 1 byte, a "long" is 2 bytes, and "long long" is 4 bytes. Please

 note that this option does not conform to the C standards, but it results in smaller

 code size.

 -mmain-is-OS_task

 Do not save registers in "main". The effect is the same like attaching attribute AVR

 Function Attributes,,"OS_task" to "main". It is activated per default if optimization

 is on.

 -mn-flash=num

 Assume that the flash memory has a size of num times 64 KiB.

 -mno-interrupts

 Generated code is not compatible with hardware interrupts. Code size is smaller.

 -mrelax

 Try to replace "CALL" resp. "JMP" instruction by the shorter "RCALL" resp. "RJMP"

 instruction if applicable. Setting -mrelax just adds the --mlink-relax option to the

 assembler's command line and the --relax option to the linker's command line.

 Jump relaxing is performed by the linker because jump offsets are not known before

 code is located. Therefore, the assembler code generated by the compiler is the same,

 but the instructions in the executable may differ from instructions in the assembler

 code.

 Relaxing must be turned on if linker stubs are needed, see the section on "EIND" and

 linker stubs below.

 -mrmw

 Assume that the device supports the Read-Modify-Write instructions "XCH", "LAC", "LAS"

 and "LAT".

 -mshort-calls

 Assume that "RJMP" and "RCALL" can target the whole program memory.

 This option is used internally for multilib selection. It is not an optimization

 option, and you don't need to set it by hand. Page 378/576

 -msp8

 Treat the stack pointer register as an 8-bit register, i.e. assume the high byte of

 the stack pointer is zero. In general, you don't need to set this option by hand.

 This option is used internally by the compiler to select and build multilibs for

 architectures "avr2" and "avr25". These architectures mix devices with and without

 "SPH". For any setting other than -mmcu=avr2 or -mmcu=avr25 the compiler driver adds

 or removes this option from the compiler proper's command line, because the compiler

 then knows if the device or architecture has an 8-bit stack pointer and thus no "SPH"

 register or not.

 -mstrict-X

 Use address register "X" in a way proposed by the hardware. This means that "X" is

 only used in indirect, post-increment or pre-decrement addressing.

 Without this option, the "X" register may be used in the same way as "Y" or "Z" which

 then is emulated by additional instructions. For example, loading a value with

 "X+const" addressing with a small non-negative "const < 64" to a register Rn is

 performed as

 adiw r26, const ; X += const

 ld <Rn>, X ; <Rn> = *X

 sbiw r26, const ; X -= const

 -mtiny-stack

 Only change the lower 8 bits of the stack pointer.

 -mfract-convert-truncate

 Allow to use truncation instead of rounding towards zero for fractional fixed-point

 types.

 -nodevicelib

 Don't link against AVR-LibC's device specific library "lib<mcu>.a".

 -nodevicespecs

 Don't add -specs=device-specs/specs-mcu to the compiler driver's command line. The

 user takes responsibility for supplying the sub-processes like compiler proper,

 assembler and linker with appropriate command line options. This means that the user

 has to supply her private device specs file by means of -specs=path-to-specs-file.

 There is no more need for option -mmcu=mcu.

 This option can also serve as a replacement for the older way of specifying custom Page 379/576

 device-specs files that needed -B some-path to point to a directory which contains a

 folder named "device-specs" which contains a specs file named "specs-mcu", where mcu

 was specified by -mmcu=mcu.

 -Waddr-space-convert

 Warn about conversions between address spaces in the case where the resulting address

 space is not contained in the incoming address space.

 -Wmisspelled-isr

 Warn if the ISR is misspelled, i.e. without __vector prefix. Enabled by default.

 "EIND" and Devices with More Than 128 Ki Bytes of Flash

 Pointers in the implementation are 16 bits wide. The address of a function or label is

 represented as word address so that indirect jumps and calls can target any code address

 in the range of 64 Ki words.

 In order to facilitate indirect jump on devices with more than 128 Ki bytes of program

 memory space, there is a special function register called "EIND" that serves as most

 significant part of the target address when "EICALL" or "EIJMP" instructions are used.

 Indirect jumps and calls on these devices are handled as follows by the compiler and are

 subject to some limitations:

 * The compiler never sets "EIND".

 * The compiler uses "EIND" implicitly in "EICALL"/"EIJMP" instructions or might read

 "EIND" directly in order to emulate an indirect call/jump by means of a "RET"

 instruction.

 * The compiler assumes that "EIND" never changes during the startup code or during the

 application. In particular, "EIND" is not saved/restored in function or interrupt

 service routine prologue/epilogue.

 * For indirect calls to functions and computed goto, the linker generates stubs. Stubs

 are jump pads sometimes also called trampolines. Thus, the indirect call/jump jumps to

 such a stub. The stub contains a direct jump to the desired address.

 * Linker relaxation must be turned on so that the linker generates the stubs correctly

 in all situations. See the compiler option -mrelax and the linker option --relax.

 There are corner cases where the linker is supposed to generate stubs but aborts

 without relaxation and without a helpful error message.

 * The default linker script is arranged for code with "EIND = 0". If code is supposed

 to work for a setup with "EIND != 0", a custom linker script has to be used in order Page 380/576

 to place the sections whose name start with ".trampolines" into the segment where

 "EIND" points to.

 * The startup code from libgcc never sets "EIND". Notice that startup code is a blend

 of code from libgcc and AVR-LibC. For the impact of AVR-LibC on "EIND", see the AVR-

 LibC user manual ("http://nongnu.org/avr-libc/user-manual/").

 * It is legitimate for user-specific startup code to set up "EIND" early, for example by

 means of initialization code located in section ".init3". Such code runs prior to

 general startup code that initializes RAM and calls constructors, but after the bit of

 startup code from AVR-LibC that sets "EIND" to the segment where the vector table is

 located.

 #include <avr/io.h>

 static void

 __attribute__((section(".init3"),naked,used,no_instrument_function))

 init3_set_eind (void)

 {

 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"

 "out %i0,r24" :: "n" (&EIND) : "r24","memory");

 }

 The "__trampolines_start" symbol is defined in the linker script.

 * Stubs are generated automatically by the linker if the following two conditions are

 met:

 -<The address of a label is taken by means of the "gs" modifier>

 (short for generate stubs) like so:

 LDI r24, lo8(gs(<func>))

 LDI r25, hi8(gs(<func>))

 -<The final location of that label is in a code segment>

 outside the segment where the stubs are located.

 * The compiler emits such "gs" modifiers for code labels in the following situations:

 -<Taking address of a function or code label.>

 -<Computed goto.>

 -<If prologue-save function is used, see -mcall-prologues>

 command-line option.

 -<Switch/case dispatch tables. If you do not want such dispatch> Page 381/576

 tables you can specify the -fno-jump-tables command-line option.

 -<C and C++ constructors/destructors called during startup/shutdown.>

 -<If the tools hit a "gs()" modifier explained above.>

 * Jumping to non-symbolic addresses like so is not supported:

 int main (void)

 {

 /* Call function at word address 0x2 */

 return ((int(*)(void)) 0x2)();

 }

 Instead, a stub has to be set up, i.e. the function has to be called through a symbol

 ("func_4" in the example):

 int main (void)

 {

 extern int func_4 (void);

 /* Call function at byte address 0x4 */

 return func_4();

 }

 and the application be linked with -Wl,--defsym,func_4=0x4. Alternatively, "func_4"

 can be defined in the linker script.

 Handling of the "RAMPD", "RAMPX", "RAMPY" and "RAMPZ" Special Function Registers

 Some AVR devices support memories larger than the 64 KiB range that can be accessed with

 16-bit pointers. To access memory locations outside this 64 KiB range, the content of a

 "RAMP" register is used as high part of the address: The "X", "Y", "Z" address register is

 concatenated with the "RAMPX", "RAMPY", "RAMPZ" special function register, respectively,

 to get a wide address. Similarly, "RAMPD" is used together with direct addressing.

 * The startup code initializes the "RAMP" special function registers with zero.

 * If a AVR Named Address Spaces,named address space other than generic or "__flash" is

 used, then "RAMPZ" is set as needed before the operation.

 * If the device supports RAM larger than 64 KiB and the compiler needs to change "RAMPZ"

 to accomplish an operation, "RAMPZ" is reset to zero after the operation.

 * If the device comes with a specific "RAMP" register, the ISR prologue/epilogue

 saves/restores that SFR and initializes it with zero in case the ISR code might

 (implicitly) use it. Page 382/576

 * RAM larger than 64 KiB is not supported by GCC for AVR targets. If you use inline

 assembler to read from locations outside the 16-bit address range and change one of

 the "RAMP" registers, you must reset it to zero after the access.

 AVR Built-in Macros

 GCC defines several built-in macros so that the user code can test for the presence or

 absence of features. Almost any of the following built-in macros are deduced from device

 capabilities and thus triggered by the -mmcu= command-line option.

 For even more AVR-specific built-in macros see AVR Named Address Spaces and AVR Built-in

 Functions.

 "__AVR_ARCH__"

 Build-in macro that resolves to a decimal number that identifies the architecture and

 depends on the -mmcu=mcu option. Possible values are:

 2, 25, 3, 31, 35, 4, 5, 51, 6

 for mcu="avr2", "avr25", "avr3", "avr31", "avr35", "avr4", "avr5", "avr51", "avr6",

 respectively and

 100, 102, 103, 104, 105, 106, 107

 for mcu="avrtiny", "avrxmega2", "avrxmega3", "avrxmega4", "avrxmega5", "avrxmega6",

 "avrxmega7", respectively. If mcu specifies a device, this built-in macro is set

 accordingly. For example, with -mmcu=atmega8 the macro is defined to 4.

 "__AVR_Device__"

 Setting -mmcu=device defines this built-in macro which reflects the device's name. For

 example, -mmcu=atmega8 defines the built-in macro "__AVR_ATmega8__", -mmcu=attiny261a

 defines "__AVR_ATtiny261A__", etc.

 The built-in macros' names follow the scheme "__AVR_Device__" where Device is the

 device name as from the AVR user manual. The difference between Device in the built-in

 macro and device in -mmcu=device is that the latter is always lowercase.

 If device is not a device but only a core architecture like avr51, this macro is not

 defined.

 "__AVR_DEVICE_NAME__"

 Setting -mmcu=device defines this built-in macro to the device's name. For example,

 with -mmcu=atmega8 the macro is defined to "atmega8".

 If device is not a device but only a core architecture like avr51, this macro is not

 defined. Page 383/576

 "__AVR_XMEGA__"

 The device / architecture belongs to the XMEGA family of devices.

 "__AVR_HAVE_ELPM__"

 The device has the "ELPM" instruction.

 "__AVR_HAVE_ELPMX__"

 The device has the "ELPM Rn,Z" and "ELPM Rn,Z+" instructions.

 "__AVR_HAVE_MOVW__"

 The device has the "MOVW" instruction to perform 16-bit register-register moves.

 "__AVR_HAVE_LPMX__"

 The device has the "LPM Rn,Z" and "LPM Rn,Z+" instructions.

 "__AVR_HAVE_MUL__"

 The device has a hardware multiplier.

 "__AVR_HAVE_JMP_CALL__"

 The device has the "JMP" and "CALL" instructions. This is the case for devices with

 more than 8 KiB of program memory.

 "__AVR_HAVE_EIJMP_EICALL__"

 "__AVR_3_BYTE_PC__"

 The device has the "EIJMP" and "EICALL" instructions. This is the case for devices

 with more than 128 KiB of program memory. This also means that the program counter

 (PC) is 3 bytes wide.

 "__AVR_2_BYTE_PC__"

 The program counter (PC) is 2 bytes wide. This is the case for devices with up to 128

 KiB of program memory.

 "__AVR_HAVE_8BIT_SP__"

 "__AVR_HAVE_16BIT_SP__"

 The stack pointer (SP) register is treated as 8-bit respectively 16-bit register by

 the compiler. The definition of these macros is affected by -mtiny-stack.

 "__AVR_HAVE_SPH__"

 "__AVR_SP8__"

 The device has the SPH (high part of stack pointer) special function register or has

 an 8-bit stack pointer, respectively. The definition of these macros is affected by

 -mmcu= and in the cases of -mmcu=avr2 and -mmcu=avr25 also by -msp8.

 "__AVR_HAVE_RAMPD__" Page 384/576

 "__AVR_HAVE_RAMPX__"

 "__AVR_HAVE_RAMPY__"

 "__AVR_HAVE_RAMPZ__"

 The device has the "RAMPD", "RAMPX", "RAMPY", "RAMPZ" special function register,

 respectively.

 "__NO_INTERRUPTS__"

 This macro reflects the -mno-interrupts command-line option.

 "__AVR_ERRATA_SKIP__"

 "__AVR_ERRATA_SKIP_JMP_CALL__"

 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions because of a

 hardware erratum. Skip instructions are "SBRS", "SBRC", "SBIS", "SBIC" and "CPSE".

 The second macro is only defined if "__AVR_HAVE_JMP_CALL__" is also set.

 "__AVR_ISA_RMW__"

 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).

 "__AVR_SFR_OFFSET__=offset"

 Instructions that can address I/O special function registers directly like "IN",

 "OUT", "SBI", etc. may use a different address as if addressed by an instruction to

 access RAM like "LD" or "STS". This offset depends on the device architecture and has

 to be subtracted from the RAM address in order to get the respective I/O address.

 "__AVR_SHORT_CALLS__"

 The -mshort-calls command line option is set.

 "__AVR_PM_BASE_ADDRESS__=addr"

 Some devices support reading from flash memory by means of "LD*" instructions. The

 flash memory is seen in the data address space at an offset of

 "__AVR_PM_BASE_ADDRESS__". If this macro is not defined, this feature is not

 available. If defined, the address space is linear and there is no need to put

 ".rodata" into RAM. This is handled by the default linker description file, and is

 currently available for "avrtiny" and "avrxmega3". Even more convenient, there is no

 need to use address spaces like "__flash" or features like attribute "progmem" and

 "pgm_read_*".

 "__WITH_AVRLIBC__"

 The compiler is configured to be used together with AVR-Libc. See the --with-avrlibc

 configure option. Page 385/576

 "__HAVE_DOUBLE_MULTILIB__"

 Defined if -mdouble= acts as a multilib option.

 "__HAVE_DOUBLE32__"

 "__HAVE_DOUBLE64__"

 Defined if the compiler supports 32-bit double resp. 64-bit double. The actual layout

 is specified by option -mdouble=.

 "__DEFAULT_DOUBLE__"

 The size in bits of "double" if -mdouble= is not set. To test the layout of "double"

 in a program, use the built-in macro "__SIZEOF_DOUBLE__".

 "__HAVE_LONG_DOUBLE32__"

 "__HAVE_LONG_DOUBLE64__"

 "__HAVE_LONG_DOUBLE_MULTILIB__"

 "__DEFAULT_LONG_DOUBLE__"

 Same as above, but for "long double" instead of "double".

 "__WITH_DOUBLE_COMPARISON__"

 Reflects the "--with-double-comparison={tristate|bool|libf7}" configure option

 ("https://gcc.gnu.org/install/configure.html#avr") and is defined to 2 or 3.

 "__WITH_LIBF7_LIBGCC__"

 "__WITH_LIBF7_MATH__"

 "__WITH_LIBF7_MATH_SYMBOLS__"

 Reflects the "--with-libf7={libgcc|math|math-symbols}" configure option

 ("https://gcc.gnu.org/install/configure.html#avr").

 Blackfin Options

 -mcpu=cpu[-sirevision]

 Specifies the name of the target Blackfin processor. Currently, cpu can be one of

 bf512, bf514, bf516, bf518, bf522, bf523, bf524, bf525, bf526, bf527, bf531, bf532,

 bf533, bf534, bf536, bf537, bf538, bf539, bf542, bf544, bf547, bf548, bf549, bf542m,

 bf544m, bf547m, bf548m, bf549m, bf561, bf592.

 The optional sirevision specifies the silicon revision of the target Blackfin

 processor. Any workarounds available for the targeted silicon revision are enabled.

 If sirevision is none, no workarounds are enabled. If sirevision is any, all

 workarounds for the targeted processor are enabled. The "__SILICON_REVISION__" macro

 is defined to two hexadecimal digits representing the major and minor numbers in the Page 386/576

 silicon revision. If sirevision is none, the "__SILICON_REVISION__" is not defined.

 If sirevision is any, the "__SILICON_REVISION__" is defined to be 0xffff. If this

 optional sirevision is not used, GCC assumes the latest known silicon revision of the

 targeted Blackfin processor.

 GCC defines a preprocessor macro for the specified cpu. For the bfin-elf toolchain,

 this option causes the hardware BSP provided by libgloss to be linked in if -msim is

 not given.

 Without this option, bf532 is used as the processor by default.

 Note that support for bf561 is incomplete. For bf561, only the preprocessor macro is

 defined.

 -msim

 Specifies that the program will be run on the simulator. This causes the simulator

 BSP provided by libgloss to be linked in. This option has effect only for bfin-elf

 toolchain. Certain other options, such as -mid-shared-library and -mfdpic, imply

 -msim.

 -momit-leaf-frame-pointer

 Don't keep the frame pointer in a register for leaf functions. This avoids the

 instructions to save, set up and restore frame pointers and makes an extra register

 available in leaf functions.

 -mspecld-anomaly

 When enabled, the compiler ensures that the generated code does not contain

 speculative loads after jump instructions. If this option is used,

 "__WORKAROUND_SPECULATIVE_LOADS" is defined.

 -mno-specld-anomaly

 Don't generate extra code to prevent speculative loads from occurring.

 -mcsync-anomaly

 When enabled, the compiler ensures that the generated code does not contain CSYNC or

 SSYNC instructions too soon after conditional branches. If this option is used,

 "__WORKAROUND_SPECULATIVE_SYNCS" is defined.

 -mno-csync-anomaly

 Don't generate extra code to prevent CSYNC or SSYNC instructions from occurring too

 soon after a conditional branch.

 -mlow64k Page 387/576

 When enabled, the compiler is free to take advantage of the knowledge that the entire

 program fits into the low 64k of memory.

 -mno-low64k

 Assume that the program is arbitrarily large. This is the default.

 -mstack-check-l1

 Do stack checking using information placed into L1 scratchpad memory by the uClinux

 kernel.

 -mid-shared-library

 Generate code that supports shared libraries via the library ID method. This allows

 for execute in place and shared libraries in an environment without virtual memory

 management. This option implies -fPIC. With a bfin-elf target, this option implies

 -msim.

 -mno-id-shared-library

 Generate code that doesn't assume ID-based shared libraries are being used. This is

 the default.

 -mleaf-id-shared-library

 Generate code that supports shared libraries via the library ID method, but assumes

 that this library or executable won't link against any other ID shared libraries.

 That allows the compiler to use faster code for jumps and calls.

 -mno-leaf-id-shared-library

 Do not assume that the code being compiled won't link against any ID shared libraries.

 Slower code is generated for jump and call insns.

 -mshared-library-id=n

 Specifies the identification number of the ID-based shared library being compiled.

 Specifying a value of 0 generates more compact code; specifying other values forces

 the allocation of that number to the current library but is no more space- or time-

 efficient than omitting this option.

 -msep-data

 Generate code that allows the data segment to be located in a different area of memory

 from the text segment. This allows for execute in place in an environment without

 virtual memory management by eliminating relocations against the text section.

 -mno-sep-data

 Generate code that assumes that the data segment follows the text segment. This is Page 388/576

 the default.

 -mlong-calls

 -mno-long-calls

 Tells the compiler to perform function calls by first loading the address of the

 function into a register and then performing a subroutine call on this register. This

 switch is needed if the target function lies outside of the 24-bit addressing range of

 the offset-based version of subroutine call instruction.

 This feature is not enabled by default. Specifying -mno-long-calls restores the

 default behavior. Note these switches have no effect on how the compiler generates

 code to handle function calls via function pointers.

 -mfast-fp

 Link with the fast floating-point library. This library relaxes some of the IEEE

 floating-point standard's rules for checking inputs against Not-a-Number (NAN), in the

 interest of performance.

 -minline-plt

 Enable inlining of PLT entries in function calls to functions that are not known to

 bind locally. It has no effect without -mfdpic.

 -mmulticore

 Build a standalone application for multicore Blackfin processors. This option causes

 proper start files and link scripts supporting multicore to be used, and defines the

 macro "__BFIN_MULTICORE". It can only be used with -mcpu=bf561[-sirevision].

 This option can be used with -mcorea or -mcoreb, which selects the one-application-

 per-core programming model. Without -mcorea or -mcoreb, the

 single-application/dual-core programming model is used. In this model, the main

 function of Core B should be named as "coreb_main".

 If this option is not used, the single-core application programming model is used.

 -mcorea

 Build a standalone application for Core A of BF561 when using the one-application-per-

 core programming model. Proper start files and link scripts are used to support Core

 A, and the macro "__BFIN_COREA" is defined. This option can only be used in

 conjunction with -mmulticore.

 -mcoreb

 Build a standalone application for Core B of BF561 when using the one-application-per- Page 389/576

 core programming model. Proper start files and link scripts are used to support Core

 B, and the macro "__BFIN_COREB" is defined. When this option is used, "coreb_main"

 should be used instead of "main". This option can only be used in conjunction with

 -mmulticore.

 -msdram

 Build a standalone application for SDRAM. Proper start files and link scripts are used

 to put the application into SDRAM, and the macro "__BFIN_SDRAM" is defined. The

 loader should initialize SDRAM before loading the application.

 -micplb

 Assume that ICPLBs are enabled at run time. This has an effect on certain anomaly

 workarounds. For Linux targets, the default is to assume ICPLBs are enabled; for

 standalone applications the default is off.

 C6X Options

 -march=name

 This specifies the name of the target architecture. GCC uses this name to determine

 what kind of instructions it can emit when generating assembly code. Permissible

 names are: c62x, c64x, c64x+, c67x, c67x+, c674x.

 -mbig-endian

 Generate code for a big-endian target.

 -mlittle-endian

 Generate code for a little-endian target. This is the default.

 -msim

 Choose startup files and linker script suitable for the simulator.

 -msdata=default

 Put small global and static data in the ".neardata" section, which is pointed to by

 register "B14". Put small uninitialized global and static data in the ".bss" section,

 which is adjacent to the ".neardata" section. Put small read-only data into the

 ".rodata" section. The corresponding sections used for large pieces of data are

 ".fardata", ".far" and ".const".

 -msdata=all

 Put all data, not just small objects, into the sections reserved for small data, and

 use addressing relative to the "B14" register to access them.

 -msdata=none Page 390/576

 Make no use of the sections reserved for small data, and use absolute addresses to

 access all data. Put all initialized global and static data in the ".fardata"

 section, and all uninitialized data in the ".far" section. Put all constant data into

 the ".const" section.

 CRIS Options

 These options are defined specifically for the CRIS ports.

 -march=architecture-type

 -mcpu=architecture-type

 Generate code for the specified architecture. The choices for architecture-type are

 v3, v8 and v10 for respectively ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is v0.

 -mtune=architecture-type

 Tune to architecture-type everything applicable about the generated code, except for

 the ABI and the set of available instructions. The choices for architecture-type are

 the same as for -march=architecture-type.

 -mmax-stack-frame=n

 Warn when the stack frame of a function exceeds n bytes.

 -metrax4

 -metrax100

 The options -metrax4 and -metrax100 are synonyms for -march=v3 and -march=v8

 respectively.

 -mmul-bug-workaround

 -mno-mul-bug-workaround

 Work around a bug in the "muls" and "mulu" instructions for CPU models where it

 applies. This option is active by default.

 -mpdebug

 Enable CRIS-specific verbose debug-related information in the assembly code. This

 option also has the effect of turning off the #NO_APP formatted-code indicator to the

 assembler at the beginning of the assembly file.

 -mcc-init

 Do not use condition-code results from previous instruction; always emit compare and

 test instructions before use of condition codes.

 -mno-side-effects

 Do not emit instructions with side effects in addressing modes other than post- Page 391/576

 increment.

 -mstack-align

 -mno-stack-align

 -mdata-align

 -mno-data-align

 -mconst-align

 -mno-const-align

 These options (no- options) arrange (eliminate arrangements) for the stack frame,

 individual data and constants to be aligned for the maximum single data access size

 for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI

 details such as structure layout are not affected by these options.

 -m32-bit

 -m16-bit

 -m8-bit

 Similar to the stack- data- and const-align options above, these options arrange for

 stack frame, writable data and constants to all be 32-bit, 16-bit or 8-bit aligned.

 The default is 32-bit alignment.

 -mno-prologue-epilogue

 -mprologue-epilogue

 With -mno-prologue-epilogue, the normal function prologue and epilogue which set up

 the stack frame are omitted and no return instructions or return sequences are

 generated in the code. Use this option only together with visual inspection of the

 compiled code: no warnings or errors are generated when call-saved registers must be

 saved, or storage for local variables needs to be allocated.

 -melf

 Legacy no-op option.

 -sim

 This option arranges to link with input-output functions from a simulator library.

 Code, initialized data and zero-initialized data are allocated consecutively.

 -sim2

 Like -sim, but pass linker options to locate initialized data at 0x40000000 and zero-

 initialized data at 0x80000000.

 CR16 Options Page 392/576

 These options are defined specifically for the CR16 ports.

 -mmac

 Enable the use of multiply-accumulate instructions. Disabled by default.

 -mcr16cplus

 -mcr16c

 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture is default.

 -msim

 Links the library libsim.a which is in compatible with simulator. Applicable to ELF

 compiler only.

 -mint32

 Choose integer type as 32-bit wide.

 -mbit-ops

 Generates "sbit"/"cbit" instructions for bit manipulations.

 -mdata-model=model

 Choose a data model. The choices for model are near, far or medium. medium is default.

 However, far is not valid with -mcr16c, as the CR16C architecture does not support the

 far data model.

 C-SKY Options

 GCC supports these options when compiling for C-SKY V2 processors.

 -march=arch

 Specify the C-SKY target architecture. Valid values for arch are: ck801, ck802,

 ck803, ck807, and ck810. The default is ck810.

 -mcpu=cpu

 Specify the C-SKY target processor. Valid values for cpu are: ck801, ck801t, ck802,

 ck802t, ck802j, ck803, ck803h, ck803t, ck803ht, ck803f, ck803fh, ck803e, ck803eh,

 ck803et, ck803eht, ck803ef, ck803efh, ck803ft, ck803eft, ck803efht, ck803r1, ck803hr1,

 ck803tr1, ck803htr1, ck803fr1, ck803fhr1, ck803er1, ck803ehr1, ck803etr1, ck803ehtr1,

 ck803efr1, ck803efhr1, ck803ftr1, ck803eftr1, ck803efhtr1, ck803s, ck803st, ck803se,

 ck803sf, ck803sef, ck803seft, ck807e, ck807ef, ck807, ck807f, ck810e, ck810et,

 ck810ef, ck810eft, ck810, ck810v, ck810f, ck810t, ck810fv, ck810tv, ck810ft, and

 ck810ftv.

 -mbig-endian

 -EB Page 393/576

 -mlittle-endian

 -EL Select big- or little-endian code. The default is little-endian.

 -mfloat-abi=name

 Specifies which floating-point ABI to use. Permissible values are: soft, softfp and

 hard.

 Specifying soft causes GCC to generate output containing library calls for floating-

 point operations. softfp allows the generation of code using hardware floating-point

 instructions, but still uses the soft-float calling conventions. hard allows

 generation of floating-point instructions and uses FPU-specific calling conventions.

 The default depends on the specific target configuration. Note that the hard-float

 and soft-float ABIs are not link-compatible; you must compile your entire program with

 the same ABI, and link with a compatible set of libraries.

 -mhard-float

 -msoft-float

 Select hardware or software floating-point implementations. The default is soft

 float.

 -mdouble-float

 -mno-double-float

 When -mhard-float is in effect, enable generation of double-precision float

 instructions. This is the default except when compiling for CK803.

 -mfdivdu

 -mno-fdivdu

 When -mhard-float is in effect, enable generation of "frecipd", "fsqrtd", and "fdivd"

 instructions. This is the default except when compiling for CK803.

 -mfpu=fpu

 Select the floating-point processor. This option can only be used with -mhard-float.

 Values for fpu are fpv2_sf (equivalent to -mno-double-float -mno-fdivdu), fpv2

 (-mdouble-float -mno-divdu), and fpv2_divd (-mdouble-float -mdivdu).

 -melrw

 -mno-elrw

 Enable the extended "lrw" instruction. This option defaults to on for CK801 and off

 otherwise.

 -mistack Page 394/576

 -mno-istack

 Enable interrupt stack instructions; the default is off.

 The -mistack option is required to handle the "interrupt" and "isr" function

 attributes.

 -mmp

 Enable multiprocessor instructions; the default is off.

 -mcp

 Enable coprocessor instructions; the default is off.

 -mcache

 Enable coprocessor instructions; the default is off.

 -msecurity

 Enable C-SKY security instructions; the default is off.

 -mtrust

 Enable C-SKY trust instructions; the default is off.

 -mdsp

 -medsp

 -mvdsp

 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively. All of

 these options default to off.

 -mdiv

 -mno-div

 Generate divide instructions. Default is off.

 -msmart

 -mno-smart

 Generate code for Smart Mode, using only registers numbered 0-7 to allow use of 16-bit

 instructions. This option is ignored for CK801 where this is the required behavior,

 and it defaults to on for CK802. For other targets, the default is off.

 -mhigh-registers

 -mno-high-registers

 Generate code using the high registers numbered 16-31. This option is not supported

 on CK801, CK802, or CK803, and is enabled by default for other processors.

 -manchor

 -mno-anchor Page 395/576

 Generate code using global anchor symbol addresses.

 -mpushpop

 -mno-pushpop

 Generate code using "push" and "pop" instructions. This option defaults to on.

 -mmultiple-stld

 -mstm

 -mno-multiple-stld

 -mno-stm

 Generate code using "stm" and "ldm" instructions. This option isn't supported on

 CK801 but is enabled by default on other processors.

 -mconstpool

 -mno-constpool

 Create constant pools in the compiler instead of deferring it to the assembler. This

 option is the default and required for correct code generation on CK801 and CK802, and

 is optional on other processors.

 -mstack-size

 -mno-stack-size

 Emit ".stack_size" directives for each function in the assembly output. This option

 defaults to off.

 -mccrt

 -mno-ccrt

 Generate code for the C-SKY compiler runtime instead of libgcc. This option defaults

 to off.

 -mbranch-cost=n

 Set the branch costs to roughly "n" instructions. The default is 1.

 -msched-prolog

 -mno-sched-prolog

 Permit scheduling of function prologue and epilogue sequences. Using this option can

 result in code that is not compliant with the C-SKY V2 ABI prologue requirements and

 that cannot be debugged or backtraced. It is disabled by default.

 -msim

 Links the library libsemi.a which is in compatible with simulator. Applicable to ELF

 compiler only. Page 396/576

 Darwin Options

 These options are defined for all architectures running the Darwin operating system.

 FSF GCC on Darwin does not create "fat" object files; it creates an object file for the

 single architecture that GCC was built to target. Apple's GCC on Darwin does create "fat"

 files if multiple -arch options are used; it does so by running the compiler or linker

 multiple times and joining the results together with lipo.

 The subtype of the file created (like ppc7400 or ppc970 or i686) is determined by the

 flags that specify the ISA that GCC is targeting, like -mcpu or -march. The

 -force_cpusubtype_ALL option can be used to override this.

 The Darwin tools vary in their behavior when presented with an ISA mismatch. The

 assembler, as, only permits instructions to be used that are valid for the subtype of the

 file it is generating, so you cannot put 64-bit instructions in a ppc750 object file. The

 linker for shared libraries, /usr/bin/libtool, fails and prints an error if asked to

 create a shared library with a less restrictive subtype than its input files (for

 instance, trying to put a ppc970 object file in a ppc7400 library). The linker for

 executables, ld, quietly gives the executable the most restrictive subtype of any of its

 input files.

 -Fdir

 Add the framework directory dir to the head of the list of directories to be searched

 for header files. These directories are interleaved with those specified by -I

 options and are scanned in a left-to-right order.

 A framework directory is a directory with frameworks in it. A framework is a

 directory with a Headers and/or PrivateHeaders directory contained directly in it that

 ends in .framework. The name of a framework is the name of this directory excluding

 the .framework. Headers associated with the framework are found in one of those two

 directories, with Headers being searched first. A subframework is a framework

 directory that is in a framework's Frameworks directory. Includes of subframework

 headers can only appear in a header of a framework that contains the subframework, or

 in a sibling subframework header. Two subframeworks are siblings if they occur in the

 same framework. A subframework should not have the same name as a framework; a

 warning is issued if this is violated. Currently a subframework cannot have

 subframeworks; in the future, the mechanism may be extended to support this. The

 standard frameworks can be found in /System/Library/Frameworks and Page 397/576

 /Library/Frameworks. An example include looks like "#include <Framework/header.h>",

 where Framework denotes the name of the framework and header.h is found in the

 PrivateHeaders or Headers directory.

 -iframeworkdir

 Like -F except the directory is a treated as a system directory. The main difference

 between this -iframework and -F is that with -iframework the compiler does not warn

 about constructs contained within header files found via dir. This option is valid

 only for the C family of languages.

 -gused

 Emit debugging information for symbols that are used. For stabs debugging format,

 this enables -feliminate-unused-debug-symbols. This is by default ON.

 -gfull

 Emit debugging information for all symbols and types.

 -mmacosx-version-min=version

 The earliest version of MacOS X that this executable will run on is version. Typical

 values of version include 10.1, 10.2, and 10.3.9.

 If the compiler was built to use the system's headers by default, then the default for

 this option is the system version on which the compiler is running, otherwise the

 default is to make choices that are compatible with as many systems and code bases as

 possible.

 -mkernel

 Enable kernel development mode. The -mkernel option sets -static, -fno-common,

 -fno-use-cxa-atexit, -fno-exceptions, -fno-non-call-exceptions, -fapple-kext,

 -fno-weak and -fno-rtti where applicable. This mode also sets -mno-altivec,

 -msoft-float, -fno-builtin and -mlong-branch for PowerPC targets.

 -mone-byte-bool

 Override the defaults for "bool" so that "sizeof(bool)==1". By default "sizeof(bool)"

 is 4 when compiling for Darwin/PowerPC and 1 when compiling for Darwin/x86, so this

 option has no effect on x86.

 Warning: The -mone-byte-bool switch causes GCC to generate code that is not binary

 compatible with code generated without that switch. Using this switch may require

 recompiling all other modules in a program, including system libraries. Use this

 switch to conform to a non-default data model. Page 398/576

 -mfix-and-continue

 -ffix-and-continue

 -findirect-data

 Generate code suitable for fast turnaround development, such as to allow GDB to

 dynamically load .o files into already-running programs. -findirect-data and

 -ffix-and-continue are provided for backwards compatibility.

 -all_load

 Loads all members of static archive libraries. See man ld(1) for more information.

 -arch_errors_fatal

 Cause the errors having to do with files that have the wrong architecture to be fatal.

 -bind_at_load

 Causes the output file to be marked such that the dynamic linker will bind all

 undefined references when the file is loaded or launched.

 -bundle

 Produce a Mach-o bundle format file. See man ld(1) for more information.

 -bundle_loader executable

 This option specifies the executable that will load the build output file being

 linked. See man ld(1) for more information.

 -dynamiclib

 When passed this option, GCC produces a dynamic library instead of an executable when

 linking, using the Darwin libtool command.

 -force_cpusubtype_ALL

 This causes GCC's output file to have the ALL subtype, instead of one controlled by

 the -mcpu or -march option.

 -allowable_client client_name

 -client_name

 -compatibility_version

 -current_version

 -dead_strip

 -dependency-file

 -dylib_file

 -dylinker_install_name

 -dynamic Page 399/576

 -exported_symbols_list

 -filelist

 -flat_namespace

 -force_flat_namespace

 -headerpad_max_install_names

 -image_base

 -init

 -install_name

 -keep_private_externs

 -multi_module

 -multiply_defined

 -multiply_defined_unused

 -noall_load

 -no_dead_strip_inits_and_terms

 -nofixprebinding

 -nomultidefs

 -noprebind

 -noseglinkedit

 -pagezero_size

 -prebind

 -prebind_all_twolevel_modules

 -private_bundle

 -read_only_relocs

 -sectalign

 -sectobjectsymbols

 -whyload

 -seg1addr

 -sectcreate

 -sectobjectsymbols

 -sectorder

 -segaddr

 -segs_read_only_addr

 -segs_read_write_addr Page 400/576

 -seg_addr_table

 -seg_addr_table_filename

 -seglinkedit

 -segprot

 -segs_read_only_addr

 -segs_read_write_addr

 -single_module

 -static

 -sub_library

 -sub_umbrella

 -twolevel_namespace

 -umbrella

 -undefined

 -unexported_symbols_list

 -weak_reference_mismatches

 -whatsloaded

 These options are passed to the Darwin linker. The Darwin linker man page describes

 them in detail.

 DEC Alpha Options

 These -m options are defined for the DEC Alpha implementations:

 -mno-soft-float

 -msoft-float

 Use (do not use) the hardware floating-point instructions for floating-point

 operations. When -msoft-float is specified, functions in libgcc.a are used to perform

 floating-point operations. Unless they are replaced by routines that emulate the

 floating-point operations, or compiled in such a way as to call such emulations

 routines, these routines issue floating-point operations. If you are compiling for

 an Alpha without floating-point operations, you must ensure that the library is built

 so as not to call them.

 Note that Alpha implementations without floating-point operations are required to have

 floating-point registers.

 -mfp-reg

 -mno-fp-regs Page 401/576

 Generate code that uses (does not use) the floating-point register set. -mno-fp-regs

 implies -msoft-float. If the floating-point register set is not used, floating-point

 operands are passed in integer registers as if they were integers and floating-point

 results are passed in $0 instead of $f0. This is a non-standard calling sequence, so

 any function with a floating-point argument or return value called by code compiled

 with -mno-fp-regs must also be compiled with that option.

 A typical use of this option is building a kernel that does not use, and hence need

 not save and restore, any floating-point registers.

 -mieee

 The Alpha architecture implements floating-point hardware optimized for maximum

 performance. It is mostly compliant with the IEEE floating-point standard. However,

 for full compliance, software assistance is required. This option generates code

 fully IEEE-compliant code except that the inexact-flag is not maintained (see below).

 If this option is turned on, the preprocessor macro "_IEEE_FP" is defined during

 compilation. The resulting code is less efficient but is able to correctly support

 denormalized numbers and exceptional IEEE values such as not-a-number and plus/minus

 infinity. Other Alpha compilers call this option -ieee_with_no_inexact.

 -mieee-with-inexact

 This is like -mieee except the generated code also maintains the IEEE inexact-flag.

 Turning on this option causes the generated code to implement fully-compliant IEEE

 math. In addition to "_IEEE_FP", "_IEEE_FP_EXACT" is defined as a preprocessor macro.

 On some Alpha implementations the resulting code may execute significantly slower than

 the code generated by default. Since there is very little code that depends on the

 inexact-flag, you should normally not specify this option. Other Alpha compilers call

 this option -ieee_with_inexact.

 -mfp-trap-mode=trap-mode

 This option controls what floating-point related traps are enabled. Other Alpha

 compilers call this option -fptm trap-mode. The trap mode can be set to one of four

 values:

 n This is the default (normal) setting. The only traps that are enabled are the

 ones that cannot be disabled in software (e.g., division by zero trap).

 u In addition to the traps enabled by n, underflow traps are enabled as well.

 su Like u, but the instructions are marked to be safe for software completion (see Page 402/576

 Alpha architecture manual for details).

 sui Like su, but inexact traps are enabled as well.

 -mfp-rounding-mode=rounding-mode

 Selects the IEEE rounding mode. Other Alpha compilers call this option -fprm

 rounding-mode. The rounding-mode can be one of:

 n Normal IEEE rounding mode. Floating-point numbers are rounded towards the nearest

 machine number or towards the even machine number in case of a tie.

 m Round towards minus infinity.

 c Chopped rounding mode. Floating-point numbers are rounded towards zero.

 d Dynamic rounding mode. A field in the floating-point control register (fpcr, see

 Alpha architecture reference manual) controls the rounding mode in effect. The C

 library initializes this register for rounding towards plus infinity. Thus,

 unless your program modifies the fpcr, d corresponds to round towards plus

 infinity.

 -mtrap-precision=trap-precision

 In the Alpha architecture, floating-point traps are imprecise. This means without

 software assistance it is impossible to recover from a floating trap and program

 execution normally needs to be terminated. GCC can generate code that can assist

 operating system trap handlers in determining the exact location that caused a

 floating-point trap. Depending on the requirements of an application, different

 levels of precisions can be selected:

 p Program precision. This option is the default and means a trap handler can only

 identify which program caused a floating-point exception.

 f Function precision. The trap handler can determine the function that caused a

 floating-point exception.

 i Instruction precision. The trap handler can determine the exact instruction that

 caused a floating-point exception.

 Other Alpha compilers provide the equivalent options called -scope_safe and

 -resumption_safe.

 -mieee-conformant

 This option marks the generated code as IEEE conformant. You must not use this option

 unless you also specify -mtrap-precision=i and either -mfp-trap-mode=su or

 -mfp-trap-mode=sui. Its only effect is to emit the line .eflag 48 in the function Page 403/576

 prologue of the generated assembly file.

 -mbuild-constants

 Normally GCC examines a 32- or 64-bit integer constant to see if it can construct it

 from smaller constants in two or three instructions. If it cannot, it outputs the

 constant as a literal and generates code to load it from the data segment at run time.

 Use this option to require GCC to construct all integer constants using code, even if

 it takes more instructions (the maximum is six).

 You typically use this option to build a shared library dynamic loader. Itself a

 shared library, it must relocate itself in memory before it can find the variables and

 constants in its own data segment.

 -mbwx

 -mno-bwx

 -mcix

 -mno-cix

 -mfix

 -mno-fix

 -mmax

 -mno-max

 Indicate whether GCC should generate code to use the optional BWX, CIX, FIX and MAX

 instruction sets. The default is to use the instruction sets supported by the CPU

 type specified via -mcpu= option or that of the CPU on which GCC was built if none is

 specified.

 -mfloat-vax

 -mfloat-ieee

 Generate code that uses (does not use) VAX F and G floating-point arithmetic instead

 of IEEE single and double precision.

 -mexplicit-relocs

 -mno-explicit-relocs

 Older Alpha assemblers provided no way to generate symbol relocations except via

 assembler macros. Use of these macros does not allow optimal instruction scheduling.

 GNU binutils as of version 2.12 supports a new syntax that allows the compiler to

 explicitly mark which relocations should apply to which instructions. This option is

 mostly useful for debugging, as GCC detects the capabilities of the assembler when it Page 404/576

 is built and sets the default accordingly.

 -msmall-data

 -mlarge-data

 When -mexplicit-relocs is in effect, static data is accessed via gp-relative

 relocations. When -msmall-data is used, objects 8 bytes long or smaller are placed in

 a small data area (the ".sdata" and ".sbss" sections) and are accessed via 16-bit

 relocations off of the $gp register. This limits the size of the small data area to

 64KB, but allows the variables to be directly accessed via a single instruction.

 The default is -mlarge-data. With this option the data area is limited to just below

 2GB. Programs that require more than 2GB of data must use "malloc" or "mmap" to

 allocate the data in the heap instead of in the program's data segment.

 When generating code for shared libraries, -fpic implies -msmall-data and -fPIC

 implies -mlarge-data.

 -msmall-text

 -mlarge-text

 When -msmall-text is used, the compiler assumes that the code of the entire program

 (or shared library) fits in 4MB, and is thus reachable with a branch instruction.

 When -msmall-data is used, the compiler can assume that all local symbols share the

 same $gp value, and thus reduce the number of instructions required for a function

 call from 4 to 1.

 The default is -mlarge-text.

 -mcpu=cpu_type

 Set the instruction set and instruction scheduling parameters for machine type

 cpu_type. You can specify either the EV style name or the corresponding chip number.

 GCC supports scheduling parameters for the EV4, EV5 and EV6 family of processors and

 chooses the default values for the instruction set from the processor you specify. If

 you do not specify a processor type, GCC defaults to the processor on which the

 compiler was built.

 Supported values for cpu_type are

 ev4

 ev45

 21064

 Schedules as an EV4 and has no instruction set extensions. Page 405/576

 ev5

 21164

 Schedules as an EV5 and has no instruction set extensions.

 ev56

 21164a

 Schedules as an EV5 and supports the BWX extension.

 pca56

 21164pc

 21164PC

 Schedules as an EV5 and supports the BWX and MAX extensions.

 ev6

 21264

 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.

 ev67

 21264a

 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.

 Native toolchains also support the value native, which selects the best architecture

 option for the host processor. -mcpu=native has no effect if GCC does not recognize

 the processor.

 -mtune=cpu_type

 Set only the instruction scheduling parameters for machine type cpu_type. The

 instruction set is not changed.

 Native toolchains also support the value native, which selects the best architecture

 option for the host processor. -mtune=native has no effect if GCC does not recognize

 the processor.

 -mmemory-latency=time

 Sets the latency the scheduler should assume for typical memory references as seen by

 the application. This number is highly dependent on the memory access patterns used

 by the application and the size of the external cache on the machine.

 Valid options for time are

 number

 A decimal number representing clock cycles.

 L1 Page 406/576

 L2

 L3

 main

 The compiler contains estimates of the number of clock cycles for "typical" EV4 &

 EV5 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and

 Bcache), as well as to main memory. Note that L3 is only valid for EV5.

 eBPF Options

 -mframe-limit=bytes

 This specifies the hard limit for frame sizes, in bytes. Currently, the value that

 can be specified should be less than or equal to 32767. Defaults to whatever limit is

 imposed by the version of the Linux kernel targeted.

 -mkernel=version

 This specifies the minimum version of the kernel that will run the compiled program.

 GCC uses this version to determine which instructions to use, what kernel helpers to

 allow, etc. Currently, version can be one of 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,

 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 5.0, 5.1,

 5.2, latest and native.

 -mbig-endian

 Generate code for a big-endian target.

 -mlittle-endian

 Generate code for a little-endian target. This is the default.

 -mxbpf

 Generate code for an expanded version of BPF, which relaxes some of the restrictions

 imposed by the BPF architecture:

 -<Save and restore callee-saved registers at function entry and>

 exit, respectively.

 FR30 Options

 These options are defined specifically for the FR30 port.

 -msmall-model

 Use the small address space model. This can produce smaller code, but it does assume

 that all symbolic values and addresses fit into a 20-bit range.

 -mno-lsim

 Assume that runtime support has been provided and so there is no need to include the Page 407/576

 simulator library (libsim.a) on the linker command line.

 FT32 Options

 These options are defined specifically for the FT32 port.

 -msim

 Specifies that the program will be run on the simulator. This causes an alternate

 runtime startup and library to be linked. You must not use this option when

 generating programs that will run on real hardware; you must provide your own runtime

 library for whatever I/O functions are needed.

 -mlra

 Enable Local Register Allocation. This is still experimental for FT32, so by default

 the compiler uses standard reload.

 -mnodiv

 Do not use div and mod instructions.

 -mft32b

 Enable use of the extended instructions of the FT32B processor.

 -mcompress

 Compress all code using the Ft32B code compression scheme.

 -mnopm

 Do not generate code that reads program memory.

 FRV Options

 -mgpr-32

 Only use the first 32 general-purpose registers.

 -mgpr-64

 Use all 64 general-purpose registers.

 -mfpr-32

 Use only the first 32 floating-point registers.

 -mfpr-64

 Use all 64 floating-point registers.

 -mhard-float

 Use hardware instructions for floating-point operations.

 -msoft-float

 Use library routines for floating-point operations.

 -malloc-cc Page 408/576

 Dynamically allocate condition code registers.

 -mfixed-cc

 Do not try to dynamically allocate condition code registers, only use "icc0" and

 "fcc0".

 -mdword

 Change ABI to use double word insns.

 -mno-dword

 Do not use double word instructions.

 -mdouble

 Use floating-point double instructions.

 -mno-double

 Do not use floating-point double instructions.

 -mmedia

 Use media instructions.

 -mno-media

 Do not use media instructions.

 -mmuladd

 Use multiply and add/subtract instructions.

 -mno-muladd

 Do not use multiply and add/subtract instructions.

 -mfdpic

 Select the FDPIC ABI, which uses function descriptors to represent pointers to

 functions. Without any PIC/PIE-related options, it implies -fPIE. With -fpic or

 -fpie, it assumes GOT entries and small data are within a 12-bit range from the GOT

 base address; with -fPIC or -fPIE, GOT offsets are computed with 32 bits. With a

 bfin-elf target, this option implies -msim.

 -minline-plt

 Enable inlining of PLT entries in function calls to functions that are not known to

 bind locally. It has no effect without -mfdpic. It's enabled by default if

 optimizing for speed and compiling for shared libraries (i.e., -fPIC or -fpic), or

 when an optimization option such as -O3 or above is present in the command line.

 -mTLS

 Assume a large TLS segment when generating thread-local code. Page 409/576

 -mtls

 Do not assume a large TLS segment when generating thread-local code.

 -mgprel-ro

 Enable the use of "GPREL" relocations in the FDPIC ABI for data that is known to be in

 read-only sections. It's enabled by default, except for -fpic or -fpie: even though

 it may help make the global offset table smaller, it trades 1 instruction for 4. With

 -fPIC or -fPIE, it trades 3 instructions for 4, one of which may be shared by multiple

 symbols, and it avoids the need for a GOT entry for the referenced symbol, so it's

 more likely to be a win. If it is not, -mno-gprel-ro can be used to disable it.

 -multilib-library-pic

 Link with the (library, not FD) pic libraries. It's implied by -mlibrary-pic, as well

 as by -fPIC and -fpic without -mfdpic. You should never have to use it explicitly.

 -mlinked-fp

 Follow the EABI requirement of always creating a frame pointer whenever a stack frame

 is allocated. This option is enabled by default and can be disabled with

 -mno-linked-fp.

 -mlong-calls

 Use indirect addressing to call functions outside the current compilation unit. This

 allows the functions to be placed anywhere within the 32-bit address space.

 -malign-labels

 Try to align labels to an 8-byte boundary by inserting NOPs into the previous packet.

 This option only has an effect when VLIW packing is enabled. It doesn't create new

 packets; it merely adds NOPs to existing ones.

 -mlibrary-pic

 Generate position-independent EABI code.

 -macc-4

 Use only the first four media accumulator registers.

 -macc-8

 Use all eight media accumulator registers.

 -mpack

 Pack VLIW instructions.

 -mno-pack

 Do not pack VLIW instructions. Page 410/576

 -mno-eflags

 Do not mark ABI switches in e_flags.

 -mcond-move

 Enable the use of conditional-move instructions (default).

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mno-cond-move

 Disable the use of conditional-move instructions.

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mscc

 Enable the use of conditional set instructions (default).

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mno-scc

 Disable the use of conditional set instructions.

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mcond-exec

 Enable the use of conditional execution (default).

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mno-cond-exec

 Disable the use of conditional execution.

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mvliw-branch

 Run a pass to pack branches into VLIW instructions (default).

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mno-vliw-branch

 Do not run a pass to pack branches into VLIW instructions.

 This switch is mainly for debugging the compiler and will likely be removed in a Page 411/576

 future version.

 -mmulti-cond-exec

 Enable optimization of "&&" and "||" in conditional execution (default).

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mno-multi-cond-exec

 Disable optimization of "&&" and "||" in conditional execution.

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mnested-cond-exec

 Enable nested conditional execution optimizations (default).

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -mno-nested-cond-exec

 Disable nested conditional execution optimizations.

 This switch is mainly for debugging the compiler and will likely be removed in a

 future version.

 -moptimize-membar

 This switch removes redundant "membar" instructions from the compiler-generated code.

 It is enabled by default.

 -mno-optimize-membar

 This switch disables the automatic removal of redundant "membar" instructions from the

 generated code.

 -mtomcat-stats

 Cause gas to print out tomcat statistics.

 -mcpu=cpu

 Select the processor type for which to generate code. Possible values are frv, fr550,

 tomcat, fr500, fr450, fr405, fr400, fr300 and simple.

 GNU/Linux Options

 These -m options are defined for GNU/Linux targets:

 -mglibc

 Use the GNU C library. This is the default except on *-*-linux-*uclibc*,

 --linux-*musl* and *-*-linux-*android* targets. Page 412/576

 -muclibc

 Use uClibc C library. This is the default on *-*-linux-*uclibc* targets.

 -mmusl

 Use the musl C library. This is the default on *-*-linux-*musl* targets.

 -mbionic

 Use Bionic C library. This is the default on *-*-linux-*android* targets.

 -mandroid

 Compile code compatible with Android platform. This is the default on

 --linux-*android* targets.

 When compiling, this option enables -mbionic, -fPIC, -fno-exceptions and -fno-rtti by

 default. When linking, this option makes the GCC driver pass Android-specific options

 to the linker. Finally, this option causes the preprocessor macro "__ANDROID__" to be

 defined.

 -tno-android-cc

 Disable compilation effects of -mandroid, i.e., do not enable -mbionic, -fPIC,

 -fno-exceptions and -fno-rtti by default.

 -tno-android-ld

 Disable linking effects of -mandroid, i.e., pass standard Linux linking options to the

 linker.

 H8/300 Options

 These -m options are defined for the H8/300 implementations:

 -mrelax

 Shorten some address references at link time, when possible; uses the linker option

 -relax.

 -mh Generate code for the H8/300H.

 -ms Generate code for the H8S.

 -mn Generate code for the H8S and H8/300H in the normal mode. This switch must be used

 either with -mh or -ms.

 -ms2600

 Generate code for the H8S/2600. This switch must be used with -ms.

 -mexr

 Extended registers are stored on stack before execution of function with monitor

 attribute. Default option is -mexr. This option is valid only for H8S targets. Page 413/576

 -mno-exr

 Extended registers are not stored on stack before execution of function with monitor

 attribute. Default option is -mno-exr. This option is valid only for H8S targets.

 -mint32

 Make "int" data 32 bits by default.

 -malign-300

 On the H8/300H and H8S, use the same alignment rules as for the H8/300. The default

 for the H8/300H and H8S is to align longs and floats on 4-byte boundaries.

 -malign-300 causes them to be aligned on 2-byte boundaries. This option has no effect

 on the H8/300.

 HPPA Options

 These -m options are defined for the HPPA family of computers:

 -march=architecture-type

 Generate code for the specified architecture. The choices for architecture-type are

 1.0 for PA 1.0, 1.1 for PA 1.1, and 2.0 for PA 2.0 processors. Refer to

 /usr/lib/sched.models on an HP-UX system to determine the proper architecture option

 for your machine. Code compiled for lower numbered architectures runs on higher

 numbered architectures, but not the other way around.

 -mpa-risc-1-0

 -mpa-risc-1-1

 -mpa-risc-2-0

 Synonyms for -march=1.0, -march=1.1, and -march=2.0 respectively.

 -mcaller-copies

 The caller copies function arguments passed by hidden reference. This option should

 be used with care as it is not compatible with the default 32-bit runtime. However,

 only aggregates larger than eight bytes are passed by hidden reference and the option

 provides better compatibility with OpenMP.

 -mjump-in-delay

 This option is ignored and provided for compatibility purposes only.

 -mdisable-fpregs

 Prevent floating-point registers from being used in any manner. This is necessary for

 compiling kernels that perform lazy context switching of floating-point registers. If

 you use this option and attempt to perform floating-point operations, the compiler Page 414/576

 aborts.

 -mdisable-indexing

 Prevent the compiler from using indexing address modes. This avoids some rather

 obscure problems when compiling MIG generated code under MACH.

 -mno-space-regs

 Generate code that assumes the target has no space registers. This allows GCC to

 generate faster indirect calls and use unscaled index address modes.

 Such code is suitable for level 0 PA systems and kernels.

 -mfast-indirect-calls

 Generate code that assumes calls never cross space boundaries. This allows GCC to

 emit code that performs faster indirect calls.

 This option does not work in the presence of shared libraries or nested functions.

 -mfixed-range=register-range

 Generate code treating the given register range as fixed registers. A fixed register

 is one that the register allocator cannot use. This is useful when compiling kernel

 code. A register range is specified as two registers separated by a dash. Multiple

 register ranges can be specified separated by a comma.

 -mlong-load-store

 Generate 3-instruction load and store sequences as sometimes required by the HP-UX 10

 linker. This is equivalent to the +k option to the HP compilers.

 -mportable-runtime

 Use the portable calling conventions proposed by HP for ELF systems.

 -mgas

 Enable the use of assembler directives only GAS understands.

 -mschedule=cpu-type

 Schedule code according to the constraints for the machine type cpu-type. The choices

 for cpu-type are 700 7100, 7100LC, 7200, 7300 and 8000. Refer to

 /usr/lib/sched.models on an HP-UX system to determine the proper scheduling option for

 your machine. The default scheduling is 8000.

 -mlinker-opt

 Enable the optimization pass in the HP-UX linker. Note this makes symbolic debugging

 impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9 linkers in which they

 give bogus error messages when linking some programs. Page 415/576

 -msoft-float

 Generate output containing library calls for floating point. Warning: the requisite

 libraries are not available for all HPPA targets. Normally the facilities of the

 machine's usual C compiler are used, but this cannot be done directly in cross-

 compilation. You must make your own arrangements to provide suitable library

 functions for cross-compilation.

 -msoft-float changes the calling convention in the output file; therefore, it is only

 useful if you compile all of a program with this option. In particular, you need to

 compile libgcc.a, the library that comes with GCC, with -msoft-float in order for this

 to work.

 -msio

 Generate the predefine, "_SIO", for server IO. The default is -mwsio. This generates

 the predefines, "__hp9000s700", "__hp9000s700__" and "_WSIO", for workstation IO.

 These options are available under HP-UX and HI-UX.

 -mgnu-ld

 Use options specific to GNU ld. This passes -shared to ld when building a shared

 library. It is the default when GCC is configured, explicitly or implicitly, with the

 GNU linker. This option does not affect which ld is called; it only changes what

 parameters are passed to that ld. The ld that is called is determined by the

 --with-ld configure option, GCC's program search path, and finally by the user's PATH.

 The linker used by GCC can be printed using which `gcc -print-prog-name=ld`. This

 option is only available on the 64-bit HP-UX GCC, i.e. configured with

 hppa*64*-*-hpux*.

 -mhp-ld

 Use options specific to HP ld. This passes -b to ld when building a shared library

 and passes +Accept TypeMismatch to ld on all links. It is the default when GCC is

 configured, explicitly or implicitly, with the HP linker. This option does not affect

 which ld is called; it only changes what parameters are passed to that ld. The ld

 that is called is determined by the --with-ld configure option, GCC's program search

 path, and finally by the user's PATH. The linker used by GCC can be printed using

 which `gcc -print-prog-name=ld`. This option is only available on the 64-bit HP-UX

 GCC, i.e. configured with hppa*64*-*-hpux*.

 -mlong-calls Page 416/576

 Generate code that uses long call sequences. This ensures that a call is always able

 to reach linker generated stubs. The default is to generate long calls only when the

 distance from the call site to the beginning of the function or translation unit, as

 the case may be, exceeds a predefined limit set by the branch type being used. The

 limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the PA 2.0

 and PA 1.X architectures. Sibcalls are always limited at 240,000 bytes.

 Distances are measured from the beginning of functions when using the

 -ffunction-sections option, or when using the -mgas and -mno-portable-runtime options

 together under HP-UX with the SOM linker.

 It is normally not desirable to use this option as it degrades performance. However,

 it may be useful in large applications, particularly when partial linking is used to

 build the application.

 The types of long calls used depends on the capabilities of the assembler and linker,

 and the type of code being generated. The impact on systems that support long

 absolute calls, and long pic symbol-difference or pc-relative calls should be

 relatively small. However, an indirect call is used on 32-bit ELF systems in pic code

 and it is quite long.

 -munix=unix-std

 Generate compiler predefines and select a startfile for the specified UNIX standard.

 The choices for unix-std are 93, 95 and 98. 93 is supported on all HP-UX versions.

 95 is available on HP-UX 10.10 and later. 98 is available on HP-UX 11.11 and later.

 The default values are 93 for HP-UX 10.00, 95 for HP-UX 10.10 though to 11.00, and 98

 for HP-UX 11.11 and later.

 -munix=93 provides the same predefines as GCC 3.3 and 3.4. -munix=95 provides

 additional predefines for "XOPEN_UNIX" and "_XOPEN_SOURCE_EXTENDED", and the startfile

 unix95.o. -munix=98 provides additional predefines for "_XOPEN_UNIX",

 "_XOPEN_SOURCE_EXTENDED", "_INCLUDE__STDC_A1_SOURCE" and "_INCLUDE_XOPEN_SOURCE_500",

 and the startfile unix98.o.

 It is important to note that this option changes the interfaces for various library

 routines. It also affects the operational behavior of the C library. Thus, extreme

 care is needed in using this option.

 Library code that is intended to operate with more than one UNIX standard must test,

 set and restore the variable "__xpg4_extended_mask" as appropriate. Most GNU software Page 417/576

 doesn't provide this capability.

 -nolibdld

 Suppress the generation of link options to search libdld.sl when the -static option is

 specified on HP-UX 10 and later.

 -static

 The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There

 isn't an archive version of libdld.sl. Thus, when the -static option is specified,

 special link options are needed to resolve this dependency.

 On HP-UX 10 and later, the GCC driver adds the necessary options to link with

 libdld.sl when the -static option is specified. This causes the resulting binary to

 be dynamic. On the 64-bit port, the linkers generate dynamic binaries by default in

 any case. The -nolibdld option can be used to prevent the GCC driver from adding

 these link options.

 -threads

 Add support for multithreading with the dce thread library under HP-UX. This option

 sets flags for both the preprocessor and linker.

 IA-64 Options

 These are the -m options defined for the Intel IA-64 architecture.

 -mbig-endian

 Generate code for a big-endian target. This is the default for HP-UX.

 -mlittle-endian

 Generate code for a little-endian target. This is the default for AIX5 and GNU/Linux.

 -mgnu-as

 -mno-gnu-as

 Generate (or don't) code for the GNU assembler. This is the default.

 -mgnu-ld

 -mno-gnu-ld

 Generate (or don't) code for the GNU linker. This is the default.

 -mno-pic

 Generate code that does not use a global pointer register. The result is not position

 independent code, and violates the IA-64 ABI.

 -mvolatile-asm-stop

 -mno-volatile-asm-stop Page 418/576

 Generate (or don't) a stop bit immediately before and after volatile asm statements.

 -mregister-names

 -mno-register-names

 Generate (or don't) in, loc, and out register names for the stacked registers. This

 may make assembler output more readable.

 -mno-sdata

 -msdata

 Disable (or enable) optimizations that use the small data section. This may be useful

 for working around optimizer bugs.

 -mconstant-gp

 Generate code that uses a single constant global pointer value. This is useful when

 compiling kernel code.

 -mauto-pic

 Generate code that is self-relocatable. This implies -mconstant-gp. This is useful

 when compiling firmware code.

 -minline-float-divide-min-latency

 Generate code for inline divides of floating-point values using the minimum latency

 algorithm.

 -minline-float-divide-max-throughput

 Generate code for inline divides of floating-point values using the maximum throughput

 algorithm.

 -mno-inline-float-divide

 Do not generate inline code for divides of floating-point values.

 -minline-int-divide-min-latency

 Generate code for inline divides of integer values using the minimum latency

 algorithm.

 -minline-int-divide-max-throughput

 Generate code for inline divides of integer values using the maximum throughput

 algorithm.

 -mno-inline-int-divide

 Do not generate inline code for divides of integer values.

 -minline-sqrt-min-latency

 Generate code for inline square roots using the minimum latency algorithm. Page 419/576

 -minline-sqrt-max-throughput

 Generate code for inline square roots using the maximum throughput algorithm.

 -mno-inline-sqrt

 Do not generate inline code for "sqrt".

 -mfused-madd

 -mno-fused-madd

 Do (don't) generate code that uses the fused multiply/add or multiply/subtract

 instructions. The default is to use these instructions.

 -mno-dwarf2-asm

 -mdwarf2-asm

 Don't (or do) generate assembler code for the DWARF line number debugging info. This

 may be useful when not using the GNU assembler.

 -mearly-stop-bits

 -mno-early-stop-bits

 Allow stop bits to be placed earlier than immediately preceding the instruction that

 triggered the stop bit. This can improve instruction scheduling, but does not always

 do so.

 -mfixed-range=register-range

 Generate code treating the given register range as fixed registers. A fixed register

 is one that the register allocator cannot use. This is useful when compiling kernel

 code. A register range is specified as two registers separated by a dash. Multiple

 register ranges can be specified separated by a comma.

 -mtls-size=tls-size

 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

 -mtune=cpu-type

 Tune the instruction scheduling for a particular CPU, Valid values are itanium,

 itanium1, merced, itanium2, and mckinley.

 -milp32

 -mlp64

 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,

 long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and

 pointer to 64 bits. These are HP-UX specific flags.

 -mno-sched-br-data-spec Page 420/576

 -msched-br-data-spec

 (Dis/En)able data speculative scheduling before reload. This results in generation of

 "ld.a" instructions and the corresponding check instructions ("ld.c" / "chk.a"). The

 default setting is disabled.

 -msched-ar-data-spec

 -mno-sched-ar-data-spec

 (En/Dis)able data speculative scheduling after reload. This results in generation of

 "ld.a" instructions and the corresponding check instructions ("ld.c" / "chk.a"). The

 default setting is enabled.

 -mno-sched-control-spec

 -msched-control-spec

 (Dis/En)able control speculative scheduling. This feature is available only during

 region scheduling (i.e. before reload). This results in generation of the "ld.s"

 instructions and the corresponding check instructions "chk.s". The default setting is

 disabled.

 -msched-br-in-data-spec

 -mno-sched-br-in-data-spec

 (En/Dis)able speculative scheduling of the instructions that are dependent on the data

 speculative loads before reload. This is effective only with -msched-br-data-spec

 enabled. The default setting is enabled.

 -msched-ar-in-data-spec

 -mno-sched-ar-in-data-spec

 (En/Dis)able speculative scheduling of the instructions that are dependent on the data

 speculative loads after reload. This is effective only with -msched-ar-data-spec

 enabled. The default setting is enabled.

 -msched-in-control-spec

 -mno-sched-in-control-spec

 (En/Dis)able speculative scheduling of the instructions that are dependent on the

 control speculative loads. This is effective only with -msched-control-spec enabled.

 The default setting is enabled.

 -mno-sched-prefer-non-data-spec-insns

 -msched-prefer-non-data-spec-insns

 If enabled, data-speculative instructions are chosen for schedule only if there are no Page 421/576

 other choices at the moment. This makes the use of the data speculation much more

 conservative. The default setting is disabled.

 -mno-sched-prefer-non-control-spec-insns

 -msched-prefer-non-control-spec-insns

 If enabled, control-speculative instructions are chosen for schedule only if there are

 no other choices at the moment. This makes the use of the control speculation much

 more conservative. The default setting is disabled.

 -mno-sched-count-spec-in-critical-path

 -msched-count-spec-in-critical-path

 If enabled, speculative dependencies are considered during computation of the

 instructions priorities. This makes the use of the speculation a bit more

 conservative. The default setting is disabled.

 -msched-spec-ldc

 Use a simple data speculation check. This option is on by default.

 -msched-control-spec-ldc

 Use a simple check for control speculation. This option is on by default.

 -msched-stop-bits-after-every-cycle

 Place a stop bit after every cycle when scheduling. This option is on by default.

 -msched-fp-mem-deps-zero-cost

 Assume that floating-point stores and loads are not likely to cause a conflict when

 placed into the same instruction group. This option is disabled by default.

 -msel-sched-dont-check-control-spec

 Generate checks for control speculation in selective scheduling. This flag is

 disabled by default.

 -msched-max-memory-insns=max-insns

 Limit on the number of memory insns per instruction group, giving lower priority to

 subsequent memory insns attempting to schedule in the same instruction group.

 Frequently useful to prevent cache bank conflicts. The default value is 1.

 -msched-max-memory-insns-hard-limit

 Makes the limit specified by msched-max-memory-insns a hard limit, disallowing more

 than that number in an instruction group. Otherwise, the limit is "soft", meaning

 that non-memory operations are preferred when the limit is reached, but memory

 operations may still be scheduled. Page 422/576

 LM32 Options

 These -m options are defined for the LatticeMico32 architecture:

 -mbarrel-shift-enabled

 Enable barrel-shift instructions.

 -mdivide-enabled

 Enable divide and modulus instructions.

 -mmultiply-enabled

 Enable multiply instructions.

 -msign-extend-enabled

 Enable sign extend instructions.

 -muser-enabled

 Enable user-defined instructions.

 M32C Options

 -mcpu=name

 Select the CPU for which code is generated. name may be one of r8c for the R8C/Tiny

 series, m16c for the M16C (up to /60) series, m32cm for the M16C/80 series, or m32c

 for the M32C/80 series.

 -msim

 Specifies that the program will be run on the simulator. This causes an alternate

 runtime library to be linked in which supports, for example, file I/O. You must not

 use this option when generating programs that will run on real hardware; you must

 provide your own runtime library for whatever I/O functions are needed.

 -memregs=number

 Specifies the number of memory-based pseudo-registers GCC uses during code generation.

 These pseudo-registers are used like real registers, so there is a tradeoff between

 GCC's ability to fit the code into available registers, and the performance penalty of

 using memory instead of registers. Note that all modules in a program must be

 compiled with the same value for this option. Because of that, you must not use this

 option with GCC's default runtime libraries.

 M32R/D Options

 These -m options are defined for Renesas M32R/D architectures:

 -m32r2

 Generate code for the M32R/2. Page 423/576

 -m32rx

 Generate code for the M32R/X.

 -m32r

 Generate code for the M32R. This is the default.

 -mmodel=small

 Assume all objects live in the lower 16MB of memory (so that their addresses can be

 loaded with the "ld24" instruction), and assume all subroutines are reachable with the

 "bl" instruction. This is the default.

 The addressability of a particular object can be set with the "model" attribute.

 -mmodel=medium

 Assume objects may be anywhere in the 32-bit address space (the compiler generates

 "seth/add3" instructions to load their addresses), and assume all subroutines are

 reachable with the "bl" instruction.

 -mmodel=large

 Assume objects may be anywhere in the 32-bit address space (the compiler generates

 "seth/add3" instructions to load their addresses), and assume subroutines may not be

 reachable with the "bl" instruction (the compiler generates the much slower

 "seth/add3/jl" instruction sequence).

 -msdata=none

 Disable use of the small data area. Variables are put into one of ".data", ".bss", or

 ".rodata" (unless the "section" attribute has been specified). This is the default.

 The small data area consists of sections ".sdata" and ".sbss". Objects may be

 explicitly put in the small data area with the "section" attribute using one of these

 sections.

 -msdata=sdata

 Put small global and static data in the small data area, but do not generate special

 code to reference them.

 -msdata=use

 Put small global and static data in the small data area, and generate special

 instructions to reference them.

 -G num

 Put global and static objects less than or equal to num bytes into the small data or

 BSS sections instead of the normal data or BSS sections. The default value of num is Page 424/576

 8. The -msdata option must be set to one of sdata or use for this option to have any

 effect.

 All modules should be compiled with the same -G num value. Compiling with different

 values of num may or may not work; if it doesn't the linker gives an error

 message---incorrect code is not generated.

 -mdebug

 Makes the M32R-specific code in the compiler display some statistics that might help

 in debugging programs.

 -malign-loops

 Align all loops to a 32-byte boundary.

 -mno-align-loops

 Do not enforce a 32-byte alignment for loops. This is the default.

 -missue-rate=number

 Issue number instructions per cycle. number can only be 1 or 2.

 -mbranch-cost=number

 number can only be 1 or 2. If it is 1 then branches are preferred over conditional

 code, if it is 2, then the opposite applies.

 -mflush-trap=number

 Specifies the trap number to use to flush the cache. The default is 12. Valid

 numbers are between 0 and 15 inclusive.

 -mno-flush-trap

 Specifies that the cache cannot be flushed by using a trap.

 -mflush-func=name

 Specifies the name of the operating system function to call to flush the cache. The

 default is _flush_cache, but a function call is only used if a trap is not available.

 -mno-flush-func

 Indicates that there is no OS function for flushing the cache.

 M680x0 Options

 These are the -m options defined for M680x0 and ColdFire processors. The default settings

 depend on which architecture was selected when the compiler was configured; the defaults

 for the most common choices are given below.

 -march=arch

 Generate code for a specific M680x0 or ColdFire instruction set architecture. Page 425/576

 Permissible values of arch for M680x0 architectures are: 68000, 68010, 68020, 68030,

 68040, 68060 and cpu32. ColdFire architectures are selected according to Freescale's

 ISA classification and the permissible values are: isaa, isaaplus, isab and isac.

 GCC defines a macro "__mcfarch__" whenever it is generating code for a ColdFire

 target. The arch in this macro is one of the -march arguments given above.

 When used together, -march and -mtune select code that runs on a family of similar

 processors but that is optimized for a particular microarchitecture.

 -mcpu=cpu

 Generate code for a specific M680x0 or ColdFire processor. The M680x0 cpus are:

 68000, 68010, 68020, 68030, 68040, 68060, 68302, 68332 and cpu32. The ColdFire cpus

 are given by the table below, which also classifies the CPUs into families:

 Family : -mcpu arguments

 51 : 51 51ac 51ag 51cn 51em 51je 51jf 51jg 51jm 51mm 51qe 51qm

 5206 : 5202 5204 5206

 5206e : 5206e

 5208 : 5207 5208

 5211a : 5210a 5211a

 5213 : 5211 5212 5213

 5216 : 5214 5216

 52235 : 52230 52231 52232 52233 52234 52235

 5225 : 5224 5225

 52259 : 52252 52254 52255 52256 52258 52259

 5235 : 5232 5233 5234 5235 523x

 5249 : 5249

 5250 : 5250

 5271 : 5270 5271

 5272 : 5272

 5275 : 5274 5275

 5282 : 5280 5281 5282 528x

 53017 : 53011 53012 53013 53014 53015 53016 53017

 5307 : 5307

 5329 : 5327 5328 5329 532x

 5373 : 5372 5373 537x Page 426/576

 5407 : 5407

 5475 : 5470 5471 5472 5473 5474 5475 547x 5480 5481 5482 5483 5484 5485

 -mcpu=cpu overrides -march=arch if arch is compatible with cpu. Other combinations of

 -mcpu and -march are rejected.

 GCC defines the macro "__mcf_cpu_cpu" when ColdFire target cpu is selected. It also

 defines "__mcf_family_family", where the value of family is given by the table above.

 -mtune=tune

 Tune the code for a particular microarchitecture within the constraints set by -march

 and -mcpu. The M680x0 microarchitectures are: 68000, 68010, 68020, 68030, 68040,

 68060 and cpu32. The ColdFire microarchitectures are: cfv1, cfv2, cfv3, cfv4 and

 cfv4e.

 You can also use -mtune=68020-40 for code that needs to run relatively well on 68020,

 68030 and 68040 targets. -mtune=68020-60 is similar but includes 68060 targets as

 well. These two options select the same tuning decisions as -m68020-40 and -m68020-60

 respectively.

 GCC defines the macros "__mcarch" and "__mcarch__" when tuning for 680x0 architecture

 arch. It also defines "mcarch" unless either -ansi or a non-GNU -std option is used.

 If GCC is tuning for a range of architectures, as selected by -mtune=68020-40 or

 -mtune=68020-60, it defines the macros for every architecture in the range.

 GCC also defines the macro "__muarch__" when tuning for ColdFire microarchitecture

 uarch, where uarch is one of the arguments given above.

 -m68000

 -mc68000

 Generate output for a 68000. This is the default when the compiler is configured for

 68000-based systems. It is equivalent to -march=68000.

 Use this option for microcontrollers with a 68000 or EC000 core, including the 68008,

 68302, 68306, 68307, 68322, 68328 and 68356.

 -m68010

 Generate output for a 68010. This is the default when the compiler is configured for

 68010-based systems. It is equivalent to -march=68010.

 -m68020

 -mc68020

 Generate output for a 68020. This is the default when the compiler is configured for Page 427/576

 68020-based systems. It is equivalent to -march=68020.

 -m68030

 Generate output for a 68030. This is the default when the compiler is configured for

 68030-based systems. It is equivalent to -march=68030.

 -m68040

 Generate output for a 68040. This is the default when the compiler is configured for

 68040-based systems. It is equivalent to -march=68040.

 This option inhibits the use of 68881/68882 instructions that have to be emulated by

 software on the 68040. Use this option if your 68040 does not have code to emulate

 those instructions.

 -m68060

 Generate output for a 68060. This is the default when the compiler is configured for

 68060-based systems. It is equivalent to -march=68060.

 This option inhibits the use of 68020 and 68881/68882 instructions that have to be

 emulated by software on the 68060. Use this option if your 68060 does not have code

 to emulate those instructions.

 -mcpu32

 Generate output for a CPU32. This is the default when the compiler is configured for

 CPU32-based systems. It is equivalent to -march=cpu32.

 Use this option for microcontrollers with a CPU32 or CPU32+ core, including the 68330,

 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

 -m5200

 Generate output for a 520X ColdFire CPU. This is the default when the compiler is

 configured for 520X-based systems. It is equivalent to -mcpu=5206, and is now

 deprecated in favor of that option.

 Use this option for microcontroller with a 5200 core, including the MCF5202, MCF5203,

 MCF5204 and MCF5206.

 -m5206e

 Generate output for a 5206e ColdFire CPU. The option is now deprecated in favor of

 the equivalent -mcpu=5206e.

 -m528x

 Generate output for a member of the ColdFire 528X family. The option is now

 deprecated in favor of the equivalent -mcpu=528x. Page 428/576

 -m5307

 Generate output for a ColdFire 5307 CPU. The option is now deprecated in favor of the

 equivalent -mcpu=5307.

 -m5407

 Generate output for a ColdFire 5407 CPU. The option is now deprecated in favor of the

 equivalent -mcpu=5407.

 -mcfv4e

 Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This includes use of

 hardware floating-point instructions. The option is equivalent to -mcpu=547x, and is

 now deprecated in favor of that option.

 -m68020-40

 Generate output for a 68040, without using any of the new instructions. This results

 in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a

 68040. The generated code does use the 68881 instructions that are emulated on the

 68040.

 The option is equivalent to -march=68020 -mtune=68020-40.

 -m68020-60

 Generate output for a 68060, without using any of the new instructions. This results

 in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a

 68040. The generated code does use the 68881 instructions that are emulated on the

 68060.

 The option is equivalent to -march=68020 -mtune=68020-60.

 -mhard-float

 -m68881

 Generate floating-point instructions. This is the default for 68020 and above, and

 for ColdFire devices that have an FPU. It defines the macro "__HAVE_68881__" on

 M680x0 targets and "__mcffpu__" on ColdFire targets.

 -msoft-float

 Do not generate floating-point instructions; use library calls instead. This is the

 default for 68000, 68010, and 68832 targets. It is also the default for ColdFire

 devices that have no FPU.

 -mdiv

 -mno-div Page 429/576

 Generate (do not generate) ColdFire hardware divide and remainder instructions. If

 -march is used without -mcpu, the default is "on" for ColdFire architectures and "off"

 for M680x0 architectures. Otherwise, the default is taken from the target CPU (either

 the default CPU, or the one specified by -mcpu). For example, the default is "off"

 for -mcpu=5206 and "on" for -mcpu=5206e.

 GCC defines the macro "__mcfhwdiv__" when this option is enabled.

 -mshort

 Consider type "int" to be 16 bits wide, like "short int". Additionally, parameters

 passed on the stack are also aligned to a 16-bit boundary even on targets whose API

 mandates promotion to 32-bit.

 -mno-short

 Do not consider type "int" to be 16 bits wide. This is the default.

 -mnobitfield

 -mno-bitfield

 Do not use the bit-field instructions. The -m68000, -mcpu32 and -m5200 options imply

 -mnobitfield.

 -mbitfield

 Do use the bit-field instructions. The -m68020 option implies -mbitfield. This is

 the default if you use a configuration designed for a 68020.

 -mrtd

 Use a different function-calling convention, in which functions that take a fixed

 number of arguments return with the "rtd" instruction, which pops their arguments

 while returning. This saves one instruction in the caller since there is no need to

 pop the arguments there.

 This calling convention is incompatible with the one normally used on Unix, so you

 cannot use it if you need to call libraries compiled with the Unix compiler.

 Also, you must provide function prototypes for all functions that take variable

 numbers of arguments (including "printf"); otherwise incorrect code is generated for

 calls to those functions.

 In addition, seriously incorrect code results if you call a function with too many

 arguments. (Normally, extra arguments are harmlessly ignored.)

 The "rtd" instruction is supported by the 68010, 68020, 68030, 68040, 68060 and CPU32

 processors, but not by the 68000 or 5200. Page 430/576

 The default is -mno-rtd.

 -malign-int

 -mno-align-int

 Control whether GCC aligns "int", "long", "long long", "float", "double", and "long

 double" variables on a 32-bit boundary (-malign-int) or a 16-bit boundary

 (-mno-align-int). Aligning variables on 32-bit boundaries produces code that runs

 somewhat faster on processors with 32-bit busses at the expense of more memory.

 Warning: if you use the -malign-int switch, GCC aligns structures containing the above

 types differently than most published application binary interface specifications for

 the m68k.

 Use the pc-relative addressing mode of the 68000 directly, instead of using a global

 offset table. At present, this option implies -fpic, allowing at most a 16-bit offset

 for pc-relative addressing. -fPIC is not presently supported with -mpcrel, though

 this could be supported for 68020 and higher processors.

 -mno-strict-align

 -mstrict-align

 Do not (do) assume that unaligned memory references are handled by the system.

 -msep-data

 Generate code that allows the data segment to be located in a different area of memory

 from the text segment. This allows for execute-in-place in an environment without

 virtual memory management. This option implies -fPIC.

 -mno-sep-data

 Generate code that assumes that the data segment follows the text segment. This is

 the default.

 -mid-shared-library

 Generate code that supports shared libraries via the library ID method. This allows

 for execute-in-place and shared libraries in an environment without virtual memory

 management. This option implies -fPIC.

 -mno-id-shared-library

 Generate code that doesn't assume ID-based shared libraries are being used. This is

 the default.

 -mshared-library-id=n

 Specifies the identification number of the ID-based shared library being compiled. Page 431/576

 Specifying a value of 0 generates more compact code; specifying other values forces

 the allocation of that number to the current library, but is no more space- or time-

 efficient than omitting this option.

 -mxgot

 -mno-xgot

 When generating position-independent code for ColdFire, generate code that works if

 the GOT has more than 8192 entries. This code is larger and slower than code

 generated without this option. On M680x0 processors, this option is not needed; -fPIC

 suffices.

 GCC normally uses a single instruction to load values from the GOT. While this is

 relatively efficient, it only works if the GOT is smaller than about 64k. Anything

 larger causes the linker to report an error such as:

 relocation truncated to fit: R_68K_GOT16O foobar

 If this happens, you should recompile your code with -mxgot. It should then work with

 very large GOTs. However, code generated with -mxgot is less efficient, since it

 takes 4 instructions to fetch the value of a global symbol.

 Note that some linkers, including newer versions of the GNU linker, can create

 multiple GOTs and sort GOT entries. If you have such a linker, you should only need

 to use -mxgot when compiling a single object file that accesses more than 8192 GOT

 entries. Very few do.

 These options have no effect unless GCC is generating position-independent code.

 -mlong-jump-table-offsets

 Use 32-bit offsets in "switch" tables. The default is to use 16-bit offsets.

 MCore Options

 These are the -m options defined for the Motorola M*Core processors.

 -mhardlit

 -mno-hardlit

 Inline constants into the code stream if it can be done in two instructions or less.

 -mdiv

 -mno-div

 Use the divide instruction. (Enabled by default).

 -mrelax-immediate

 -mno-relax-immediate Page 432/576

 Allow arbitrary-sized immediates in bit operations.

 -mwide-bitfields

 -mno-wide-bitfields

 Always treat bit-fields as "int"-sized.

 -m4byte-functions

 -mno-4byte-functions

 Force all functions to be aligned to a 4-byte boundary.

 -mcallgraph-data

 -mno-callgraph-data

 Emit callgraph information.

 -mslow-bytes

 -mno-slow-bytes

 Prefer word access when reading byte quantities.

 -mlittle-endian

 -mbig-endian

 Generate code for a little-endian target.

 -m210

 -m340

 Generate code for the 210 processor.

 -mno-lsim

 Assume that runtime support has been provided and so omit the simulator library

 (libsim.a) from the linker command line.

 -mstack-increment=size

 Set the maximum amount for a single stack increment operation. Large values can

 increase the speed of programs that contain functions that need a large amount of

 stack space, but they can also trigger a segmentation fault if the stack is extended

 too much. The default value is 0x1000.

 MeP Options

 -mabsdiff

 Enables the "abs" instruction, which is the absolute difference between two registers.

 -mall-opts

 Enables all the optional instructions---average, multiply, divide, bit operations,

 leading zero, absolute difference, min/max, clip, and saturation. Page 433/576

 -maverage

 Enables the "ave" instruction, which computes the average of two registers.

 -mbased=n

 Variables of size n bytes or smaller are placed in the ".based" section by default.

 Based variables use the $tp register as a base register, and there is a 128-byte limit

 to the ".based" section.

 -mbitops

 Enables the bit operation instructions---bit test ("btstm"), set ("bsetm"), clear

 ("bclrm"), invert ("bnotm"), and test-and-set ("tas").

 -mc=name

 Selects which section constant data is placed in. name may be tiny, near, or far.

 -mclip

 Enables the "clip" instruction. Note that -mclip is not useful unless you also

 provide -mminmax.

 -mconfig=name

 Selects one of the built-in core configurations. Each MeP chip has one or more

 modules in it; each module has a core CPU and a variety of coprocessors, optional

 instructions, and peripherals. The "MeP-Integrator" tool, not part of GCC, provides

 these configurations through this option; using this option is the same as using all

 the corresponding command-line options. The default configuration is default.

 -mcop

 Enables the coprocessor instructions. By default, this is a 32-bit coprocessor. Note

 that the coprocessor is normally enabled via the -mconfig= option.

 -mcop32

 Enables the 32-bit coprocessor's instructions.

 -mcop64

 Enables the 64-bit coprocessor's instructions.

 -mivc2

 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.

 -mdc

 Causes constant variables to be placed in the ".near" section.

 -mdiv

 Enables the "div" and "divu" instructions. Page 434/576

 -meb

 Generate big-endian code.

 -mel

 Generate little-endian code.

 -mio-volatile

 Tells the compiler that any variable marked with the "io" attribute is to be

 considered volatile.

 -ml Causes variables to be assigned to the ".far" section by default.

 -mleadz

 Enables the "leadz" (leading zero) instruction.

 -mm Causes variables to be assigned to the ".near" section by default.

 -mminmax

 Enables the "min" and "max" instructions.

 -mmult

 Enables the multiplication and multiply-accumulate instructions.

 -mno-opts

 Disables all the optional instructions enabled by -mall-opts.

 -mrepeat

 Enables the "repeat" and "erepeat" instructions, used for low-overhead looping.

 -ms Causes all variables to default to the ".tiny" section. Note that there is a

 65536-byte limit to this section. Accesses to these variables use the %gp base

 register.

 -msatur

 Enables the saturation instructions. Note that the compiler does not currently

 generate these itself, but this option is included for compatibility with other tools,

 like "as".

 -msdram

 Link the SDRAM-based runtime instead of the default ROM-based runtime.

 -msim

 Link the simulator run-time libraries.

 -msimnovec

 Link the simulator runtime libraries, excluding built-in support for reset and

 exception vectors and tables. Page 435/576

 -mtf

 Causes all functions to default to the ".far" section. Without this option, functions

 default to the ".near" section.

 -mtiny=n

 Variables that are n bytes or smaller are allocated to the ".tiny" section. These

 variables use the $gp base register. The default for this option is 4, but note that

 there's a 65536-byte limit to the ".tiny" section.

 MicroBlaze Options

 -msoft-float

 Use software emulation for floating point (default).

 -mhard-float

 Use hardware floating-point instructions.

 -mmemcpy

 Do not optimize block moves, use "memcpy".

 -mno-clearbss

 This option is deprecated. Use -fno-zero-initialized-in-bss instead.

 -mcpu=cpu-type

 Use features of, and schedule code for, the given CPU. Supported values are in the

 format vX.YY.Z, where X is a major version, YY is the minor version, and Z is

 compatibility code. Example values are v3.00.a, v4.00.b, v5.00.a, v5.00.b, v6.00.a.

 -mxl-soft-mul

 Use software multiply emulation (default).

 -mxl-soft-div

 Use software emulation for divides (default).

 -mxl-barrel-shift

 Use the hardware barrel shifter.

 -mxl-pattern-compare

 Use pattern compare instructions.

 -msmall-divides

 Use table lookup optimization for small signed integer divisions.

 -mxl-stack-check

 This option is deprecated. Use -fstack-check instead.

 -mxl-gp-opt Page 436/576

 Use GP-relative ".sdata"/".sbss" sections.

 -mxl-multiply-high

 Use multiply high instructions for high part of 32x32 multiply.

 -mxl-float-convert

 Use hardware floating-point conversion instructions.

 -mxl-float-sqrt

 Use hardware floating-point square root instruction.

 -mbig-endian

 Generate code for a big-endian target.

 -mlittle-endian

 Generate code for a little-endian target.

 -mxl-reorder

 Use reorder instructions (swap and byte reversed load/store).

 -mxl-mode-app-model

 Select application model app-model. Valid models are

 executable

 normal executable (default), uses startup code crt0.o.

 -mpic-data-is-text-relative

 Assume that the displacement between the text and data segments is fixed at static

 link time. This allows data to be referenced by offset from start of text address

 instead of GOT since PC-relative addressing is not supported.

 xmdstub

 for use with Xilinx Microprocessor Debugger (XMD) based software intrusive debug

 agent called xmdstub. This uses startup file crt1.o and sets the start address of

 the program to 0x800.

 bootstrap

 for applications that are loaded using a bootloader. This model uses startup file

 crt2.o which does not contain a processor reset vector handler. This is suitable

 for transferring control on a processor reset to the bootloader rather than the

 application.

 novectors

 for applications that do not require any of the MicroBlaze vectors. This option

 may be useful for applications running within a monitoring application. This model Page 437/576

 uses crt3.o as a startup file.

 Option -xl-mode-app-model is a deprecated alias for -mxl-mode-app-model.

 MIPS Options

 -EB Generate big-endian code.

 -EL Generate little-endian code. This is the default for mips*el-*-* configurations.

 -march=arch

 Generate code that runs on arch, which can be the name of a generic MIPS ISA, or the

 name of a particular processor. The ISA names are: mips1, mips2, mips3, mips4,

 mips32, mips32r2, mips32r3, mips32r5, mips32r6, mips64, mips64r2, mips64r3, mips64r5

 and mips64r6. The processor names are: 4kc, 4km, 4kp, 4ksc, 4kec, 4kem, 4kep, 4ksd,

 5kc, 5kf, 20kc, 24kc, 24kf2_1, 24kf1_1, 24kec, 24kef2_1, 24kef1_1, 34kc, 34kf2_1,

 34kf1_1, 34kn, 74kc, 74kf2_1, 74kf1_1, 74kf3_2, 1004kc, 1004kf2_1, 1004kf1_1, i6400,

 i6500, interaptiv, loongson2e, loongson2f, loongson3a, gs464, gs464e, gs264e, m4k,

 m14k, m14kc, m14ke, m14kec, m5100, m5101, octeon, octeon+, octeon2, octeon3, orion,

 p5600, p6600, r2000, r3000, r3900, r4000, r4400, r4600, r4650, r4700, r5900, r6000,

 r8000, rm7000, rm9000, r10000, r12000, r14000, r16000, sb1, sr71000, vr4100, vr4111,

 vr4120, vr4130, vr4300, vr5000, vr5400, vr5500, xlr and xlp. The special value from-

 abi selects the most compatible architecture for the selected ABI (that is, mips1 for

 32-bit ABIs and mips3 for 64-bit ABIs).

 The native Linux/GNU toolchain also supports the value native, which selects the best

 architecture option for the host processor. -march=native has no effect if GCC does

 not recognize the processor.

 In processor names, a final 000 can be abbreviated as k (for example, -march=r2k).

 Prefixes are optional, and vr may be written r.

 Names of the form nf2_1 refer to processors with FPUs clocked at half the rate of the

 core, names of the form nf1_1 refer to processors with FPUs clocked at the same rate

 as the core, and names of the form nf3_2 refer to processors with FPUs clocked a ratio

 of 3:2 with respect to the core. For compatibility reasons, nf is accepted as a

 synonym for nf2_1 while nx and bfx are accepted as synonyms for nf1_1.

 GCC defines two macros based on the value of this option. The first is "_MIPS_ARCH",

 which gives the name of target architecture, as a string. The second has the form

 "_MIPS_ARCH_foo", where foo is the capitalized value of "_MIPS_ARCH". For example,

 -march=r2000 sets "_MIPS_ARCH" to "r2000" and defines the macro "_MIPS_ARCH_R2000". Page 438/576

 Note that the "_MIPS_ARCH" macro uses the processor names given above. In other

 words, it has the full prefix and does not abbreviate 000 as k. In the case of from-

 abi, the macro names the resolved architecture (either "mips1" or "mips3"). It names

 the default architecture when no -march option is given.

 -mtune=arch

 Optimize for arch. Among other things, this option controls the way instructions are

 scheduled, and the perceived cost of arithmetic operations. The list of arch values

 is the same as for -march.

 When this option is not used, GCC optimizes for the processor specified by -march. By

 using -march and -mtune together, it is possible to generate code that runs on a

 family of processors, but optimize the code for one particular member of that family.

 -mtune defines the macros "_MIPS_TUNE" and "_MIPS_TUNE_foo", which work in the same

 way as the -march ones described above.

 -mips1

 Equivalent to -march=mips1.

 -mips2

 Equivalent to -march=mips2.

 -mips3

 Equivalent to -march=mips3.

 -mips4

 Equivalent to -march=mips4.

 -mips32

 Equivalent to -march=mips32.

 -mips32r3

 Equivalent to -march=mips32r3.

 -mips32r5

 Equivalent to -march=mips32r5.

 -mips32r6

 Equivalent to -march=mips32r6.

 -mips64

 Equivalent to -march=mips64.

 -mips64r2

 Equivalent to -march=mips64r2. Page 439/576

 -mips64r3

 Equivalent to -march=mips64r3.

 -mips64r5

 Equivalent to -march=mips64r5.

 -mips64r6

 Equivalent to -march=mips64r6.

 -mips16

 -mno-mips16

 Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or MIPS64

 architecture, it makes use of the MIPS16e ASE.

 MIPS16 code generation can also be controlled on a per-function basis by means of

 "mips16" and "nomips16" attributes.

 -mflip-mips16

 Generate MIPS16 code on alternating functions. This option is provided for regression

 testing of mixed MIPS16/non-MIPS16 code generation, and is not intended for ordinary

 use in compiling user code.

 -minterlink-compressed

 -mno-interlink-compressed

 Require (do not require) that code using the standard (uncompressed) MIPS ISA be link-

 compatible with MIPS16 and microMIPS code, and vice versa.

 For example, code using the standard ISA encoding cannot jump directly to MIPS16 or

 microMIPS code; it must either use a call or an indirect jump. -minterlink-compressed

 therefore disables direct jumps unless GCC knows that the target of the jump is not

 compressed.

 -minterlink-mips16

 -mno-interlink-mips16

 Aliases of -minterlink-compressed and -mno-interlink-compressed. These options

 predate the microMIPS ASE and are retained for backwards compatibility.

 -mabi=32

 -mabi=o64

 -mabi=n32

 -mabi=64

 -mabi=eabi Page 440/576

 Generate code for the given ABI.

 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates 64-bit

 code when you select a 64-bit architecture, but you can use -mgp32 to get 32-bit code

 instead.

 For information about the O64 ABI, see <http://gcc.gnu.org/projects/mipso64-abi.html>.

 GCC supports a variant of the o32 ABI in which floating-point registers are 64 rather

 than 32 bits wide. You can select this combination with -mabi=32 -mfp64. This ABI

 relies on the "mthc1" and "mfhc1" instructions and is therefore only supported for

 MIPS32R2, MIPS32R3 and MIPS32R5 processors.

 The register assignments for arguments and return values remain the same, but each

 scalar value is passed in a single 64-bit register rather than a pair of 32-bit

 registers. For example, scalar floating-point values are returned in $f0 only, not a

 $f0/$f1 pair. The set of call-saved registers also remains the same in that the even-

 numbered double-precision registers are saved.

 Two additional variants of the o32 ABI are supported to enable a transition from

 32-bit to 64-bit registers. These are FPXX (-mfpxx) and FP64A (-mfp64

 -mno-odd-spreg). The FPXX extension mandates that all code must execute correctly

 when run using 32-bit or 64-bit registers. The code can be interlinked with either

 FP32 or FP64, but not both. The FP64A extension is similar to the FP64 extension but

 forbids the use of odd-numbered single-precision registers. This can be used in

 conjunction with the "FRE" mode of FPUs in MIPS32R5 processors and allows both FP32

 and FP64A code to interlink and run in the same process without changing FPU modes.

 -mabicalls

 -mno-abicalls

 Generate (do not generate) code that is suitable for SVR4-style dynamic objects.

 -mabicalls is the default for SVR4-based systems.

 -mshared

 -mno-shared

 Generate (do not generate) code that is fully position-independent, and that can

 therefore be linked into shared libraries. This option only affects -mabicalls.

 All -mabicalls code has traditionally been position-independent, regardless of options

 like -fPIC and -fpic. However, as an extension, the GNU toolchain allows executables

 to use absolute accesses for locally-binding symbols. It can also use shorter GP Page 441/576

 initialization sequences and generate direct calls to locally-defined functions. This

 mode is selected by -mno-shared.

 -mno-shared depends on binutils 2.16 or higher and generates objects that can only be

 linked by the GNU linker. However, the option does not affect the ABI of the final

 executable; it only affects the ABI of relocatable objects. Using -mno-shared

 generally makes executables both smaller and quicker.

 -mshared is the default.

 -mplt

 -mno-plt

 Assume (do not assume) that the static and dynamic linkers support PLTs and copy

 relocations. This option only affects -mno-shared -mabicalls. For the n64 ABI, this

 option has no effect without -msym32.

 You can make -mplt the default by configuring GCC with --with-mips-plt. The default

 is -mno-plt otherwise.

 -mxgot

 -mno-xgot

 Lift (do not lift) the usual restrictions on the size of the global offset table.

 GCC normally uses a single instruction to load values from the GOT. While this is

 relatively efficient, it only works if the GOT is smaller than about 64k. Anything

 larger causes the linker to report an error such as:

 relocation truncated to fit: R_MIPS_GOT16 foobar

 If this happens, you should recompile your code with -mxgot. This works with very

 large GOTs, although the code is also less efficient, since it takes three

 instructions to fetch the value of a global symbol.

 Note that some linkers can create multiple GOTs. If you have such a linker, you

 should only need to use -mxgot when a single object file accesses more than 64k's

 worth of GOT entries. Very few do.

 These options have no effect unless GCC is generating position independent code.

 -mgp32

 Assume that general-purpose registers are 32 bits wide.

 -mgp64

 Assume that general-purpose registers are 64 bits wide.

 -mfp32 Page 442/576

 Assume that floating-point registers are 32 bits wide.

 -mfp64

 Assume that floating-point registers are 64 bits wide.

 -mfpxx

 Do not assume the width of floating-point registers.

 -mhard-float

 Use floating-point coprocessor instructions.

 -msoft-float

 Do not use floating-point coprocessor instructions. Implement floating-point

 calculations using library calls instead.

 -mno-float

 Equivalent to -msoft-float, but additionally asserts that the program being compiled

 does not perform any floating-point operations. This option is presently supported

 only by some bare-metal MIPS configurations, where it may select a special set of

 libraries that lack all floating-point support (including, for example, the floating-

 point "printf" formats). If code compiled with -mno-float accidentally contains

 floating-point operations, it is likely to suffer a link-time or run-time failure.

 -msingle-float

 Assume that the floating-point coprocessor only supports single-precision operations.

 -mdouble-float

 Assume that the floating-point coprocessor supports double-precision operations. This

 is the default.

 -modd-spreg

 -mno-odd-spreg

 Enable the use of odd-numbered single-precision floating-point registers for the o32

 ABI. This is the default for processors that are known to support these registers.

 When using the o32 FPXX ABI, -mno-odd-spreg is set by default.

 -mabs=2008

 -mabs=legacy

 These options control the treatment of the special not-a-number (NaN) IEEE 754

 floating-point data with the "abs.fmt" and "neg.fmt" machine instructions.

 By default or when -mabs=legacy is used the legacy treatment is selected. In this

 case these instructions are considered arithmetic and avoided where correct operation Page 443/576

 is required and the input operand might be a NaN. A longer sequence of instructions

 that manipulate the sign bit of floating-point datum manually is used instead unless

 the -ffinite-math-only option has also been specified.

 The -mabs=2008 option selects the IEEE 754-2008 treatment. In this case these

 instructions are considered non-arithmetic and therefore operating correctly in all

 cases, including in particular where the input operand is a NaN. These instructions

 are therefore always used for the respective operations.

 -mnan=2008

 -mnan=legacy

 These options control the encoding of the special not-a-number (NaN) IEEE 754

 floating-point data.

 The -mnan=legacy option selects the legacy encoding. In this case quiet NaNs (qNaNs)

 are denoted by the first bit of their trailing significand field being 0, whereas

 signaling NaNs (sNaNs) are denoted by the first bit of their trailing significand

 field being 1.

 The -mnan=2008 option selects the IEEE 754-2008 encoding. In this case qNaNs are

 denoted by the first bit of their trailing significand field being 1, whereas sNaNs

 are denoted by the first bit of their trailing significand field being 0.

 The default is -mnan=legacy unless GCC has been configured with --with-nan=2008.

 -mllsc

 -mno-llsc

 Use (do not use) ll, sc, and sync instructions to implement atomic memory built-in

 functions. When neither option is specified, GCC uses the instructions if the target

 architecture supports them.

 -mllsc is useful if the runtime environment can emulate the instructions and -mno-llsc

 can be useful when compiling for nonstandard ISAs. You can make either option the

 default by configuring GCC with --with-llsc and --without-llsc respectively.

 --with-llsc is the default for some configurations; see the installation documentation

 for details.

 -mdsp

 -mno-dsp

 Use (do not use) revision 1 of the MIPS DSP ASE.

 This option defines the preprocessor macro "__mips_dsp". It also defines Page 444/576

 "__mips_dsp_rev" to 1.

 -mdspr2

 -mno-dspr2

 Use (do not use) revision 2 of the MIPS DSP ASE.

 This option defines the preprocessor macros "__mips_dsp" and "__mips_dspr2". It

 also defines "__mips_dsp_rev" to 2.

 -msmartmips

 -mno-smartmips

 Use (do not use) the MIPS SmartMIPS ASE.

 -mpaired-single

 -mno-paired-single

 Use (do not use) paired-single floating-point instructions.

 This option requires hardware floating-point support to be enabled.

 -mdmx

 -mno-mdmx

 Use (do not use) MIPS Digital Media Extension instructions. This option can only be

 used when generating 64-bit code and requires hardware floating-point support to be

 enabled.

 -mips3d

 -mno-mips3d

 Use (do not use) the MIPS-3D ASE. The option -mips3d implies -mpaired-single.

 -mmicromips

 -mno-micromips

 Generate (do not generate) microMIPS code.

 MicroMIPS code generation can also be controlled on a per-function basis by means of

 "micromips" and "nomicromips" attributes.

 -mmt

 -mno-mt

 Use (do not use) MT Multithreading instructions.

 -mmcu

 -mno-mcu

 Use (do not use) the MIPS MCU ASE instructions.

 -meva Page 445/576

 -mno-eva

 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.

 -mvirt

 -mno-virt

 Use (do not use) the MIPS Virtualization (VZ) instructions.

 -mxpa

 -mno-xpa

 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.

 -mcrc

 -mno-crc

 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.

 -mginv

 -mno-ginv

 Use (do not use) the MIPS Global INValidate (GINV) instructions.

 -mloongson-mmi

 -mno-loongson-mmi

 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).

 -mloongson-ext

 -mno-loongson-ext

 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.

 -mloongson-ext2

 -mno-loongson-ext2

 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.

 -mlong64

 Force "long" types to be 64 bits wide. See -mlong32 for an explanation of the default

 and the way that the pointer size is determined.

 -mlong32

 Force "long", "int", and pointer types to be 32 bits wide.

 The default size of "int"s, "long"s and pointers depends on the ABI. All the

 supported ABIs use 32-bit "int"s. The n64 ABI uses 64-bit "long"s, as does the 64-bit

 EABI; the others use 32-bit "long"s. Pointers are the same size as "long"s, or the

 same size as integer registers, whichever is smaller.

 -msym32 Page 446/576

 -mno-sym32

 Assume (do not assume) that all symbols have 32-bit values, regardless of the selected

 ABI. This option is useful in combination with -mabi=64 and -mno-abicalls because it

 allows GCC to generate shorter and faster references to symbolic addresses.

 -G num

 Put definitions of externally-visible data in a small data section if that data is no

 bigger than num bytes. GCC can then generate more efficient accesses to the data; see

 -mgpopt for details.

 The default -G option depends on the configuration.

 -mlocal-sdata

 -mno-local-sdata

 Extend (do not extend) the -G behavior to local data too, such as to static variables

 in C. -mlocal-sdata is the default for all configurations.

 If the linker complains that an application is using too much small data, you might

 want to try rebuilding the less performance-critical parts with -mno-local-sdata. You

 might also want to build large libraries with -mno-local-sdata, so that the libraries

 leave more room for the main program.

 -mextern-sdata

 -mno-extern-sdata

 Assume (do not assume) that externally-defined data is in a small data section if the

 size of that data is within the -G limit. -mextern-sdata is the default for all

 configurations.

 If you compile a module Mod with -mextern-sdata -G num -mgpopt, and Mod references a

 variable Var that is no bigger than num bytes, you must make sure that Var is placed

 in a small data section. If Var is defined by another module, you must either compile

 that module with a high-enough -G setting or attach a "section" attribute to Var's

 definition. If Var is common, you must link the application with a high-enough -G

 setting.

 The easiest way of satisfying these restrictions is to compile and link every module

 with the same -G option. However, you may wish to build a library that supports

 several different small data limits. You can do this by compiling the library with

 the highest supported -G setting and additionally using -mno-extern-sdata to stop the

 library from making assumptions about externally-defined data. Page 447/576

 -mgpopt

 -mno-gpopt

 Use (do not use) GP-relative accesses for symbols that are known to be in a small data

 section; see -G, -mlocal-sdata and -mextern-sdata. -mgpopt is the default for all

 configurations.

 -mno-gpopt is useful for cases where the $gp register might not hold the value of

 "_gp". For example, if the code is part of a library that might be used in a boot

 monitor, programs that call boot monitor routines pass an unknown value in $gp. (In

 such situations, the boot monitor itself is usually compiled with -G0.)

 -mno-gpopt implies -mno-local-sdata and -mno-extern-sdata.

 -membedded-data

 -mno-embedded-data

 Allocate variables to the read-only data section first if possible, then next in the

 small data section if possible, otherwise in data. This gives slightly slower code

 than the default, but reduces the amount of RAM required when executing, and thus may

 be preferred for some embedded systems.

 -muninit-const-in-rodata

 -mno-uninit-const-in-rodata

 Put uninitialized "const" variables in the read-only data section. This option is

 only meaningful in conjunction with -membedded-data.

 -mcode-readable=setting

 Specify whether GCC may generate code that reads from executable sections. There are

 three possible settings:

 -mcode-readable=yes

 Instructions may freely access executable sections. This is the default setting.

 -mcode-readable=pcrel

 MIPS16 PC-relative load instructions can access executable sections, but other

 instructions must not do so. This option is useful on 4KSc and 4KSd processors

 when the code TLBs have the Read Inhibit bit set. It is also useful on processors

 that can be configured to have a dual instruction/data SRAM interface and that,

 like the M4K, automatically redirect PC-relative loads to the instruction RAM.

 -mcode-readable=no

 Instructions must not access executable sections. This option can be useful on Page 448/576

 targets that are configured to have a dual instruction/data SRAM interface but

 that (unlike the M4K) do not automatically redirect PC-relative loads to the

 instruction RAM.

 -msplit-addresses

 -mno-split-addresses

 Enable (disable) use of the "%hi()" and "%lo()" assembler relocation operators. This

 option has been superseded by -mexplicit-relocs but is retained for backwards

 compatibility.

 -mexplicit-relocs

 -mno-explicit-relocs

 Use (do not use) assembler relocation operators when dealing with symbolic addresses.

 The alternative, selected by -mno-explicit-relocs, is to use assembler macros instead.

 -mexplicit-relocs is the default if GCC was configured to use an assembler that

 supports relocation operators.

 -mcheck-zero-division

 -mno-check-zero-division

 Trap (do not trap) on integer division by zero.

 The default is -mcheck-zero-division.

 -mdivide-traps

 -mdivide-breaks

 MIPS systems check for division by zero by generating either a conditional trap or a

 break instruction. Using traps results in smaller code, but is only supported on MIPS

 II and later. Also, some versions of the Linux kernel have a bug that prevents trap

 from generating the proper signal ("SIGFPE"). Use -mdivide-traps to allow conditional

 traps on architectures that support them and -mdivide-breaks to force the use of

 breaks.

 The default is usually -mdivide-traps, but this can be overridden at configure time

 using --with-divide=breaks. Divide-by-zero checks can be completely disabled using

 -mno-check-zero-division.

 -mload-store-pairs

 -mno-load-store-pairs

 Enable (disable) an optimization that pairs consecutive load or store instructions to

 enable load/store bonding. This option is enabled by default but only takes effect Page 449/576

 when the selected architecture is known to support bonding.

 -mmemcpy

 -mno-memcpy

 Force (do not force) the use of "memcpy" for non-trivial block moves. The default is

 -mno-memcpy, which allows GCC to inline most constant-sized copies.

 -mlong-calls

 -mno-long-calls

 Disable (do not disable) use of the "jal" instruction. Calling functions using "jal"

 is more efficient but requires the caller and callee to be in the same 256 megabyte

 segment.

 This option has no effect on abicalls code. The default is -mno-long-calls.

 -mmad

 -mno-mad

 Enable (disable) use of the "mad", "madu" and "mul" instructions, as provided by the

 R4650 ISA.

 -mimadd

 -mno-imadd

 Enable (disable) use of the "madd" and "msub" integer instructions. The default is

 -mimadd on architectures that support "madd" and "msub" except for the 74k

 architecture where it was found to generate slower code.

 -mfused-madd

 -mno-fused-madd

 Enable (disable) use of the floating-point multiply-accumulate instructions, when they

 are available. The default is -mfused-madd.

 On the R8000 CPU when multiply-accumulate instructions are used, the intermediate

 product is calculated to infinite precision and is not subject to the FCSR Flush to

 Zero bit. This may be undesirable in some circumstances. On other processors the

 result is numerically identical to the equivalent computation using separate multiply,

 add, subtract and negate instructions.

 -nocpp

 Tell the MIPS assembler to not run its preprocessor over user assembler files (with a

 .s suffix) when assembling them.

 -mfix-24k Page 450/576

 -mno-fix-24k

 Work around the 24K E48 (lost data on stores during refill) errata. The workarounds

 are implemented by the assembler rather than by GCC.

 -mfix-r4000

 -mno-fix-r4000

 Work around certain R4000 CPU errata:

 - A double-word or a variable shift may give an incorrect result if executed

 immediately after starting an integer division.

 - A double-word or a variable shift may give an incorrect result if executed while

 an integer multiplication is in progress.

 - An integer division may give an incorrect result if started in a delay slot of a

 taken branch or a jump.

 -mfix-r4400

 -mno-fix-r4400

 Work around certain R4400 CPU errata:

 - A double-word or a variable shift may give an incorrect result if executed

 immediately after starting an integer division.

 -mfix-r10000

 -mno-fix-r10000

 Work around certain R10000 errata:

 - "ll"/"sc" sequences may not behave atomically on revisions prior to 3.0. They may

 deadlock on revisions 2.6 and earlier.

 This option can only be used if the target architecture supports branch-likely

 instructions. -mfix-r10000 is the default when -march=r10000 is used; -mno-fix-r10000

 is the default otherwise.

 -mfix-r5900

 -mno-fix-r5900

 Do not attempt to schedule the preceding instruction into the delay slot of a branch

 instruction placed at the end of a short loop of six instructions or fewer and always

 schedule a "nop" instruction there instead. The short loop bug under certain

 conditions causes loops to execute only once or twice, due to a hardware bug in the

 R5900 chip. The workaround is implemented by the assembler rather than by GCC.

 -mfix-rm7000 Page 451/576

 -mno-fix-rm7000

 Work around the RM7000 "dmult"/"dmultu" errata. The workarounds are implemented by

 the assembler rather than by GCC.

 -mfix-vr4120

 -mno-fix-vr4120

 Work around certain VR4120 errata:

 - "dmultu" does not always produce the correct result.

 - "div" and "ddiv" do not always produce the correct result if one of the operands

 is negative.

 The workarounds for the division errata rely on special functions in libgcc.a. At

 present, these functions are only provided by the "mips64vr*-elf" configurations.

 Other VR4120 errata require a NOP to be inserted between certain pairs of

 instructions. These errata are handled by the assembler, not by GCC itself.

 -mfix-vr4130

 Work around the VR4130 "mflo"/"mfhi" errata. The workarounds are implemented by the

 assembler rather than by GCC, although GCC avoids using "mflo" and "mfhi" if the

 VR4130 "macc", "macchi", "dmacc" and "dmacchi" instructions are available instead.

 -mfix-sb1

 -mno-fix-sb1

 Work around certain SB-1 CPU core errata. (This flag currently works around the SB-1

 revision 2 "F1" and "F2" floating-point errata.)

 -mr10k-cache-barrier=setting

 Specify whether GCC should insert cache barriers to avoid the side effects of

 speculation on R10K processors.

 In common with many processors, the R10K tries to predict the outcome of a conditional

 branch and speculatively executes instructions from the "taken" branch. It later

 aborts these instructions if the predicted outcome is wrong. However, on the R10K,

 even aborted instructions can have side effects.

 This problem only affects kernel stores and, depending on the system, kernel loads.

 As an example, a speculatively-executed store may load the target memory into cache

 and mark the cache line as dirty, even if the store itself is later aborted. If a DMA

 operation writes to the same area of memory before the "dirty" line is flushed, the

 cached data overwrites the DMA-ed data. See the R10K processor manual for a full Page 452/576

 description, including other potential problems.

 One workaround is to insert cache barrier instructions before every memory access that

 might be speculatively executed and that might have side effects even if aborted.

 -mr10k-cache-barrier=setting controls GCC's implementation of this workaround. It

 assumes that aborted accesses to any byte in the following regions does not have side

 effects:

 1. the memory occupied by the current function's stack frame;

 2. the memory occupied by an incoming stack argument;

 3. the memory occupied by an object with a link-time-constant address.

 It is the kernel's responsibility to ensure that speculative accesses to these regions

 are indeed safe.

 If the input program contains a function declaration such as:

 void foo (void);

 then the implementation of "foo" must allow "j foo" and "jal foo" to be executed

 speculatively. GCC honors this restriction for functions it compiles itself. It

 expects non-GCC functions (such as hand-written assembly code) to do the same.

 The option has three forms:

 -mr10k-cache-barrier=load-store

 Insert a cache barrier before a load or store that might be speculatively executed

 and that might have side effects even if aborted.

 -mr10k-cache-barrier=store

 Insert a cache barrier before a store that might be speculatively executed and

 that might have side effects even if aborted.

 -mr10k-cache-barrier=none

 Disable the insertion of cache barriers. This is the default setting.

 -mflush-func=func

 -mno-flush-func

 Specifies the function to call to flush the I and D caches, or to not call any such

 function. If called, the function must take the same arguments as the common

 "_flush_func", that is, the address of the memory range for which the cache is being

 flushed, the size of the memory range, and the number 3 (to flush both caches). The

 default depends on the target GCC was configured for, but commonly is either

 "_flush_func" or "__cpu_flush". Page 453/576

 mbranch-cost=num

 Set the cost of branches to roughly num "simple" instructions. This cost is only a

 heuristic and is not guaranteed to produce consistent results across releases. A zero

 cost redundantly selects the default, which is based on the -mtune setting.

 -mbranch-likely

 -mno-branch-likely

 Enable or disable use of Branch Likely instructions, regardless of the default for the

 selected architecture. By default, Branch Likely instructions may be generated if

 they are supported by the selected architecture. An exception is for the MIPS32 and

 MIPS64 architectures and processors that implement those architectures; for those,

 Branch Likely instructions are not be generated by default because the MIPS32 and

 MIPS64 architectures specifically deprecate their use.

 -mcompact-branches=never

 -mcompact-branches=optimal

 -mcompact-branches=always

 These options control which form of branches will be generated. The default is

 -mcompact-branches=optimal.

 The -mcompact-branches=never option ensures that compact branch instructions will

 never be generated.

 The -mcompact-branches=always option ensures that a compact branch instruction will be

 generated if available. If a compact branch instruction is not available, a delay

 slot form of the branch will be used instead.

 This option is supported from MIPS Release 6 onwards.

 The -mcompact-branches=optimal option will cause a delay slot branch to be used if one

 is available in the current ISA and the delay slot is successfully filled. If the

 delay slot is not filled, a compact branch will be chosen if one is available.

 -mfp-exceptions

 -mno-fp-exceptions

 Specifies whether FP exceptions are enabled. This affects how FP instructions are

 scheduled for some processors. The default is that FP exceptions are enabled.

 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting 64-bit

 code, then we can use both FP pipes. Otherwise, we can only use one FP pipe.

 -mvr4130-align Page 454/576

 -mno-vr4130-align

 The VR4130 pipeline is two-way superscalar, but can only issue two instructions

 together if the first one is 8-byte aligned. When this option is enabled, GCC aligns

 pairs of instructions that it thinks should execute in parallel.

 This option only has an effect when optimizing for the VR4130. It normally makes code

 faster, but at the expense of making it bigger. It is enabled by default at

 optimization level -O3.

 -msynci

 -mno-synci

 Enable (disable) generation of "synci" instructions on architectures that support it.

 The "synci" instructions (if enabled) are generated when "__builtin___clear_cache" is

 compiled.

 This option defaults to -mno-synci, but the default can be overridden by configuring

 GCC with --with-synci.

 When compiling code for single processor systems, it is generally safe to use "synci".

 However, on many multi-core (SMP) systems, it does not invalidate the instruction

 caches on all cores and may lead to undefined behavior.

 -mrelax-pic-calls

 -mno-relax-pic-calls

 Try to turn PIC calls that are normally dispatched via register $25 into direct calls.

 This is only possible if the linker can resolve the destination at link time and if

 the destination is within range for a direct call.

 -mrelax-pic-calls is the default if GCC was configured to use an assembler and a

 linker that support the ".reloc" assembly directive and -mexplicit-relocs is in

 effect. With -mno-explicit-relocs, this optimization can be performed by the

 assembler and the linker alone without help from the compiler.

 -mmcount-ra-address

 -mno-mcount-ra-address

 Emit (do not emit) code that allows "_mcount" to modify the calling function's return

 address. When enabled, this option extends the usual "_mcount" interface with a new

 ra-address parameter, which has type "intptr_t *" and is passed in register $12.

 "_mcount" can then modify the return address by doing both of the following:

 * Returning the new address in register $31. Page 455/576

 * Storing the new address in "*ra-address", if ra-address is nonnull.

 The default is -mno-mcount-ra-address.

 -mframe-header-opt

 -mno-frame-header-opt

 Enable (disable) frame header optimization in the o32 ABI. When using the o32 ABI,

 calling functions will allocate 16 bytes on the stack for the called function to write

 out register arguments. When enabled, this optimization will suppress the allocation

 of the frame header if it can be determined that it is unused.

 This optimization is off by default at all optimization levels.

 -mlxc1-sxc1

 -mno-lxc1-sxc1

 When applicable, enable (disable) the generation of "lwxc1", "swxc1", "ldxc1", "sdxc1"

 instructions. Enabled by default.

 -mmadd4

 -mno-madd4

 When applicable, enable (disable) the generation of 4-operand "madd.s", "madd.d" and

 related instructions. Enabled by default.

 MMIX Options

 These options are defined for the MMIX:

 -mlibfuncs

 -mno-libfuncs

 Specify that intrinsic library functions are being compiled, passing all values in

 registers, no matter the size.

 -mepsilon

 -mno-epsilon

 Generate floating-point comparison instructions that compare with respect to the "rE"

 epsilon register.

 -mabi=mmixware

 -mabi=gnu

 Generate code that passes function parameters and return values that (in the called

 function) are seen as registers $0 and up, as opposed to the GNU ABI which uses global

 registers $231 and up.

 -mzero-extend Page 456/576

 -mno-zero-extend

 When reading data from memory in sizes shorter than 64 bits, use (do not use) zero-

 extending load instructions by default, rather than sign-extending ones.

 -mknuthdiv

 -mno-knuthdiv

 Make the result of a division yielding a remainder have the same sign as the divisor.

 With the default, -mno-knuthdiv, the sign of the remainder follows the sign of the

 dividend. Both methods are arithmetically valid, the latter being almost exclusively

 used.

 -mtoplevel-symbols

 -mno-toplevel-symbols

 Prepend (do not prepend) a : to all global symbols, so the assembly code can be used

 with the "PREFIX" assembly directive.

 -melf

 Generate an executable in the ELF format, rather than the default mmo format used by

 the mmix simulator.

 -mbranch-predict

 -mno-branch-predict

 Use (do not use) the probable-branch instructions, when static branch prediction

 indicates a probable branch.

 -mbase-addresses

 -mno-base-addresses

 Generate (do not generate) code that uses base addresses. Using a base address

 automatically generates a request (handled by the assembler and the linker) for a

 constant to be set up in a global register. The register is used for one or more base

 address requests within the range 0 to 255 from the value held in the register. The

 generally leads to short and fast code, but the number of different data items that

 can be addressed is limited. This means that a program that uses lots of static data

 may require -mno-base-addresses.

 -msingle-exit

 -mno-single-exit

 Force (do not force) generated code to have a single exit point in each function.

 MN10300 Options Page 457/576

 These -m options are defined for Matsushita MN10300 architectures:

 -mmult-bug

 Generate code to avoid bugs in the multiply instructions for the MN10300 processors.

 This is the default.

 -mno-mult-bug

 Do not generate code to avoid bugs in the multiply instructions for the MN10300

 processors.

 -mam33

 Generate code using features specific to the AM33 processor.

 -mno-am33

 Do not generate code using features specific to the AM33 processor. This is the

 default.

 -mam33-2

 Generate code using features specific to the AM33/2.0 processor.

 -mam34

 Generate code using features specific to the AM34 processor.

 -mtune=cpu-type

 Use the timing characteristics of the indicated CPU type when scheduling instructions.

 This does not change the targeted processor type. The CPU type must be one of

 mn10300, am33, am33-2 or am34.

 -mreturn-pointer-on-d0

 When generating a function that returns a pointer, return the pointer in both "a0" and

 "d0". Otherwise, the pointer is returned only in "a0", and attempts to call such

 functions without a prototype result in errors. Note that this option is on by

 default; use -mno-return-pointer-on-d0 to disable it.

 -mno-crt0

 Do not link in the C run-time initialization object file.

 -mrelax

 Indicate to the linker that it should perform a relaxation optimization pass to

 shorten branches, calls and absolute memory addresses. This option only has an effect

 when used on the command line for the final link step.

 This option makes symbolic debugging impossible.

 -mliw Page 458/576

 Allow the compiler to generate Long Instruction Word instructions if the target is the

 AM33 or later. This is the default. This option defines the preprocessor macro

 "__LIW__".

 -mno-liw

 Do not allow the compiler to generate Long Instruction Word instructions. This option

 defines the preprocessor macro "__NO_LIW__".

 -msetlb

 Allow the compiler to generate the SETLB and Lcc instructions if the target is the

 AM33 or later. This is the default. This option defines the preprocessor macro

 "__SETLB__".

 -mno-setlb

 Do not allow the compiler to generate SETLB or Lcc instructions. This option defines

 the preprocessor macro "__NO_SETLB__".

 Moxie Options

 -meb

 Generate big-endian code. This is the default for moxie-*-* configurations.

 -mel

 Generate little-endian code.

 -mmul.x

 Generate mul.x and umul.x instructions. This is the default for moxiebox-*-*

 configurations.

 -mno-crt0

 Do not link in the C run-time initialization object file.

 MSP430 Options

 These options are defined for the MSP430:

 -masm-hex

 Force assembly output to always use hex constants. Normally such constants are signed

 decimals, but this option is available for testsuite and/or aesthetic purposes.

 -mmcu=

 Select the MCU to target. This is used to create a C preprocessor symbol based upon

 the MCU name, converted to upper case and pre- and post-fixed with __. This in turn

 is used by the msp430.h header file to select an MCU-specific supplementary header

 file. Page 459/576

 The option also sets the ISA to use. If the MCU name is one that is known to only

 support the 430 ISA then that is selected, otherwise the 430X ISA is selected. A

 generic MCU name of msp430 can also be used to select the 430 ISA. Similarly the

 generic msp430x MCU name selects the 430X ISA.

 In addition an MCU-specific linker script is added to the linker command line. The

 script's name is the name of the MCU with .ld appended. Thus specifying -mmcu=xxx on

 the gcc command line defines the C preprocessor symbol "__XXX__" and cause the linker

 to search for a script called xxx.ld.

 The ISA and hardware multiply supported for the different MCUs is hard-coded into GCC.

 However, an external devices.csv file can be used to extend device support beyond

 those that have been hard-coded.

 GCC searches for the devices.csv file using the following methods in the given

 precedence order, where the first method takes precendence over the second which takes

 precedence over the third.

 Include path specified with "-I" and "-L"

 devices.csv will be searched for in each of the directories specified by include

 paths and linker library search paths.

 Path specified by the environment variable MSP430_GCC_INCLUDE_DIR

 Define the value of the global environment variable MSP430_GCC_INCLUDE_DIR to the

 full path to the directory containing devices.csv, and GCC will search this

 directory for devices.csv. If devices.csv is found, this directory will also be

 registered as an include path, and linker library path. Header files and linker

 scripts in this directory can therefore be used without manually specifying "-I"

 and "-L" on the command line.

 The msp430-elf{,bare}/include/devices directory

 Finally, GCC will examine msp430-elf{,bare}/include/devices from the toolchain

 root directory. This directory does not exist in a default installation, but if

 the user has created it and copied devices.csv there, then the MCU data will be

 read. As above, this directory will also be registered as an include path, and

 linker library path.

 If none of the above search methods find devices.csv, then the hard-coded MCU data is

 used.

 -mwarn-mcu Page 460/576

 -mno-warn-mcu

 This option enables or disables warnings about conflicts between the MCU name

 specified by the -mmcu option and the ISA set by the -mcpu option and/or the hardware

 multiply support set by the -mhwmult option. It also toggles warnings about

 unrecognized MCU names. This option is on by default.

 -mcpu=

 Specifies the ISA to use. Accepted values are msp430, msp430x and msp430xv2. This

 option is deprecated. The -mmcu= option should be used to select the ISA.

 -msim

 Link to the simulator runtime libraries and linker script. Overrides any scripts that

 would be selected by the -mmcu= option.

 -mlarge

 Use large-model addressing (20-bit pointers, 20-bit "size_t").

 -msmall

 Use small-model addressing (16-bit pointers, 16-bit "size_t").

 -mrelax

 This option is passed to the assembler and linker, and allows the linker to perform

 certain optimizations that cannot be done until the final link.

 mhwmult=

 Describes the type of hardware multiply supported by the target. Accepted values are

 none for no hardware multiply, 16bit for the original 16-bit-only multiply supported

 by early MCUs. 32bit for the 16/32-bit multiply supported by later MCUs and f5series

 for the 16/32-bit multiply supported by F5-series MCUs. A value of auto can also be

 given. This tells GCC to deduce the hardware multiply support based upon the MCU name

 provided by the -mmcu option. If no -mmcu option is specified or if the MCU name is

 not recognized then no hardware multiply support is assumed. "auto" is the default

 setting.

 Hardware multiplies are normally performed by calling a library routine. This saves

 space in the generated code. When compiling at -O3 or higher however the hardware

 multiplier is invoked inline. This makes for bigger, but faster code.

 The hardware multiply routines disable interrupts whilst running and restore the

 previous interrupt state when they finish. This makes them safe to use inside

 interrupt handlers as well as in normal code. Page 461/576

 -minrt

 Enable the use of a minimum runtime environment - no static initializers or

 constructors. This is intended for memory-constrained devices. The compiler includes

 special symbols in some objects that tell the linker and runtime which code fragments

 are required.

 -mtiny-printf

 Enable reduced code size "printf" and "puts" library functions. The tiny

 implementations of these functions are not reentrant, so must be used with caution in

 multi-threaded applications.

 Support for streams has been removed and the string to be printed will always be sent

 to stdout via the "write" syscall. The string is not buffered before it is sent to

 write.

 This option requires Newlib Nano IO, so GCC must be configured with

 --enable-newlib-nano-formatted-io.

 -mmax-inline-shift=

 This option takes an integer between 0 and 64 inclusive, and sets the maximum number

 of inline shift instructions which should be emitted to perform a shift operation by a

 constant amount. When this value needs to be exceeded, an mspabi helper function is

 used instead. The default value is 4.

 This only affects cases where a shift by multiple positions cannot be completed with a

 single instruction (e.g. all shifts >1 on the 430 ISA).

 Shifts of a 32-bit value are at least twice as costly, so the value passed for this

 option is divided by 2 and the resulting value used instead.

 -mcode-region=

 -mdata-region=

 These options tell the compiler where to place functions and data that do not have one

 of the "lower", "upper", "either" or "section" attributes. Possible values are

 "lower", "upper", "either" or "any". The first three behave like the corresponding

 attribute. The fourth possible value - "any" - is the default. It leaves placement

 entirely up to the linker script and how it assigns the standard sections (".text",

 ".data", etc) to the memory regions.

 -msilicon-errata=

 This option passes on a request to assembler to enable the fixes for the named silicon Page 462/576

 errata.

 -msilicon-errata-warn=

 This option passes on a request to the assembler to enable warning messages when a

 silicon errata might need to be applied.

 -mwarn-devices-csv

 -mno-warn-devices-csv

 Warn if devices.csv is not found or there are problem parsing it (default: on).

 NDS32 Options

 These options are defined for NDS32 implementations:

 -mbig-endian

 Generate code in big-endian mode.

 -mlittle-endian

 Generate code in little-endian mode.

 -mreduced-regs

 Use reduced-set registers for register allocation.

 -mfull-regs

 Use full-set registers for register allocation.

 -mcmov

 Generate conditional move instructions.

 -mno-cmov

 Do not generate conditional move instructions.

 -mext-perf

 Generate performance extension instructions.

 -mno-ext-perf

 Do not generate performance extension instructions.

 -mext-perf2

 Generate performance extension 2 instructions.

 -mno-ext-perf2

 Do not generate performance extension 2 instructions.

 -mext-string

 Generate string extension instructions.

 -mno-ext-string

 Do not generate string extension instructions. Page 463/576

 -mv3push

 Generate v3 push25/pop25 instructions.

 -mno-v3push

 Do not generate v3 push25/pop25 instructions.

 -m16-bit

 Generate 16-bit instructions.

 -mno-16-bit

 Do not generate 16-bit instructions.

 -misr-vector-size=num

 Specify the size of each interrupt vector, which must be 4 or 16.

 -mcache-block-size=num

 Specify the size of each cache block, which must be a power of 2 between 4 and 512.

 -march=arch

 Specify the name of the target architecture.

 -mcmodel=code-model

 Set the code model to one of

 small

 All the data and read-only data segments must be within 512KB addressing space.

 The text segment must be within 16MB addressing space.

 medium

 The data segment must be within 512KB while the read-only data segment can be

 within 4GB addressing space. The text segment should be still within 16MB

 addressing space.

 large

 All the text and data segments can be within 4GB addressing space.

 -mctor-dtor

 Enable constructor/destructor feature.

 -mrelax

 Guide linker to relax instructions.

 Nios II Options

 These are the options defined for the Altera Nios II processor.

 -G num

 Put global and static objects less than or equal to num bytes into the small data or Page 464/576

 BSS sections instead of the normal data or BSS sections. The default value of num is

 8.

 -mgpopt=option

 -mgpopt

 -mno-gpopt

 Generate (do not generate) GP-relative accesses. The following option names are

 recognized:

 none

 Do not generate GP-relative accesses.

 local

 Generate GP-relative accesses for small data objects that are not external, weak,

 or uninitialized common symbols. Also use GP-relative addressing for objects that

 have been explicitly placed in a small data section via a "section" attribute.

 global

 As for local, but also generate GP-relative accesses for small data objects that

 are external, weak, or common. If you use this option, you must ensure that all

 parts of your program (including libraries) are compiled with the same -G setting.

 data

 Generate GP-relative accesses for all data objects in the program. If you use

 this option, the entire data and BSS segments of your program must fit in 64K of

 memory and you must use an appropriate linker script to allocate them within the

 addressable range of the global pointer.

 all Generate GP-relative addresses for function pointers as well as data pointers. If

 you use this option, the entire text, data, and BSS segments of your program must

 fit in 64K of memory and you must use an appropriate linker script to allocate

 them within the addressable range of the global pointer.

 -mgpopt is equivalent to -mgpopt=local, and -mno-gpopt is equivalent to -mgpopt=none.

 The default is -mgpopt except when -fpic or -fPIC is specified to generate position-

 independent code. Note that the Nios II ABI does not permit GP-relative accesses from

 shared libraries.

 You may need to specify -mno-gpopt explicitly when building programs that include

 large amounts of small data, including large GOT data sections. In this case, the

 16-bit offset for GP-relative addressing may not be large enough to allow access to Page 465/576

 the entire small data section.

 -mgprel-sec=regexp

 This option specifies additional section names that can be accessed via GP-relative

 addressing. It is most useful in conjunction with "section" attributes on variable

 declarations and a custom linker script. The regexp is a POSIX Extended Regular

 Expression.

 This option does not affect the behavior of the -G option, and the specified sections

 are in addition to the standard ".sdata" and ".sbss" small-data sections that are

 recognized by -mgpopt.

 -mr0rel-sec=regexp

 This option specifies names of sections that can be accessed via a 16-bit offset from

 "r0"; that is, in the low 32K or high 32K of the 32-bit address space. It is most

 useful in conjunction with "section" attributes on variable declarations and a custom

 linker script. The regexp is a POSIX Extended Regular Expression.

 In contrast to the use of GP-relative addressing for small data, zero-based addressing

 is never generated by default and there are no conventional section names used in

 standard linker scripts for sections in the low or high areas of memory.

 -mel

 -meb

 Generate little-endian (default) or big-endian (experimental) code, respectively.

 -march=arch

 This specifies the name of the target Nios II architecture. GCC uses this name to

 determine what kind of instructions it can emit when generating assembly code.

 Permissible names are: r1, r2.

 The preprocessor macro "__nios2_arch__" is available to programs, with value 1 or 2,

 indicating the targeted ISA level.

 -mbypass-cache

 -mno-bypass-cache

 Force all load and store instructions to always bypass cache by using I/O variants of

 the instructions. The default is not to bypass the cache.

 -mno-cache-volatile

 -mcache-volatile

 Volatile memory access bypass the cache using the I/O variants of the load and store Page 466/576

 instructions. The default is not to bypass the cache.

 -mno-fast-sw-div

 -mfast-sw-div

 Do not use table-based fast divide for small numbers. The default is to use the fast

 divide at -O3 and above.

 -mno-hw-mul

 -mhw-mul

 -mno-hw-mulx

 -mhw-mulx

 -mno-hw-div

 -mhw-div

 Enable or disable emitting "mul", "mulx" and "div" family of instructions by the

 compiler. The default is to emit "mul" and not emit "div" and "mulx".

 -mbmx

 -mno-bmx

 -mcdx

 -mno-cdx

 Enable or disable generation of Nios II R2 BMX (bit manipulation) and CDX (code

 density) instructions. Enabling these instructions also requires -march=r2. Since

 these instructions are optional extensions to the R2 architecture, the default is not

 to emit them.

 -mcustom-insn=N

 -mno-custom-insn

 Each -mcustom-insn=N option enables use of a custom instruction with encoding N when

 generating code that uses insn. For example, -mcustom-fadds=253 generates custom

 instruction 253 for single-precision floating-point add operations instead of the

 default behavior of using a library call.

 The following values of insn are supported. Except as otherwise noted, floating-point

 operations are expected to be implemented with normal IEEE 754 semantics and

 correspond directly to the C operators or the equivalent GCC built-in functions.

 Single-precision floating point:

 fadds, fsubs, fdivs, fmuls

 Binary arithmetic operations. Page 467/576

 fnegs

 Unary negation.

 fabss

 Unary absolute value.

 fcmpeqs, fcmpges, fcmpgts, fcmples, fcmplts, fcmpnes

 Comparison operations.

 fmins, fmaxs

 Floating-point minimum and maximum. These instructions are only generated if

 -ffinite-math-only is specified.

 fsqrts

 Unary square root operation.

 fcoss, fsins, ftans, fatans, fexps, flogs

 Floating-point trigonometric and exponential functions. These instructions are

 only generated if -funsafe-math-optimizations is also specified.

 Double-precision floating point:

 faddd, fsubd, fdivd, fmuld

 Binary arithmetic operations.

 fnegd

 Unary negation.

 fabsd

 Unary absolute value.

 fcmpeqd, fcmpged, fcmpgtd, fcmpled, fcmpltd, fcmpned

 Comparison operations.

 fmind, fmaxd

 Double-precision minimum and maximum. These instructions are only generated if

 -ffinite-math-only is specified.

 fsqrtd

 Unary square root operation.

 fcosd, fsind, ftand, fatand, fexpd, flogd

 Double-precision trigonometric and exponential functions. These instructions are

 only generated if -funsafe-math-optimizations is also specified.

 Conversions:

 fextsd Page 468/576

 Conversion from single precision to double precision.

 ftruncds

 Conversion from double precision to single precision.

 fixsi, fixsu, fixdi, fixdu

 Conversion from floating point to signed or unsigned integer types, with

 truncation towards zero.

 round

 Conversion from single-precision floating point to signed integer, rounding to the

 nearest integer and ties away from zero. This corresponds to the

 "__builtin_lroundf" function when -fno-math-errno is used.

 floatis, floatus, floatid, floatud

 Conversion from signed or unsigned integer types to floating-point types.

 In addition, all of the following transfer instructions for internal registers X and Y

 must be provided to use any of the double-precision floating-point instructions.

 Custom instructions taking two double-precision source operands expect the first

 operand in the 64-bit register X. The other operand (or only operand of a unary

 operation) is given to the custom arithmetic instruction with the least significant

 half in source register src1 and the most significant half in src2. A custom

 instruction that returns a double-precision result returns the most significant 32

 bits in the destination register and the other half in 32-bit register Y. GCC

 automatically generates the necessary code sequences to write register X and/or read

 register Y when double-precision floating-point instructions are used.

 fwrx

 Write src1 into the least significant half of X and src2 into the most significant

 half of X.

 fwry

 Write src1 into Y.

 frdxhi, frdxlo

 Read the most or least (respectively) significant half of X and store it in dest.

 frdy

 Read the value of Y and store it into dest.

 Note that you can gain more local control over generation of Nios II custom

 instructions by using the "target("custom-insn=N")" and "target("no-custom-insn")" Page 469/576

 function attributes or pragmas.

 -mcustom-fpu-cfg=name

 This option enables a predefined, named set of custom instruction encodings (see

 -mcustom-insn above). Currently, the following sets are defined:

 -mcustom-fpu-cfg=60-1 is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253

 -mcustom-fsubs=254 -fsingle-precision-constant

 -mcustom-fpu-cfg=60-2 is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253

 -mcustom-fsubs=254 -mcustom-fdivs=255 -fsingle-precision-constant

 -mcustom-fpu-cfg=72-3 is equivalent to: -mcustom-floatus=243 -mcustom-fixsi=244

 -mcustom-floatis=245 -mcustom-fcmpgts=246 -mcustom-fcmples=249 -mcustom-fcmpeqs=250

 -mcustom-fcmpnes=251 -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254

 -mcustom-fdivs=255 -fsingle-precision-constant

 -mcustom-fpu-cfg=fph2 is equivalent to: -mcustom-fabss=224 -mcustom-fnegs=225

 -mcustom-fcmpnes=226 -mcustom-fcmpeqs=227 -mcustom-fcmpges=228 -mcustom-fcmpgts=229

 -mcustom-fcmples=230 -mcustom-fcmplts=231 -mcustom-fmaxs=232 -mcustom-fmins=233

 -mcustom-round=248 -mcustom-fixsi=249 -mcustom-floatis=250 -mcustom-fsqrts=251

 -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -mcustom-fdivs=255

 Custom instruction assignments given by individual -mcustom-insn= options override

 those given by -mcustom-fpu-cfg=, regardless of the order of the options on the

 command line.

 Note that you can gain more local control over selection of a FPU configuration by

 using the "target("custom-fpu-cfg=name")" function attribute or pragma.

 The name fph2 is an abbreviation for Nios II Floating Point Hardware 2 Component.

 Please note that the custom instructions enabled by -mcustom-fmins=233 and

 -mcustom-fmaxs=234 are only generated if -ffinite-math-only is specified. The custom

 instruction enabled by -mcustom-round=248 is only generated if -fno-math-errno is

 specified. In contrast to the other configurations, -fsingle-precision-constant is

 not set.

 These additional -m options are available for the Altera Nios II ELF (bare-metal) target:

 -mhal

 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime startup

 and termination code, and is typically used in conjunction with -msys-crt0= to specify

 the location of the alternate startup code provided by the HAL BSP. Page 470/576

 -msmallc

 Link with a limited version of the C library, -lsmallc, rather than Newlib.

 -msys-crt0=startfile

 startfile is the file name of the startfile (crt0) to use when linking. This option

 is only useful in conjunction with -mhal.

 -msys-lib=systemlib

 systemlib is the library name of the library that provides low-level system calls

 required by the C library, e.g. "read" and "write". This option is typically used to

 link with a library provided by a HAL BSP.

 Nvidia PTX Options

 These options are defined for Nvidia PTX:

 -m64

 Ignored, but preserved for backward compatibility. Only 64-bit ABI is supported.

 -misa=ISA-string

 Generate code for given the specified PTX ISA (e.g. sm_35). ISA strings must be

 lower-case. Valid ISA strings include sm_30 and sm_35. The default ISA is sm_35.

 -mmainkernel

 Link in code for a __main kernel. This is for stand-alone instead of offloading

 execution.

 -moptimize

 Apply partitioned execution optimizations. This is the default when any level of

 optimization is selected.

 -msoft-stack

 Generate code that does not use ".local" memory directly for stack storage. Instead, a

 per-warp stack pointer is maintained explicitly. This enables variable-length stack

 allocation (with variable-length arrays or "alloca"), and when global memory is used

 for underlying storage, makes it possible to access automatic variables from other

 threads, or with atomic instructions. This code generation variant is used for OpenMP

 offloading, but the option is exposed on its own for the purpose of testing the

 compiler; to generate code suitable for linking into programs using OpenMP offloading,

 use option -mgomp.

 -muniform-simt

 Switch to code generation variant that allows to execute all threads in each warp, Page 471/576

 while maintaining memory state and side effects as if only one thread in each warp was

 active outside of OpenMP SIMD regions. All atomic operations and calls to runtime

 (malloc, free, vprintf) are conditionally executed (iff current lane index equals the

 master lane index), and the register being assigned is copied via a shuffle

 instruction from the master lane. Outside of SIMD regions lane 0 is the master;

 inside, each thread sees itself as the master. Shared memory array "int

 __nvptx_uni[]" stores all-zeros or all-ones bitmasks for each warp, indicating current

 mode (0 outside of SIMD regions). Each thread can bitwise-and the bitmask at position

 "tid.y" with current lane index to compute the master lane index.

 -mgomp

 Generate code for use in OpenMP offloading: enables -msoft-stack and -muniform-simt

 options, and selects corresponding multilib variant.

 OpenRISC Options

 These options are defined for OpenRISC:

 -mboard=name

 Configure a board specific runtime. This will be passed to the linker for newlib

 board library linking. The default is "or1ksim".

 -mnewlib

 This option is ignored; it is for compatibility purposes only. This used to select

 linker and preprocessor options for use with newlib.

 -msoft-div

 -mhard-div

 Select software or hardware divide ("l.div", "l.divu") instructions. This default is

 hardware divide.

 -msoft-mul

 -mhard-mul

 Select software or hardware multiply ("l.mul", "l.muli") instructions. This default

 is hardware multiply.

 -msoft-float

 -mhard-float

 Select software or hardware for floating point operations. The default is software.

 -mdouble-float

 When -mhard-float is selected, enables generation of double-precision floating point Page 472/576

 instructions. By default functions from libgcc are used to perform double-precision

 floating point operations.

 -munordered-float

 When -mhard-float is selected, enables generation of unordered floating point compare

 and set flag ("lf.sfun*") instructions. By default functions from libgcc are used to

 perform unordered floating point compare and set flag operations.

 -mcmov

 Enable generation of conditional move ("l.cmov") instructions. By default the

 equivalent will be generated using set and branch.

 -mror

 Enable generation of rotate right ("l.ror") instructions. By default functions from

 libgcc are used to perform rotate right operations.

 -mrori

 Enable generation of rotate right with immediate ("l.rori") instructions. By default

 functions from libgcc are used to perform rotate right with immediate operations.

 -msext

 Enable generation of sign extension ("l.ext*") instructions. By default memory loads

 are used to perform sign extension.

 -msfimm

 Enable generation of compare and set flag with immediate ("l.sf*i") instructions. By

 default extra instructions will be generated to store the immediate to a register

 first.

 -mshftimm

 Enable generation of shift with immediate ("l.srai", "l.srli", "l.slli") instructions.

 By default extra instructions will be generated to store the immediate to a register

 first.

 PDP-11 Options

 These options are defined for the PDP-11:

 -mfpu

 Use hardware FPP floating point. This is the default. (FIS floating point on the

 PDP-11/40 is not supported.) Implies -m45.

 -msoft-float

 Do not use hardware floating point. Page 473/576

 -mac0

 Return floating-point results in ac0 (fr0 in Unix assembler syntax).

 -mno-ac0

 Return floating-point results in memory. This is the default.

 -m40

 Generate code for a PDP-11/40. Implies -msoft-float -mno-split.

 -m45

 Generate code for a PDP-11/45. This is the default.

 -m10

 Generate code for a PDP-11/10. Implies -msoft-float -mno-split.

 -mint16

 -mno-int32

 Use 16-bit "int". This is the default.

 -mint32

 -mno-int16

 Use 32-bit "int".

 -msplit

 Target has split instruction and data space. Implies -m45.

 -munix-asm

 Use Unix assembler syntax.

 -mdec-asm

 Use DEC assembler syntax.

 -mgnu-asm

 Use GNU assembler syntax. This is the default.

 -mlra

 Use the new LRA register allocator. By default, the old "reload" allocator is used.

 picoChip Options

 These -m options are defined for picoChip implementations:

 -mae=ae_type

 Set the instruction set, register set, and instruction scheduling parameters for array

 element type ae_type. Supported values for ae_type are ANY, MUL, and MAC.

 -mae=ANY selects a completely generic AE type. Code generated with this option runs

 on any of the other AE types. The code is not as efficient as it would be if compiled Page 474/576

 for a specific AE type, and some types of operation (e.g., multiplication) do not work

 properly on all types of AE.

 -mae=MUL selects a MUL AE type. This is the most useful AE type for compiled code,

 and is the default.

 -mae=MAC selects a DSP-style MAC AE. Code compiled with this option may suffer from

 poor performance of byte (char) manipulation, since the DSP AE does not provide

 hardware support for byte load/stores.

 -msymbol-as-address

 Enable the compiler to directly use a symbol name as an address in a load/store

 instruction, without first loading it into a register. Typically, the use of this

 option generates larger programs, which run faster than when the option isn't used.

 However, the results vary from program to program, so it is left as a user option,

 rather than being permanently enabled.

 -mno-inefficient-warnings

 Disables warnings about the generation of inefficient code. These warnings can be

 generated, for example, when compiling code that performs byte-level memory operations

 on the MAC AE type. The MAC AE has no hardware support for byte-level memory

 operations, so all byte load/stores must be synthesized from word load/store

 operations. This is inefficient and a warning is generated to indicate that you

 should rewrite the code to avoid byte operations, or to target an AE type that has the

 necessary hardware support. This option disables these warnings.

 PowerPC Options

 These are listed under

 PRU Options

 These command-line options are defined for PRU target:

 -minrt

 Link with a minimum runtime environment, with no support for static initializers and

 constructors. Using this option can significantly reduce the size of the final ELF

 binary. Beware that the compiler could still generate code with static initializers

 and constructors. It is up to the programmer to ensure that the source program will

 not use those features.

 -mmcu=mcu

 Specify the PRU MCU variant to use. Check Newlib for the exact list of supported Page 475/576

 MCUs.

 -mno-relax

 Make GCC pass the --no-relax command-line option to the linker instead of the --relax

 option.

 -mloop

 Allow (or do not allow) GCC to use the LOOP instruction.

 -mabi=variant

 Specify the ABI variant to output code for. -mabi=ti selects the unmodified TI ABI

 while -mabi=gnu selects a GNU variant that copes more naturally with certain GCC

 assumptions. These are the differences:

 Function Pointer Size

 TI ABI specifies that function (code) pointers are 16-bit, whereas GNU supports

 only 32-bit data and code pointers.

 Optional Return Value Pointer

 Function return values larger than 64 bits are passed by using a hidden pointer as

 the first argument of the function. TI ABI, though, mandates that the pointer can

 be NULL in case the caller is not using the returned value. GNU always passes and

 expects a valid return value pointer.

 The current -mabi=ti implementation simply raises a compile error when any of the

 above code constructs is detected. As a consequence the standard C library cannot be

 built and it is omitted when linking with -mabi=ti.

 Relaxation is a GNU feature and for safety reasons is disabled when using -mabi=ti.

 The TI toolchain does not emit relocations for QBBx instructions, so the GNU linker

 cannot adjust them when shortening adjacent LDI32 pseudo instructions.

 RISC-V Options

 These command-line options are defined for RISC-V targets:

 -mbranch-cost=n

 Set the cost of branches to roughly n instructions.

 -mplt

 -mno-plt

 When generating PIC code, do or don't allow the use of PLTs. Ignored for non-PIC. The

 default is -mplt.

 -mabi=ABI-string Page 476/576

 Specify integer and floating-point calling convention. ABI-string contains two parts:

 the size of integer types and the registers used for floating-point types. For

 example -march=rv64ifd -mabi=lp64d means that long and pointers are 64-bit (implicitly

 defining int to be 32-bit), and that floating-point values up to 64 bits wide are

 passed in F registers. Contrast this with -march=rv64ifd -mabi=lp64f, which still

 allows the compiler to generate code that uses the F and D extensions but only allows

 floating-point values up to 32 bits long to be passed in registers; or -march=rv64ifd

 -mabi=lp64, in which no floating-point arguments will be passed in registers.

 The default for this argument is system dependent, users who want a specific calling

 convention should specify one explicitly. The valid calling conventions are: ilp32,

 ilp32f, ilp32d, lp64, lp64f, and lp64d. Some calling conventions are impossible to

 implement on some ISAs: for example, -march=rv32if -mabi=ilp32d is invalid because the

 ABI requires 64-bit values be passed in F registers, but F registers are only 32 bits

 wide. There is also the ilp32e ABI that can only be used with the rv32e architecture.

 This ABI is not well specified at present, and is subject to change.

 -mfdiv

 -mno-fdiv

 Do or don't use hardware floating-point divide and square root instructions. This

 requires the F or D extensions for floating-point registers. The default is to use

 them if the specified architecture has these instructions.

 -mdiv

 -mno-div

 Do or don't use hardware instructions for integer division. This requires the M

 extension. The default is to use them if the specified architecture has these

 instructions.

 -march=ISA-string

 Generate code for given RISC-V ISA (e.g. rv64im). ISA strings must be lower-case.

 Examples include rv64i, rv32g, rv32e, and rv32imaf.

 When -march= is not specified, use the setting from -mcpu.

 If both -march and -mcpu= are not specified, the default for this argument is system

 dependent, users who want a specific architecture extensions should specify one

 explicitly.

 -mcpu=processor-string Page 477/576

 Use architecture of and optimize the output for the given processor, specified by

 particular CPU name. Permissible values for this option are: sifive-e20, sifive-e21,

 sifive-e24, sifive-e31, sifive-e34, sifive-e76, sifive-s21, sifive-s51, sifive-s54,

 sifive-s76, sifive-u54, and sifive-u74.

 -mtune=processor-string

 Optimize the output for the given processor, specified by microarchitecture or

 particular CPU name. Permissible values for this option are: rocket, sifive-3-series,

 sifive-5-series, sifive-7-series, size, and all valid options for -mcpu=.

 When -mtune= is not specified, use the setting from -mcpu, the default is rocket if

 both are not specified.

 The size choice is not intended for use by end-users. This is used when -Os is

 specified. It overrides the instruction cost info provided by -mtune=, but does not

 override the pipeline info. This helps reduce code size while still giving good

 performance.

 -mpreferred-stack-boundary=num

 Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary. If

 -mpreferred-stack-boundary is not specified, the default is 4 (16 bytes or 128-bits).

 Warning: If you use this switch, then you must build all modules with the same value,

 including any libraries. This includes the system libraries and startup modules.

 -msmall-data-limit=n

 Put global and static data smaller than n bytes into a special section (on some

 targets).

 -msave-restore

 -mno-save-restore

 Do or don't use smaller but slower prologue and epilogue code that uses library

 function calls. The default is to use fast inline prologues and epilogues.

 -mshorten-memrefs

 -mno-shorten-memrefs

 Do or do not attempt to make more use of compressed load/store instructions by

 replacing a load/store of 'base register + large offset' with a new load/store of 'new

 base + small offset'. If the new base gets stored in a compressed register, then the

 new load/store can be compressed. Currently targets 32-bit integer load/stores only.

 -mstrict-align Page 478/576

 -mno-strict-align

 Do not or do generate unaligned memory accesses. The default is set depending on

 whether the processor we are optimizing for supports fast unaligned access or not.

 -mcmodel=medlow

 Generate code for the medium-low code model. The program and its statically defined

 symbols must lie within a single 2 GiB address range and must lie between absolute

 addresses -2 GiB and +2 GiB. Programs can be statically or dynamically linked. This is

 the default code model.

 -mcmodel=medany

 Generate code for the medium-any code model. The program and its statically defined

 symbols must be within any single 2 GiB address range. Programs can be statically or

 dynamically linked.

 -mexplicit-relocs

 -mno-exlicit-relocs

 Use or do not use assembler relocation operators when dealing with symbolic addresses.

 The alternative is to use assembler macros instead, which may limit optimization.

 -mrelax

 -mno-relax

 Take advantage of linker relaxations to reduce the number of instructions required to

 materialize symbol addresses. The default is to take advantage of linker relaxations.

 -memit-attribute

 -mno-emit-attribute

 Emit (do not emit) RISC-V attribute to record extra information into ELF objects.

 This feature requires at least binutils 2.32.

 -malign-data=type

 Control how GCC aligns variables and constants of array, structure, or union types.

 Supported values for type are xlen which uses x register width as the alignment value,

 and natural which uses natural alignment. xlen is the default.

 -mbig-endian

 Generate big-endian code. This is the default when GCC is configured for a

 riscv64be-*-* or riscv32be-*-* target.

 -mlittle-endian

 Generate little-endian code. This is the default when GCC is configured for a Page 479/576

 riscv64-*-* or riscv32-*-* but not a riscv64be-*-* or riscv32be-*-* target.

 -mstack-protector-guard=guard

 -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset

 Generate stack protection code using canary at guard. Supported locations are global

 for a global canary or tls for per-thread canary in the TLS block.

 With the latter choice the options -mstack-protector-guard-reg=reg and

 -mstack-protector-guard-offset=offset furthermore specify which register to use as

 base register for reading the canary, and from what offset from that base register.

 There is no default register or offset as this is entirely for use within the Linux

 kernel.

 RL78 Options

 -msim

 Links in additional target libraries to support operation within a simulator.

 -mmul=none

 -mmul=g10

 -mmul=g13

 -mmul=g14

 -mmul=rl78

 Specifies the type of hardware multiplication and division support to be used. The

 simplest is "none", which uses software for both multiplication and division. This is

 the default. The "g13" value is for the hardware multiply/divide peripheral found on

 the RL78/G13 (S2 core) targets. The "g14" value selects the use of the multiplication

 and division instructions supported by the RL78/G14 (S3 core) parts. The value "rl78"

 is an alias for "g14" and the value "mg10" is an alias for "none".

 In addition a C preprocessor macro is defined, based upon the setting of this option.

 Possible values are: "__RL78_MUL_NONE__", "__RL78_MUL_G13__" or "__RL78_MUL_G14__".

 -mcpu=g10

 -mcpu=g13

 -mcpu=g14

 -mcpu=rl78

 Specifies the RL78 core to target. The default is the G14 core, also known as an S3

 core or just RL78. The G13 or S2 core does not have multiply or divide instructions, Page 480/576

 instead it uses a hardware peripheral for these operations. The G10 or S1 core does

 not have register banks, so it uses a different calling convention.

 If this option is set it also selects the type of hardware multiply support to use,

 unless this is overridden by an explicit -mmul=none option on the command line. Thus

 specifying -mcpu=g13 enables the use of the G13 hardware multiply peripheral and

 specifying -mcpu=g10 disables the use of hardware multiplications altogether.

 Note, although the RL78/G14 core is the default target, specifying -mcpu=g14 or

 -mcpu=rl78 on the command line does change the behavior of the toolchain since it also

 enables G14 hardware multiply support. If these options are not specified on the

 command line then software multiplication routines will be used even though the code

 targets the RL78 core. This is for backwards compatibility with older toolchains

 which did not have hardware multiply and divide support.

 In addition a C preprocessor macro is defined, based upon the setting of this option.

 Possible values are: "__RL78_G10__", "__RL78_G13__" or "__RL78_G14__".

 -mg10

 -mg13

 -mg14

 -mrl78

 These are aliases for the corresponding -mcpu= option. They are provided for

 backwards compatibility.

 -mallregs

 Allow the compiler to use all of the available registers. By default registers

 "r24..r31" are reserved for use in interrupt handlers. With this option enabled these

 registers can be used in ordinary functions as well.

 -m64bit-doubles

 -m32bit-doubles

 Make the "double" data type be 64 bits (-m64bit-doubles) or 32 bits (-m32bit-doubles)

 in size. The default is -m32bit-doubles.

 -msave-mduc-in-interrupts

 -mno-save-mduc-in-interrupts

 Specifies that interrupt handler functions should preserve the MDUC registers. This

 is only necessary if normal code might use the MDUC registers, for example because it

 performs multiplication and division operations. The default is to ignore the MDUC Page 481/576

 registers as this makes the interrupt handlers faster. The target option -mg13 needs

 to be passed for this to work as this feature is only available on the G13 target (S2

 core). The MDUC registers will only be saved if the interrupt handler performs a

 multiplication or division operation or it calls another function.

 IBM RS/6000 and PowerPC Options

 These -m options are defined for the IBM RS/6000 and PowerPC:

 -mpowerpc-gpopt

 -mno-powerpc-gpopt

 -mpowerpc-gfxopt

 -mno-powerpc-gfxopt

 -mpowerpc64

 -mno-powerpc64

 -mmfcrf

 -mno-mfcrf

 -mpopcntb

 -mno-popcntb

 -mpopcntd

 -mno-popcntd

 -mfprnd

 -mno-fprnd

 -mcmpb

 -mno-cmpb

 -mhard-dfp

 -mno-hard-dfp

 You use these options to specify which instructions are available on the processor you

 are using. The default value of these options is determined when configuring GCC.

 Specifying the -mcpu=cpu_type overrides the specification of these options. We

 recommend you use the -mcpu=cpu_type option rather than the options listed above.

 Specifying -mpowerpc-gpopt allows GCC to use the optional PowerPC architecture

 instructions in the General Purpose group, including floating-point square root.

 Specifying -mpowerpc-gfxopt allows GCC to use the optional PowerPC architecture

 instructions in the Graphics group, including floating-point select.

 The -mmfcrf option allows GCC to generate the move from condition register field Page 482/576

 instruction implemented on the POWER4 processor and other processors that support the

 PowerPC V2.01 architecture. The -mpopcntb option allows GCC to generate the popcount

 and double-precision FP reciprocal estimate instruction implemented on the POWER5

 processor and other processors that support the PowerPC V2.02 architecture. The

 -mpopcntd option allows GCC to generate the popcount instruction implemented on the

 POWER7 processor and other processors that support the PowerPC V2.06 architecture.

 The -mfprnd option allows GCC to generate the FP round to integer instructions

 implemented on the POWER5+ processor and other processors that support the PowerPC

 V2.03 architecture. The -mcmpb option allows GCC to generate the compare bytes

 instruction implemented on the POWER6 processor and other processors that support the

 PowerPC V2.05 architecture. The -mhard-dfp option allows GCC to generate the decimal

 floating-point instructions implemented on some POWER processors.

 The -mpowerpc64 option allows GCC to generate the additional 64-bit instructions that

 are found in the full PowerPC64 architecture and to treat GPRs as 64-bit, doubleword

 quantities. GCC defaults to -mno-powerpc64.

 -mcpu=cpu_type

 Set architecture type, register usage, and instruction scheduling parameters for

 machine type cpu_type. Supported values for cpu_type are 401, 403, 405, 405fp, 440,

 440fp, 464, 464fp, 476, 476fp, 505, 601, 602, 603, 603e, 604, 604e, 620, 630, 740,

 7400, 7450, 750, 801, 821, 823, 860, 970, 8540, a2, e300c2, e300c3, e500mc, e500mc64,

 e5500, e6500, ec603e, G3, G4, G5, titan, power3, power4, power5, power5+, power6,

 power6x, power7, power8, power9, power10, powerpc, powerpc64, powerpc64le, rs64, and

 native.

 -mcpu=powerpc, -mcpu=powerpc64, and -mcpu=powerpc64le specify pure 32-bit PowerPC

 (either endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC

 architecture machine types, with an appropriate, generic processor model assumed for

 scheduling purposes.

 Specifying native as cpu type detects and selects the architecture option that

 corresponds to the host processor of the system performing the compilation.

 -mcpu=native has no effect if GCC does not recognize the processor.

 The other options specify a specific processor. Code generated under those options

 runs best on that processor, and may not run at all on others.

 The -mcpu options automatically enable or disable the following options: Page 483/576

 -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple -mpopcntb -mpopcntd

 -mpowerpc64 -mpowerpc-gpopt -mpowerpc-gfxopt -mmulhw -mdlmzb -mmfpgpr -mvsx

 -mcrypto -mhtm -mpower8-fusion -mpower8-vector -mquad-memory -mquad-memory-atomic

 -mfloat128 -mfloat128-hardware -mprefixed -mpcrel -mmma -mrop-protect

 The particular options set for any particular CPU varies between compiler versions,

 depending on what setting seems to produce optimal code for that CPU; it doesn't

 necessarily reflect the actual hardware's capabilities. If you wish to set an

 individual option to a particular value, you may specify it after the -mcpu option,

 like -mcpu=970 -mno-altivec.

 On AIX, the -maltivec and -mpowerpc64 options are not enabled or disabled by the -mcpu

 option at present because AIX does not have full support for these options. You may

 still enable or disable them individually if you're sure it'll work in your

 environment.

 -mtune=cpu_type

 Set the instruction scheduling parameters for machine type cpu_type, but do not set

 the architecture type or register usage, as -mcpu=cpu_type does. The same values for

 cpu_type are used for -mtune as for -mcpu. If both are specified, the code generated

 uses the architecture and registers set by -mcpu, but the scheduling parameters set by

 -mtune.

 -mcmodel=small

 Generate PowerPC64 code for the small model: The TOC is limited to 64k.

 -mcmodel=medium

 Generate PowerPC64 code for the medium model: The TOC and other static data may be up

 to a total of 4G in size. This is the default for 64-bit Linux.

 -mcmodel=large

 Generate PowerPC64 code for the large model: The TOC may be up to 4G in size. Other

 data and code is only limited by the 64-bit address space.

 -maltivec

 -mno-altivec

 Generate code that uses (does not use) AltiVec instructions, and also enable the use

 of built-in functions that allow more direct access to the AltiVec instruction set.

 You may also need to set -mabi=altivec to adjust the current ABI with AltiVec ABI

 enhancements. Page 484/576

 When -maltivec is used, the element order for AltiVec intrinsics such as "vec_splat",

 "vec_extract", and "vec_insert" match array element order corresponding to the

 endianness of the target. That is, element zero identifies the leftmost element in a

 vector register when targeting a big-endian platform, and identifies the rightmost

 element in a vector register when targeting a little-endian platform.

 -mvrsave

 -mno-vrsave

 Generate VRSAVE instructions when generating AltiVec code.

 -msecure-plt

 Generate code that allows ld and ld.so to build executables and shared libraries with

 non-executable ".plt" and ".got" sections. This is a PowerPC 32-bit SYSV ABI option.

 -mbss-plt

 Generate code that uses a BSS ".plt" section that ld.so fills in, and requires ".plt"

 and ".got" sections that are both writable and executable. This is a PowerPC 32-bit

 SYSV ABI option.

 -misel

 -mno-isel

 This switch enables or disables the generation of ISEL instructions.

 -mvsx

 -mno-vsx

 Generate code that uses (does not use) vector/scalar (VSX) instructions, and also

 enable the use of built-in functions that allow more direct access to the VSX

 instruction set.

 -mcrypto

 -mno-crypto

 Enable the use (disable) of the built-in functions that allow direct access to the

 cryptographic instructions that were added in version 2.07 of the PowerPC ISA.

 -mhtm

 -mno-htm

 Enable (disable) the use of the built-in functions that allow direct access to the

 Hardware Transactional Memory (HTM) instructions that were added in version 2.07 of

 the PowerPC ISA.

 -mpower8-fusion Page 485/576

 -mno-power8-fusion

 Generate code that keeps (does not keeps) some integer operations adjacent so that the

 instructions can be fused together on power8 and later processors.

 -mpower8-vector

 -mno-power8-vector

 Generate code that uses (does not use) the vector and scalar instructions that were

 added in version 2.07 of the PowerPC ISA. Also enable the use of built-in functions

 that allow more direct access to the vector instructions.

 -mquad-memory

 -mno-quad-memory

 Generate code that uses (does not use) the non-atomic quad word memory instructions.

 The -mquad-memory option requires use of 64-bit mode.

 -mquad-memory-atomic

 -mno-quad-memory-atomic

 Generate code that uses (does not use) the atomic quad word memory instructions. The

 -mquad-memory-atomic option requires use of 64-bit mode.

 -mfloat128

 -mno-float128

 Enable/disable the __float128 keyword for IEEE 128-bit floating point and use either

 software emulation for IEEE 128-bit floating point or hardware instructions.

 The VSX instruction set (-mvsx) must be enabled to use the IEEE 128-bit floating point

 support. The IEEE 128-bit floating point is only supported on Linux.

 The default for -mfloat128 is enabled on PowerPC Linux systems using the VSX

 instruction set, and disabled on other systems.

 If you use the ISA 3.0 instruction set (-mpower9-vector or -mcpu=power9) on a 64-bit

 system, the IEEE 128-bit floating point support will also enable the generation of ISA

 3.0 IEEE 128-bit floating point instructions. Otherwise, if you do not specify to

 generate ISA 3.0 instructions or you are targeting a 32-bit big endian system, IEEE

 128-bit floating point will be done with software emulation.

 -mfloat128-hardware

 -mno-float128-hardware

 Enable/disable using ISA 3.0 hardware instructions to support the __float128 data

 type. Page 486/576

 The default for -mfloat128-hardware is enabled on PowerPC Linux systems using the ISA

 3.0 instruction set, and disabled on other systems.

 -m32

 -m64

 Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets (including

 GNU/Linux). The 32-bit environment sets int, long and pointer to 32 bits and

 generates code that runs on any PowerPC variant. The 64-bit environment sets int to

 32 bits and long and pointer to 64 bits, and generates code for PowerPC64, as for

 -mpowerpc64.

 -mfull-toc

 -mno-fp-in-toc

 -mno-sum-in-toc

 -mminimal-toc

 Modify generation of the TOC (Table Of Contents), which is created for every

 executable file. The -mfull-toc option is selected by default. In that case, GCC

 allocates at least one TOC entry for each unique non-automatic variable reference in

 your program. GCC also places floating-point constants in the TOC. However, only

 16,384 entries are available in the TOC.

 If you receive a linker error message that saying you have overflowed the available

 TOC space, you can reduce the amount of TOC space used with the -mno-fp-in-toc and

 -mno-sum-in-toc options. -mno-fp-in-toc prevents GCC from putting floating-point

 constants in the TOC and -mno-sum-in-toc forces GCC to generate code to calculate the

 sum of an address and a constant at run time instead of putting that sum into the TOC.

 You may specify one or both of these options. Each causes GCC to produce very

 slightly slower and larger code at the expense of conserving TOC space.

 If you still run out of space in the TOC even when you specify both of these options,

 specify -mminimal-toc instead. This option causes GCC to make only one TOC entry for

 every file. When you specify this option, GCC produces code that is slower and larger

 but which uses extremely little TOC space. You may wish to use this option only on

 files that contain less frequently-executed code.

 -maix64

 -maix32

 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit "long" type, and Page 487/576

 the infrastructure needed to support them. Specifying -maix64 implies -mpowerpc64,

 while -maix32 disables the 64-bit ABI and implies -mno-powerpc64. GCC defaults to

 -maix32.

 -mxl-compat

 -mno-xl-compat

 Produce code that conforms more closely to IBM XL compiler semantics when using AIX-

 compatible ABI. Pass floating-point arguments to prototyped functions beyond the

 register save area (RSA) on the stack in addition to argument FPRs. Do not assume

 that most significant double in 128-bit long double value is properly rounded when

 comparing values and converting to double. Use XL symbol names for long double

 support routines.

 The AIX calling convention was extended but not initially documented to handle an

 obscure K&R C case of calling a function that takes the address of its arguments with

 fewer arguments than declared. IBM XL compilers access floating-point arguments that

 do not fit in the RSA from the stack when a subroutine is compiled without

 optimization. Because always storing floating-point arguments on the stack is

 inefficient and rarely needed, this option is not enabled by default and only is

 necessary when calling subroutines compiled by IBM XL compilers without optimization.

 -mpe

 Support IBM RS/6000 SP Parallel Environment (PE). Link an application written to use

 message passing with special startup code to enable the application to run. The

 system must have PE installed in the standard location (/usr/lpp/ppe.poe/), or the

 specs file must be overridden with the -specs= option to specify the appropriate

 directory location. The Parallel Environment does not support threads, so the -mpe

 option and the -pthread option are incompatible.

 -malign-natural

 -malign-power

 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option -malign-natural

 overrides the ABI-defined alignment of larger types, such as floating-point doubles,

 on their natural size-based boundary. The option -malign-power instructs GCC to

 follow the ABI-specified alignment rules. GCC defaults to the standard alignment

 defined in the ABI.

 On 64-bit Darwin, natural alignment is the default, and -malign-power is not Page 488/576

 supported.

 -msoft-float

 -mhard-float

 Generate code that does not use (uses) the floating-point register set. Software

 floating-point emulation is provided if you use the -msoft-float option, and pass the

 option to GCC when linking.

 -mmultiple

 -mno-multiple

 Generate code that uses (does not use) the load multiple word instructions and the

 store multiple word instructions. These instructions are generated by default on

 POWER systems, and not generated on PowerPC systems. Do not use -mmultiple on little-

 endian PowerPC systems, since those instructions do not work when the processor is in

 little-endian mode. The exceptions are PPC740 and PPC750 which permit these

 instructions in little-endian mode.

 -mupdate

 -mno-update

 Generate code that uses (does not use) the load or store instructions that update the

 base register to the address of the calculated memory location. These instructions

 are generated by default. If you use -mno-update, there is a small window between the

 time that the stack pointer is updated and the address of the previous frame is

 stored, which means code that walks the stack frame across interrupts or signals may

 get corrupted data.

 -mavoid-indexed-addresses

 -mno-avoid-indexed-addresses

 Generate code that tries to avoid (not avoid) the use of indexed load or store

 instructions. These instructions can incur a performance penalty on Power6 processors

 in certain situations, such as when stepping through large arrays that cross a 16M

 boundary. This option is enabled by default when targeting Power6 and disabled

 otherwise.

 -mfused-madd

 -mno-fused-madd

 Generate code that uses (does not use) the floating-point multiply and accumulate

 instructions. These instructions are generated by default if hardware floating point Page 489/576

 is used. The machine-dependent -mfused-madd option is now mapped to the machine-

 independent -ffp-contract=fast option, and -mno-fused-madd is mapped to

 -ffp-contract=off.

 -mmulhw

 -mno-mulhw

 Generate code that uses (does not use) the half-word multiply and multiply-accumulate

 instructions on the IBM 405, 440, 464 and 476 processors. These instructions are

 generated by default when targeting those processors.

 -mdlmzb

 -mno-dlmzb

 Generate code that uses (does not use) the string-search dlmzb instruction on the IBM

 405, 440, 464 and 476 processors. This instruction is generated by default when

 targeting those processors.

 -mno-bit-align

 -mbit-align

 On System V.4 and embedded PowerPC systems do not (do) force structures and unions

 that contain bit-fields to be aligned to the base type of the bit-field.

 For example, by default a structure containing nothing but 8 "unsigned" bit-fields of

 length 1 is aligned to a 4-byte boundary and has a size of 4 bytes. By using

 -mno-bit-align, the structure is aligned to a 1-byte boundary and is 1 byte in size.

 -mno-strict-align

 -mstrict-align

 On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory

 references are handled by the system.

 -mrelocatable

 -mno-relocatable

 Generate code that allows (does not allow) a static executable to be relocated to a

 different address at run time. A simple embedded PowerPC system loader should

 relocate the entire contents of ".got2" and 4-byte locations listed in the ".fixup"

 section, a table of 32-bit addresses generated by this option. For this to work, all

 objects linked together must be compiled with -mrelocatable or -mrelocatable-lib.

 -mrelocatable code aligns the stack to an 8-byte boundary.

 -mrelocatable-lib Page 490/576

 -mno-relocatable-lib

 Like -mrelocatable, -mrelocatable-lib generates a ".fixup" section to allow static

 executables to be relocated at run time, but -mrelocatable-lib does not use the

 smaller stack alignment of -mrelocatable. Objects compiled with -mrelocatable-lib may

 be linked with objects compiled with any combination of the -mrelocatable options.

 -mno-toc

 -mtoc

 On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains

 a pointer to a global area pointing to the addresses used in the program.

 -mlittle

 -mlittle-endian

 On System V.4 and embedded PowerPC systems compile code for the processor in little-

 endian mode. The -mlittle-endian option is the same as -mlittle.

 -mbig

 -mbig-endian

 On System V.4 and embedded PowerPC systems compile code for the processor in big-

 endian mode. The -mbig-endian option is the same as -mbig.

 -mdynamic-no-pic

 On Darwin and Mac OS X systems, compile code so that it is not relocatable, but that

 its external references are relocatable. The resulting code is suitable for

 applications, but not shared libraries.

 -msingle-pic-base

 Treat the register used for PIC addressing as read-only, rather than loading it in the

 prologue for each function. The runtime system is responsible for initializing this

 register with an appropriate value before execution begins.

 -mprioritize-restricted-insns=priority

 This option controls the priority that is assigned to dispatch-slot restricted

 instructions during the second scheduling pass. The argument priority takes the value

 0, 1, or 2 to assign no, highest, or second-highest (respectively) priority to

 dispatch-slot restricted instructions.

 -msched-costly-dep=dependence_type

 This option controls which dependences are considered costly by the target during

 instruction scheduling. The argument dependence_type takes one of the following Page 491/576

 values:

 no No dependence is costly.

 all All dependences are costly.

 true_store_to_load

 A true dependence from store to load is costly.

 store_to_load

 Any dependence from store to load is costly.

 number

 Any dependence for which the latency is greater than or equal to number is costly.

 -minsert-sched-nops=scheme

 This option controls which NOP insertion scheme is used during the second scheduling

 pass. The argument scheme takes one of the following values:

 no Don't insert NOPs.

 pad Pad with NOPs any dispatch group that has vacant issue slots, according to the

 scheduler's grouping.

 regroup_exact

 Insert NOPs to force costly dependent insns into separate groups. Insert exactly

 as many NOPs as needed to force an insn to a new group, according to the estimated

 processor grouping.

 number

 Insert NOPs to force costly dependent insns into separate groups. Insert number

 NOPs to force an insn to a new group.

 -mcall-sysv

 On System V.4 and embedded PowerPC systems compile code using calling conventions that

 adhere to the March 1995 draft of the System V Application Binary Interface, PowerPC

 processor supplement. This is the default unless you configured GCC using

 powerpc-*-eabiaix.

 -mcall-sysv-eabi

 -mcall-eabi

 Specify both -mcall-sysv and -meabi options.

 -mcall-sysv-noeabi

 Specify both -mcall-sysv and -mno-eabi options.

 -mcall-aixdesc Page 492/576

 On System V.4 and embedded PowerPC systems compile code for the AIX operating system.

 -mcall-linux

 On System V.4 and embedded PowerPC systems compile code for the Linux-based GNU

 system.

 -mcall-freebsd

 On System V.4 and embedded PowerPC systems compile code for the FreeBSD operating

 system.

 -mcall-netbsd

 On System V.4 and embedded PowerPC systems compile code for the NetBSD operating

 system.

 -mcall-openbsd

 On System V.4 and embedded PowerPC systems compile code for the OpenBSD operating

 system.

 -mtraceback=traceback_type

 Select the type of traceback table. Valid values for traceback_type are full, part,

 and no.

 -maix-struct-return

 Return all structures in memory (as specified by the AIX ABI).

 -msvr4-struct-return

 Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI).

 -mabi=abi-type

 Extend the current ABI with a particular extension, or remove such extension. Valid

 values are: altivec, no-altivec, ibmlongdouble, ieeelongdouble, elfv1, elfv2, and for

 AIX: vec-extabi, vec-default.

 -mabi=ibmlongdouble

 Change the current ABI to use IBM extended-precision long double. This is not likely

 to work if your system defaults to using IEEE extended-precision long double. If you

 change the long double type from IEEE extended-precision, the compiler will issue a

 warning unless you use the -Wno-psabi option. Requires -mlong-double-128 to be

 enabled.

 -mabi=ieeelongdouble

 Change the current ABI to use IEEE extended-precision long double. This is not likely

 to work if your system defaults to using IBM extended-precision long double. If you Page 493/576

 change the long double type from IBM extended-precision, the compiler will issue a

 warning unless you use the -Wno-psabi option. Requires -mlong-double-128 to be

 enabled.

 -mabi=elfv1

 Change the current ABI to use the ELFv1 ABI. This is the default ABI for big-endian

 PowerPC 64-bit Linux. Overriding the default ABI requires special system support and

 is likely to fail in spectacular ways.

 -mabi=elfv2

 Change the current ABI to use the ELFv2 ABI. This is the default ABI for little-

 endian PowerPC 64-bit Linux. Overriding the default ABI requires special system

 support and is likely to fail in spectacular ways.

 -mgnu-attribute

 -mno-gnu-attribute

 Emit .gnu_attribute assembly directives to set tag/value pairs in a .gnu.attributes

 section that specify ABI variations in function parameters or return values.

 -mprototype

 -mno-prototype

 On System V.4 and embedded PowerPC systems assume that all calls to variable argument

 functions are properly prototyped. Otherwise, the compiler must insert an instruction

 before every non-prototyped call to set or clear bit 6 of the condition code register

 ("CR") to indicate whether floating-point values are passed in the floating-point

 registers in case the function takes variable arguments. With -mprototype, only calls

 to prototyped variable argument functions set or clear the bit.

 -msim

 On embedded PowerPC systems, assume that the startup module is called sim-crt0.o and

 that the standard C libraries are libsim.a and libc.a. This is the default for

 powerpc-*-eabisim configurations.

 -mmvme

 On embedded PowerPC systems, assume that the startup module is called crt0.o and the

 standard C libraries are libmvme.a and libc.a.

 -mads

 On embedded PowerPC systems, assume that the startup module is called crt0.o and the

 standard C libraries are libads.a and libc.a. Page 494/576

 -myellowknife

 On embedded PowerPC systems, assume that the startup module is called crt0.o and the

 standard C libraries are libyk.a and libc.a.

 -mvxworks

 On System V.4 and embedded PowerPC systems, specify that you are compiling for a

 VxWorks system.

 -memb

 On embedded PowerPC systems, set the "PPC_EMB" bit in the ELF flags header to indicate

 that eabi extended relocations are used.

 -meabi

 -mno-eabi

 On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded

 Applications Binary Interface (EABI), which is a set of modifications to the System

 V.4 specifications. Selecting -meabi means that the stack is aligned to an 8-byte

 boundary, a function "__eabi" is called from "main" to set up the EABI environment,

 and the -msdata option can use both "r2" and "r13" to point to two separate small data

 areas. Selecting -mno-eabi means that the stack is aligned to a 16-byte boundary, no

 EABI initialization function is called from "main", and the -msdata option only uses

 "r13" to point to a single small data area. The -meabi option is on by default if you

 configured GCC using one of the powerpc*-*-eabi* options.

 -msdata=eabi

 On System V.4 and embedded PowerPC systems, put small initialized "const" global and

 static data in the ".sdata2" section, which is pointed to by register "r2". Put small

 initialized non-"const" global and static data in the ".sdata" section, which is

 pointed to by register "r13". Put small uninitialized global and static data in the

 ".sbss" section, which is adjacent to the ".sdata" section. The -msdata=eabi option

 is incompatible with the -mrelocatable option. The -msdata=eabi option also sets the

 -memb option.

 -msdata=sysv

 On System V.4 and embedded PowerPC systems, put small global and static data in the

 ".sdata" section, which is pointed to by register "r13". Put small uninitialized

 global and static data in the ".sbss" section, which is adjacent to the ".sdata"

 section. The -msdata=sysv option is incompatible with the -mrelocatable option. Page 495/576

 -msdata=default

 -msdata

 On System V.4 and embedded PowerPC systems, if -meabi is used, compile code the same

 as -msdata=eabi, otherwise compile code the same as -msdata=sysv.

 -msdata=data

 On System V.4 and embedded PowerPC systems, put small global data in the ".sdata"

 section. Put small uninitialized global data in the ".sbss" section. Do not use

 register "r13" to address small data however. This is the default behavior unless

 other -msdata options are used.

 -msdata=none

 -mno-sdata

 On embedded PowerPC systems, put all initialized global and static data in the ".data"

 section, and all uninitialized data in the ".bss" section.

 -mreadonly-in-sdata

 Put read-only objects in the ".sdata" section as well. This is the default.

 -mblock-move-inline-limit=num

 Inline all block moves (such as calls to "memcpy" or structure copies) less than or

 equal to num bytes. The minimum value for num is 32 bytes on 32-bit targets and 64

 bytes on 64-bit targets. The default value is target-specific.

 -mblock-compare-inline-limit=num

 Generate non-looping inline code for all block compares (such as calls to "memcmp" or

 structure compares) less than or equal to num bytes. If num is 0, all inline expansion

 (non-loop and loop) of block compare is disabled. The default value is target-

 specific.

 -mblock-compare-inline-loop-limit=num

 Generate an inline expansion using loop code for all block compares that are less than

 or equal to num bytes, but greater than the limit for non-loop inline block compare

 expansion. If the block length is not constant, at most num bytes will be compared

 before "memcmp" is called to compare the remainder of the block. The default value is

 target-specific.

 -mstring-compare-inline-limit=num

 Compare at most num string bytes with inline code. If the difference or end of string

 is not found at the end of the inline compare a call to "strcmp" or "strncmp" will Page 496/576

 take care of the rest of the comparison. The default is 64 bytes.

 -G num

 On embedded PowerPC systems, put global and static items less than or equal to num

 bytes into the small data or BSS sections instead of the normal data or BSS section.

 By default, num is 8. The -G num switch is also passed to the linker. All modules

 should be compiled with the same -G num value.

 -mregnames

 -mno-regnames

 On System V.4 and embedded PowerPC systems do (do not) emit register names in the

 assembly language output using symbolic forms.

 -mlongcall

 -mno-longcall

 By default assume that all calls are far away so that a longer and more expensive

 calling sequence is required. This is required for calls farther than 32 megabytes

 (33,554,432 bytes) from the current location. A short call is generated if the

 compiler knows the call cannot be that far away. This setting can be overridden by

 the "shortcall" function attribute, or by "#pragma longcall(0)".

 Some linkers are capable of detecting out-of-range calls and generating glue code on

 the fly. On these systems, long calls are unnecessary and generate slower code. As

 of this writing, the AIX linker can do this, as can the GNU linker for PowerPC/64. It

 is planned to add this feature to the GNU linker for 32-bit PowerPC systems as well.

 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers, GCC can generate

 long calls using an inline PLT call sequence (see -mpltseq). PowerPC with -mbss-plt

 and PowerPC64 ELFv1 (big-endian) do not support inline PLT calls.

 On Darwin/PPC systems, "#pragma longcall" generates "jbsr callee, L42", plus a branch

 island (glue code). The two target addresses represent the callee and the branch

 island. The Darwin/PPC linker prefers the first address and generates a "bl callee"

 if the PPC "bl" instruction reaches the callee directly; otherwise, the linker

 generates "bl L42" to call the branch island. The branch island is appended to the

 body of the calling function; it computes the full 32-bit address of the callee and

 jumps to it.

 On Mach-O (Darwin) systems, this option directs the compiler emit to the glue for

 every direct call, and the Darwin linker decides whether to use or discard it. Page 497/576

 In the future, GCC may ignore all longcall specifications when the linker is known to

 generate glue.

 -mpltseq

 -mno-pltseq

 Implement (do not implement) -fno-plt and long calls using an inline PLT call sequence

 that supports lazy linking and long calls to functions in dlopen'd shared libraries.

 Inline PLT calls are only supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with

 newer GNU linkers, and are enabled by default if the support is detected when

 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is configured with

 --enable-secureplt. -mpltseq code and -mbss-plt 32-bit PowerPC relocatable objects

 may not be linked together.

 -mtls-markers

 -mno-tls-markers

 Mark (do not mark) calls to "__tls_get_addr" with a relocation specifying the function

 argument. The relocation allows the linker to reliably associate function call with

 argument setup instructions for TLS optimization, which in turn allows GCC to better

 schedule the sequence.

 -mrecip

 -mno-recip

 This option enables use of the reciprocal estimate and reciprocal square root estimate

 instructions with additional Newton-Raphson steps to increase precision instead of

 doing a divide or square root and divide for floating-point arguments. You should use

 the -ffast-math option when using -mrecip (or at least -funsafe-math-optimizations,

 -ffinite-math-only, -freciprocal-math and -fno-trapping-math). Note that while the

 throughput of the sequence is generally higher than the throughput of the non-

 reciprocal instruction, the precision of the sequence can be decreased by up to 2 ulp

 (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square roots.

 -mrecip=opt

 This option controls which reciprocal estimate instructions may be used. opt is a

 comma-separated list of options, which may be preceded by a "!" to invert the option:

 all Enable all estimate instructions.

 default

 Enable the default instructions, equivalent to -mrecip. Page 498/576

 none

 Disable all estimate instructions, equivalent to -mno-recip.

 div Enable the reciprocal approximation instructions for both single and double

 precision.

 divf

 Enable the single-precision reciprocal approximation instructions.

 divd

 Enable the double-precision reciprocal approximation instructions.

 rsqrt

 Enable the reciprocal square root approximation instructions for both single and

 double precision.

 rsqrtf

 Enable the single-precision reciprocal square root approximation instructions.

 rsqrtd

 Enable the double-precision reciprocal square root approximation instructions.

 So, for example, -mrecip=all,!rsqrtd enables all of the reciprocal estimate

 instructions, except for the "FRSQRTE", "XSRSQRTEDP", and "XVRSQRTEDP" instructions

 which handle the double-precision reciprocal square root calculations.

 -mrecip-precision

 -mno-recip-precision

 Assume (do not assume) that the reciprocal estimate instructions provide higher-

 precision estimates than is mandated by the PowerPC ABI. Selecting -mcpu=power6,

 -mcpu=power7 or -mcpu=power8 automatically selects -mrecip-precision. The double-

 precision square root estimate instructions are not generated by default on low-

 precision machines, since they do not provide an estimate that converges after three

 steps.

 -mveclibabi=type

 Specifies the ABI type to use for vectorizing intrinsics using an external library.

 The only type supported at present is mass, which specifies to use IBM's Mathematical

 Acceleration Subsystem (MASS) libraries for vectorizing intrinsics using external

 libraries. GCC currently emits calls to "acosd2", "acosf4", "acoshd2", "acoshf4",

 "asind2", "asinf4", "asinhd2", "asinhf4", "atan2d2", "atan2f4", "atand2", "atanf4",

 "atanhd2", "atanhf4", "cbrtd2", "cbrtf4", "cosd2", "cosf4", "coshd2", "coshf4", Page 499/576

 "erfcd2", "erfcf4", "erfd2", "erff4", "exp2d2", "exp2f4", "expd2", "expf4", "expm1d2",

 "expm1f4", "hypotd2", "hypotf4", "lgammad2", "lgammaf4", "log10d2", "log10f4",

 "log1pd2", "log1pf4", "log2d2", "log2f4", "logd2", "logf4", "powd2", "powf4", "sind2",

 "sinf4", "sinhd2", "sinhf4", "sqrtd2", "sqrtf4", "tand2", "tanf4", "tanhd2", and

 "tanhf4" when generating code for power7. Both -ftree-vectorize and

 -funsafe-math-optimizations must also be enabled. The MASS libraries must be

 specified at link time.

 -mfriz

 -mno-friz

 Generate (do not generate) the "friz" instruction when the -funsafe-math-optimizations

 option is used to optimize rounding of floating-point values to 64-bit integer and

 back to floating point. The "friz" instruction does not return the same value if the

 floating-point number is too large to fit in an integer.

 -mpointers-to-nested-functions

 -mno-pointers-to-nested-functions

 Generate (do not generate) code to load up the static chain register ("r11") when

 calling through a pointer on AIX and 64-bit Linux systems where a function pointer

 points to a 3-word descriptor giving the function address, TOC value to be loaded in

 register "r2", and static chain value to be loaded in register "r11". The

 -mpointers-to-nested-functions is on by default. You cannot call through pointers to

 nested functions or pointers to functions compiled in other languages that use the

 static chain if you use -mno-pointers-to-nested-functions.

 -msave-toc-indirect

 -mno-save-toc-indirect

 Generate (do not generate) code to save the TOC value in the reserved stack location

 in the function prologue if the function calls through a pointer on AIX and 64-bit

 Linux systems. If the TOC value is not saved in the prologue, it is saved just before

 the call through the pointer. The -mno-save-toc-indirect option is the default.

 -mcompat-align-parm

 -mno-compat-align-parm

 Generate (do not generate) code to pass structure parameters with a maximum alignment

 of 64 bits, for compatibility with older versions of GCC.

 Older versions of GCC (prior to 4.9.0) incorrectly did not align a structure parameter Page 500/576

 on a 128-bit boundary when that structure contained a member requiring 128-bit

 alignment. This is corrected in more recent versions of GCC. This option may be used

 to generate code that is compatible with functions compiled with older versions of

 GCC.

 The -mno-compat-align-parm option is the default.

 -mstack-protector-guard=guard

 -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset

 -mstack-protector-guard-symbol=symbol

 Generate stack protection code using canary at guard. Supported locations are global

 for global canary or tls for per-thread canary in the TLS block (the default with GNU

 libc version 2.4 or later).

 With the latter choice the options -mstack-protector-guard-reg=reg and

 -mstack-protector-guard-offset=offset furthermore specify which register to use as

 base register for reading the canary, and from what offset from that base register.

 The default for those is as specified in the relevant ABI.

 -mstack-protector-guard-symbol=symbol overrides the offset with a symbol reference to

 a canary in the TLS block.

 -mpcrel

 -mno-pcrel

 Generate (do not generate) pc-relative addressing. The -mpcrel option requires that

 the medium code model (-mcmodel=medium) and prefixed addressing (-mprefixed) options

 are enabled.

 -mprefixed

 -mno-prefixed

 Generate (do not generate) addressing modes using prefixed load and store

 instructions. The -mprefixed option requires that the option -mcpu=power10 (or later)

 is enabled.

 -mmma

 -mno-mma

 Generate (do not generate) the MMA instructions. The -mma option requires that the

 option -mcpu=power10 (or later) is enabled.

 -mrop-protect Page 501/576

 -mno-rop-protect

 Generate (do not generate) ROP protection instructions when the target processor

 supports them. Currently this option disables the shrink-wrap optimization

 (-fshrink-wrap).

 -mprivileged

 -mno-privileged

 Generate (do not generate) code that will run in privileged state.

 -mblock-ops-unaligned-vsx

 -mno-block-ops-unaligned-vsx

 Generate (do not generate) unaligned vsx loads and stores for inline expansion of

 "memcpy" and "memmove".

 RX Options

 These command-line options are defined for RX targets:

 -m64bit-doubles

 -m32bit-doubles

 Make the "double" data type be 64 bits (-m64bit-doubles) or 32 bits (-m32bit-doubles)

 in size. The default is -m32bit-doubles. Note RX floating-point hardware only works

 on 32-bit values, which is why the default is -m32bit-doubles.

 -fpu

 -nofpu

 Enables (-fpu) or disables (-nofpu) the use of RX floating-point hardware. The

 default is enabled for the RX600 series and disabled for the RX200 series.

 Floating-point instructions are only generated for 32-bit floating-point values,

 however, so the FPU hardware is not used for doubles if the -m64bit-doubles option is

 used.

 Note If the -fpu option is enabled then -funsafe-math-optimizations is also enabled

 automatically. This is because the RX FPU instructions are themselves unsafe.

 -mcpu=name

 Selects the type of RX CPU to be targeted. Currently three types are supported, the

 generic RX600 and RX200 series hardware and the specific RX610 CPU. The default is

 RX600.

 The only difference between RX600 and RX610 is that the RX610 does not support the

 "MVTIPL" instruction. Page 502/576

 The RX200 series does not have a hardware floating-point unit and so -nofpu is enabled

 by default when this type is selected.

 -mbig-endian-data

 -mlittle-endian-data

 Store data (but not code) in the big-endian format. The default is

 -mlittle-endian-data, i.e. to store data in the little-endian format.

 -msmall-data-limit=N

 Specifies the maximum size in bytes of global and static variables which can be placed

 into the small data area. Using the small data area can lead to smaller and faster

 code, but the size of area is limited and it is up to the programmer to ensure that

 the area does not overflow. Also when the small data area is used one of the RX's

 registers (usually "r13") is reserved for use pointing to this area, so it is no

 longer available for use by the compiler. This could result in slower and/or larger

 code if variables are pushed onto the stack instead of being held in this register.

 Note, common variables (variables that have not been initialized) and constants are

 not placed into the small data area as they are assigned to other sections in the

 output executable.

 The default value is zero, which disables this feature. Note, this feature is not

 enabled by default with higher optimization levels (-O2 etc) because of the

 potentially detrimental effects of reserving a register. It is up to the programmer

 to experiment and discover whether this feature is of benefit to their program. See

 the description of the -mpid option for a description of how the actual register to

 hold the small data area pointer is chosen.

 -msim

 -mno-sim

 Use the simulator runtime. The default is to use the libgloss board-specific runtime.

 -mas100-syntax

 -mno-as100-syntax

 When generating assembler output use a syntax that is compatible with Renesas's AS100

 assembler. This syntax can also be handled by the GAS assembler, but it has some

 restrictions so it is not generated by default.

 -mmax-constant-size=N

 Specifies the maximum size, in bytes, of a constant that can be used as an operand in Page 503/576

 a RX instruction. Although the RX instruction set does allow constants of up to 4

 bytes in length to be used in instructions, a longer value equates to a longer

 instruction. Thus in some circumstances it can be beneficial to restrict the size of

 constants that are used in instructions. Constants that are too big are instead

 placed into a constant pool and referenced via register indirection.

 The value N can be between 0 and 4. A value of 0 (the default) or 4 means that

 constants of any size are allowed.

 -mrelax

 Enable linker relaxation. Linker relaxation is a process whereby the linker attempts

 to reduce the size of a program by finding shorter versions of various instructions.

 Disabled by default.

 -mint-register=N

 Specify the number of registers to reserve for fast interrupt handler functions. The

 value N can be between 0 and 4. A value of 1 means that register "r13" is reserved

 for the exclusive use of fast interrupt handlers. A value of 2 reserves "r13" and

 "r12". A value of 3 reserves "r13", "r12" and "r11", and a value of 4 reserves "r13"

 through "r10". A value of 0, the default, does not reserve any registers.

 -msave-acc-in-interrupts

 Specifies that interrupt handler functions should preserve the accumulator register.

 This is only necessary if normal code might use the accumulator register, for example

 because it performs 64-bit multiplications. The default is to ignore the accumulator

 as this makes the interrupt handlers faster.

 -mpid

 -mno-pid

 Enables the generation of position independent data. When enabled any access to

 constant data is done via an offset from a base address held in a register. This

 allows the location of constant data to be determined at run time without requiring

 the executable to be relocated, which is a benefit to embedded applications with tight

 memory constraints. Data that can be modified is not affected by this option.

 Note, using this feature reserves a register, usually "r13", for the constant data

 base address. This can result in slower and/or larger code, especially in complicated

 functions.

 The actual register chosen to hold the constant data base address depends upon whether Page 504/576

 the -msmall-data-limit and/or the -mint-register command-line options are enabled.

 Starting with register "r13" and proceeding downwards, registers are allocated first

 to satisfy the requirements of -mint-register, then -mpid and finally

 -msmall-data-limit. Thus it is possible for the small data area register to be "r8"

 if both -mint-register=4 and -mpid are specified on the command line.

 By default this feature is not enabled. The default can be restored via the -mno-pid

 command-line option.

 -mno-warn-multiple-fast-interrupts

 -mwarn-multiple-fast-interrupts

 Prevents GCC from issuing a warning message if it finds more than one fast interrupt

 handler when it is compiling a file. The default is to issue a warning for each extra

 fast interrupt handler found, as the RX only supports one such interrupt.

 -mallow-string-insns

 -mno-allow-string-insns

 Enables or disables the use of the string manipulation instructions "SMOVF", "SCMPU",

 "SMOVB", "SMOVU", "SUNTIL" "SWHILE" and also the "RMPA" instruction. These

 instructions may prefetch data, which is not safe to do if accessing an I/O register.

 (See section 12.2.7 of the RX62N Group User's Manual for more information).

 The default is to allow these instructions, but it is not possible for GCC to reliably

 detect all circumstances where a string instruction might be used to access an I/O

 register, so their use cannot be disabled automatically. Instead it is reliant upon

 the programmer to use the -mno-allow-string-insns option if their program accesses I/O

 space.

 When the instructions are enabled GCC defines the C preprocessor symbol

 "__RX_ALLOW_STRING_INSNS__", otherwise it defines the symbol

 "__RX_DISALLOW_STRING_INSNS__".

 -mjsr

 -mno-jsr

 Use only (or not only) "JSR" instructions to access functions. This option can be

 used when code size exceeds the range of "BSR" instructions. Note that -mno-jsr does

 not mean to not use "JSR" but instead means that any type of branch may be used.

 Note: The generic GCC command-line option -ffixed-reg has special significance to the RX

 port when used with the "interrupt" function attribute. This attribute indicates a Page 505/576

 function intended to process fast interrupts. GCC ensures that it only uses the registers

 "r10", "r11", "r12" and/or "r13" and only provided that the normal use of the

 corresponding registers have been restricted via the -ffixed-reg or -mint-register

 command-line options.

 S/390 and zSeries Options

 These are the -m options defined for the S/390 and zSeries architecture.

 -mhard-float

 -msoft-float

 Use (do not use) the hardware floating-point instructions and registers for floating-

 point operations. When -msoft-float is specified, functions in libgcc.a are used to

 perform floating-point operations. When -mhard-float is specified, the compiler

 generates IEEE floating-point instructions. This is the default.

 -mhard-dfp

 -mno-hard-dfp

 Use (do not use) the hardware decimal-floating-point instructions for decimal-

 floating-point operations. When -mno-hard-dfp is specified, functions in libgcc.a are

 used to perform decimal-floating-point operations. When -mhard-dfp is specified, the

 compiler generates decimal-floating-point hardware instructions. This is the default

 for -march=z9-ec or higher.

 -mlong-double-64

 -mlong-double-128

 These switches control the size of "long double" type. A size of 64 bits makes the

 "long double" type equivalent to the "double" type. This is the default.

 -mbackchain

 -mno-backchain

 Store (do not store) the address of the caller's frame as backchain pointer into the

 callee's stack frame. A backchain may be needed to allow debugging using tools that

 do not understand DWARF call frame information. When -mno-packed-stack is in effect,

 the backchain pointer is stored at the bottom of the stack frame; when -mpacked-stack

 is in effect, the backchain is placed into the topmost word of the 96/160 byte

 register save area.

 In general, code compiled with -mbackchain is call-compatible with code compiled with

 -mno-backchain; however, use of the backchain for debugging purposes usually requires Page 506/576

 that the whole binary is built with -mbackchain. Note that the combination of

 -mbackchain, -mpacked-stack and -mhard-float is not supported. In order to build a

 linux kernel use -msoft-float.

 The default is to not maintain the backchain.

 -mpacked-stack

 -mno-packed-stack

 Use (do not use) the packed stack layout. When -mno-packed-stack is specified, the

 compiler uses the all fields of the 96/160 byte register save area only for their

 default purpose; unused fields still take up stack space. When -mpacked-stack is

 specified, register save slots are densely packed at the top of the register save

 area; unused space is reused for other purposes, allowing for more efficient use of

 the available stack space. However, when -mbackchain is also in effect, the topmost

 word of the save area is always used to store the backchain, and the return address

 register is always saved two words below the backchain.

 As long as the stack frame backchain is not used, code generated with -mpacked-stack

 is call-compatible with code generated with -mno-packed-stack. Note that some non-FSF

 releases of GCC 2.95 for S/390 or zSeries generated code that uses the stack frame

 backchain at run time, not just for debugging purposes. Such code is not call-

 compatible with code compiled with -mpacked-stack. Also, note that the combination of

 -mbackchain, -mpacked-stack and -mhard-float is not supported. In order to build a

 linux kernel use -msoft-float.

 The default is to not use the packed stack layout.

 -msmall-exec

 -mno-small-exec

 Generate (or do not generate) code using the "bras" instruction to do subroutine

 calls. This only works reliably if the total executable size does not exceed 64k.

 The default is to use the "basr" instruction instead, which does not have this

 limitation.

 -m64

 -m31

 When -m31 is specified, generate code compliant to the GNU/Linux for S/390 ABI. When

 -m64 is specified, generate code compliant to the GNU/Linux for zSeries ABI. This

 allows GCC in particular to generate 64-bit instructions. For the s390 targets, the Page 507/576

 default is -m31, while the s390x targets default to -m64.

 -mzarch

 -mesa

 When -mzarch is specified, generate code using the instructions available on

 z/Architecture. When -mesa is specified, generate code using the instructions

 available on ESA/390. Note that -mesa is not possible with -m64. When generating

 code compliant to the GNU/Linux for S/390 ABI, the default is -mesa. When generating

 code compliant to the GNU/Linux for zSeries ABI, the default is -mzarch.

 -mhtm

 -mno-htm

 The -mhtm option enables a set of builtins making use of instructions available with

 the transactional execution facility introduced with the IBM zEnterprise EC12 machine

 generation S/390 System z Built-in Functions. -mhtm is enabled by default when using

 -march=zEC12.

 -mvx

 -mno-vx

 When -mvx is specified, generate code using the instructions available with the vector

 extension facility introduced with the IBM z13 machine generation. This option

 changes the ABI for some vector type values with regard to alignment and calling

 conventions. In case vector type values are being used in an ABI-relevant context a

 GAS .gnu_attribute command will be added to mark the resulting binary with the ABI

 used. -mvx is enabled by default when using -march=z13.

 -mzvector

 -mno-zvector

 The -mzvector option enables vector language extensions and builtins using

 instructions available with the vector extension facility introduced with the IBM z13

 machine generation. This option adds support for vector to be used as a keyword to

 define vector type variables and arguments. vector is only available when GNU

 extensions are enabled. It will not be expanded when requesting strict standard

 compliance e.g. with -std=c99. In addition to the GCC low-level builtins -mzvector

 enables a set of builtins added for compatibility with AltiVec-style implementations

 like Power and Cell. In order to make use of these builtins the header file

 vecintrin.h needs to be included. -mzvector is disabled by default. Page 508/576

 -mmvcle

 -mno-mvcle

 Generate (or do not generate) code using the "mvcle" instruction to perform block

 moves. When -mno-mvcle is specified, use a "mvc" loop instead. This is the default

 unless optimizing for size.

 -mdebug

 -mno-debug

 Print (or do not print) additional debug information when compiling. The default is

 to not print debug information.

 -march=cpu-type

 Generate code that runs on cpu-type, which is the name of a system representing a

 certain processor type. Possible values for cpu-type are z900/arch5, z990/arch6,

 z9-109, z9-ec/arch7, z10/arch8, z196/arch9, zEC12, z13/arch11, z14/arch12, z15/arch13,

 z16/arch14, and native.

 The default is -march=z900.

 Specifying native as cpu type can be used to select the best architecture option for

 the host processor. -march=native has no effect if GCC does not recognize the

 processor.

 -mtune=cpu-type

 Tune to cpu-type everything applicable about the generated code, except for the ABI

 and the set of available instructions. The list of cpu-type values is the same as for

 -march. The default is the value used for -march.

 -mtpf-trace

 -mno-tpf-trace

 Generate code that adds (does not add) in TPF OS specific branches to trace routines

 in the operating system. This option is off by default, even when compiling for the

 TPF OS.

 -mtpf-trace-skip

 -mno-tpf-trace-skip

 Generate code that changes (does not change) the default branch targets enabled by

 -mtpf-trace to point to specialized trace routines providing the ability of

 selectively skipping function trace entries for the TPF OS. This option is off by

 default, even when compiling for the TPF OS and specifying -mtpf-trace. Page 509/576

 -mfused-madd

 -mno-fused-madd

 Generate code that uses (does not use) the floating-point multiply and accumulate

 instructions. These instructions are generated by default if hardware floating point

 is used.

 -mwarn-framesize=framesize

 Emit a warning if the current function exceeds the given frame size. Because this is

 a compile-time check it doesn't need to be a real problem when the program runs. It

 is intended to identify functions that most probably cause a stack overflow. It is

 useful to be used in an environment with limited stack size e.g. the linux kernel.

 -mwarn-dynamicstack

 Emit a warning if the function calls "alloca" or uses dynamically-sized arrays. This

 is generally a bad idea with a limited stack size.

 -mstack-guard=stack-guard

 -mstack-size=stack-size

 If these options are provided the S/390 back end emits additional instructions in the

 function prologue that trigger a trap if the stack size is stack-guard bytes above the

 stack-size (remember that the stack on S/390 grows downward). If the stack-guard

 option is omitted the smallest power of 2 larger than the frame size of the compiled

 function is chosen. These options are intended to be used to help debugging stack

 overflow problems. The additionally emitted code causes only little overhead and

 hence can also be used in production-like systems without greater performance

 degradation. The given values have to be exact powers of 2 and stack-size has to be

 greater than stack-guard without exceeding 64k. In order to be efficient the extra

 code makes the assumption that the stack starts at an address aligned to the value

 given by stack-size. The stack-guard option can only be used in conjunction with

 stack-size.

 -mhotpatch=pre-halfwords,post-halfwords

 If the hotpatch option is enabled, a "hot-patching" function prologue is generated for

 all functions in the compilation unit. The funtion label is prepended with the given

 number of two-byte NOP instructions (pre-halfwords, maximum 1000000). After the

 label, 2 * post-halfwords bytes are appended, using the largest NOP like instructions

 the architecture allows (maximum 1000000). Page 510/576

 If both arguments are zero, hotpatching is disabled.

 This option can be overridden for individual functions with the "hotpatch" attribute.

 Score Options

 These options are defined for Score implementations:

 -meb

 Compile code for big-endian mode. This is the default.

 -mel

 Compile code for little-endian mode.

 -mnhwloop

 Disable generation of "bcnz" instructions.

 -muls

 Enable generation of unaligned load and store instructions.

 -mmac

 Enable the use of multiply-accumulate instructions. Disabled by default.

 -mscore5

 Specify the SCORE5 as the target architecture.

 -mscore5u

 Specify the SCORE5U of the target architecture.

 -mscore7

 Specify the SCORE7 as the target architecture. This is the default.

 -mscore7d

 Specify the SCORE7D as the target architecture.

 SH Options

 These -m options are defined for the SH implementations:

 -m1 Generate code for the SH1.

 -m2 Generate code for the SH2.

 -m2e

 Generate code for the SH2e.

 -m2a-nofpu

 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way that the

 floating-point unit is not used.

 -m2a-single-only

 Generate code for the SH2a-FPU, in such a way that no double-precision floating-point Page 511/576

 operations are used.

 -m2a-single

 Generate code for the SH2a-FPU assuming the floating-point unit is in single-precision

 mode by default.

 -m2a

 Generate code for the SH2a-FPU assuming the floating-point unit is in double-precision

 mode by default.

 -m3 Generate code for the SH3.

 -m3e

 Generate code for the SH3e.

 -m4-nofpu

 Generate code for the SH4 without a floating-point unit.

 -m4-single-only

 Generate code for the SH4 with a floating-point unit that only supports single-

 precision arithmetic.

 -m4-single

 Generate code for the SH4 assuming the floating-point unit is in single-precision mode

 by default.

 -m4 Generate code for the SH4.

 -m4-100

 Generate code for SH4-100.

 -m4-100-nofpu

 Generate code for SH4-100 in such a way that the floating-point unit is not used.

 -m4-100-single

 Generate code for SH4-100 assuming the floating-point unit is in single-precision mode

 by default.

 -m4-100-single-only

 Generate code for SH4-100 in such a way that no double-precision floating-point

 operations are used.

 -m4-200

 Generate code for SH4-200.

 -m4-200-nofpu

 Generate code for SH4-200 without in such a way that the floating-point unit is not Page 512/576

 used.

 -m4-200-single

 Generate code for SH4-200 assuming the floating-point unit is in single-precision mode

 by default.

 -m4-200-single-only

 Generate code for SH4-200 in such a way that no double-precision floating-point

 operations are used.

 -m4-300

 Generate code for SH4-300.

 -m4-300-nofpu

 Generate code for SH4-300 without in such a way that the floating-point unit is not

 used.

 -m4-300-single

 Generate code for SH4-300 in such a way that no double-precision floating-point

 operations are used.

 -m4-300-single-only

 Generate code for SH4-300 in such a way that no double-precision floating-point

 operations are used.

 -m4-340

 Generate code for SH4-340 (no MMU, no FPU).

 -m4-500

 Generate code for SH4-500 (no FPU). Passes -isa=sh4-nofpu to the assembler.

 -m4a-nofpu

 Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-point

 unit is not used.

 -m4a-single-only

 Generate code for the SH4a, in such a way that no double-precision floating-point

 operations are used.

 -m4a-single

 Generate code for the SH4a assuming the floating-point unit is in single-precision

 mode by default.

 -m4a

 Generate code for the SH4a. Page 513/576

 -m4al

 Same as -m4a-nofpu, except that it implicitly passes -dsp to the assembler. GCC

 doesn't generate any DSP instructions at the moment.

 -mb Compile code for the processor in big-endian mode.

 -ml Compile code for the processor in little-endian mode.

 -mdalign

 Align doubles at 64-bit boundaries. Note that this changes the calling conventions,

 and thus some functions from the standard C library do not work unless you recompile

 it first with -mdalign.

 -mrelax

 Shorten some address references at link time, when possible; uses the linker option

 -relax.

 -mbigtable

 Use 32-bit offsets in "switch" tables. The default is to use 16-bit offsets.

 -mbitops

 Enable the use of bit manipulation instructions on SH2A.

 -mfmovd

 Enable the use of the instruction "fmovd". Check -mdalign for alignment constraints.

 -mrenesas

 Comply with the calling conventions defined by Renesas.

 -mno-renesas

 Comply with the calling conventions defined for GCC before the Renesas conventions

 were available. This option is the default for all targets of the SH toolchain.

 -mnomacsave

 Mark the "MAC" register as call-clobbered, even if -mrenesas is given.

 -mieee

 -mno-ieee

 Control the IEEE compliance of floating-point comparisons, which affects the handling

 of cases where the result of a comparison is unordered. By default -mieee is

 implicitly enabled. If -ffinite-math-only is enabled -mno-ieee is implicitly set,

 which results in faster floating-point greater-equal and less-equal comparisons. The

 implicit settings can be overridden by specifying either -mieee or -mno-ieee.

 -minline-ic_invalidate Page 514/576

 Inline code to invalidate instruction cache entries after setting up nested function

 trampolines. This option has no effect if -musermode is in effect and the selected

 code generation option (e.g. -m4) does not allow the use of the "icbi" instruction.

 If the selected code generation option does not allow the use of the "icbi"

 instruction, and -musermode is not in effect, the inlined code manipulates the

 instruction cache address array directly with an associative write. This not only

 requires privileged mode at run time, but it also fails if the cache line had been

 mapped via the TLB and has become unmapped.

 -misize

 Dump instruction size and location in the assembly code.

 -mpadstruct

 This option is deprecated. It pads structures to multiple of 4 bytes, which is

 incompatible with the SH ABI.

 -matomic-model=model

 Sets the model of atomic operations and additional parameters as a comma separated

 list. For details on the atomic built-in functions see __atomic Builtins. The

 following models and parameters are supported:

 none

 Disable compiler generated atomic sequences and emit library calls for atomic

 operations. This is the default if the target is not "sh*-*-linux*".

 soft-gusa

 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic built-

 in functions. The generated atomic sequences require additional support from the

 interrupt/exception handling code of the system and are only suitable for SH3* and

 SH4* single-core systems. This option is enabled by default when the target is

 "sh*-*-linux*" and SH3* or SH4*. When the target is SH4A, this option also

 partially utilizes the hardware atomic instructions "movli.l" and "movco.l" to

 create more efficient code, unless strict is specified.

 soft-tcb

 Generate software atomic sequences that use a variable in the thread control

 block. This is a variation of the gUSA sequences which can also be used on SH1*

 and SH2* targets. The generated atomic sequences require additional support from

 the interrupt/exception handling code of the system and are only suitable for Page 515/576

 single-core systems. When using this model, the gbr-offset= parameter has to be

 specified as well.

 soft-imask

 Generate software atomic sequences that temporarily disable interrupts by setting

 "SR.IMASK = 1111". This model works only when the program runs in privileged mode

 and is only suitable for single-core systems. Additional support from the

 interrupt/exception handling code of the system is not required. This model is

 enabled by default when the target is "sh*-*-linux*" and SH1* or SH2*.

 hard-llcs

 Generate hardware atomic sequences using the "movli.l" and "movco.l" instructions

 only. This is only available on SH4A and is suitable for multi-core systems.

 Since the hardware instructions support only 32 bit atomic variables access to 8

 or 16 bit variables is emulated with 32 bit accesses. Code compiled with this

 option is also compatible with other software atomic model interrupt/exception

 handling systems if executed on an SH4A system. Additional support from the

 interrupt/exception handling code of the system is not required for this model.

 gbr-offset=

 This parameter specifies the offset in bytes of the variable in the thread control

 block structure that should be used by the generated atomic sequences when the

 soft-tcb model has been selected. For other models this parameter is ignored.

 The specified value must be an integer multiple of four and in the range 0-1020.

 strict

 This parameter prevents mixed usage of multiple atomic models, even if they are

 compatible, and makes the compiler generate atomic sequences of the specified

 model only.

 -mtas

 Generate the "tas.b" opcode for "__atomic_test_and_set". Notice that depending on the

 particular hardware and software configuration this can degrade overall performance

 due to the operand cache line flushes that are implied by the "tas.b" instruction. On

 multi-core SH4A processors the "tas.b" instruction must be used with caution since it

 can result in data corruption for certain cache configurations.

 -mprefergot

 When generating position-independent code, emit function calls using the Global Offset Page 516/576

 Table instead of the Procedure Linkage Table.

 -musermode

 -mno-usermode

 Don't allow (allow) the compiler generating privileged mode code. Specifying

 -musermode also implies -mno-inline-ic_invalidate if the inlined code would not work

 in user mode. -musermode is the default when the target is "sh*-*-linux*". If the

 target is SH1* or SH2* -musermode has no effect, since there is no user mode.

 -multcost=number

 Set the cost to assume for a multiply insn.

 -mdiv=strategy

 Set the division strategy to be used for integer division operations. strategy can be

 one of:

 call-div1

 Calls a library function that uses the single-step division instruction "div1" to

 perform the operation. Division by zero calculates an unspecified result and does

 not trap. This is the default except for SH4, SH2A and SHcompact.

 call-fp

 Calls a library function that performs the operation in double precision floating

 point. Division by zero causes a floating-point exception. This is the default

 for SHcompact with FPU. Specifying this for targets that do not have a double

 precision FPU defaults to "call-div1".

 call-table

 Calls a library function that uses a lookup table for small divisors and the

 "div1" instruction with case distinction for larger divisors. Division by zero

 calculates an unspecified result and does not trap. This is the default for SH4.

 Specifying this for targets that do not have dynamic shift instructions defaults

 to "call-div1".

 When a division strategy has not been specified the default strategy is selected based

 on the current target. For SH2A the default strategy is to use the "divs" and "divu"

 instructions instead of library function calls.

 -maccumulate-outgoing-args

 Reserve space once for outgoing arguments in the function prologue rather than around

 each call. Generally beneficial for performance and size. Also needed for unwinding Page 517/576

 to avoid changing the stack frame around conditional code.

 -mdivsi3_libfunc=name

 Set the name of the library function used for 32-bit signed division to name. This

 only affects the name used in the call division strategies, and the compiler still

 expects the same sets of input/output/clobbered registers as if this option were not

 present.

 -mfixed-range=register-range

 Generate code treating the given register range as fixed registers. A fixed register

 is one that the register allocator cannot use. This is useful when compiling kernel

 code. A register range is specified as two registers separated by a dash. Multiple

 register ranges can be specified separated by a comma.

 -mbranch-cost=num

 Assume num to be the cost for a branch instruction. Higher numbers make the compiler

 try to generate more branch-free code if possible. If not specified the value is

 selected depending on the processor type that is being compiled for.

 -mzdcbranch

 -mno-zdcbranch

 Assume (do not assume) that zero displacement conditional branch instructions "bt" and

 "bf" are fast. If -mzdcbranch is specified, the compiler prefers zero displacement

 branch code sequences. This is enabled by default when generating code for SH4 and

 SH4A. It can be explicitly disabled by specifying -mno-zdcbranch.

 -mcbranch-force-delay-slot

 Force the usage of delay slots for conditional branches, which stuffs the delay slot

 with a "nop" if a suitable instruction cannot be found. By default this option is

 disabled. It can be enabled to work around hardware bugs as found in the original

 SH7055.

 -mfused-madd

 -mno-fused-madd

 Generate code that uses (does not use) the floating-point multiply and accumulate

 instructions. These instructions are generated by default if hardware floating point

 is used. The machine-dependent -mfused-madd option is now mapped to the machine-

 independent -ffp-contract=fast option, and -mno-fused-madd is mapped to

 -ffp-contract=off. Page 518/576

 -mfsca

 -mno-fsca

 Allow or disallow the compiler to emit the "fsca" instruction for sine and cosine

 approximations. The option -mfsca must be used in combination with

 -funsafe-math-optimizations. It is enabled by default when generating code for SH4A.

 Using -mno-fsca disables sine and cosine approximations even if

 -funsafe-math-optimizations is in effect.

 -mfsrra

 -mno-fsrra

 Allow or disallow the compiler to emit the "fsrra" instruction for reciprocal square

 root approximations. The option -mfsrra must be used in combination with

 -funsafe-math-optimizations and -ffinite-math-only. It is enabled by default when

 generating code for SH4A. Using -mno-fsrra disables reciprocal square root

 approximations even if -funsafe-math-optimizations and -ffinite-math-only are in

 effect.

 -mpretend-cmove

 Prefer zero-displacement conditional branches for conditional move instruction

 patterns. This can result in faster code on the SH4 processor.

 -mfdpic

 Generate code using the FDPIC ABI.

 Solaris 2 Options

 These -m options are supported on Solaris 2:

 -mclear-hwcap

 -mclear-hwcap tells the compiler to remove the hardware capabilities generated by the

 Solaris assembler. This is only necessary when object files use ISA extensions not

 supported by the current machine, but check at runtime whether or not to use them.

 -mimpure-text

 -mimpure-text, used in addition to -shared, tells the compiler to not pass -z text to

 the linker when linking a shared object. Using this option, you can link position-

 dependent code into a shared object.

 -mimpure-text suppresses the "relocations remain against allocatable but non-writable

 sections" linker error message. However, the necessary relocations trigger copy-on-

 write, and the shared object is not actually shared across processes. Instead of Page 519/576

 using -mimpure-text, you should compile all source code with -fpic or -fPIC.

 These switches are supported in addition to the above on Solaris 2:

 -pthreads

 This is a synonym for -pthread.

 SPARC Options

 These -m options are supported on the SPARC:

 -mno-app-regs

 -mapp-regs

 Specify -mapp-regs to generate output using the global registers 2 through 4, which

 the SPARC SVR4 ABI reserves for applications. Like the global register 1, each global

 register 2 through 4 is then treated as an allocable register that is clobbered by

 function calls. This is the default.

 To be fully SVR4 ABI-compliant at the cost of some performance loss, specify

 -mno-app-regs. You should compile libraries and system software with this option.

 -mflat

 -mno-flat

 With -mflat, the compiler does not generate save/restore instructions and uses a

 "flat" or single register window model. This model is compatible with the regular

 register window model. The local registers and the input registers (0--5) are still

 treated as "call-saved" registers and are saved on the stack as needed.

 With -mno-flat (the default), the compiler generates save/restore instructions (except

 for leaf functions). This is the normal operating mode.

 -mfpu

 -mhard-float

 Generate output containing floating-point instructions. This is the default.

 -mno-fpu

 -msoft-float

 Generate output containing library calls for floating point. Warning: the requisite

 libraries are not available for all SPARC targets. Normally the facilities of the

 machine's usual C compiler are used, but this cannot be done directly in cross-

 compilation. You must make your own arrangements to provide suitable library

 functions for cross-compilation. The embedded targets sparc-*-aout and sparclite-*-*

 do provide software floating-point support. Page 520/576

 -msoft-float changes the calling convention in the output file; therefore, it is only

 useful if you compile all of a program with this option. In particular, you need to

 compile libgcc.a, the library that comes with GCC, with -msoft-float in order for this

 to work.

 -mhard-quad-float

 Generate output containing quad-word (long double) floating-point instructions.

 -msoft-quad-float

 Generate output containing library calls for quad-word (long double) floating-point

 instructions. The functions called are those specified in the SPARC ABI. This is the

 default.

 As of this writing, there are no SPARC implementations that have hardware support for

 the quad-word floating-point instructions. They all invoke a trap handler for one of

 these instructions, and then the trap handler emulates the effect of the instruction.

 Because of the trap handler overhead, this is much slower than calling the ABI library

 routines. Thus the -msoft-quad-float option is the default.

 -mno-unaligned-doubles

 -munaligned-doubles

 Assume that doubles have 8-byte alignment. This is the default.

 With -munaligned-doubles, GCC assumes that doubles have 8-byte alignment only if they

 are contained in another type, or if they have an absolute address. Otherwise, it

 assumes they have 4-byte alignment. Specifying this option avoids some rare

 compatibility problems with code generated by other compilers. It is not the default

 because it results in a performance loss, especially for floating-point code.

 -muser-mode

 -mno-user-mode

 Do not generate code that can only run in supervisor mode. This is relevant only for

 the "casa" instruction emitted for the LEON3 processor. This is the default.

 -mfaster-structs

 -mno-faster-structs

 With -mfaster-structs, the compiler assumes that structures should have 8-byte

 alignment. This enables the use of pairs of "ldd" and "std" instructions for copies

 in structure assignment, in place of twice as many "ld" and "st" pairs. However, the

 use of this changed alignment directly violates the SPARC ABI. Thus, it's intended Page 521/576

 only for use on targets where the developer acknowledges that their resulting code is

 not directly in line with the rules of the ABI.

 -mstd-struct-return

 -mno-std-struct-return

 With -mstd-struct-return, the compiler generates checking code in functions returning

 structures or unions to detect size mismatches between the two sides of function

 calls, as per the 32-bit ABI.

 The default is -mno-std-struct-return. This option has no effect in 64-bit mode.

 -mlra

 -mno-lra

 Enable Local Register Allocation. This is the default for SPARC since GCC 7 so

 -mno-lra needs to be passed to get old Reload.

 -mcpu=cpu_type

 Set the instruction set, register set, and instruction scheduling parameters for

 machine type cpu_type. Supported values for cpu_type are v7, cypress, v8, supersparc,

 hypersparc, leon, leon3, leon3v7, leon5, sparclite, f930, f934, sparclite86x,

 sparclet, tsc701, v9, ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,

 niagara7 and m8.

 Native Solaris and GNU/Linux toolchains also support the value native, which selects

 the best architecture option for the host processor. -mcpu=native has no effect if

 GCC does not recognize the processor.

 Default instruction scheduling parameters are used for values that select an

 architecture and not an implementation. These are v7, v8, sparclite, sparclet, v9.

 Here is a list of each supported architecture and their supported implementations.

 v7 cypress, leon3v7

 v8 supersparc, hypersparc, leon, leon3, leon5

 sparclite

 f930, f934, sparclite86x

 sparclet

 tsc701

 v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4, niagara7, m8

 By default (unless configured otherwise), GCC generates code for the V7 variant of the

 SPARC architecture. With -mcpu=cypress, the compiler additionally optimizes it for Page 522/576

 the Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series. This is

 also appropriate for the older SPARCStation 1, 2, IPX etc.

 With -mcpu=v8, GCC generates code for the V8 variant of the SPARC architecture. The

 only difference from V7 code is that the compiler emits the integer multiply and

 integer divide instructions which exist in SPARC-V8 but not in SPARC-V7. With

 -mcpu=supersparc, the compiler additionally optimizes it for the SuperSPARC chip, as

 used in the SPARCStation 10, 1000 and 2000 series.

 With -mcpu=sparclite, GCC generates code for the SPARClite variant of the SPARC

 architecture. This adds the integer multiply, integer divide step and scan ("ffs")

 instructions which exist in SPARClite but not in SPARC-V7. With -mcpu=f930, the

 compiler additionally optimizes it for the Fujitsu MB86930 chip, which is the original

 SPARClite, with no FPU. With -mcpu=f934, the compiler additionally optimizes it for

 the Fujitsu MB86934 chip, which is the more recent SPARClite with FPU.

 With -mcpu=sparclet, GCC generates code for the SPARClet variant of the SPARC

 architecture. This adds the integer multiply, multiply/accumulate, integer divide

 step and scan ("ffs") instructions which exist in SPARClet but not in SPARC-V7. With

 -mcpu=tsc701, the compiler additionally optimizes it for the TEMIC SPARClet chip.

 With -mcpu=v9, GCC generates code for the V9 variant of the SPARC architecture. This

 adds 64-bit integer and floating-point move instructions, 3 additional floating-point

 condition code registers and conditional move instructions. With -mcpu=ultrasparc,

 the compiler additionally optimizes it for the Sun UltraSPARC I/II/IIi chips. With

 -mcpu=ultrasparc3, the compiler additionally optimizes it for the Sun UltraSPARC

 III/III+/IIIi/IIIi+/IV/IV+ chips. With -mcpu=niagara, the compiler additionally

 optimizes it for Sun UltraSPARC T1 chips. With -mcpu=niagara2, the compiler

 additionally optimizes it for Sun UltraSPARC T2 chips. With -mcpu=niagara3, the

 compiler additionally optimizes it for Sun UltraSPARC T3 chips. With -mcpu=niagara4,

 the compiler additionally optimizes it for Sun UltraSPARC T4 chips. With

 -mcpu=niagara7, the compiler additionally optimizes it for Oracle SPARC M7 chips.

 With -mcpu=m8, the compiler additionally optimizes it for Oracle M8 chips.

 -mtune=cpu_type

 Set the instruction scheduling parameters for machine type cpu_type, but do not set

 the instruction set or register set that the option -mcpu=cpu_type does.

 The same values for -mcpu=cpu_type can be used for -mtune=cpu_type, but the only Page 523/576

 useful values are those that select a particular CPU implementation. Those are

 cypress, supersparc, hypersparc, leon, leon3, leon3v7, leon5, f930, f934,

 sparclite86x, tsc701, ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,

 niagara7 and m8. With native Solaris and GNU/Linux toolchains, native can also be

 used.

 -mv8plus

 -mno-v8plus

 With -mv8plus, GCC generates code for the SPARC-V8+ ABI. The difference from the V8

 ABI is that the global and out registers are considered 64 bits wide. This is enabled

 by default on Solaris in 32-bit mode for all SPARC-V9 processors.

 -mvis

 -mno-vis

 With -mvis, GCC generates code that takes advantage of the UltraSPARC Visual

 Instruction Set extensions. The default is -mno-vis.

 -mvis2

 -mno-vis2

 With -mvis2, GCC generates code that takes advantage of version 2.0 of the UltraSPARC

 Visual Instruction Set extensions. The default is -mvis2 when targeting a cpu that

 supports such instructions, such as UltraSPARC-III and later. Setting -mvis2 also

 sets -mvis.

 -mvis3

 -mno-vis3

 With -mvis3, GCC generates code that takes advantage of version 3.0 of the UltraSPARC

 Visual Instruction Set extensions. The default is -mvis3 when targeting a cpu that

 supports such instructions, such as niagara-3 and later. Setting -mvis3 also sets

 -mvis2 and -mvis.

 -mvis4

 -mno-vis4

 With -mvis4, GCC generates code that takes advantage of version 4.0 of the UltraSPARC

 Visual Instruction Set extensions. The default is -mvis4 when targeting a cpu that

 supports such instructions, such as niagara-7 and later. Setting -mvis4 also sets

 -mvis3, -mvis2 and -mvis.

 -mvis4b Page 524/576

 -mno-vis4b

 With -mvis4b, GCC generates code that takes advantage of version 4.0 of the UltraSPARC

 Visual Instruction Set extensions, plus the additional VIS instructions introduced in

 the Oracle SPARC Architecture 2017. The default is -mvis4b when targeting a cpu that

 supports such instructions, such as m8 and later. Setting -mvis4b also sets -mvis4,

 -mvis3, -mvis2 and -mvis.

 -mcbcond

 -mno-cbcond

 With -mcbcond, GCC generates code that takes advantage of the UltraSPARC Compare-and-

 Branch-on-Condition instructions. The default is -mcbcond when targeting a CPU that

 supports such instructions, such as Niagara-4 and later.

 -mfmaf

 -mno-fmaf

 With -mfmaf, GCC generates code that takes advantage of the UltraSPARC Fused Multiply-

 Add Floating-point instructions. The default is -mfmaf when targeting a CPU that

 supports such instructions, such as Niagara-3 and later.

 -mfsmuld

 -mno-fsmuld

 With -mfsmuld, GCC generates code that takes advantage of the Floating-point Multiply

 Single to Double (FsMULd) instruction. The default is -mfsmuld when targeting a CPU

 supporting the architecture versions V8 or V9 with FPU except -mcpu=leon.

 -mpopc

 -mno-popc

 With -mpopc, GCC generates code that takes advantage of the UltraSPARC Population

 Count instruction. The default is -mpopc when targeting a CPU that supports such an

 instruction, such as Niagara-2 and later.

 -msubxc

 -mno-subxc

 With -msubxc, GCC generates code that takes advantage of the UltraSPARC Subtract-

 Extended-with-Carry instruction. The default is -msubxc when targeting a CPU that

 supports such an instruction, such as Niagara-7 and later.

 -mfix-at697f

 Enable the documented workaround for the single erratum of the Atmel AT697F processor Page 525/576

 (which corresponds to erratum #13 of the AT697E processor).

 -mfix-ut699

 Enable the documented workarounds for the floating-point errata and the data cache

 nullify errata of the UT699 processor.

 -mfix-ut700

 Enable the documented workaround for the back-to-back store errata of the UT699E/UT700

 processor.

 -mfix-gr712rc

 Enable the documented workaround for the back-to-back store errata of the GR712RC

 processor.

 These -m options are supported in addition to the above on SPARC-V9 processors in 64-bit

 environments:

 -m32

 -m64

 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,

 long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and

 pointer to 64 bits.

 -mcmodel=which

 Set the code model to one of

 medlow

 The Medium/Low code model: 64-bit addresses, programs must be linked in the low 32

 bits of memory. Programs can be statically or dynamically linked.

 medmid

 The Medium/Middle code model: 64-bit addresses, programs must be linked in the low

 44 bits of memory, the text and data segments must be less than 2GB in size and

 the data segment must be located within 2GB of the text segment.

 medany

 The Medium/Anywhere code model: 64-bit addresses, programs may be linked anywhere

 in memory, the text and data segments must be less than 2GB in size and the data

 segment must be located within 2GB of the text segment.

 embmedany

 The Medium/Anywhere code model for embedded systems: 64-bit addresses, the text

 and data segments must be less than 2GB in size, both starting anywhere in memory Page 526/576

 (determined at link time). The global register %g4 points to the base of the data

 segment. Programs are statically linked and PIC is not supported.

 -mmemory-model=mem-model

 Set the memory model in force on the processor to one of

 default

 The default memory model for the processor and operating system.

 rmo Relaxed Memory Order

 pso Partial Store Order

 tso Total Store Order

 sc Sequential Consistency

 These memory models are formally defined in Appendix D of the SPARC-V9 architecture

 manual, as set in the processor's "PSTATE.MM" field.

 -mstack-bias

 -mno-stack-bias

 With -mstack-bias, GCC assumes that the stack pointer, and frame pointer if present,

 are offset by -2047 which must be added back when making stack frame references. This

 is the default in 64-bit mode. Otherwise, assume no such offset is present.

 Options for System V

 These additional options are available on System V Release 4 for compatibility with other

 compilers on those systems:

 -G Create a shared object. It is recommended that -symbolic or -shared be used instead.

 -Qy Identify the versions of each tool used by the compiler, in a ".ident" assembler

 directive in the output.

 -Qn Refrain from adding ".ident" directives to the output file (this is the default).

 -YP,dirs

 Search the directories dirs, and no others, for libraries specified with -l.

 -Ym,dir

 Look in the directory dir to find the M4 preprocessor. The assembler uses this

 option.

 TILE-Gx Options

 These -m options are supported on the TILE-Gx:

 -mcmodel=small

 Generate code for the small model. The distance for direct calls is limited to 500M Page 527/576

 in either direction. PC-relative addresses are 32 bits. Absolute addresses support

 the full address range.

 -mcmodel=large

 Generate code for the large model. There is no limitation on call distance, pc-

 relative addresses, or absolute addresses.

 -mcpu=name

 Selects the type of CPU to be targeted. Currently the only supported type is tilegx.

 -m32

 -m64

 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,

 long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and

 pointer to 64 bits.

 -mbig-endian

 -mlittle-endian

 Generate code in big/little endian mode, respectively.

 TILEPro Options

 These -m options are supported on the TILEPro:

 -mcpu=name

 Selects the type of CPU to be targeted. Currently the only supported type is tilepro.

 -m32

 Generate code for a 32-bit environment, which sets int, long, and pointer to 32 bits.

 This is the only supported behavior so the flag is essentially ignored.

 V850 Options

 These -m options are defined for V850 implementations:

 -mlong-calls

 -mno-long-calls

 Treat all calls as being far away (near). If calls are assumed to be far away, the

 compiler always loads the function's address into a register, and calls indirect

 through the pointer.

 -mno-ep

 -mep

 Do not optimize (do optimize) basic blocks that use the same index pointer 4 or more

 times to copy pointer into the "ep" register, and use the shorter "sld" and "sst" Page 528/576

 instructions. The -mep option is on by default if you optimize.

 -mno-prolog-function

 -mprolog-function

 Do not use (do use) external functions to save and restore registers at the prologue

 and epilogue of a function. The external functions are slower, but use less code

 space if more than one function saves the same number of registers. The

 -mprolog-function option is on by default if you optimize.

 -mspace

 Try to make the code as small as possible. At present, this just turns on the -mep

 and -mprolog-function options.

 -mtda=n

 Put static or global variables whose size is n bytes or less into the tiny data area

 that register "ep" points to. The tiny data area can hold up to 256 bytes in total

 (128 bytes for byte references).

 -msda=n

 Put static or global variables whose size is n bytes or less into the small data area

 that register "gp" points to. The small data area can hold up to 64 kilobytes.

 -mzda=n

 Put static or global variables whose size is n bytes or less into the first 32

 kilobytes of memory.

 -mv850

 Specify that the target processor is the V850.

 -mv850e3v5

 Specify that the target processor is the V850E3V5. The preprocessor constant

 "__v850e3v5__" is defined if this option is used.

 -mv850e2v4

 Specify that the target processor is the V850E3V5. This is an alias for the

 -mv850e3v5 option.

 -mv850e2v3

 Specify that the target processor is the V850E2V3. The preprocessor constant

 "__v850e2v3__" is defined if this option is used.

 -mv850e2

 Specify that the target processor is the V850E2. The preprocessor constant Page 529/576

 "__v850e2__" is defined if this option is used.

 -mv850e1

 Specify that the target processor is the V850E1. The preprocessor constants

 "__v850e1__" and "__v850e__" are defined if this option is used.

 -mv850es

 Specify that the target processor is the V850ES. This is an alias for the -mv850e1

 option.

 -mv850e

 Specify that the target processor is the V850E. The preprocessor constant "__v850e__"

 is defined if this option is used.

 If neither -mv850 nor -mv850e nor -mv850e1 nor -mv850e2 nor -mv850e2v3 nor -mv850e3v5

 are defined then a default target processor is chosen and the relevant __v850*__

 preprocessor constant is defined.

 The preprocessor constants "__v850" and "__v851__" are always defined, regardless of

 which processor variant is the target.

 -mdisable-callt

 -mno-disable-callt

 This option suppresses generation of the "CALLT" instruction for the v850e, v850e1,

 v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture.

 This option is enabled by default when the RH850 ABI is in use (see -mrh850-abi), and

 disabled by default when the GCC ABI is in use. If "CALLT" instructions are being

 generated then the C preprocessor symbol "__V850_CALLT__" is defined.

 -mrelax

 -mno-relax

 Pass on (or do not pass on) the -mrelax command-line option to the assembler.

 -mlong-jumps

 -mno-long-jumps

 Disable (or re-enable) the generation of PC-relative jump instructions.

 -msoft-float

 -mhard-float

 Disable (or re-enable) the generation of hardware floating point instructions. This

 option is only significant when the target architecture is V850E2V3 or higher. If

 hardware floating point instructions are being generated then the C preprocessor Page 530/576

 symbol "__FPU_OK__" is defined, otherwise the symbol "__NO_FPU__" is defined.

 -mloop

 Enables the use of the e3v5 LOOP instruction. The use of this instruction is not

 enabled by default when the e3v5 architecture is selected because its use is still

 experimental.

 -mrh850-abi

 -mghs

 Enables support for the RH850 version of the V850 ABI. This is the default. With

 this version of the ABI the following rules apply:

 * Integer sized structures and unions are returned via a memory pointer rather than

 a register.

 * Large structures and unions (more than 8 bytes in size) are passed by value.

 * Functions are aligned to 16-bit boundaries.

 * The -m8byte-align command-line option is supported.

 * The -mdisable-callt command-line option is enabled by default. The

 -mno-disable-callt command-line option is not supported.

 When this version of the ABI is enabled the C preprocessor symbol "__V850_RH850_ABI__"

 is defined.

 -mgcc-abi

 Enables support for the old GCC version of the V850 ABI. With this version of the ABI

 the following rules apply:

 * Integer sized structures and unions are returned in register "r10".

 * Large structures and unions (more than 8 bytes in size) are passed by reference.

 * Functions are aligned to 32-bit boundaries, unless optimizing for size.

 * The -m8byte-align command-line option is not supported.

 * The -mdisable-callt command-line option is supported but not enabled by default.

 When this version of the ABI is enabled the C preprocessor symbol "__V850_GCC_ABI__"

 is defined.

 -m8byte-align

 -mno-8byte-align

 Enables support for "double" and "long long" types to be aligned on 8-byte boundaries.

 The default is to restrict the alignment of all objects to at most 4-bytes. When

 -m8byte-align is in effect the C preprocessor symbol "__V850_8BYTE_ALIGN__" is Page 531/576

 defined.

 -mbig-switch

 Generate code suitable for big switch tables. Use this option only if the

 assembler/linker complain about out of range branches within a switch table.

 -mapp-regs

 This option causes r2 and r5 to be used in the code generated by the compiler. This

 setting is the default.

 -mno-app-regs

 This option causes r2 and r5 to be treated as fixed registers.

 VAX Options

 These -m options are defined for the VAX:

 -munix

 Do not output certain jump instructions ("aobleq" and so on) that the Unix assembler

 for the VAX cannot handle across long ranges.

 -mgnu

 Do output those jump instructions, on the assumption that the GNU assembler is being

 used.

 -mg Output code for G-format floating-point numbers instead of D-format.

 Visium Options

 -mdebug

 A program which performs file I/O and is destined to run on an MCM target should be

 linked with this option. It causes the libraries libc.a and libdebug.a to be linked.

 The program should be run on the target under the control of the GDB remote debugging

 stub.

 -msim

 A program which performs file I/O and is destined to run on the simulator should be

 linked with option. This causes libraries libc.a and libsim.a to be linked.

 -mfpu

 -mhard-float

 Generate code containing floating-point instructions. This is the default.

 -mno-fpu

 -msoft-float

 Generate code containing library calls for floating-point. Page 532/576

 -msoft-float changes the calling convention in the output file; therefore, it is only

 useful if you compile all of a program with this option. In particular, you need to

 compile libgcc.a, the library that comes with GCC, with -msoft-float in order for this

 to work.

 -mcpu=cpu_type

 Set the instruction set, register set, and instruction scheduling parameters for

 machine type cpu_type. Supported values for cpu_type are mcm, gr5 and gr6.

 mcm is a synonym of gr5 present for backward compatibility.

 By default (unless configured otherwise), GCC generates code for the GR5 variant of

 the Visium architecture.

 With -mcpu=gr6, GCC generates code for the GR6 variant of the Visium architecture.

 The only difference from GR5 code is that the compiler will generate block move

 instructions.

 -mtune=cpu_type

 Set the instruction scheduling parameters for machine type cpu_type, but do not set

 the instruction set or register set that the option -mcpu=cpu_type would.

 -msv-mode

 Generate code for the supervisor mode, where there are no restrictions on the access

 to general registers. This is the default.

 -muser-mode

 Generate code for the user mode, where the access to some general registers is

 forbidden: on the GR5, registers r24 to r31 cannot be accessed in this mode; on the

 GR6, only registers r29 to r31 are affected.

 VMS Options

 These -m options are defined for the VMS implementations:

 -mvms-return-codes

 Return VMS condition codes from "main". The default is to return POSIX-style condition

 (e.g. error) codes.

 -mdebug-main=prefix

 Flag the first routine whose name starts with prefix as the main routine for the

 debugger.

 -mmalloc64

 Default to 64-bit memory allocation routines. Page 533/576

 -mpointer-size=size

 Set the default size of pointers. Possible options for size are 32 or short for 32 bit

 pointers, 64 or long for 64 bit pointers, and no for supporting only 32 bit pointers.

 The later option disables "pragma pointer_size".

 VxWorks Options

 The options in this section are defined for all VxWorks targets. Options specific to the

 target hardware are listed with the other options for that target.

 -mrtp

 GCC can generate code for both VxWorks kernels and real time processes (RTPs). This

 option switches from the former to the latter. It also defines the preprocessor macro

 "__RTP__".

 -non-static

 Link an RTP executable against shared libraries rather than static libraries. The

 options -static and -shared can also be used for RTPs; -static is the default.

 -Bstatic

 -Bdynamic

 These options are passed down to the linker. They are defined for compatibility with

 Diab.

 -Xbind-lazy

 Enable lazy binding of function calls. This option is equivalent to -Wl,-z,now and is

 defined for compatibility with Diab.

 -Xbind-now

 Disable lazy binding of function calls. This option is the default and is defined for

 compatibility with Diab.

 x86 Options

 These -m options are defined for the x86 family of computers.

 -march=cpu-type

 Generate instructions for the machine type cpu-type. In contrast to -mtune=cpu-type,

 which merely tunes the generated code for the specified cpu-type, -march=cpu-type

 allows GCC to generate code that may not run at all on processors other than the one

 indicated. Specifying -march=cpu-type implies -mtune=cpu-type, except where noted

 otherwise.

 The choices for cpu-type are: Page 534/576

 native

 This selects the CPU to generate code for at compilation time by determining the

 processor type of the compiling machine. Using -march=native enables all

 instruction subsets supported by the local machine (hence the result might not run

 on different machines). Using -mtune=native produces code optimized for the local

 machine under the constraints of the selected instruction set.

 x86-64

 A generic CPU with 64-bit extensions.

 x86-64-v2

 x86-64-v3

 x86-64-v4

 These choices for cpu-type select the corresponding micro-architecture level from

 the x86-64 psABI. On ABIs other than the x86-64 psABI they select the same CPU

 features as the x86-64 psABI documents for the particular micro-architecture

 level.

 Since these cpu-type values do not have a corresponding -mtune setting, using

 -march with these values enables generic tuning. Specific tuning can be enabled

 using the -mtune=other-cpu-type option with an appropriate other-cpu-type value.

 i386

 Original Intel i386 CPU.

 i486

 Intel i486 CPU. (No scheduling is implemented for this chip.)

 i586

 pentium

 Intel Pentium CPU with no MMX support.

 lakemont

 Intel Lakemont MCU, based on Intel Pentium CPU.

 pentium-mmx

 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.

 pentiumpro

 Intel Pentium Pro CPU.

 i686

 When used with -march, the Pentium Pro instruction set is used, so the code runs Page 535/576

 on all i686 family chips. When used with -mtune, it has the same meaning as

 generic.

 pentium2

 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set support.

 pentium3

 pentium3m

 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction set

 support.

 pentium-m

 Intel Pentium M; low-power version of Intel Pentium III CPU with MMX, SSE and SSE2

 instruction set support. Used by Centrino notebooks.

 pentium4

 pentium4m

 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.

 prescott

 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction

 set support.

 nocona

 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE, SSE2 and

 SSE3 instruction set support.

 core2

 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3

 instruction set support.

 nehalem

 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,

 SSE4.2 and POPCNT instruction set support.

 westmere

 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,

 SSE4.2, POPCNT, AES and PCLMUL instruction set support.

 sandybridge

 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.

 ivybridge Page 536/576

 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,

 SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set

 support.

 haswell

 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2

 and F16C instruction set support.

 broadwell

 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,

 F16C, RDSEED ADCX and PREFETCHW instruction set support.

 skylake

 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,

 F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and XSAVES instruction set

 support.

 bonnell

 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3

 instruction set support.

 silvermont

 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL and RDRND instruction set support.

 goldmont

 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES,

 XSAVEOPT and FSGSBASE instruction set support.

 goldmont-plus

 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC,

 XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX and UMIP instruction set support.

 tremont

 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES, Page 537/576

 XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, UMIP, GFNI-SSE, CLWB, MOVDIRI, MOVDIR64B,

 CLDEMOTE and WAITPKG instruction set support.

 knl Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,

 BMI2, F16C, RDSEED, ADCX, PREFETCHW, PREFETCHWT1, AVX512F, AVX512PF, AVX512ER and

 AVX512CD instruction set support.

 knm Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,

 F16C, RDSEED, ADCX, PREFETCHW, PREFETCHWT1, AVX512F, AVX512PF, AVX512ER, AVX512CD,

 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.

 skylake-avx512

 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,

 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,

 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.

 cannonlake

 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,

 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,

 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA and UMIP

 instruction set support.

 icelake-client

 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,

 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,

 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP,

 RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,

 VAES instruction set support.

 icelake-server

 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,

 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,

 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP,Page 538/576

 RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,

 VAES, PCONFIG and WBNOINVD instruction set support.

 cascadelake

 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,

 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,

 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.

 cooperlake

 Intel cooperlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,

 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,

 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI and AVX512BF16 instruction set

 support.

 tigerlake

 Intel Tigerlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,

 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,

 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP,

 RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,

 VAES, PCONFIG, WBNOINVD, MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT and KEYLOCKER

 instruction set support.

 sapphirerapids

 Intel sapphirerapids CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,

 RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,

 AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,

 AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2

 VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG, WBNOINVD, CLWB,

 MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT, ENQCMD, CLDEMOTE, PTWRITE, WAITPKG,

 SERIALIZE, TSXLDTRK, UINTR, AMX-BF16, AMX-TILE, AMX-INT8, AVX-VNNI and AVX512BF16

 instruction set support.

 alderlake

 Intel Alderlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, Page 539/576

 SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES,

 XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, UMIP, GFNI-SSE, CLWB, MOVDIRI, MOVDIR64B,

 CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT, PCONFIG, PKU,

 VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL and AVX-VNNI instruction set

 support.

 rocketlake

 Intel Rocketlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,

 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,

 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP,

 RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,

 VAES instruction set support.

 k6 AMD K6 CPU with MMX instruction set support.

 k6-2

 k6-3

 Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support.

 athlon

 athlon-tbird

 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions

 support.

 athlon-4

 athlon-xp

 athlon-mp

 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE instruction

 set support.

 k8

 opteron

 athlon64

 athlon-fx

 Processors based on the AMD K8 core with x86-64 instruction set support, including

 the AMD Opteron, Athlon 64, and Athlon 64 FX processors. (This supersets MMX,

 SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction set extensions.)

 k8-sse3 Page 540/576

 opteron-sse3

 athlon64-sse3

 Improved versions of AMD K8 cores with SSE3 instruction set support.

 amdfam10

 barcelona

 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This

 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit

 instruction set extensions.)

 bdver1

 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This

 supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,

 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)

 bdver2

 AMD Family 15h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE,

 SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set

 extensions.)

 bdver3

 AMD Family 15h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, PCLMUL, CX16,

 MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set

 extensions.)

 bdver4

 AMD Family 15h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, AES,

 PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and

 64-bit instruction set extensions.)

 znver1

 AMD Family 17h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA,

 CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,

 SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit instruction set

 extensions.) Page 541/576

 znver2

 AMD Family 17h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,

 SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,

 SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID, WBNOINVD, and 64-bit

 instruction set extensions.)

 znver3

 AMD Family 19h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,

 SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,

 SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID, WBNOINVD, PKU, VPCLMULQDQ,

 VAES, and 64-bit instruction set extensions.)

 btver1

 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This

 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit instruction set

 extensions.)

 btver2

 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This

 includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A,

 SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.

 winchip-c6

 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction set

 support.

 winchip2

 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!

 instruction set support.

 c3 VIA C3 CPU with MMX and 3DNow! instruction set support. (No scheduling is

 implemented for this chip.)

 c3-2

 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support. (No

 scheduling is implemented for this chip.)

 c7 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support. (No

 scheduling is implemented for this chip.) Page 542/576

 samuel-2

 VIA Eden Samuel 2 CPU with MMX and 3DNow! instruction set support. (No scheduling

 is implemented for this chip.)

 nehemiah

 VIA Eden Nehemiah CPU with MMX and SSE instruction set support. (No scheduling is

 implemented for this chip.)

 esther

 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support. (No

 scheduling is implemented for this chip.)

 eden-x2

 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support. (No

 scheduling is implemented for this chip.)

 eden-x4

 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX and

 AVX2 instruction set support. (No scheduling is implemented for this chip.)

 nano

 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set

 support. (No scheduling is implemented for this chip.)

 nano-1000

 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set

 support. (No scheduling is implemented for this chip.)

 nano-2000

 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set

 support. (No scheduling is implemented for this chip.)

 nano-3000

 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1 instruction

 set support. (No scheduling is implemented for this chip.)

 nano-x2

 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1

 instruction set support. (No scheduling is implemented for this chip.)

 nano-x4

 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1

 instruction set support. (No scheduling is implemented for this chip.) Page 543/576

 geode

 AMD Geode embedded processor with MMX and 3DNow! instruction set support.

 -mtune=cpu-type

 Tune to cpu-type everything applicable about the generated code, except for the ABI

 and the set of available instructions. While picking a specific cpu-type schedules

 things appropriately for that particular chip, the compiler does not generate any code

 that cannot run on the default machine type unless you use a -march=cpu-type option.

 For example, if GCC is configured for i686-pc-linux-gnu then -mtune=pentium4 generates

 code that is tuned for Pentium 4 but still runs on i686 machines.

 The choices for cpu-type are the same as for -march. In addition, -mtune supports 2

 extra choices for cpu-type:

 generic

 Produce code optimized for the most common IA32/AMD64/EM64T processors. If you

 know the CPU on which your code will run, then you should use the corresponding

 -mtune or -march option instead of -mtune=generic. But, if you do not know

 exactly what CPU users of your application will have, then you should use this

 option.

 As new processors are deployed in the marketplace, the behavior of this option

 will change. Therefore, if you upgrade to a newer version of GCC, code generation

 controlled by this option will change to reflect the processors that are most

 common at the time that version of GCC is released.

 There is no -march=generic option because -march indicates the instruction set the

 compiler can use, and there is no generic instruction set applicable to all

 processors. In contrast, -mtune indicates the processor (or, in this case,

 collection of processors) for which the code is optimized.

 intel

 Produce code optimized for the most current Intel processors, which are Haswell

 and Silvermont for this version of GCC. If you know the CPU on which your code

 will run, then you should use the corresponding -mtune or -march option instead of

 -mtune=intel. But, if you want your application performs better on both Haswell

 and Silvermont, then you should use this option.

 As new Intel processors are deployed in the marketplace, the behavior of this

 option will change. Therefore, if you upgrade to a newer version of GCC, code Page 544/576

 generation controlled by this option will change to reflect the most current Intel

 processors at the time that version of GCC is released.

 There is no -march=intel option because -march indicates the instruction set the

 compiler can use, and there is no common instruction set applicable to all

 processors. In contrast, -mtune indicates the processor (or, in this case,

 collection of processors) for which the code is optimized.

 -mcpu=cpu-type

 A deprecated synonym for -mtune.

 -mfpmath=unit

 Generate floating-point arithmetic for selected unit unit. The choices for unit are:

 387 Use the standard 387 floating-point coprocessor present on the majority of chips

 and emulated otherwise. Code compiled with this option runs almost everywhere.

 The temporary results are computed in 80-bit precision instead of the precision

 specified by the type, resulting in slightly different results compared to most of

 other chips. See -ffloat-store for more detailed description.

 This is the default choice for non-Darwin x86-32 targets.

 sse Use scalar floating-point instructions present in the SSE instruction set. This

 instruction set is supported by Pentium III and newer chips, and in the AMD line

 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE

 instruction set supports only single-precision arithmetic, thus the double and

 extended-precision arithmetic are still done using 387. A later version, present

 only in Pentium 4 and AMD x86-64 chips, supports double-precision arithmetic too.

 For the x86-32 compiler, you must use -march=cpu-type, -msse or -msse2 switches to

 enable SSE extensions and make this option effective. For the x86-64 compiler,

 these extensions are enabled by default.

 The resulting code should be considerably faster in the majority of cases and

 avoid the numerical instability problems of 387 code, but may break some existing

 code that expects temporaries to be 80 bits.

 This is the default choice for the x86-64 compiler, Darwin x86-32 targets, and the

 default choice for x86-32 targets with the SSE2 instruction set when -ffast-math

 is enabled.

 sse,387

 sse+387 Page 545/576

 both

 Attempt to utilize both instruction sets at once. This effectively doubles the

 amount of available registers, and on chips with separate execution units for 387

 and SSE the execution resources too. Use this option with care, as it is still

 experimental, because the GCC register allocator does not model separate

 functional units well, resulting in unstable performance.

 -masm=dialect

 Output assembly instructions using selected dialect. Also affects which dialect is

 used for basic "asm" and extended "asm". Supported choices (in dialect order) are att

 or intel. The default is att. Darwin does not support intel.

 -mieee-fp

 -mno-ieee-fp

 Control whether or not the compiler uses IEEE floating-point comparisons. These

 correctly handle the case where the result of a comparison is unordered.

 -m80387

 -mhard-float

 Generate output containing 80387 instructions for floating point.

 -mno-80387

 -msoft-float

 Generate output containing library calls for floating point.

 Warning: the requisite libraries are not part of GCC. Normally the facilities of the

 machine's usual C compiler are used, but this cannot be done directly in cross-

 compilation. You must make your own arrangements to provide suitable library

 functions for cross-compilation.

 On machines where a function returns floating-point results in the 80387 register

 stack, some floating-point opcodes may be emitted even if -msoft-float is used.

 -mno-fp-ret-in-387

 Do not use the FPU registers for return values of functions.

 The usual calling convention has functions return values of types "float" and "double"

 in an FPU register, even if there is no FPU. The idea is that the operating system

 should emulate an FPU.

 The option -mno-fp-ret-in-387 causes such values to be returned in ordinary CPU

 registers instead. Page 546/576

 -mno-fancy-math-387

 Some 387 emulators do not support the "sin", "cos" and "sqrt" instructions for the

 387. Specify this option to avoid generating those instructions. This option is

 overridden when -march indicates that the target CPU always has an FPU and so the

 instruction does not need emulation. These instructions are not generated unless you

 also use the -funsafe-math-optimizations switch.

 -malign-double

 -mno-align-double

 Control whether GCC aligns "double", "long double", and "long long" variables on a

 two-word boundary or a one-word boundary. Aligning "double" variables on a two-word

 boundary produces code that runs somewhat faster on a Pentium at the expense of more

 memory.

 On x86-64, -malign-double is enabled by default.

 Warning: if you use the -malign-double switch, structures containing the above types

 are aligned differently than the published application binary interface specifications

 for the x86-32 and are not binary compatible with structures in code compiled without

 that switch.

 -m96bit-long-double

 -m128bit-long-double

 These switches control the size of "long double" type. The x86-32 application binary

 interface specifies the size to be 96 bits, so -m96bit-long-double is the default in

 32-bit mode.

 Modern architectures (Pentium and newer) prefer "long double" to be aligned to an 8-

 or 16-byte boundary. In arrays or structures conforming to the ABI, this is not

 possible. So specifying -m128bit-long-double aligns "long double" to a 16-byte

 boundary by padding the "long double" with an additional 32-bit zero.

 In the x86-64 compiler, -m128bit-long-double is the default choice as its ABI

 specifies that "long double" is aligned on 16-byte boundary.

 Notice that neither of these options enable any extra precision over the x87 standard

 of 80 bits for a "long double".

 Warning: if you override the default value for your target ABI, this changes the size

 of structures and arrays containing "long double" variables, as well as modifying the

 function calling convention for functions taking "long double". Hence they are not Page 547/576

 binary-compatible with code compiled without that switch.

 -mlong-double-64

 -mlong-double-80

 -mlong-double-128

 These switches control the size of "long double" type. A size of 64 bits makes the

 "long double" type equivalent to the "double" type. This is the default for 32-bit

 Bionic C library. A size of 128 bits makes the "long double" type equivalent to the

 "__float128" type. This is the default for 64-bit Bionic C library.

 Warning: if you override the default value for your target ABI, this changes the size

 of structures and arrays containing "long double" variables, as well as modifying the

 function calling convention for functions taking "long double". Hence they are not

 binary-compatible with code compiled without that switch.

 -malign-data=type

 Control how GCC aligns variables. Supported values for type are compat uses increased

 alignment value compatible uses GCC 4.8 and earlier, abi uses alignment value as

 specified by the psABI, and cacheline uses increased alignment value to match the

 cache line size. compat is the default.

 -mlarge-data-threshold=threshold

 When -mcmodel=medium is specified, data objects larger than threshold are placed in

 the large data section. This value must be the same across all objects linked into

 the binary, and defaults to 65535.

 -mrtd

 Use a different function-calling convention, in which functions that take a fixed

 number of arguments return with the "ret num" instruction, which pops their arguments

 while returning. This saves one instruction in the caller since there is no need to

 pop the arguments there.

 You can specify that an individual function is called with this calling sequence with

 the function attribute "stdcall". You can also override the -mrtd option by using the

 function attribute "cdecl".

 Warning: this calling convention is incompatible with the one normally used on Unix,

 so you cannot use it if you need to call libraries compiled with the Unix compiler.

 Also, you must provide function prototypes for all functions that take variable

 numbers of arguments (including "printf"); otherwise incorrect code is generated for Page 548/576

 calls to those functions.

 In addition, seriously incorrect code results if you call a function with too many

 arguments. (Normally, extra arguments are harmlessly ignored.)

 -mregparm=num

 Control how many registers are used to pass integer arguments. By default, no

 registers are used to pass arguments, and at most 3 registers can be used. You can

 control this behavior for a specific function by using the function attribute

 "regparm".

 Warning: if you use this switch, and num is nonzero, then you must build all modules

 with the same value, including any libraries. This includes the system libraries and

 startup modules.

 -msseregparm

 Use SSE register passing conventions for float and double arguments and return values.

 You can control this behavior for a specific function by using the function attribute

 "sseregparm".

 Warning: if you use this switch then you must build all modules with the same value,

 including any libraries. This includes the system libraries and startup modules.

 -mvect8-ret-in-mem

 Return 8-byte vectors in memory instead of MMX registers. This is the default on

 VxWorks to match the ABI of the Sun Studio compilers until version 12. Only use this

 option if you need to remain compatible with existing code produced by those previous

 compiler versions or older versions of GCC.

 -mpc32

 -mpc64

 -mpc80

 Set 80387 floating-point precision to 32, 64 or 80 bits. When -mpc32 is specified,

 the significands of results of floating-point operations are rounded to 24 bits

 (single precision); -mpc64 rounds the significands of results of floating-point

 operations to 53 bits (double precision) and -mpc80 rounds the significands of results

 of floating-point operations to 64 bits (extended double precision), which is the

 default. When this option is used, floating-point operations in higher precisions are

 not available to the programmer without setting the FPU control word explicitly.

 Setting the rounding of floating-point operations to less than the default 80 bits can Page 549/576

 speed some programs by 2% or more. Note that some mathematical libraries assume that

 extended-precision (80-bit) floating-point operations are enabled by default; routines

 in such libraries could suffer significant loss of accuracy, typically through so-

 called "catastrophic cancellation", when this option is used to set the precision to

 less than extended precision.

 -mdaz-ftz

 The flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags in the MXCSR register are

 used to control floating-point calculations.SSE and AVX instructions including scalar

 and vector instructions could benefit from enabling the FTZ and DAZ flags when

 -mdaz-ftz is specified. Don't set FTZ/DAZ flags when -mno-daz-ftz is specified.

 -mstackrealign

 Realign the stack at entry. On the x86, the -mstackrealign option generates an

 alternate prologue and epilogue that realigns the run-time stack if necessary. This

 supports mixing legacy codes that keep 4-byte stack alignment with modern codes that

 keep 16-byte stack alignment for SSE compatibility. See also the attribute

 "force_align_arg_pointer", applicable to individual functions.

 -mpreferred-stack-boundary=num

 Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary. If

 -mpreferred-stack-boundary is not specified, the default is 4 (16 bytes or 128 bits).

 Warning: When generating code for the x86-64 architecture with SSE extensions

 disabled, -mpreferred-stack-boundary=3 can be used to keep the stack boundary aligned

 to 8 byte boundary. Since x86-64 ABI require 16 byte stack alignment, this is ABI

 incompatible and intended to be used in controlled environment where stack space is

 important limitation. This option leads to wrong code when functions compiled with 16

 byte stack alignment (such as functions from a standard library) are called with

 misaligned stack. In this case, SSE instructions may lead to misaligned memory access

 traps. In addition, variable arguments are handled incorrectly for 16 byte aligned

 objects (including x87 long double and __int128), leading to wrong results. You must

 build all modules with -mpreferred-stack-boundary=3, including any libraries. This

 includes the system libraries and startup modules.

 -mincoming-stack-boundary=num

 Assume the incoming stack is aligned to a 2 raised to num byte boundary. If

 -mincoming-stack-boundary is not specified, the one specified by Page 550/576

 -mpreferred-stack-boundary is used.

 On Pentium and Pentium Pro, "double" and "long double" values should be aligned to an

 8-byte boundary (see -malign-double) or suffer significant run time performance

 penalties. On Pentium III, the Streaming SIMD Extension (SSE) data type "__m128" may

 not work properly if it is not 16-byte aligned.

 To ensure proper alignment of this values on the stack, the stack boundary must be as

 aligned as that required by any value stored on the stack. Further, every function

 must be generated such that it keeps the stack aligned. Thus calling a function

 compiled with a higher preferred stack boundary from a function compiled with a lower

 preferred stack boundary most likely misaligns the stack. It is recommended that

 libraries that use callbacks always use the default setting.

 This extra alignment does consume extra stack space, and generally increases code

 size. Code that is sensitive to stack space usage, such as embedded systems and

 operating system kernels, may want to reduce the preferred alignment to

 -mpreferred-stack-boundary=2.

 -mmmx

 -msse

 -msse2

 -msse3

 -mssse3

 -msse4

 -msse4a

 -msse4.1

 -msse4.2

 -mavx

 -mavx2

 -mavx512f

 -mavx512pf

 -mavx512er

 -mavx512cd

 -mavx512vl

 -mavx512bw

 -mavx512dq Page 551/576

 -mavx512ifma

 -mavx512vbmi

 -msha

 -maes

 -mpclmul

 -mclflushopt

 -mclwb

 -mfsgsbase

 -mptwrite

 -mrdrnd

 -mf16c

 -mfma

 -mpconfig

 -mwbnoinvd

 -mfma4

 -mprfchw

 -mrdpid

 -mprefetchwt1

 -mrdseed

 -msgx

 -mxop

 -mlwp

 -m3dnow

 -m3dnowa

 -mpopcnt

 -mabm

 -madx

 -mbmi

 -mbmi2

 -mlzcnt

 -mfxsr

 -mxsave

 -mxsaveopt Page 552/576

 -mxsavec

 -mxsaves

 -mrtm

 -mhle

 -mtbm

 -mmwaitx

 -mclzero

 -mpku

 -mavx512vbmi2

 -mavx512bf16

 -mgfni

 -mvaes

 -mwaitpkg

 -mvpclmulqdq

 -mavx512bitalg

 -mmovdiri

 -mmovdir64b

 -menqcmd

 -muintr

 -mtsxldtrk

 -mavx512vpopcntdq

 -mavx512vp2intersect

 -mavx5124fmaps

 -mavx512vnni

 -mavxvnni

 -mavx5124vnniw

 -mcldemote

 -mserialize

 -mamx-tile

 -mamx-int8

 -mamx-bf16

 -mhreset

 -mkl Page 553/576

 -mwidekl

 These switches enable the use of instructions in the MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,

 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA, AES, PCLMUL, CLFLUSHOPT,

 CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG, WBNOINVD, FMA4, PREFETCHW, RDPID,

 PREFETCHWT1, RDSEED, SGX, XOP, LWP, 3DNow!, enhanced 3DNow!, POPCNT, ABM, ADX, BMI,

 BMI2, LZCNT, FXSR, XSAVE, XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO,

 PKU, AVX512VBMI2, GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B,

 AVX512BF16, ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW,

 SERIALIZE, UINTR, HRESET, AMXTILE, AMXINT8, AMXBF16, KL, WIDEKL, AVXVNNI or CLDEMOTE

 extended instruction sets. Each has a corresponding -mno- option to disable use of

 these instructions.

 These extensions are also available as built-in functions: see x86 Built-in Functions,

 for details of the functions enabled and disabled by these switches.

 To generate SSE/SSE2 instructions automatically from floating-point code (as opposed

 to 387 instructions), see -mfpmath=sse.

 GCC depresses SSEx instructions when -mavx is used. Instead, it generates new AVX

 instructions or AVX equivalence for all SSEx instructions when needed.

 These options enable GCC to use these extended instructions in generated code, even

 without -mfpmath=sse. Applications that perform run-time CPU detection must compile

 separate files for each supported architecture, using the appropriate flags. In

 particular, the file containing the CPU detection code should be compiled without

 these options.

 -mdump-tune-features

 This option instructs GCC to dump the names of the x86 performance tuning features and

 default settings. The names can be used in -mtune-ctrl=feature-list.

 -mtune-ctrl=feature-list

 This option is used to do fine grain control of x86 code generation features.

 feature-list is a comma separated list of feature names. See also

 -mdump-tune-features. When specified, the feature is turned on if it is not preceded

 with ^, otherwise, it is turned off. -mtune-ctrl=feature-list is intended to be used

 by GCC developers. Using it may lead to code paths not covered by testing and can

 potentially result in compiler ICEs or runtime errors. Page 554/576

 -mno-default

 This option instructs GCC to turn off all tunable features. See also

 -mtune-ctrl=feature-list and -mdump-tune-features.

 -mcld

 This option instructs GCC to emit a "cld" instruction in the prologue of functions

 that use string instructions. String instructions depend on the DF flag to select

 between autoincrement or autodecrement mode. While the ABI specifies the DF flag to

 be cleared on function entry, some operating systems violate this specification by not

 clearing the DF flag in their exception dispatchers. The exception handler can be

 invoked with the DF flag set, which leads to wrong direction mode when string

 instructions are used. This option can be enabled by default on 32-bit x86 targets by

 configuring GCC with the --enable-cld configure option. Generation of "cld"

 instructions can be suppressed with the -mno-cld compiler option in this case.

 -mvzeroupper

 This option instructs GCC to emit a "vzeroupper" instruction before a transfer of

 control flow out of the function to minimize the AVX to SSE transition penalty as well

 as remove unnecessary "zeroupper" intrinsics.

 -mprefer-avx128

 This option instructs GCC to use 128-bit AVX instructions instead of 256-bit AVX

 instructions in the auto-vectorizer.

 -mprefer-vector-width=opt

 This option instructs GCC to use opt-bit vector width in instructions instead of

 default on the selected platform.

 none

 No extra limitations applied to GCC other than defined by the selected platform.

 128 Prefer 128-bit vector width for instructions.

 256 Prefer 256-bit vector width for instructions.

 512 Prefer 512-bit vector width for instructions.

 -mcx16

 This option enables GCC to generate "CMPXCHG16B" instructions in 64-bit code to

 implement compare-and-exchange operations on 16-byte aligned 128-bit objects. This is

 useful for atomic updates of data structures exceeding one machine word in size. The

 compiler uses this instruction to implement __sync Builtins. However, for __atomic Page 555/576

 Builtins operating on 128-bit integers, a library call is always used.

 -msahf

 This option enables generation of "SAHF" instructions in 64-bit code. Early Intel

 Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step

 in December 2005, lacked the "LAHF" and "SAHF" instructions which are supported by

 AMD64. These are load and store instructions, respectively, for certain status flags.

 In 64-bit mode, the "SAHF" instruction is used to optimize "fmod", "drem", and

 "remainder" built-in functions; see Other Builtins for details.

 -mmovbe

 This option enables use of the "movbe" instruction to implement "__builtin_bswap32"

 and "__builtin_bswap64".

 -mshstk

 The -mshstk option enables shadow stack built-in functions from x86 Control-flow

 Enforcement Technology (CET).

 -mcrc32

 This option enables built-in functions "__builtin_ia32_crc32qi",

 "__builtin_ia32_crc32hi", "__builtin_ia32_crc32si" and "__builtin_ia32_crc32di" to

 generate the "crc32" machine instruction.

 -mmwait

 This option enables built-in functions "__builtin_ia32_monitor", and

 "__builtin_ia32_mwait" to generate the "monitor" and "mwait" machine instructions.

 -mrecip

 This option enables use of "RCPSS" and "RSQRTSS" instructions (and their vectorized

 variants "RCPPS" and "RSQRTPS") with an additional Newton-Raphson step to increase

 precision instead of "DIVSS" and "SQRTSS" (and their vectorized variants) for single-

 precision floating-point arguments. These instructions are generated only when

 -funsafe-math-optimizations is enabled together with -ffinite-math-only and

 -fno-trapping-math. Note that while the throughput of the sequence is higher than the

 throughput of the non-reciprocal instruction, the precision of the sequence can be

 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).

 Note that GCC implements "1.0f/sqrtf(x)" in terms of "RSQRTSS" (or "RSQRTPS") already

 with -ffast-math (or the above option combination), and doesn't need -mrecip.

 Also note that GCC emits the above sequence with additional Newton-Raphson step for Page 556/576

 vectorized single-float division and vectorized "sqrtf(x)" already with -ffast-math

 (or the above option combination), and doesn't need -mrecip.

 -mrecip=opt

 This option controls which reciprocal estimate instructions may be used. opt is a

 comma-separated list of options, which may be preceded by a ! to invert the option:

 all Enable all estimate instructions.

 default

 Enable the default instructions, equivalent to -mrecip.

 none

 Disable all estimate instructions, equivalent to -mno-recip.

 div Enable the approximation for scalar division.

 vec-div

 Enable the approximation for vectorized division.

 sqrt

 Enable the approximation for scalar square root.

 vec-sqrt

 Enable the approximation for vectorized square root.

 So, for example, -mrecip=all,!sqrt enables all of the reciprocal approximations,

 except for square root.

 -mveclibabi=type

 Specifies the ABI type to use for vectorizing intrinsics using an external library.

 Supported values for type are svml for the Intel short vector math library and acml

 for the AMD math core library. To use this option, both -ftree-vectorize and

 -funsafe-math-optimizations have to be enabled, and an SVML or ACML ABI-compatible

 library must be specified at link time.

 GCC currently emits calls to "vmldExp2", "vmldLn2", "vmldLog102", "vmldPow2",

 "vmldTanh2", "vmldTan2", "vmldAtan2", "vmldAtanh2", "vmldCbrt2", "vmldSinh2",

 "vmldSin2", "vmldAsinh2", "vmldAsin2", "vmldCosh2", "vmldCos2", "vmldAcosh2",

 "vmldAcos2", "vmlsExp4", "vmlsLn4", "vmlsLog104", "vmlsPow4", "vmlsTanh4", "vmlsTan4",

 "vmlsAtan4", "vmlsAtanh4", "vmlsCbrt4", "vmlsSinh4", "vmlsSin4", "vmlsAsinh4",

 "vmlsAsin4", "vmlsCosh4", "vmlsCos4", "vmlsAcosh4" and "vmlsAcos4" for corresponding

 function type when -mveclibabi=svml is used, and "__vrd2_sin", "__vrd2_cos",

 "__vrd2_exp", "__vrd2_log", "__vrd2_log2", "__vrd2_log10", "__vrs4_sinf", Page 557/576

 "__vrs4_cosf", "__vrs4_expf", "__vrs4_logf", "__vrs4_log2f", "__vrs4_log10f" and

 "__vrs4_powf" for the corresponding function type when -mveclibabi=acml is used.

 -mabi=name

 Generate code for the specified calling convention. Permissible values are sysv for

 the ABI used on GNU/Linux and other systems, and ms for the Microsoft ABI. The

 default is to use the Microsoft ABI when targeting Microsoft Windows and the SysV ABI

 on all other systems. You can control this behavior for specific functions by using

 the function attributes "ms_abi" and "sysv_abi".

 -mforce-indirect-call

 Force all calls to functions to be indirect. This is useful when using Intel Processor

 Trace where it generates more precise timing information for function calls.

 -mmanual-endbr

 Insert ENDBR instruction at function entry only via the "cf_check" function attribute.

 This is useful when used with the option -fcf-protection=branch to control ENDBR

 insertion at the function entry.

 -mcall-ms2sysv-xlogues

 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a System V

 ABI function must consider RSI, RDI and XMM6-15 as clobbered. By default, the code

 for saving and restoring these registers is emitted inline, resulting in fairly

 lengthy prologues and epilogues. Using -mcall-ms2sysv-xlogues emits prologues and

 epilogues that use stubs in the static portion of libgcc to perform these saves and

 restores, thus reducing function size at the cost of a few extra instructions.

 -mtls-dialect=type

 Generate code to access thread-local storage using the gnu or gnu2 conventions. gnu

 is the conservative default; gnu2 is more efficient, but it may add compile- and run-

 time requirements that cannot be satisfied on all systems.

 -mpush-args

 -mno-push-args

 Use PUSH operations to store outgoing parameters. This method is shorter and usually

 equally fast as method using SUB/MOV operations and is enabled by default. In some

 cases disabling it may improve performance because of improved scheduling and reduced

 dependencies.

 -maccumulate-outgoing-args Page 558/576

 If enabled, the maximum amount of space required for outgoing arguments is computed in

 the function prologue. This is faster on most modern CPUs because of reduced

 dependencies, improved scheduling and reduced stack usage when the preferred stack

 boundary is not equal to 2. The drawback is a notable increase in code size. This

 switch implies -mno-push-args.

 -mthreads

 Support thread-safe exception handling on MinGW. Programs that rely on thread-safe

 exception handling must compile and link all code with the -mthreads option. When

 compiling, -mthreads defines -D_MT; when linking, it links in a special thread helper

 library -lmingwthrd which cleans up per-thread exception-handling data.

 -mms-bitfields

 -mno-ms-bitfields

 Enable/disable bit-field layout compatible with the native Microsoft Windows compiler.

 If "packed" is used on a structure, or if bit-fields are used, it may be that the

 Microsoft ABI lays out the structure differently than the way GCC normally does.

 Particularly when moving packed data between functions compiled with GCC and the

 native Microsoft compiler (either via function call or as data in a file), it may be

 necessary to access either format.

 This option is enabled by default for Microsoft Windows targets. This behavior can

 also be controlled locally by use of variable or type attributes. For more

 information, see x86 Variable Attributes and x86 Type Attributes.

 The Microsoft structure layout algorithm is fairly simple with the exception of the

 bit-field packing. The padding and alignment of members of structures and whether a

 bit-field can straddle a storage-unit boundary are determine by these rules:

 1. Structure members are stored sequentially in the order in which they are

 declared: the first member has the lowest memory address and the last member the

 highest.

 2. Every data object has an alignment requirement. The alignment requirement

 for all data except structures, unions, and arrays is either the size of the

 object or the current packing size (specified with either the "aligned" attribute

 or the "pack" pragma), whichever is less. For structures, unions, and arrays, the

 alignment requirement is the largest alignment requirement of its members. Every

 object is allocated an offset so that: Page 559/576

 offset % alignment_requirement == 0

 3. Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation

 unit if the integral types are the same size and if the next bit-field fits into

 the current allocation unit without crossing the boundary imposed by the common

 alignment requirements of the bit-fields.

 MSVC interprets zero-length bit-fields in the following ways:

 1. If a zero-length bit-field is inserted between two bit-fields that

 are normally coalesced, the bit-fields are not coalesced.

 For example:

 struct

 {

 unsigned long bf_1 : 12;

 unsigned long : 0;

 unsigned long bf_2 : 12;

 } t1;

 The size of "t1" is 8 bytes with the zero-length bit-field. If the zero-length

 bit-field were removed, "t1"'s size would be 4 bytes.

 2. If a zero-length bit-field is inserted after a bit-field, "foo", and the

 alignment of the zero-length bit-field is greater than the member that follows it,

 "bar", "bar" is aligned as the type of the zero-length bit-field.

 For example:

 struct

 {

 char foo : 4;

 short : 0;

 char bar;

 } t2;

 struct

 {

 char foo : 4;

 short : 0;

 double bar;

 } t3; Page 560/576

 For "t2", "bar" is placed at offset 2, rather than offset 1. Accordingly, the

 size of "t2" is 4. For "t3", the zero-length bit-field does not affect the

 alignment of "bar" or, as a result, the size of the structure.

 Taking this into account, it is important to note the following:

 1. If a zero-length bit-field follows a normal bit-field, the type of the

 zero-length bit-field may affect the alignment of the structure as whole. For

 example, "t2" has a size of 4 bytes, since the zero-length bit-field follows a

 normal bit-field, and is of type short.

 2. Even if a zero-length bit-field is not followed by a normal bit-field, it may

 still affect the alignment of the structure:

 struct

 {

 char foo : 6;

 long : 0;

 } t4;

 Here, "t4" takes up 4 bytes.

 3. Zero-length bit-fields following non-bit-field members are ignored:

 struct

 {

 char foo;

 long : 0;

 char bar;

 } t5;

 Here, "t5" takes up 2 bytes.

 -mno-align-stringops

 Do not align the destination of inlined string operations. This switch reduces code

 size and improves performance in case the destination is already aligned, but GCC

 doesn't know about it.

 -minline-all-stringops

 By default GCC inlines string operations only when the destination is known to be

 aligned to least a 4-byte boundary. This enables more inlining and increases code

 size, but may improve performance of code that depends on fast "memcpy" and "memset"

 for short lengths. The option enables inline expansion of "strlen" for all pointer Page 561/576

 alignments.

 -minline-stringops-dynamically

 For string operations of unknown size, use run-time checks with inline code for small

 blocks and a library call for large blocks.

 -mstringop-strategy=alg

 Override the internal decision heuristic for the particular algorithm to use for

 inlining string operations. The allowed values for alg are:

 rep_byte

 rep_4byte

 rep_8byte

 Expand using i386 "rep" prefix of the specified size.

 byte_loop

 loop

 unrolled_loop

 Expand into an inline loop.

 libcall

 Always use a library call.

 -mmemcpy-strategy=strategy

 Override the internal decision heuristic to decide if "__builtin_memcpy" should be

 inlined and what inline algorithm to use when the expected size of the copy operation

 is known. strategy is a comma-separated list of alg:max_size:dest_align triplets. alg

 is specified in -mstringop-strategy, max_size specifies the max byte size with which

 inline algorithm alg is allowed. For the last triplet, the max_size must be "-1". The

 max_size of the triplets in the list must be specified in increasing order. The

 minimal byte size for alg is 0 for the first triplet and "max_size + 1" of the

 preceding range.

 -mmemset-strategy=strategy

 The option is similar to -mmemcpy-strategy= except that it is to control

 "__builtin_memset" expansion.

 -momit-leaf-frame-pointer

 Don't keep the frame pointer in a register for leaf functions. This avoids the

 instructions to save, set up, and restore frame pointers and makes an extra register

 available in leaf functions. The option -fomit-leaf-frame-pointer removes the frame Page 562/576

 pointer for leaf functions, which might make debugging harder.

 -mtls-direct-seg-refs

 -mno-tls-direct-seg-refs

 Controls whether TLS variables may be accessed with offsets from the TLS segment

 register (%gs for 32-bit, %fs for 64-bit), or whether the thread base pointer must be

 added. Whether or not this is valid depends on the operating system, and whether it

 maps the segment to cover the entire TLS area.

 For systems that use the GNU C Library, the default is on.

 -msse2avx

 -mno-sse2avx

 Specify that the assembler should encode SSE instructions with VEX prefix. The option

 -mavx turns this on by default.

 -mfentry

 -mno-fentry

 If profiling is active (-pg), put the profiling counter call before the prologue.

 Note: On x86 architectures the attribute "ms_hook_prologue" isn't possible at the

 moment for -mfentry and -pg.

 -mrecord-mcount

 -mno-record-mcount

 If profiling is active (-pg), generate a __mcount_loc section that contains pointers

 to each profiling call. This is useful for automatically patching and out calls.

 -mnop-mcount

 -mno-nop-mcount

 If profiling is active (-pg), generate the calls to the profiling functions as NOPs.

 This is useful when they should be patched in later dynamically. This is likely only

 useful together with -mrecord-mcount.

 -minstrument-return=type

 Instrument function exit in -pg -mfentry instrumented functions with call to specified

 function. This only instruments true returns ending with ret, but not sibling calls

 ending with jump. Valid types are none to not instrument, call to generate a call to

 __return__, or nop5 to generate a 5 byte nop.

 -mrecord-return

 -mno-record-return Page 563/576

 Generate a __return_loc section pointing to all return instrumentation code.

 -mfentry-name=name

 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.

 -mfentry-section=name

 Set name of section to record -mrecord-mcount calls (default __mcount_loc).

 -mskip-rax-setup

 -mno-skip-rax-setup

 When generating code for the x86-64 architecture with SSE extensions disabled,

 -mskip-rax-setup can be used to skip setting up RAX register when there are no

 variable arguments passed in vector registers.

 Warning: Since RAX register is used to avoid unnecessarily saving vector registers on

 stack when passing variable arguments, the impacts of this option are callees may

 waste some stack space, misbehave or jump to a random location. GCC 4.4 or newer

 don't have those issues, regardless the RAX register value.

 -m8bit-idiv

 -mno-8bit-idiv

 On some processors, like Intel Atom, 8-bit unsigned integer divide is much faster than

 32-bit/64-bit integer divide. This option generates a run-time check. If both

 dividend and divisor are within range of 0 to 255, 8-bit unsigned integer divide is

 used instead of 32-bit/64-bit integer divide.

 -mavx256-split-unaligned-load

 -mavx256-split-unaligned-store

 Split 32-byte AVX unaligned load and store.

 -mstack-protector-guard=guard

 -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset

 Generate stack protection code using canary at guard. Supported locations are global

 for global canary or tls for per-thread canary in the TLS block (the default). This

 option has effect only when -fstack-protector or -fstack-protector-all is specified.

 With the latter choice the options -mstack-protector-guard-reg=reg and

 -mstack-protector-guard-offset=offset furthermore specify which segment register (%fs

 or %gs) to use as base register for reading the canary, and from what offset from that

 base register. The default for those is as specified in the relevant ABI. Page 564/576

 -mgeneral-regs-only

 Generate code that uses only the general-purpose registers. This prevents the

 compiler from using floating-point, vector, mask and bound registers.

 -mindirect-branch=choice

 Convert indirect call and jump with choice. The default is keep, which keeps indirect

 call and jump unmodified. thunk converts indirect call and jump to call and return

 thunk. thunk-inline converts indirect call and jump to inlined call and return thunk.

 thunk-extern converts indirect call and jump to external call and return thunk

 provided in a separate object file. You can control this behavior for a specific

 function by using the function attribute "indirect_branch".

 Note that -mcmodel=large is incompatible with -mindirect-branch=thunk and

 -mindirect-branch=thunk-extern since the thunk function may not be reachable in the

 large code model.

 Note that -mindirect-branch=thunk-extern is compatible with -fcf-protection=branch

 since the external thunk can be made to enable control-flow check.

 -mfunction-return=choice

 Convert function return with choice. The default is keep, which keeps function return

 unmodified. thunk converts function return to call and return thunk. thunk-inline

 converts function return to inlined call and return thunk. thunk-extern converts

 function return to external call and return thunk provided in a separate object file.

 You can control this behavior for a specific function by using the function attribute

 "function_return".

 Note that -mindirect-return=thunk-extern is compatible with -fcf-protection=branch

 since the external thunk can be made to enable control-flow check.

 Note that -mcmodel=large is incompatible with -mfunction-return=thunk and

 -mfunction-return=thunk-extern since the thunk function may not be reachable in the

 large code model.

 -mindirect-branch-register

 Force indirect call and jump via register.

 -mharden-sls=choice

 Generate code to mitigate against straight line speculation (SLS) with choice. The

 default is none which disables all SLS hardening. return enables SLS hardening for

 function returns. indirect-jmp enables SLS hardening for indirect jumps. all enables Page 565/576

 all SLS hardening.

 -mindirect-branch-cs-prefix

 Add CS prefix to call and jmp to indirect thunk with branch target in r8-r15 registers

 so that the call and jmp instruction length is 6 bytes to allow them to be replaced

 with lfence; call *%r8-r15 or lfence; jmp *%r8-r15 at run-time.

 These -m switches are supported in addition to the above on x86-64 processors in 64-bit

 environments.

 -m32

 -m64

 -mx32

 -m16

 -miamcu

 Generate code for a 16-bit, 32-bit or 64-bit environment. The -m32 option sets "int",

 "long", and pointer types to 32 bits, and generates code that runs on any i386 system.

 The -m64 option sets "int" to 32 bits and "long" and pointer types to 64 bits, and

 generates code for the x86-64 architecture. For Darwin only the -m64 option also

 turns off the -fno-pic and -mdynamic-no-pic options.

 The -mx32 option sets "int", "long", and pointer types to 32 bits, and generates code

 for the x86-64 architecture.

 The -m16 option is the same as -m32, except for that it outputs the ".code16gcc"

 assembly directive at the beginning of the assembly output so that the binary can run

 in 16-bit mode.

 The -miamcu option generates code which conforms to Intel MCU psABI. It requires the

 -m32 option to be turned on.

 -mno-red-zone

 Do not use a so-called "red zone" for x86-64 code. The red zone is mandated by the

 x86-64 ABI; it is a 128-byte area beyond the location of the stack pointer that is not

 modified by signal or interrupt handlers and therefore can be used for temporary data

 without adjusting the stack pointer. The flag -mno-red-zone disables this red zone.

 -mcmodel=small

 Generate code for the small code model: the program and its symbols must be linked in

 the lower 2 GB of the address space. Pointers are 64 bits. Programs can be

 statically or dynamically linked. This is the default code model. Page 566/576

 -mcmodel=kernel

 Generate code for the kernel code model. The kernel runs in the negative 2 GB of the

 address space. This model has to be used for Linux kernel code.

 -mcmodel=medium

 Generate code for the medium model: the program is linked in the lower 2 GB of the

 address space. Small symbols are also placed there. Symbols with sizes larger than

 -mlarge-data-threshold are put into large data or BSS sections and can be located

 above 2GB. Programs can be statically or dynamically linked.

 -mcmodel=large

 Generate code for the large model. This model makes no assumptions about addresses

 and sizes of sections.

 -maddress-mode=long

 Generate code for long address mode. This is only supported for 64-bit and x32

 environments. It is the default address mode for 64-bit environments.

 -maddress-mode=short

 Generate code for short address mode. This is only supported for 32-bit and x32

 environments. It is the default address mode for 32-bit and x32 environments.

 -mneeded

 -mno-needed

 Emit GNU_PROPERTY_X86_ISA_1_NEEDED GNU property for Linux target to indicate the

 micro-architecture ISA level required to execute the binary.

 x86 Windows Options

 These additional options are available for Microsoft Windows targets:

 -mconsole

 This option specifies that a console application is to be generated, by instructing

 the linker to set the PE header subsystem type required for console applications.

 This option is available for Cygwin and MinGW targets and is enabled by default on

 those targets.

 -mdll

 This option is available for Cygwin and MinGW targets. It specifies that a DLL---a

 dynamic link library---is to be generated, enabling the selection of the required

 runtime startup object and entry point.

 -mnop-fun-dllimport Page 567/576

 This option is available for Cygwin and MinGW targets. It specifies that the

 "dllimport" attribute should be ignored.

 -mthread

 This option is available for MinGW targets. It specifies that MinGW-specific thread

 support is to be used.

 -municode

 This option is available for MinGW-w64 targets. It causes the "UNICODE" preprocessor

 macro to be predefined, and chooses Unicode-capable runtime startup code.

 -mwin32

 This option is available for Cygwin and MinGW targets. It specifies that the typical

 Microsoft Windows predefined macros are to be set in the pre-processor, but does not

 influence the choice of runtime library/startup code.

 -mwindows

 This option is available for Cygwin and MinGW targets. It specifies that a GUI

 application is to be generated by instructing the linker to set the PE header

 subsystem type appropriately.

 -fno-set-stack-executable

 This option is available for MinGW targets. It specifies that the executable flag for

 the stack used by nested functions isn't set. This is necessary for binaries running

 in kernel mode of Microsoft Windows, as there the User32 API, which is used to set

 executable privileges, isn't available.

 -fwritable-relocated-rdata

 This option is available for MinGW and Cygwin targets. It specifies that relocated-

 data in read-only section is put into the ".data" section. This is a necessary for

 older runtimes not supporting modification of ".rdata" sections for pseudo-relocation.

 -mpe-aligned-commons

 This option is available for Cygwin and MinGW targets. It specifies that the GNU

 extension to the PE file format that permits the correct alignment of COMMON variables

 should be used when generating code. It is enabled by default if GCC detects that the

 target assembler found during configuration supports the feature.

 See also under x86 Options for standard options.

 Xstormy16 Options

 These options are defined for Xstormy16: Page 568/576

 -msim

 Choose startup files and linker script suitable for the simulator.

 Xtensa Options

 These options are supported for Xtensa targets:

 -mconst16

 -mno-const16

 Enable or disable use of "CONST16" instructions for loading constant values. The

 "CONST16" instruction is currently not a standard option from Tensilica. When

 enabled, "CONST16" instructions are always used in place of the standard "L32R"

 instructions. The use of "CONST16" is enabled by default only if the "L32R"

 instruction is not available.

 -mfused-madd

 -mno-fused-madd

 Enable or disable use of fused multiply/add and multiply/subtract instructions in the

 floating-point option. This has no effect if the floating-point option is not also

 enabled. Disabling fused multiply/add and multiply/subtract instructions forces the

 compiler to use separate instructions for the multiply and add/subtract operations.

 This may be desirable in some cases where strict IEEE 754-compliant results are

 required: the fused multiply add/subtract instructions do not round the intermediate

 result, thereby producing results with more bits of precision than specified by the

 IEEE standard. Disabling fused multiply add/subtract instructions also ensures that

 the program output is not sensitive to the compiler's ability to combine multiply and

 add/subtract operations.

 -mserialize-volatile

 -mno-serialize-volatile

 When this option is enabled, GCC inserts "MEMW" instructions before "volatile" memory

 references to guarantee sequential consistency. The default is -mserialize-volatile.

 Use -mno-serialize-volatile to omit the "MEMW" instructions.

 -mforce-no-pic

 For targets, like GNU/Linux, where all user-mode Xtensa code must be position-

 independent code (PIC), this option disables PIC for compiling kernel code.

 -mtext-section-literals

 -mno-text-section-literals Page 569/576

 These options control the treatment of literal pools. The default is

 -mno-text-section-literals, which places literals in a separate section in the output

 file. This allows the literal pool to be placed in a data RAM/ROM, and it also allows

 the linker to combine literal pools from separate object files to remove redundant

 literals and improve code size. With -mtext-section-literals, the literals are

 interspersed in the text section in order to keep them as close as possible to their

 references. This may be necessary for large assembly files. Literals for each

 function are placed right before that function.

 -mauto-litpools

 -mno-auto-litpools

 These options control the treatment of literal pools. The default is

 -mno-auto-litpools, which places literals in a separate section in the output file

 unless -mtext-section-literals is used. With -mauto-litpools the literals are

 interspersed in the text section by the assembler. Compiler does not produce explicit

 ".literal" directives and loads literals into registers with "MOVI" instructions

 instead of "L32R" to let the assembler do relaxation and place literals as necessary.

 This option allows assembler to create several literal pools per function and assemble

 very big functions, which may not be possible with -mtext-section-literals.

 -mtarget-align

 -mno-target-align

 When this option is enabled, GCC instructs the assembler to automatically align

 instructions to reduce branch penalties at the expense of some code density. The

 assembler attempts to widen density instructions to align branch targets and the

 instructions following call instructions. If there are not enough preceding safe

 density instructions to align a target, no widening is performed. The default is

 -mtarget-align. These options do not affect the treatment of auto-aligned

 instructions like "LOOP", which the assembler always aligns, either by widening

 density instructions or by inserting NOP instructions.

 -mlongcalls

 -mno-longcalls

 When this option is enabled, GCC instructs the assembler to translate direct calls to

 indirect calls unless it can determine that the target of a direct call is in the

 range allowed by the call instruction. This translation typically occurs for calls to Page 570/576

 functions in other source files. Specifically, the assembler translates a direct

 "CALL" instruction into an "L32R" followed by a "CALLX" instruction. The default is

 -mno-longcalls. This option should be used in programs where the call target can

 potentially be out of range. This option is implemented in the assembler, not the

 compiler, so the assembly code generated by GCC still shows direct call

 instructions---look at the disassembled object code to see the actual instructions.

 Note that the assembler uses an indirect call for every cross-file call, not just

 those that really are out of range.

 -mabi=name

 Generate code for the specified ABI. Permissible values are: call0, windowed.

 Default ABI is chosen by the Xtensa core configuration.

 -mabi=call0

 When this option is enabled function parameters are passed in registers "a2" through

 "a7", registers "a12" through "a15" are caller-saved, and register "a15" may be used

 as a frame pointer. When this version of the ABI is enabled the C preprocessor symbol

 "__XTENSA_CALL0_ABI__" is defined.

 -mabi=windowed

 When this option is enabled function parameters are passed in registers "a10" through

 "a15", and called function rotates register window by 8 registers on entry so that its

 arguments are found in registers "a2" through "a7". Register "a7" may be used as a

 frame pointer. Register window is rotated 8 registers back upon return. When this

 version of the ABI is enabled the C preprocessor symbol "__XTENSA_WINDOWED_ABI__" is

 defined.

 zSeries Options

 These are listed under

ENVIRONMENT

 This section describes several environment variables that affect how GCC operates. Some

 of them work by specifying directories or prefixes to use when searching for various kinds

 of files. Some are used to specify other aspects of the compilation environment.

 Note that you can also specify places to search using options such as -B, -I and -L.

 These take precedence over places specified using environment variables, which in turn

 take precedence over those specified by the configuration of GCC.

 LANG Page 571/576

 LC_CTYPE

 LC_MESSAGES

 LC_ALL

 These environment variables control the way that GCC uses localization information

 which allows GCC to work with different national conventions. GCC inspects the locale

 categories LC_CTYPE and LC_MESSAGES if it has been configured to do so. These locale

 categories can be set to any value supported by your installation. A typical value is

 en_GB.UTF-8 for English in the United Kingdom encoded in UTF-8.

 The LC_CTYPE environment variable specifies character classification. GCC uses it to

 determine the character boundaries in a string; this is needed for some multibyte

 encodings that contain quote and escape characters that are otherwise interpreted as a

 string end or escape.

 The LC_MESSAGES environment variable specifies the language to use in diagnostic

 messages.

 If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and

 LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the LANG

 environment variable. If none of these variables are set, GCC defaults to traditional

 C English behavior.

 TMPDIR

 If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses

 temporary files to hold the output of one stage of compilation which is to be used as

 input to the next stage: for example, the output of the preprocessor, which is the

 input to the compiler proper.

 GCC_COMPARE_DEBUG

 Setting GCC_COMPARE_DEBUG is nearly equivalent to passing -fcompare-debug to the

 compiler driver. See the documentation of this option for more details.

 GCC_EXEC_PREFIX

 If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the

 subprograms executed by the compiler. No slash is added when this prefix is combined

 with the name of a subprogram, but you can specify a prefix that ends with a slash if

 you wish.

 If GCC_EXEC_PREFIX is not set, GCC attempts to figure out an appropriate prefix to use

 based on the pathname it is invoked with. Page 572/576

 If GCC cannot find the subprogram using the specified prefix, it tries looking in the

 usual places for the subprogram.

 The default value of GCC_EXEC_PREFIX is prefix/lib/gcc/ where prefix is the prefix to

 the installed compiler. In many cases prefix is the value of "prefix" when you ran the

 configure script.

 Other prefixes specified with -B take precedence over this prefix.

 This prefix is also used for finding files such as crt0.o that are used for linking.

 In addition, the prefix is used in an unusual way in finding the directories to search

 for header files. For each of the standard directories whose name normally begins

 with /usr/local/lib/gcc (more precisely, with the value of GCC_INCLUDE_DIR), GCC tries

 replacing that beginning with the specified prefix to produce an alternate directory

 name. Thus, with -Bfoo/, GCC searches foo/bar just before it searches the standard

 directory /usr/local/lib/bar. If a standard directory begins with the configured

 prefix then the value of prefix is replaced by GCC_EXEC_PREFIX when looking for header

 files.

 COMPILER_PATH

 The value of COMPILER_PATH is a colon-separated list of directories, much like PATH.

 GCC tries the directories thus specified when searching for subprograms, if it cannot

 find the subprograms using GCC_EXEC_PREFIX.

 LIBRARY_PATH

 The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH.

 When configured as a native compiler, GCC tries the directories thus specified when

 searching for special linker files, if it cannot find them using GCC_EXEC_PREFIX.

 Linking using GCC also uses these directories when searching for ordinary libraries

 for the -l option (but directories specified with -L come first).

 LANG

 This variable is used to pass locale information to the compiler. One way in which

 this information is used is to determine the character set to be used when character

 literals, string literals and comments are parsed in C and C++. When the compiler is

 configured to allow multibyte characters, the following values for LANG are

 recognized:

 C-JIS

 Recognize JIS characters. Page 573/576

 C-SJIS

 Recognize SJIS characters.

 C-EUCJP

 Recognize EUCJP characters.

 If LANG is not defined, or if it has some other value, then the compiler uses "mblen"

 and "mbtowc" as defined by the default locale to recognize and translate multibyte

 characters.

 GCC_EXTRA_DIAGNOSTIC_OUTPUT

 If GCC_EXTRA_DIAGNOSTIC_OUTPUT is set to one of the following values, then additional

 text will be emitted to stderr when fix-it hints are emitted.

 -fdiagnostics-parseable-fixits and -fno-diagnostics-parseable-fixits take precedence

 over this environment variable.

 fixits-v1

 Emit parseable fix-it hints, equivalent to -fdiagnostics-parseable-fixits. In

 particular, columns are expressed as a count of bytes, starting at byte 1 for the

 initial column.

 fixits-v2

 As "fixits-v1", but columns are expressed as display columns, as per

 -fdiagnostics-column-unit=display.

 Some additional environment variables affect the behavior of the preprocessor.

 CPATH

 C_INCLUDE_PATH

 CPLUS_INCLUDE_PATH

 OBJC_INCLUDE_PATH

 Each variable's value is a list of directories separated by a special character, much

 like PATH, in which to look for header files. The special character,

 "PATH_SEPARATOR", is target-dependent and determined at GCC build time. For Microsoft

 Windows-based targets it is a semicolon, and for almost all other targets it is a

 colon.

 CPATH specifies a list of directories to be searched as if specified with -I, but

 after any paths given with -I options on the command line. This environment variable

 is used regardless of which language is being preprocessed.

 The remaining environment variables apply only when preprocessing the particular Page 574/576

 language indicated. Each specifies a list of directories to be searched as if

 specified with -isystem, but after any paths given with -isystem options on the

 command line.

 In all these variables, an empty element instructs the compiler to search its current

 working directory. Empty elements can appear at the beginning or end of a path. For

 instance, if the value of CPATH is ":/special/include", that has the same effect as

 -I. -I/special/include.

 DEPENDENCIES_OUTPUT

 If this variable is set, its value specifies how to output dependencies for Make based

 on the non-system header files processed by the compiler. System header files are

 ignored in the dependency output.

 The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make rules

 are written to that file, guessing the target name from the source file name. Or the

 value can have the form file target, in which case the rules are written to file file

 using target as the target name.

 In other words, this environment variable is equivalent to combining the options -MM

 and -MF, with an optional -MT switch too.

 SUNPRO_DEPENDENCIES

 This variable is the same as DEPENDENCIES_OUTPUT (see above), except that system

 header files are not ignored, so it implies -M rather than -MM. However, the

 dependence on the main input file is omitted.

 SOURCE_DATE_EPOCH

 If this variable is set, its value specifies a UNIX timestamp to be used in

 replacement of the current date and time in the "__DATE__" and "__TIME__" macros, so

 that the embedded timestamps become reproducible.

 The value of SOURCE_DATE_EPOCH must be a UNIX timestamp, defined as the number of

 seconds (excluding leap seconds) since 01 Jan 1970 00:00:00 represented in ASCII;

 identical to the output of "date +%s" on GNU/Linux and other systems that support the

 %s extension in the "date" command.

 The value should be a known timestamp such as the last modification time of the source

 or package and it should be set by the build process.

BUGS

 For instructions on reporting bugs, see <file:///usr/share/doc/gcc-11/README.Bugs>. Page 575/576

FOOTNOTES

 1. On some systems, gcc -shared needs to build supplementary stub code for constructors

 to work. On multi-libbed systems, gcc -shared must select the correct support

 libraries to link against. Failing to supply the correct flags may lead to subtle

 defects. Supplying them in cases where they are not necessary is innocuous.

SEE ALSO

 gpl(7), gfdl(7), fsf-funding(7), cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1) and the

 Info entries for gcc, cpp, as, ld, binutils and gdb.

AUTHOR

 See the Info entry for gcc, or <http://gcc.gnu.org/onlinedocs/gcc/Contributors.html>, for

 contributors to GCC.

COPYRIGHT

 Copyright (c) 1988-2021 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document under the terms of

 the GNU Free Documentation License, Version 1.3 or any later version published by the Free

 Software Foundation; with the Invariant Sections being "GNU General Public License" and

 "Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-

 Cover Texts being (b) (see below). A copy of the license is included in the gfdl(7) man

 page.

 (a) The FSF's Front-Cover Text is:

 A GNU Manual

 (b) The FSF's Back-Cover Text is:

 You have freedom to copy and modify this GNU Manual, like GNU

 software. Copies published by the Free Software Foundation raise

 funds for GNU development.

gcc-11 2023-05-28 GCC(1)

Page 576/576

