
Linux Ubuntu 22.4.5 Manual Pages on command 'gcc-7.1'

$ man gcc-7.1

GCC(1) GNU GCC(1)

NAME

 gcc - GNU project C and C++ compiler

SYNOPSIS

 gcc [-c|-S|-E] [-std=standard]

 [-g] [-pg] [-Olevel]

 [-Wwarn...] [-Wpedantic]

 [-Idir...] [-Ldir...]

 [-Dmacro[=defn]...] [-Umacro]

 [-foption...] [-mmachine-option...]

 [-o outfile] [@file] infile...

 Only the most useful options are listed here; see below for the remainder. g++

 accepts mostly the same options as gcc.

DESCRIPTION

 When you invoke GCC, it normally does preprocessing, compilation, assembly and

 linking. The "overall options" allow you to stop this process at an intermediate

 stage. For example, the -c option says not to run the linker. Then the output

 consists of object files output by the assembler.

 Other options are passed on to one or more stages of processing. Some options

 control the preprocessor and others the compiler itself. Yet other options control

 the assembler and linker; most of these are not documented here, since you rarely

 need to use any of them.
Page 1/493

 Most of the command-line options that you can use with GCC are useful for C

 programs; when an option is only useful with another language (usually C++), the

 explanation says so explicitly. If the description for a particular option does

 not mention a source language, you can use that option with all supported

 languages.

 The usual way to run GCC is to run the executable called gcc, or machine-gcc when

 cross-compiling, or machine-gcc-version to run a specific version of GCC. When you

 compile C++ programs, you should invoke GCC as g++ instead.

 The gcc program accepts options and file names as operands. Many options have

 multi-letter names; therefore multiple single-letter options may not be grouped:

 -dv is very different from -d -v.

 You can mix options and other arguments. For the most part, the order you use

 doesn't matter. Order does matter when you use several options of the same kind;

 for example, if you specify -L more than once, the directories are searched in the

 order specified. Also, the placement of the -l option is significant.

 Many options have long names starting with -f or with -W---for example,

 -fmove-loop-invariants, -Wformat and so on. Most of these have both positive and

 negative forms; the negative form of -ffoo is -fno-foo. This manual documents only

 one of these two forms, whichever one is not the default.

OPTIONS

 Option Summary

 Here is a summary of all the options, grouped by type. Explanations are in the

 following sections.

 Overall Options

 -c -S -E -o file -x language -v -### --help[=class[,...]] --target-help

 --version -pass-exit-codes -pipe -specs=file -wrapper @file -fplugin=file

 -fplugin-arg-name=arg -fdump-ada-spec[-slim] -fada-spec-parent=unit

 -fdump-go-spec=file

 C Language Options

 -ansi -std=standard -fgnu89-inline -fpermitted-flt-eval-methods=standard

 -aux-info filename -fallow-parameterless-variadic-functions -fno-asm

 -fno-builtin -fno-builtin-function -fgimple -fhosted -ffreestanding

 -fopenacc -fopenmp -fopenmp-simd -fms-extensions -fplan9-extensions Page 2/493

 -fsso-struct=endianness -fallow-single-precision -fcond-mismatch

 -flax-vector-conversions -fsigned-bitfields -fsigned-char -funsigned-bitfields

 -funsigned-char

 C++ Language Options

 -fabi-version=n -fno-access-control -faligned-new=n -fargs-in-order=n

 -fcheck-new -fconstexpr-depth=n -fconstexpr-loop-limit=n -ffriend-injection

 -fno-elide-constructors -fno-enforce-eh-specs -ffor-scope -fno-for-scope

 -fno-gnu-keywords -fno-implicit-templates -fno-implicit-inline-templates

 -fno-implement-inlines -fms-extensions -fnew-inheriting-ctors

 -fnew-ttp-matching -fno-nonansi-builtins -fnothrow-opt -fno-operator-names

 -fno-optional-diags -fpermissive -fno-pretty-templates -frepo -fno-rtti

 -fsized-deallocation -ftemplate-backtrace-limit=n -ftemplate-depth=n

 -fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++

 -fvisibility-inlines-hidden -fvisibility-ms-compat -fext-numeric-literals

 -Wabi=n -Wabi-tag -Wconversion-null -Wctor-dtor-privacy

 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance

 -Wnamespaces -Wnarrowing -Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor

 -Wreorder -Wregister -Weffc++ -Wstrict-null-sentinel -Wtemplates

 -Wno-non-template-friend -Wold-style-cast -Woverloaded-virtual

 -Wno-pmf-conversions -Wsign-promo -Wvirtual-inheritance

 Objective-C and Objective-C++ Language Options

 -fconstant-string-class=class-name -fgnu-runtime -fnext-runtime

 -fno-nil-receivers -fobjc-abi-version=n -fobjc-call-cxx-cdtors

 -fobjc-direct-dispatch -fobjc-exceptions -fobjc-gc -fobjc-nilcheck

 -fobjc-std=objc1 -fno-local-ivars

 -fivar-visibility=[public|protected|private|package] -freplace-objc-classes

 -fzero-link -gen-decls -Wassign-intercept -Wno-protocol -Wselector

 -Wstrict-selector-match -Wundeclared-selector

 Diagnostic Message Formatting Options

 -fmessage-length=n -fdiagnostics-show-location=[once|every-line]

 -fdiagnostics-color=[auto|never|always] -fno-diagnostics-show-option

 -fno-diagnostics-show-caret -fdiagnostics-parseable-fixits

 -fdiagnostics-generate-patch -fno-show-column Page 3/493

 Warning Options

 -fsyntax-only -fmax-errors=n -Wpedantic -pedantic-errors -w -Wextra -Wall

 -Waddress -Waggregate-return -Waligned-new -Walloc-zero

 -Walloc-size-larger-than=n -Walloca -Walloca-larger-than=n

 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=n

 -Wno-attributes -Wbool-compare -Wbool-operation

 -Wno-builtin-declaration-mismatch -Wno-builtin-macro-redefined

 -Wc90-c99-compat -Wc99-c11-compat -Wc++-compat -Wc++11-compat -Wc++14-compat

 -Wcast-align -Wcast-qual -Wchar-subscripts -Wchkp -Wclobbered -Wcomment

 -Wconditionally-supported -Wconversion -Wcoverage-mismatch -Wno-cpp

 -Wdangling-else -Wdate-time -Wdelete-incomplete -Wno-deprecated

 -Wno-deprecated-declarations -Wno-designated-init -Wdisabled-optimization

 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers -Wno-div-by-zero

 -Wdouble-promotion -Wduplicated-branches -Wduplicated-cond -Wempty-body

 -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined -Werror -Werror=*

 -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 -Wno-format-contains-nul

 -Wno-format-extra-args -Wformat-nonliteral -Wformat-overflow=n

 -Wformat-security -Wformat-signedness -Wformat-truncation=n -Wformat-y2k

 -Wframe-address -Wframe-larger-than=len -Wno-free-nonheap-object

 -Wjump-misses-init -Wignored-qualifiers -Wignored-attributes

 -Wincompatible-pointer-types -Wimplicit -Wimplicit-fallthrough

 -Wimplicit-fallthrough=n -Wimplicit-function-declaration -Wimplicit-int

 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context

 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof

 -Winvalid-pch -Wlarger-than=len -Wlogical-op -Wlogical-not-parentheses

 -Wlong-long -Wmain -Wmaybe-uninitialized -Wmemset-elt-size

 -Wmemset-transposed-args -Wmisleading-indentation -Wmissing-braces

 -Wmissing-field-initializers -Wmissing-include-dirs -Wno-multichar -Wnonnull

 -Wnonnull-compare -Wnormalized=[none|id|nfc|nfkc] -Wnull-dereference -Wodr

 -Wno-overflow -Wopenmp-simd -Woverride-init-side-effects -Woverlength-strings

 -Wpacked -Wpacked-bitfield-compat -Wpadded -Wparentheses

 -Wno-pedantic-ms-format -Wplacement-new -Wplacement-new=n -Wpointer-arith

 -Wpointer-compare -Wno-pointer-to-int-cast -Wno-pragmas -Wredundant-decls Page 4/493

 -Wrestrict -Wno-return-local-addr -Wreturn-type -Wsequence-point -Wshadow

 -Wno-shadow-ivar -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local

 -Wshift-overflow -Wshift-overflow=n -Wshift-count-negative

 -Wshift-count-overflow -Wshift-negative-value -Wsign-compare

 -Wsign-conversion -Wfloat-conversion -Wno-scalar-storage-order

 -Wsizeof-pointer-memaccess -Wsizeof-array-argument -Wstack-protector

 -Wstack-usage=len -Wstrict-aliasing -Wstrict-aliasing=n -Wstrict-overflow

 -Wstrict-overflow=n -Wstringop-overflow=n

 -Wsuggest-attribute=[pure|const|noreturn|format] -Wsuggest-final-types

 -Wsuggest-final-methods -Wsuggest-override -Wmissing-format-attribute

 -Wsubobject-linkage -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum

 -Wswitch-unreachable -Wsync-nand -Wsystem-headers -Wtautological-compare

 -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef -Wuninitialized

 -Wunknown-pragmas -Wunsafe-loop-optimizations -Wunsuffixed-float-constants

 -Wunused -Wunused-function -Wunused-label -Wunused-local-typedefs

 -Wunused-macros -Wunused-parameter -Wno-unused-result -Wunused-value

 -Wunused-variable -Wunused-const-variable -Wunused-const-variable=n

 -Wunused-but-set-parameter -Wunused-but-set-variable -Wuseless-cast

 -Wvariadic-macros -Wvector-operation-performance -Wvla -Wvla-larger-than=n

 -Wvolatile-register-var -Wwrite-strings -Wzero-as-null-pointer-constant -Whsa

 C and Objective-C-only Warning Options

 -Wbad-function-cast -Wmissing-declarations -Wmissing-parameter-type

 -Wmissing-prototypes -Wnested-externs -Wold-style-declaration

 -Wold-style-definition -Wstrict-prototypes -Wtraditional

 -Wtraditional-conversion -Wdeclaration-after-statement -Wpointer-sign

 Debugging Options

 -g -glevel -gcoff -gdwarf -gdwarf-version -ggdb -grecord-gcc-switches

 -gno-record-gcc-switches -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

 -gcolumn-info -gno-column-info -gvms -gxcoff -gxcoff+ -gz[=type]

 -fdebug-prefix-map=old=new -fdebug-types-section -feliminate-dwarf2-dups

 -fno-eliminate-unused-debug-types -femit-struct-debug-baseonly

 -femit-struct-debug-reduced -femit-struct-debug-detailed[=spec-list]

 -feliminate-unused-debug-symbols -femit-class-debug-always Page 5/493

 -fno-merge-debug-strings -fno-dwarf2-cfi-asm -fvar-tracking

 -fvar-tracking-assignments

 Optimization Options

 -faggressive-loop-optimizations -falign-functions[=n] -falign-jumps[=n]

 -falign-labels[=n] -falign-loops[=n] -fassociative-math -fauto-profile

 -fauto-profile[=path] -fauto-inc-dec -fbranch-probabilities

 -fbranch-target-load-optimize -fbranch-target-load-optimize2

 -fbtr-bb-exclusive -fcaller-saves -fcombine-stack-adjustments

 -fconserve-stack -fcompare-elim -fcprop-registers -fcrossjumping

 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules -fcx-limited-range

 -fdata-sections -fdce -fdelayed-branch -fdelete-null-pointer-checks

 -fdevirtualize -fdevirtualize-speculatively -fdevirtualize-at-ltrans -fdse

 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects

 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style

 -fforward-propagate -ffp-contract=style -ffunction-sections -fgcse

 -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity -fgcse-sm

 -fhoist-adjacent-loads -fif-conversion -fif-conversion2 -findirect-inlining

 -finline-functions -finline-functions-called-once -finline-limit=n

 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp -fipa-vrp

 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf

 -fira-algorithm=algorithm -fira-region=region -fira-hoist-pressure

 -fira-loop-pressure -fno-ira-share-save-slots -fno-ira-share-spill-slots

 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute

 -fivopts -fkeep-inline-functions -fkeep-static-functions -fkeep-static-consts

 -flimit-function-alignment -flive-range-shrinkage -floop-block

 -floop-interchange -floop-strip-mine -floop-unroll-and-jam

 -floop-nest-optimize -floop-parallelize-all -flra-remat -flto

 -flto-compression-level -flto-partition=alg -fmerge-all-constants

 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves

 -fmove-loop-invariants -fno-branch-count-reg -fno-defer-pop

 -fno-fp-int-builtin-inexact -fno-function-cse -fno-guess-branch-probability

 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2

 -fno-printf-return-value -fno-sched-interblock -fno-sched-spec Page 6/493

 -fno-signed-zeros -fno-toplevel-reorder -fno-trapping-math

 -fno-zero-initialized-in-bss -fomit-frame-pointer -foptimize-sibling-calls

 -fpartial-inlining -fpeel-loops -fpredictive-commoning -fprefetch-loop-arrays

 -fprofile-correction -fprofile-use -fprofile-use=path -fprofile-values

 -fprofile-reorder-functions -freciprocal-math -free -frename-registers

 -freorder-blocks -freorder-blocks-algorithm=algorithm

 -freorder-blocks-and-partition -freorder-functions -frerun-cse-after-loop

 -freschedule-modulo-scheduled-loops -frounding-math -fsched2-use-superblocks

 -fsched-pressure -fsched-spec-load -fsched-spec-load-dangerous

 -fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]

 -fsched-group-heuristic -fsched-critical-path-heuristic

 -fsched-spec-insn-heuristic -fsched-rank-heuristic -fsched-last-insn-heuristic

 -fsched-dep-count-heuristic -fschedule-fusion -fschedule-insns

 -fschedule-insns2 -fsection-anchors -fselective-scheduling

 -fselective-scheduling2 -fsel-sched-pipelining

 -fsel-sched-pipelining-outer-loops -fsemantic-interposition -fshrink-wrap

 -fshrink-wrap-separate -fsignaling-nans -fsingle-precision-constant

 -fsplit-ivs-in-unroller -fsplit-loops -fsplit-paths -fsplit-wide-types

 -fssa-backprop -fssa-phiopt -fstdarg-opt -fstore-merging -fstrict-aliasing

 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp

 -ftree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-coalesce-vars

 -ftree-copy-prop -ftree-dce -ftree-dominator-opts -ftree-dse -ftree-forwprop

 -ftree-fre -fcode-hoisting -ftree-loop-if-convert -ftree-loop-im

 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns

 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize

 -ftree-loop-vectorize -ftree-parallelize-loops=n -ftree-pre

 -ftree-partial-pre -ftree-pta -ftree-reassoc -ftree-sink -ftree-slsr

 -ftree-sra -ftree-switch-conversion -ftree-tail-merge -ftree-ter

 -ftree-vectorize -ftree-vrp -funconstrained-commons -funit-at-a-time

 -funroll-all-loops -funroll-loops -funsafe-math-optimizations

 -funswitch-loops -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model

 -fvpt -fweb -fwhole-program -fwpa -fuse-linker-plugin --param name=value -O

 -O0 -O1 -O2 -O3 -Os -Ofast -Og Page 7/493

 Program Instrumentation Options

 -p -pg -fprofile-arcs --coverage -ftest-coverage -fprofile-dir=path

 -fprofile-generate -fprofile-generate=path -fsanitize=style

 -fsanitize-recover -fsanitize-recover=style -fasan-shadow-offset=number

 -fsanitize-sections=s1,s2,... -fsanitize-undefined-trap-on-error

 -fbounds-check -fcheck-pointer-bounds -fchkp-check-incomplete-type

 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds

 -fchkp-narrow-to-innermost-array -fchkp-optimize

 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions

 -fchkp-use-static-bounds -fchkp-use-static-const-bounds

 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read -fchkp-check-read

 -fchkp-check-write -fchkp-store-bounds -fchkp-instrument-calls

 -fchkp-instrument-marked-only -fchkp-use-wrappers

 -fchkp-flexible-struct-trailing-arrays -fstack-protector -fstack-protector-all

 -fstack-protector-strong -fstack-protector-explicit -fstack-check

 -fstack-limit-register=reg -fstack-limit-symbol=sym -fno-stack-limit

 -fsplit-stack -fvtable-verify=[std|preinit|none] -fvtv-counts -fvtv-debug

 -finstrument-functions -finstrument-functions-exclude-function-list=sym,sym,...

 -finstrument-functions-exclude-file-list=file,file,...

 Preprocessor Options

 -Aquestion=answer -A-question[=answer] -C -CC -Dmacro[=defn] -dD -dI -dM

 -dN -dU -fdebug-cpp -fdirectives-only -fdollars-in-identifiers

 -fexec-charset=charset -fextended-identifiers -finput-charset=charset

 -fno-canonical-system-headers -fpch-deps -fpch-preprocess -fpreprocessed

 -ftabstop=width -ftrack-macro-expansion -fwide-exec-charset=charset

 -fworking-directory -H -imacros file -include file -M -MD -MF -MG -MM

 -MMD -MP -MQ -MT -no-integrated-cpp -P -pthread -remap -traditional

 -traditional-cpp -trigraphs -Umacro -undef -Wp,option -Xpreprocessor option

 Assembler Options

 -Wa,option -Xassembler option

 Linker Options

 object-file-name -fuse-ld=linker -llibrary -nostartfiles -nodefaultlibs

 -nostdlib -pie -pthread -rdynamic -s -static -static-libgcc Page 8/493

 -static-libstdc++ -static-libasan -static-libtsan -static-liblsan

 -static-libubsan -static-libmpx -static-libmpxwrappers -shared -shared-libgcc

 -symbolic -T script -Wl,option -Xlinker option -u symbol -z keyword

 Directory Options

 -Bprefix -Idir -I- -idirafter dir -imacros file -imultilib dir

 -iplugindir=dir -iprefix file -iquote dir -isysroot dir -isystem dir

 -iwithprefix dir -iwithprefixbefore dir -Ldir -no-canonical-prefixes

 --no-sysroot-suffix -nostdinc -nostdinc++ --sysroot=dir

 Code Generation Options

 -fcall-saved-reg -fcall-used-reg -ffixed-reg -fexceptions

 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables

 -fasynchronous-unwind-tables -fno-gnu-unique -finhibit-size-directive

 -fno-common -fno-ident -fpcc-struct-return -fpic -fPIC -fpie -fPIE

 -fno-plt -fno-jump-tables -frecord-gcc-switches -freg-struct-return

 -fshort-enums -fshort-wchar -fverbose-asm -fpack-struct[=n]

 -fleading-underscore -ftls-model=model -fstack-reuse=reuse_level -ftrampolines

 -ftrapv -fwrapv -fvisibility=[default|internal|hidden|protected]

 -fstrict-volatile-bitfields -fsync-libcalls

 Developer Options

 -dletters -dumpspecs -dumpmachine -dumpversion -dumpfullversion -fchecking

 -fchecking=n -fdbg-cnt-list -fdbg-cnt=counter-value-list

 -fdisable-ipa-pass_name -fdisable-rtl-pass_name -fdisable-rtl-pass-name=range-

 list -fdisable-tree-pass_name -fdisable-tree-pass-name=range-list -fdump-noaddr

 -fdump-unnumbered -fdump-unnumbered-links -fdump-translation-unit[-n]

 -fdump-class-hierarchy[-n] -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline

 -fdump-passes -fdump-rtl-pass -fdump-rtl-pass=filename -fdump-statistics

 -fdump-final-insns[=file] -fdump-tree-all -fdump-tree-switch

 -fdump-tree-switch-options -fdump-tree-switch-options=filename

 -fcompare-debug[=opts] -fcompare-debug-second -fenable-kind-pass

 -fenable-kind-pass=range-list -fira-verbose=n -flto-report -flto-report-wpa

 -fmem-report-wpa -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report

 -fopt-info -fopt-info-options[=file] -fprofile-report -frandom-seed=string

 -fsched-verbose=n -fsel-sched-verbose -fsel-sched-dump-cfg Page 9/493

 -fsel-sched-pipelining-verbose -fstats -fstack-usage -ftime-report

 -ftime-report-details -fvar-tracking-assignments-toggle -gtoggle

 -print-file-name=library -print-libgcc-file-name -print-multi-directory

 -print-multi-lib -print-multi-os-directory -print-prog-name=program

 -print-search-dirs -Q -print-sysroot -print-sysroot-headers-suffix

 -save-temps -save-temps=cwd -save-temps=obj -time[=file]

 Machine-Dependent Options

 AArch64 Options -mabi=name -mbig-endian -mlittle-endian -mgeneral-regs-only

 -mcmodel=tiny -mcmodel=small -mcmodel=large -mstrict-align

 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer -mtls-dialect=desc

 -mtls-dialect=traditional -mtls-size=size -mfix-cortex-a53-835769

 -mno-fix-cortex-a53-835769 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419

 -mlow-precision-recip-sqrt -mno-low-precision-recip-sqrt -mlow-precision-sqrt

 -mno-low-precision-sqrt -mlow-precision-div -mno-low-precision-div -march=name

 -mcpu=name -mtune=name

 Adapteva Epiphany Options -mhalf-reg-file -mprefer-short-insn-regs

 -mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf -msplit-lohi -mpost-inc

 -mpost-modify -mstack-offset=num -mround-nearest -mlong-calls -mshort-calls

 -msmall16 -mfp-mode=mode -mvect-double -max-vect-align=num

 -msplit-vecmove-early -m1reg-reg

 ARC Options -mbarrel-shifter -mcpu=cpu -mA6 -mARC600 -mA7 -mARC700 -mdpfp

 -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr -mea -mno-mpy -mmul32x16 -mmul64

 -matomic -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float

 -mswap -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape

 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof

 -mlong-calls -mmedium-calls -msdata -mvolatile-cache -mtp-regno=regno

 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc -mcase-vector-pcrel

 -mcompact-casesi -mno-cond-exec -mearly-cbranchsi -mexpand-adddi

 -mindexed-loads -mlra -mlra-priority-none -mlra-priority-compact mlra-

 priority-noncompact -mno-millicode -mmixed-code -mq-class -mRcq -mRcw

 -msize-level=level -mtune=cpu -mmultcost=num

 -munalign-prob-threshold=probability -mmpy-option=multo -mdiv-rem

 -mcode-density -mll64 -mfpu=fpu Page 10/493

 ARM Options -mapcs-frame -mno-apcs-frame -mabi=name -mapcs-stack-check

 -mno-apcs-stack-check -mapcs-reentrant -mno-apcs-reentrant -msched-prolog

 -mno-sched-prolog -mlittle-endian -mbig-endian -mfloat-abi=name

 -mfp16-format=name -mthumb-interwork -mno-thumb-interwork -mcpu=name

 -march=name -mfpu=name -mtune=name -mprint-tune-info

 -mstructure-size-boundary=n -mabort-on-noreturn -mlong-calls -mno-long-calls

 -msingle-pic-base -mno-single-pic-base -mpic-register=reg -mnop-fun-dllimport

 -mpoke-function-name -mthumb -marm -mtpcs-frame -mtpcs-leaf-frame

 -mcaller-super-interworking -mcallee-super-interworking -mtp=name

 -mtls-dialect=dialect -mword-relocations -mfix-cortex-m3-ldrd

 -munaligned-access -mneon-for-64bits -mslow-flash-data -masm-syntax-unified

 -mrestrict-it -mpure-code -mcmse

 AVR Options -mmcu=mcu -mabsdata -maccumulate-args -mbranch-cost=cost

 -mcall-prologues -mint8 -mn_flash=size -mno-interrupts -mrelax -mrmw

 -mstrict-X -mtiny-stack -mfract-convert-truncate -nodevicelib

 -Waddr-space-convert -Wmisspelled-isr

 Blackfin Options -mcpu=cpu[-sirevision] -msim -momit-leaf-frame-pointer

 -mno-omit-leaf-frame-pointer -mspecld-anomaly -mno-specld-anomaly

 -mcsync-anomaly -mno-csync-anomaly -mlow-64k -mno-low64k -mstack-check-l1

 -mid-shared-library -mno-id-shared-library -mshared-library-id=n

 -mleaf-id-shared-library -mno-leaf-id-shared-library -msep-data -mno-sep-data

 -mlong-calls -mno-long-calls -mfast-fp -minline-plt -mmulticore -mcorea

 -mcoreb -msdram -micplb

 C6X Options -mbig-endian -mlittle-endian -march=cpu -msim -msdata=sdata-type

 CRIS Options -mcpu=cpu -march=cpu -mtune=cpu -mmax-stack-frame=n

 -melinux-stacksize=n -metrax4 -metrax100 -mpdebug -mcc-init

 -mno-side-effects -mstack-align -mdata-align -mconst-align -m32-bit -m16-bit

 -m8-bit -mno-prologue-epilogue -mno-gotplt -melf -maout -melinux -mlinux

 -sim -sim2 -mmul-bug-workaround -mno-mul-bug-workaround

 CR16 Options -mmac -mcr16cplus -mcr16c -msim -mint32 -mbit-ops

 -mdata-model=model

 Darwin Options -all_load -allowable_client -arch -arch_errors_fatal

 -arch_only -bind_at_load -bundle -bundle_loader -client_name Page 11/493

 -compatibility_version -current_version -dead_strip -dependency-file

 -dylib_file -dylinker_install_name -dynamic -dynamiclib

 -exported_symbols_list -filelist -flat_namespace -force_cpusubtype_ALL

 -force_flat_namespace -headerpad_max_install_names -iframework -image_base

 -init -install_name -keep_private_externs -multi_module -multiply_defined

 -multiply_defined_unused -noall_load -no_dead_strip_inits_and_terms

 -nofixprebinding -nomultidefs -noprebind -noseglinkedit -pagezero_size

 -prebind -prebind_all_twolevel_modules -private_bundle -read_only_relocs

 -sectalign -sectobjectsymbols -whyload -seg1addr -sectcreate

 -sectobjectsymbols -sectorder -segaddr -segs_read_only_addr

 -segs_read_write_addr -seg_addr_table -seg_addr_table_filename -seglinkedit

 -segprot -segs_read_only_addr -segs_read_write_addr -single_module -static

 -sub_library -sub_umbrella -twolevel_namespace -umbrella -undefined

 -unexported_symbols_list -weak_reference_mismatches -whatsloaded -F -gused

 -gfull -mmacosx-version-min=version -mkernel -mone-byte-bool

 DEC Alpha Options -mno-fp-regs -msoft-float -mieee -mieee-with-inexact

 -mieee-conformant -mfp-trap-mode=mode -mfp-rounding-mode=mode

 -mtrap-precision=mode -mbuild-constants -mcpu=cpu-type -mtune=cpu-type -mbwx

 -mmax -mfix -mcix -mfloat-vax -mfloat-ieee -mexplicit-relocs -msmall-data

 -mlarge-data -msmall-text -mlarge-text -mmemory-latency=time

 FR30 Options -msmall-model -mno-lsim

 FT32 Options -msim -mlra -mnodiv

 FRV Options -mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 -mhard-float -msoft-float

 -malloc-cc -mfixed-cc -mdword -mno-dword -mdouble -mno-double -mmedia

 -mno-media -mmuladd -mno-muladd -mfdpic -minline-plt -mgprel-ro

 -multilib-library-pic -mlinked-fp -mlong-calls -malign-labels -mlibrary-pic

 -macc-4 -macc-8 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move

 -moptimize-membar -mno-optimize-membar -mscc -mno-scc -mcond-exec

 -mno-cond-exec -mvliw-branch -mno-vliw-branch -mmulti-cond-exec

 -mno-multi-cond-exec -mnested-cond-exec -mno-nested-cond-exec -mtomcat-stats

 -mTLS -mtls -mcpu=cpu

 GNU/Linux Options -mglibc -muclibc -mmusl -mbionic -mandroid

 -tno-android-cc -tno-android-ld Page 12/493

 H8/300 Options -mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

 HPPA Options -march=architecture-type -mcaller-copies -mdisable-fpregs

 -mdisable-indexing -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld

 -mfixed-range=register-range -mjump-in-delay -mlinker-opt -mlong-calls

 -mlong-load-store -mno-disable-fpregs -mno-disable-indexing

 -mno-fast-indirect-calls -mno-gas -mno-jump-in-delay -mno-long-load-store

 -mno-portable-runtime -mno-soft-float -mno-space-regs -msoft-float

 -mpa-risc-1-0 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime -mschedule=cpu-

 type -mspace-regs -msio -mwsio -munix=unix-std -nolibdld -static -threads

 IA-64 Options -mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic

 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata -mconstant-gp

 -mauto-pic -mfused-madd -minline-float-divide-min-latency

 -minline-float-divide-max-throughput -mno-inline-float-divide

 -minline-int-divide-min-latency -minline-int-divide-max-throughput

 -mno-inline-int-divide -minline-sqrt-min-latency -minline-sqrt-max-throughput

 -mno-inline-sqrt -mdwarf2-asm -mearly-stop-bits -mfixed-range=register-range

 -mtls-size=tls-size -mtune=cpu-type -milp32 -mlp64 -msched-br-data-spec

 -msched-ar-data-spec -msched-control-spec -msched-br-in-data-spec

 -msched-ar-in-data-spec -msched-in-control-spec -msched-spec-ldc

 -msched-spec-control-ldc -msched-prefer-non-data-spec-insns

 -msched-prefer-non-control-spec-insns -msched-stop-bits-after-every-cycle

 -msched-count-spec-in-critical-path -msel-sched-dont-check-control-spec

 -msched-fp-mem-deps-zero-cost -msched-max-memory-insns-hard-limit

 -msched-max-memory-insns=max-insns

 LM32 Options -mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled

 -msign-extend-enabled -muser-enabled

 M32R/D Options -m32r2 -m32rx -m32r -mdebug -malign-loops -mno-align-loops

 -missue-rate=number -mbranch-cost=number -mmodel=code-size-model-type

 -msdata=sdata-type -mno-flush-func -mflush-func=name -mno-flush-trap

 -mflush-trap=number -G num

 M32C Options -mcpu=cpu -msim -memregs=number

 M680x0 Options -march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40

 -m68020-60 -m68030 -m68040 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 Page 13/493

 -m5407 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 -mnobitfield

 -mrtd -mno-rtd -mdiv -mno-div -mshort -mno-short -mhard-float -m68881

 -msoft-float -mpcrel -malign-int -mstrict-align -msep-data -mno-sep-data

 -mshared-library-id=n -mid-shared-library -mno-id-shared-library -mxgot

 -mno-xgot -mlong-jump-table-offsets

 MCore Options -mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates

 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields -m4byte-functions

 -mno-4byte-functions -mcallgraph-data -mno-callgraph-data -mslow-bytes

 -mno-slow-bytes -mno-lsim -mlittle-endian -mbig-endian -m210 -m340

 -mstack-increment

 MeP Options -mabsdiff -mall-opts -maverage -mbased=n -mbitops -mc=n -mclip

 -mconfig=name -mcop -mcop32 -mcop64 -mivc2 -mdc -mdiv -meb -mel

 -mio-volatile -ml -mleadz -mm -mminmax -mmult -mno-opts -mrepeat -ms

 -msatur -msdram -msim -msimnovec -mtf -mtiny=n

 MicroBlaze Options -msoft-float -mhard-float -msmall-divides -mcpu=cpu

 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift -mxl-pattern-compare

 -mxl-stack-check -mxl-gp-opt -mno-clearbss -mxl-multiply-high

 -mxl-float-convert -mxl-float-sqrt -mbig-endian -mlittle-endian -mxl-reorder

 -mxl-mode-app-model

 MIPS Options -EL -EB -march=arch -mtune=arch -mips1 -mips2 -mips3 -mips4

 -mips32 -mips32r2 -mips32r3 -mips32r5 -mips32r6 -mips64 -mips64r2

 -mips64r3 -mips64r5 -mips64r6 -mips16 -mno-mips16 -mflip-mips16

 -minterlink-compressed -mno-interlink-compressed -minterlink-mips16

 -mno-interlink-mips16 -mabi=abi -mabicalls -mno-abicalls -mshared

 -mno-shared -mplt -mno-plt -mxgot -mno-xgot -mgp32 -mgp64 -mfp32 -mfpxx

 -mfp64 -mhard-float -msoft-float -mno-float -msingle-float -mdouble-float

 -modd-spreg -mno-odd-spreg -mabs=mode -mnan=encoding -mdsp -mno-dsp -mdspr2

 -mno-dspr2 -mmcu -mmno-mcu -meva -mno-eva -mvirt -mno-virt -mxpa -mno-xpa

 -mmicromips -mno-micromips -mmsa -mno-msa -mfpu=fpu-type -msmartmips

 -mno-smartmips -mpaired-single -mno-paired-single -mdmx -mno-mdmx -mips3d

 -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc -mlong64 -mlong32 -msym32

 -mno-sym32 -Gnum -mlocal-sdata -mno-local-sdata -mextern-sdata

 -mno-extern-sdata -mgpopt -mno-gopt -membedded-data -mno-embedded-data Page 14/493

 -muninit-const-in-rodata -mno-uninit-const-in-rodata -mcode-readable=setting

 -msplit-addresses -mno-split-addresses -mexplicit-relocs -mno-explicit-relocs

 -mcheck-zero-division -mno-check-zero-division -mdivide-traps -mdivide-breaks

 -mload-store-pairs -mno-load-store-pairs -mmemcpy -mno-memcpy -mlong-calls

 -mno-long-calls -mmad -mno-mad -mimadd -mno-imadd -mfused-madd

 -mno-fused-madd -nocpp -mfix-24k -mno-fix-24k -mfix-r4000 -mno-fix-r4000

 -mfix-r4400 -mno-fix-r4400 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000

 -mno-fix-rm7000 -mfix-vr4120 -mno-fix-vr4120 -mfix-vr4130 -mno-fix-vr4130

 -mfix-sb1 -mno-fix-sb1 -mflush-func=func -mno-flush-func -mbranch-cost=num

 -mbranch-likely -mno-branch-likely -mcompact-branches=policy -mfp-exceptions

 -mno-fp-exceptions -mvr4130-align -mno-vr4130-align -msynci -mno-synci

 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 -mrelax-pic-calls

 -mno-relax-pic-calls -mmcount-ra-address -mframe-header-opt

 -mno-frame-header-opt

 MMIX Options -mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu

 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols -melf

 -mbranch-predict -mno-branch-predict -mbase-addresses -mno-base-addresses

 -msingle-exit -mno-single-exit

 MN10300 Options -mmult-bug -mno-mult-bug -mno-am33 -mam33 -mam33-2 -mam34

 -mtune=cpu-type -mreturn-pointer-on-d0 -mno-crt0 -mrelax -mliw -msetlb

 Moxie Options -meb -mel -mmul.x -mno-crt0

 MSP430 Options -msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax

 -mwarn-mcu -mcode-region= -mdata-region= -msilicon-errata=

 -msilicon-errata-warn= -mhwmult= -minrt

 NDS32 Options -mbig-endian -mlittle-endian -mreduced-regs -mfull-regs -mcmov

 -mno-cmov -mperf-ext -mno-perf-ext -mv3push -mno-v3push -m16bit -mno-16bit

 -misr-vector-size=num -mcache-block-size=num -march=arch -mcmodel=code-model

 -mctor-dtor -mrelax

 Nios II Options -G num -mgpopt=option -mgpopt -mno-gpopt -mel -meb

 -mno-bypass-cache -mbypass-cache -mno-cache-volatile -mcache-volatile

 -mno-fast-sw-div -mfast-sw-div -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx

 -mno-hw-div -mhw-div -mcustom-insn=N -mno-custom-insn -mcustom-fpu-cfg=name

 -mhal -msmallc -msys-crt0=name -msys-lib=name -march=arch -mbmx -mno-bmx Page 15/493

 -mcdx -mno-cdx

 Nvidia PTX Options -m32 -m64 -mmainkernel -moptimize

 PDP-11 Options -mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 -mbcopy

 -mbcopy-builtin -mint32 -mno-int16 -mint16 -mno-int32 -mfloat32

 -mno-float64 -mfloat64 -mno-float32 -mabshi -mno-abshi -mbranch-expensive

 -mbranch-cheap -munix-asm -mdec-asm

 picoChip Options -mae=ae_type -mvliw-lookahead=N -msymbol-as-address

 -mno-inefficient-warnings

 PowerPC Options See RS/6000 and PowerPC Options.

 RISC-V Options -mbranch-cost=N-instruction -mplt -mno-plt -mabi=ABI-string

 -mfdiv -mno-fdiv -mdiv -mno-div -march=ISA-string -mtune=processor-string

 -msmall-data-limit=N-bytes -msave-restore -mno-save-restore -mstrict-align

 -mno-strict-align -mcmodel=medlow -mcmodel=medany -mexplicit-relocs

 -mno-explicit-relocs

 RL78 Options -msim -mmul=none -mmul=g13 -mmul=g14 -mallregs -mcpu=g10

 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 -m64bit-doubles -m32bit-doubles

 -msave-mduc-in-interrupts

 RS/6000 and PowerPC Options -mcpu=cpu-type -mtune=cpu-type -mcmodel=code-model

 -mpowerpc64 -maltivec -mno-altivec -mpowerpc-gpopt -mno-powerpc-gpopt

 -mpowerpc-gfxopt -mno-powerpc-gfxopt -mmfcrf -mno-mfcrf -mpopcntb

 -mno-popcntb -mpopcntd -mno-popcntd -mfprnd -mno-fprnd -mcmpb -mno-cmpb

 -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp -mfull-toc -mminimal-toc

 -mno-fp-in-toc -mno-sum-in-toc -m64 -m32 -mxl-compat -mno-xl-compat -mpe

 -malign-power -malign-natural -msoft-float -mhard-float -mmultiple

 -mno-multiple -msingle-float -mdouble-float -msimple-fpu -mstring

 -mno-string -mupdate -mno-update -mavoid-indexed-addresses

 -mno-avoid-indexed-addresses -mfused-madd -mno-fused-madd -mbit-align

 -mno-bit-align -mstrict-align -mno-strict-align -mrelocatable

 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib -mtoc -mno-toc

 -mlittle -mlittle-endian -mbig -mbig-endian -mdynamic-no-pic -maltivec

 -mswdiv -msingle-pic-base -mprioritize-restricted-insns=priority

 -msched-costly-dep=dependence_type -minsert-sched-nops=scheme -mcall-sysv

 -mcall-netbsd -maix-struct-return -msvr4-struct-return -mabi=abi-type Page 16/493

 -msecure-plt -mbss-plt -mblock-move-inline-limit=num -misel -mno-isel

 -misel=yes -misel=no -mspe -mno-spe -mspe=yes -mspe=no -mpaired

 -mgen-cell-microcode -mwarn-cell-microcode -mvrsave -mno-vrsave -mmulhw

 -mno-mulhw -mdlmzb -mno-dlmzb -mfloat-gprs=yes -mfloat-gprs=no

 -mfloat-gprs=single -mfloat-gprs=double -mprototype -mno-prototype -msim

 -mmvme -mads -myellowknife -memb -msdata -msdata=opt -mreadonly-in-sdata

 -mvxworks -G num -mrecip -mrecip=opt -mno-recip -mrecip-precision

 -mno-recip-precision -mveclibabi=type -mfriz -mno-friz

 -mpointers-to-nested-functions -mno-pointers-to-nested-functions

 -msave-toc-indirect -mno-save-toc-indirect -mpower8-fusion

 -mno-mpower8-fusion -mpower8-vector -mno-power8-vector -mcrypto -mno-crypto

 -mhtm -mno-htm -mdirect-move -mno-direct-move -mquad-memory

 -mno-quad-memory -mquad-memory-atomic -mno-quad-memory-atomic

 -mcompat-align-parm -mno-compat-align-parm -mupper-regs-df -mno-upper-regs-df

 -mupper-regs-sf -mno-upper-regs-sf -mupper-regs-di -mno-upper-regs-di

 -mupper-regs -mno-upper-regs -mfloat128 -mno-float128 -mfloat128-hardware

 -mno-float128-hardware -mgnu-attribute -mno-gnu-attribute

 -mstack-protector-guard=guard -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset -mlra -mno-lra

 RX Options -m64bit-doubles -m32bit-doubles -fpu -nofpu -mcpu=

 -mbig-endian-data -mlittle-endian-data -msmall-data -msim -mno-sim

 -mas100-syntax -mno-as100-syntax -mrelax -mmax-constant-size= -mint-register=

 -mpid -mallow-string-insns -mno-allow-string-insns -mjsr

 -mno-warn-multiple-fast-interrupts -msave-acc-in-interrupts

 S/390 and zSeries Options -mtune=cpu-type -march=cpu-type -mhard-float

 -msoft-float -mhard-dfp -mno-hard-dfp -mlong-double-64 -mlong-double-128

 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack -msmall-exec

 -mno-small-exec -mmvcle -mno-mvcle -m64 -m31 -mdebug -mno-debug -mesa

 -mzarch -mhtm -mvx -mzvector -mtpf-trace -mno-tpf-trace -mfused-madd

 -mno-fused-madd -mwarn-framesize -mwarn-dynamicstack -mstack-size

 -mstack-guard -mhotpatch=halfwords,halfwords

 Score Options -meb -mel -mnhwloop -muls -mmac -mscore5 -mscore5u -mscore7

 -mscore7d Page 17/493

 SH Options -m1 -m2 -m2e -m2a-nofpu -m2a-single-only -m2a-single -m2a -m3

 -m3e -m4-nofpu -m4-single-only -m4-single -m4 -m4a-nofpu -m4a-single-only

 -m4a-single -m4a -m4al -mb -ml -mdalign -mrelax -mbigtable -mfmovd

 -mrenesas -mno-renesas -mnomacsave -mieee -mno-ieee -mbitops -misize

 -minline-ic_invalidate -mpadstruct -mprefergot -musermode -multcost=number

 -mdiv=strategy -mdivsi3_libfunc=name -mfixed-range=register-range

 -maccumulate-outgoing-args -matomic-model=atomic-model -mbranch-cost=num

 -mzdcbranch -mno-zdcbranch -mcbranch-force-delay-slot -mfused-madd

 -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra -mpretend-cmove -mtas

 Solaris 2 Options -mclear-hwcap -mno-clear-hwcap -mimpure-text

 -mno-impure-text -pthreads

 SPARC Options -mcpu=cpu-type -mtune=cpu-type -mcmodel=code-model

 -mmemory-model=mem-model -m32 -m64 -mapp-regs -mno-app-regs -mfaster-structs

 -mno-faster-structs -mflat -mno-flat -mfpu -mno-fpu -mhard-float

 -msoft-float -mhard-quad-float -msoft-quad-float -mstack-bias -mno-stack-bias

 -mstd-struct-return -mno-std-struct-return -munaligned-doubles

 -mno-unaligned-doubles -muser-mode -mno-user-mode -mv8plus -mno-v8plus -mvis

 -mno-vis -mvis2 -mno-vis2 -mvis3 -mno-vis3 -mvis4 -mno-vis4 -mvis4b

 -mno-vis4b -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld

 -mpopc -mno-popc -msubxc -mno-subxc -mfix-at697f -mfix-ut699 -mfix-ut700

 -mfix-gr712rc -mlra -mno-lra

 SPU Options -mwarn-reloc -merror-reloc -msafe-dma -munsafe-dma -mbranch-hints

 -msmall-mem -mlarge-mem -mstdmain -mfixed-range=register-range -mea32 -mea64

 -maddress-space-conversion -mno-address-space-conversion -mcache-size=cache-

 size -matomic-updates -mno-atomic-updates

 System V Options -Qy -Qn -YP,paths -Ym,dir

 TILE-Gx Options -mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian

 -mcmodel=code-model

 TILEPro Options -mcpu=cpu -m32

 V850 Options -mlong-calls -mno-long-calls -mep -mno-ep -mprolog-function

 -mno-prolog-function -mspace -mtda=n -msda=n -mzda=n -mapp-regs

 -mno-app-regs -mdisable-callt -mno-disable-callt -mv850e2v3 -mv850e2

 -mv850e1 -mv850es -mv850e -mv850 -mv850e3v5 -mloop -mrelax -mlong-jumps Page 18/493

 -msoft-float -mhard-float -mgcc-abi -mrh850-abi -mbig-switch

 VAX Options -mg -mgnu -munix

 Visium Options -mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float

 -mcpu=cpu-type -mtune=cpu-type -msv-mode -muser-mode

 VMS Options -mvms-return-codes -mdebug-main=prefix -mmalloc64

 -mpointer-size=size

 VxWorks Options -mrtp -non-static -Bstatic -Bdynamic -Xbind-lazy -Xbind-now

 x86 Options -mtune=cpu-type -march=cpu-type -mtune-ctrl=feature-list

 -mdump-tune-features -mno-default -mfpmath=unit -masm=dialect

 -mno-fancy-math-387 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float

 -mno-wide-multiply -mrtd -malign-double -mpreferred-stack-boundary=num

 -mincoming-stack-boundary=num -mcld -mcx16 -msahf -mmovbe -mcrc32 -mrecip

 -mrecip=opt -mvzeroupper -mprefer-avx128 -mmmx -msse -msse2 -msse3 -mssse3

 -msse4.1 -msse4.2 -msse4 -mavx -mavx2 -mavx512f -mavx512pf -mavx512er

 -mavx512cd -mavx512vl -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi

 -msha -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1

 -mclflushopt -mxsavec -mxsaves -msse4a -m3dnow -m3dnowa -mpopcnt -mabm

 -mbmi -mtbm -mfma4 -mxop -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm

 -mlwp -mmpx -mmwaitx -mclzero -mpku -mthreads -mms-bitfields

 -mno-align-stringops -minline-all-stringops -minline-stringops-dynamically

 -mstringop-strategy=alg -mmemcpy-strategy=strategy -mmemset-strategy=strategy

 -mpush-args -maccumulate-outgoing-args -m128bit-long-double

 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128

 -mregparm=num -msseregparm -mveclibabi=type -mvect8-ret-in-mem -mpc32 -mpc64

 -mpc80 -mstackrealign -momit-leaf-frame-pointer -mno-red-zone

 -mno-tls-direct-seg-refs -mcmodel=code-model -mabi=name -maddress-mode=mode

 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=num -msse2avx

 -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv

 -mavx256-split-unaligned-load -mavx256-split-unaligned-store -malign-data=type

 -mstack-protector-guard=guard -mmitigate-rop -mgeneral-regs-only

 -mindirect-branch=choice -mfunction-return=choice -mindirect-branch-register

 x86 Windows Options -mconsole -mcygwin -mno-cygwin -mdll -mnop-fun-dllimport

 -mthread -municode -mwin32 -mwindows -fno-set-stack-executable Page 19/493

 Xstormy16 Options -msim

 Xtensa Options -mconst16 -mno-const16 -mfused-madd -mno-fused-madd

 -mforce-no-pic -mserialize-volatile -mno-serialize-volatile

 -mtext-section-literals -mno-text-section-literals -mauto-litpools

 -mno-auto-litpools -mtarget-align -mno-target-align -mlongcalls

 -mno-longcalls

 zSeries Options See S/390 and zSeries Options.

 Options Controlling the Kind of Output

 Compilation can involve up to four stages: preprocessing, compilation proper,

 assembly and linking, always in that order. GCC is capable of preprocessing and

 compiling several files either into several assembler input files, or into one

 assembler input file; then each assembler input file produces an object file, and

 linking combines all the object files (those newly compiled, and those specified as

 input) into an executable file.

 For any given input file, the file name suffix determines what kind of compilation

 is done:

 file.c

 C source code that must be preprocessed.

 file.i

 C source code that should not be preprocessed.

 file.ii

 C++ source code that should not be preprocessed.

 file.m

 Objective-C source code. Note that you must link with the libobjc library to

 make an Objective-C program work.

 file.mi

 Objective-C source code that should not be preprocessed.

 file.mm

 file.M

 Objective-C++ source code. Note that you must link with the libobjc library to

 make an Objective-C++ program work. Note that .M refers to a literal capital

 M.

 file.mii Page 20/493

 Objective-C++ source code that should not be preprocessed.

 file.h

 C, C++, Objective-C or Objective-C++ header file to be turned into a

 precompiled header (default), or C, C++ header file to be turned into an Ada

 spec (via the -fdump-ada-spec switch).

 file.cc

 file.cp

 file.cxx

 file.cpp

 file.CPP

 file.c++

 file.C

 C++ source code that must be preprocessed. Note that in .cxx, the last two

 letters must both be literally x. Likewise, .C refers to a literal capital C.

 file.mm

 file.M

 Objective-C++ source code that must be preprocessed.

 file.mii

 Objective-C++ source code that should not be preprocessed.

 file.hh

 file.H

 file.hp

 file.hxx

 file.hpp

 file.HPP

 file.h++

 file.tcc

 C++ header file to be turned into a precompiled header or Ada spec.

 file.f

 file.for

 file.ftn

 Fixed form Fortran source code that should not be preprocessed.

 file.F Page 21/493

 file.FOR

 file.fpp

 file.FPP

 file.FTN

 Fixed form Fortran source code that must be preprocessed (with the traditional

 preprocessor).

 file.f90

 file.f95

 file.f03

 file.f08

 Free form Fortran source code that should not be preprocessed.

 file.F90

 file.F95

 file.F03

 file.F08

 Free form Fortran source code that must be preprocessed (with the traditional

 preprocessor).

 file.go

 Go source code.

 file.brig

 BRIG files (binary representation of HSAIL).

 file.ads

 Ada source code file that contains a library unit declaration (a declaration of

 a package, subprogram, or generic, or a generic instantiation), or a library

 unit renaming declaration (a package, generic, or subprogram renaming

 declaration). Such files are also called specs.

 file.adb

 Ada source code file containing a library unit body (a subprogram or package

 body). Such files are also called bodies.

 file.d

 D source code file.

 file.di

 D interface code file. Page 22/493

 file.dd

 D documentation code file.

 file.s

 Assembler code.

 file.S

 file.sx

 Assembler code that must be preprocessed.

 other

 An object file to be fed straight into linking. Any file name with no

 recognized suffix is treated this way.

 You can specify the input language explicitly with the -x option:

 -x language

 Specify explicitly the language for the following input files (rather than

 letting the compiler choose a default based on the file name suffix). This

 option applies to all following input files until the next -x option. Possible

 values for language are:

 c c-header cpp-output

 c++ c++-header c++-cpp-output

 objective-c objective-c-header objective-c-cpp-output

 objective-c++ objective-c++-header objective-c++-cpp-output

 assembler assembler-with-cpp

 ada

 d

 f77 f77-cpp-input f95 f95-cpp-input

 go

 brig

 -x none

 Turn off any specification of a language, so that subsequent files are handled

 according to their file name suffixes (as they are if -x has not been used at

 all).

 If you only want some of the stages of compilation, you can use -x (or filename

 suffixes) to tell gcc where to start, and one of the options -c, -S, or -E to say

 where gcc is to stop. Note that some combinations (for example, -x cpp-output -E) Page 23/493

 instruct gcc to do nothing at all.

 -c Compile or assemble the source files, but do not link. The linking stage

 simply is not done. The ultimate output is in the form of an object file for

 each source file.

 By default, the object file name for a source file is made by replacing the

 suffix .c, .i, .s, etc., with .o.

 Unrecognized input files, not requiring compilation or assembly, are ignored.

 -S Stop after the stage of compilation proper; do not assemble. The output is in

 the form of an assembler code file for each non-assembler input file specified.

 By default, the assembler file name for a source file is made by replacing the

 suffix .c, .i, etc., with .s.

 Input files that don't require compilation are ignored.

 -E Stop after the preprocessing stage; do not run the compiler proper. The output

 is in the form of preprocessed source code, which is sent to the standard

 output.

 Input files that don't require preprocessing are ignored.

 -o file

 Place output in file file. This applies to whatever sort of output is being

 produced, whether it be an executable file, an object file, an assembler file

 or preprocessed C code.

 If -o is not specified, the default is to put an executable file in a.out, the

 object file for source.suffix in source.o, its assembler file in source.s, a

 precompiled header file in source.suffix.gch, and all preprocessed C source on

 standard output.

 -v Print (on standard error output) the commands executed to run the stages of

 compilation. Also print the version number of the compiler driver program and

 of the preprocessor and the compiler proper.

 -###

 Like -v except the commands are not executed and arguments are quoted unless

 they contain only alphanumeric characters or "./-_". This is useful for shell

 scripts to capture the driver-generated command lines.

 --help

 Print (on the standard output) a description of the command-line options Page 24/493

 understood by gcc. If the -v option is also specified then --help is also

 passed on to the various processes invoked by gcc, so that they can display the

 command-line options they accept. If the -Wextra option has also been

 specified (prior to the --help option), then command-line options that have no

 documentation associated with them are also displayed.

 --target-help

 Print (on the standard output) a description of target-specific command-line

 options for each tool. For some targets extra target-specific information may

 also be printed.

 --help={class|[^]qualifier}[,...]

 Print (on the standard output) a description of the command-line options

 understood by the compiler that fit into all specified classes and qualifiers.

 These are the supported classes:

 optimizers

 Display all of the optimization options supported by the compiler.

 warnings

 Display all of the options controlling warning messages produced by the

 compiler.

 target

 Display target-specific options. Unlike the --target-help option however,

 target-specific options of the linker and assembler are not displayed.

 This is because those tools do not currently support the extended --help=

 syntax.

 params

 Display the values recognized by the --param option.

 language

 Display the options supported for language, where language is the name of

 one of the languages supported in this version of GCC.

 common

 Display the options that are common to all languages.

 These are the supported qualifiers:

 undocumented

 Display only those options that are undocumented. Page 25/493

 joined

 Display options taking an argument that appears after an equal sign in the

 same continuous piece of text, such as: --help=target.

 separate

 Display options taking an argument that appears as a separate word

 following the original option, such as: -o output-file.

 Thus for example to display all the undocumented target-specific switches

 supported by the compiler, use:

 --help=target,undocumented

 The sense of a qualifier can be inverted by prefixing it with the ^ character,

 so for example to display all binary warning options (i.e., ones that are

 either on or off and that do not take an argument) that have a description,

 use:

 --help=warnings,^joined,^undocumented

 The argument to --help= should not consist solely of inverted qualifiers.

 Combining several classes is possible, although this usually restricts the

 output so much that there is nothing to display. One case where it does work,

 however, is when one of the classes is target. For example, to display all the

 target-specific optimization options, use:

 --help=target,optimizers

 The --help= option can be repeated on the command line. Each successive use

 displays its requested class of options, skipping those that have already been

 displayed.

 If the -Q option appears on the command line before the --help= option, then

 the descriptive text displayed by --help= is changed. Instead of describing

 the displayed options, an indication is given as to whether the option is

 enabled, disabled or set to a specific value (assuming that the compiler knows

 this at the point where the --help= option is used).

 Here is a truncated example from the ARM port of gcc:

 % gcc -Q -mabi=2 --help=target -c

 The following options are target specific:

 -mabi= 2

 -mabort-on-noreturn [disabled] Page 26/493

 -mapcs [disabled]

 The output is sensitive to the effects of previous command-line options, so for

 example it is possible to find out which optimizations are enabled at -O2 by

 using:

 -Q -O2 --help=optimizers

 Alternatively you can discover which binary optimizations are enabled by -O3 by

 using:

 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts

 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts

 diff /tmp/O2-opts /tmp/O3-opts | grep enabled

 --version

 Display the version number and copyrights of the invoked GCC.

 -pass-exit-codes

 Normally the gcc program exits with the code of 1 if any phase of the compiler

 returns a non-success return code. If you specify -pass-exit-codes, the gcc

 program instead returns with the numerically highest error produced by any

 phase returning an error indication. The C, C++, and Fortran front ends return

 4 if an internal compiler error is encountered.

 -pipe

 Use pipes rather than temporary files for communication between the various

 stages of compilation. This fails to work on some systems where the assembler

 is unable to read from a pipe; but the GNU assembler has no trouble.

 -specs=file

 Process file after the compiler reads in the standard specs file, in order to

 override the defaults which the gcc driver program uses when determining what

 switches to pass to cc1, cc1plus, as, ld, etc. More than one -specs=file can

 be specified on the command line, and they are processed in order, from left to

 right.

 -wrapper

 Invoke all subcommands under a wrapper program. The name of the wrapper

 program and its parameters are passed as a comma separated list.

 gcc -c t.c -wrapper gdb,--args

 This invokes all subprograms of gcc under gdb --args, thus the invocation of Page 27/493

 cc1 is gdb --args cc1

 -fplugin=name.so

 Load the plugin code in file name.so, assumed to be a shared object to be

 dlopen'd by the compiler. The base name of the shared object file is used to

 identify the plugin for the purposes of argument parsing (See

 -fplugin-arg-name-key=value below). Each plugin should define the callback

 functions specified in the Plugins API.

 -fplugin-arg-name-key=value

 Define an argument called key with a value of value for the plugin called name.

 -fdump-ada-spec[-slim]

 For C and C++ source and include files, generate corresponding Ada specs.

 -fada-spec-parent=unit

 In conjunction with -fdump-ada-spec[-slim] above, generate Ada specs as child

 units of parent unit.

 -fdump-go-spec=file

 For input files in any language, generate corresponding Go declarations in

 file. This generates Go "const", "type", "var", and "func" declarations which

 may be a useful way to start writing a Go interface to code written in some

 other language.

 @file

 Read command-line options from file. The options read are inserted in place of

 the original @file option. If file does not exist, or cannot be read, then the

 option will be treated literally, and not removed.

 Options in file are separated by whitespace. A whitespace character may be

 included in an option by surrounding the entire option in either single or

 double quotes. Any character (including a backslash) may be included by

 prefixing the character to be included with a backslash. The file may itself

 contain additional @file options; any such options will be processed

 recursively.

 Compiling C++ Programs

 C++ source files conventionally use one of the suffixes .C, .cc, .cpp, .CPP, .c++,

 .cp, or .cxx; C++ header files often use .hh, .hpp, .H, or (for shared template

 code) .tcc; and preprocessed C++ files use the suffix .ii. GCC recognizes files Page 28/493

 with these names and compiles them as C++ programs even if you call the compiler

 the same way as for compiling C programs (usually with the name gcc).

 However, the use of gcc does not add the C++ library. g++ is a program that calls

 GCC and automatically specifies linking against the C++ library. It treats .c, .h

 and .i files as C++ source files instead of C source files unless -x is used. This

 program is also useful when precompiling a C header file with a .h extension for

 use in C++ compilations. On many systems, g++ is also installed with the name c++.

 When you compile C++ programs, you may specify many of the same command-line

 options that you use for compiling programs in any language; or command-line

 options meaningful for C and related languages; or options that are meaningful only

 for C++ programs.

 Options Controlling C Dialect

 The following options control the dialect of C (or languages derived from C, such

 as C++, Objective-C and Objective-C++) that the compiler accepts:

 -ansi

 In C mode, this is equivalent to -std=c90. In C++ mode, it is equivalent to

 -std=c++98.

 This turns off certain features of GCC that are incompatible with ISO C90 (when

 compiling C code), or of standard C++ (when compiling C++ code), such as the

 "asm" and "typeof" keywords, and predefined macros such as "unix" and "vax"

 that identify the type of system you are using. It also enables the

 undesirable and rarely used ISO trigraph feature. For the C compiler, it

 disables recognition of C++ style // comments as well as the "inline" keyword.

 The alternate keywords "__asm__", "__extension__", "__inline__" and

 "__typeof__" continue to work despite -ansi. You would not want to use them in

 an ISO C program, of course, but it is useful to put them in header files that

 might be included in compilations done with -ansi. Alternate predefined macros

 such as "__unix__" and "__vax__" are also available, with or without -ansi.

 The -ansi option does not cause non-ISO programs to be rejected gratuitously.

 For that, -Wpedantic is required in addition to -ansi.

 The macro "__STRICT_ANSI__" is predefined when the -ansi option is used. Some

 header files may notice this macro and refrain from declaring certain functions

 or defining certain macros that the ISO standard doesn't call for; this is to Page 29/493

 avoid interfering with any programs that might use these names for other

 things.

 Functions that are normally built in but do not have semantics defined by ISO C

 (such as "alloca" and "ffs") are not built-in functions when -ansi is used.

 -std=

 Determine the language standard. This option is currently only supported when

 compiling C or C++.

 The compiler can accept several base standards, such as c90 or c++98, and GNU

 dialects of those standards, such as gnu90 or gnu++98. When a base standard is

 specified, the compiler accepts all programs following that standard plus those

 using GNU extensions that do not contradict it. For example, -std=c90 turns

 off certain features of GCC that are incompatible with ISO C90, such as the

 "asm" and "typeof" keywords, but not other GNU extensions that do not have a

 meaning in ISO C90, such as omitting the middle term of a "?:" expression. On

 the other hand, when a GNU dialect of a standard is specified, all features

 supported by the compiler are enabled, even when those features change the

 meaning of the base standard. As a result, some strict-conforming programs may

 be rejected. The particular standard is used by -Wpedantic to identify which

 features are GNU extensions given that version of the standard. For example

 -std=gnu90 -Wpedantic warns about C++ style // comments, while -std=gnu99

 -Wpedantic does not.

 A value for this option must be provided; possible values are

 c90

 c89

 iso9899:1990

 Support all ISO C90 programs (certain GNU extensions that conflict with ISO

 C90 are disabled). Same as -ansi for C code.

 iso9899:199409

 ISO C90 as modified in amendment 1.

 c99

 c9x

 iso9899:1999

 iso9899:199x Page 30/493

 ISO C99. This standard is substantially completely supported, modulo bugs

 and floating-point issues (mainly but not entirely relating to optional C99

 features from Annexes F and G). See <http://gcc.gnu.org/c99status.html>

 for more information. The names c9x and iso9899:199x are deprecated.

 c11

 c1x

 iso9899:2011

 ISO C11, the 2011 revision of the ISO C standard. This standard is

 substantially completely supported, modulo bugs, floating-point issues

 (mainly but not entirely relating to optional C11 features from Annexes F

 and G) and the optional Annexes K (Bounds-checking interfaces) and L

 (Analyzability). The name c1x is deprecated.

 gnu90

 gnu89

 GNU dialect of ISO C90 (including some C99 features).

 gnu99

 gnu9x

 GNU dialect of ISO C99. The name gnu9x is deprecated.

 gnu11

 gnu1x

 GNU dialect of ISO C11. This is the default for C code. The name gnu1x is

 deprecated.

 c++98

 c++03

 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some

 additional defect reports. Same as -ansi for C++ code.

 gnu++98

 gnu++03

 GNU dialect of -std=c++98.

 c++11

 c++0x

 The 2011 ISO C++ standard plus amendments. The name c++0x is deprecated.

 gnu++11 Page 31/493

 gnu++0x

 GNU dialect of -std=c++11. The name gnu++0x is deprecated.

 c++14

 c++1y

 The 2014 ISO C++ standard plus amendments. The name c++1y is deprecated.

 gnu++14

 gnu++1y

 GNU dialect of -std=c++14. This is the default for C++ code. The name

 gnu++1y is deprecated.

 c++1z

 The next revision of the ISO C++ standard, tentatively planned for 2017.

 Support is highly experimental, and will almost certainly change in

 incompatible ways in future releases.

 gnu++1z

 GNU dialect of -std=c++1z. Support is highly experimental, and will almost

 certainly change in incompatible ways in future releases.

 -fgnu89-inline

 The option -fgnu89-inline tells GCC to use the traditional GNU semantics for

 "inline" functions when in C99 mode.

 Using this option is roughly equivalent to adding the "gnu_inline" function

 attribute to all inline functions.

 The option -fno-gnu89-inline explicitly tells GCC to use the C99 semantics for

 "inline" when in C99 or gnu99 mode (i.e., it specifies the default behavior).

 This option is not supported in -std=c90 or -std=gnu90 mode.

 The preprocessor macros "__GNUC_GNU_INLINE__" and "__GNUC_STDC_INLINE__" may be

 used to check which semantics are in effect for "inline" functions.

 -fpermitted-flt-eval-methods=style

 ISO/IEC TS 18661-3 defines new permissible values for "FLT_EVAL_METHOD" that

 indicate that operations and constants with a semantic type that is an

 interchange or extended format should be evaluated to the precision and range

 of that type. These new values are a superset of those permitted under

 C99/C11, which does not specify the meaning of other positive values of

 "FLT_EVAL_METHOD". As such, code conforming to C11 may not have been written Page 32/493

 expecting the possibility of the new values.

 -fpermitted-flt-eval-methods specifies whether the compiler should allow only

 the values of "FLT_EVAL_METHOD" specified in C99/C11, or the extended set of

 values specified in ISO/IEC TS 18661-3.

 style is either "c11" or "ts-18661-3" as appropriate.

 The default when in a standards compliant mode (-std=c11 or similar) is

 -fpermitted-flt-eval-methods=c11. The default when in a GNU dialect

 (-std=gnu11 or similar) is -fpermitted-flt-eval-methods=ts-18661-3.

 -aux-info filename

 Output to the given filename prototyped declarations for all functions declared

 and/or defined in a translation unit, including those in header files. This

 option is silently ignored in any language other than C.

 Besides declarations, the file indicates, in comments, the origin of each

 declaration (source file and line), whether the declaration was implicit,

 prototyped or unprototyped (I, N for new or O for old, respectively, in the

 first character after the line number and the colon), and whether it came from

 a declaration or a definition (C or F, respectively, in the following

 character). In the case of function definitions, a K&R-style list of arguments

 followed by their declarations is also provided, inside comments, after the

 declaration.

 -fallow-parameterless-variadic-functions

 Accept variadic functions without named parameters.

 Although it is possible to define such a function, this is not very useful as

 it is not possible to read the arguments. This is only supported for C as this

 construct is allowed by C++.

 -fno-asm

 Do not recognize "asm", "inline" or "typeof" as a keyword, so that code can use

 these words as identifiers. You can use the keywords "__asm__", "__inline__"

 and "__typeof__" instead. -ansi implies -fno-asm.

 In C++, this switch only affects the "typeof" keyword, since "asm" and "inline"

 are standard keywords. You may want to use the -fno-gnu-keywords flag instead,

 which has the same effect. In C99 mode (-std=c99 or -std=gnu99), this switch

 only affects the "asm" and "typeof" keywords, since "inline" is a standard Page 33/493

 keyword in ISO C99.

 -fno-builtin

 -fno-builtin-function

 Don't recognize built-in functions that do not begin with __builtin_ as prefix.

 GCC normally generates special code to handle certain built-in functions more

 efficiently; for instance, calls to "alloca" may become single instructions

 which adjust the stack directly, and calls to "memcpy" may become inline copy

 loops. The resulting code is often both smaller and faster, but since the

 function calls no longer appear as such, you cannot set a breakpoint on those

 calls, nor can you change the behavior of the functions by linking with a

 different library. In addition, when a function is recognized as a built-in

 function, GCC may use information about that function to warn about problems

 with calls to that function, or to generate more efficient code, even if the

 resulting code still contains calls to that function. For example, warnings

 are given with -Wformat for bad calls to "printf" when "printf" is built in and

 "strlen" is known not to modify global memory.

 With the -fno-builtin-function option only the built-in function function is

 disabled. function must not begin with __builtin_. If a function is named

 that is not built-in in this version of GCC, this option is ignored. There is

 no corresponding -fbuiltin-function option; if you wish to enable built-in

 functions selectively when using -fno-builtin or -ffreestanding, you may define

 macros such as:

 #define abs(n) __builtin_abs ((n))

 #define strcpy(d, s) __builtin_strcpy ((d), (s))

 -fgimple

 Enable parsing of function definitions marked with "__GIMPLE". This is an

 experimental feature that allows unit testing of GIMPLE passes.

 -fhosted

 Assert that compilation targets a hosted environment. This implies -fbuiltin.

 A hosted environment is one in which the entire standard library is available,

 and in which "main" has a return type of "int". Examples are nearly everything

 except a kernel. This is equivalent to -fno-freestanding.

 -ffreestanding Page 34/493

 Assert that compilation targets a freestanding environment. This implies

 -fno-builtin. A freestanding environment is one in which the standard library

 may not exist, and program startup may not necessarily be at "main". The most

 obvious example is an OS kernel. This is equivalent to -fno-hosted.

 -fopenacc

 Enable handling of OpenACC directives "#pragma acc" in C/C++ and "!$acc" in

 Fortran. When -fopenacc is specified, the compiler generates accelerated code

 according to the OpenACC Application Programming Interface v2.0

 <http://www.openacc.org/>. This option implies -pthread, and thus is only

 supported on targets that have support for -pthread.

 -fopenacc-dim=geom

 Specify default compute dimensions for parallel offload regions that do not

 explicitly specify. The geom value is a triple of ':'-separated sizes, in

 order 'gang', 'worker' and, 'vector'. A size can be omitted, to use a target-

 specific default value.

 -fopenmp

 Enable handling of OpenMP directives "#pragma omp" in C/C++ and "!$omp" in

 Fortran. When -fopenmp is specified, the compiler generates parallel code

 according to the OpenMP Application Program Interface v4.5

 <http://www.openmp.org/>. This option implies -pthread, and thus is only

 supported on targets that have support for -pthread. -fopenmp implies

 -fopenmp-simd.

 -fopenmp-simd

 Enable handling of OpenMP's SIMD directives with "#pragma omp" in C/C++ and

 "!$omp" in Fortran. Other OpenMP directives are ignored.

 -fcilkplus

 Enable the usage of Cilk Plus language extension features for C/C++. When the

 option -fcilkplus is specified, enable the usage of the Cilk Plus Language

 extension features for C/C++. The present implementation follows ABI version

 1.2. This is an experimental feature that is only partially complete, and

 whose interface may change in future versions of GCC as the official

 specification changes. Currently, all features but "_Cilk_for" have been

 implemented. Page 35/493

 -fgnu-tm

 When the option -fgnu-tm is specified, the compiler generates code for the

 Linux variant of Intel's current Transactional Memory ABI specification

 document (Revision 1.1, May 6 2009). This is an experimental feature whose

 interface may change in future versions of GCC, as the official specification

 changes. Please note that not all architectures are supported for this

 feature.

 For more information on GCC's support for transactional memory,

 Note that the transactional memory feature is not supported with non-call

 exceptions (-fnon-call-exceptions).

 -fms-extensions

 Accept some non-standard constructs used in Microsoft header files.

 In C++ code, this allows member names in structures to be similar to previous

 types declarations.

 typedef int UOW;

 struct ABC {

 UOW UOW;

 };

 Some cases of unnamed fields in structures and unions are only accepted with

 this option.

 Note that this option is off for all targets but x86 targets using ms-abi.

 -fplan9-extensions

 Accept some non-standard constructs used in Plan 9 code.

 This enables -fms-extensions, permits passing pointers to structures with

 anonymous fields to functions that expect pointers to elements of the type of

 the field, and permits referring to anonymous fields declared using a typedef.

 This is only supported for C, not C++.

 -fcond-mismatch

 Allow conditional expressions with mismatched types in the second and third

 arguments. The value of such an expression is void. This option is not

 supported for C++.

 -flax-vector-conversions

 Allow implicit conversions between vectors with differing numbers of elements Page 36/493

 and/or incompatible element types. This option should not be used for new

 code.

 -funsigned-char

 Let the type "char" be unsigned, like "unsigned char".

 Each kind of machine has a default for what "char" should be. It is either

 like "unsigned char" by default or like "signed char" by default.

 Ideally, a portable program should always use "signed char" or "unsigned char"

 when it depends on the signedness of an object. But many programs have been

 written to use plain "char" and expect it to be signed, or expect it to be

 unsigned, depending on the machines they were written for. This option, and

 its inverse, let you make such a program work with the opposite default.

 The type "char" is always a distinct type from each of "signed char" or

 "unsigned char", even though its behavior is always just like one of those two.

 -fsigned-char

 Let the type "char" be signed, like "signed char".

 Note that this is equivalent to -fno-unsigned-char, which is the negative form

 of -funsigned-char. Likewise, the option -fno-signed-char is equivalent to

 -funsigned-char.

 -fsigned-bitfields

 -funsigned-bitfields

 -fno-signed-bitfields

 -fno-unsigned-bitfields

 These options control whether a bit-field is signed or unsigned, when the

 declaration does not use either "signed" or "unsigned". By default, such a

 bit-field is signed, because this is consistent: the basic integer types such

 as "int" are signed types.

 -fsso-struct=endianness

 Set the default scalar storage order of structures and unions to the specified

 endianness. The accepted values are big-endian, little-endian and native for

 the native endianness of the target (the default). This option is not

 supported for C++.

 Warning: the -fsso-struct switch causes GCC to generate code that is not binary

 compatible with code generated without it if the specified endianness is not Page 37/493

 the native endianness of the target.

 Options Controlling C++ Dialect

 This section describes the command-line options that are only meaningful for C++

 programs. You can also use most of the GNU compiler options regardless of what

 language your program is in. For example, you might compile a file firstClass.C

 like this:

 g++ -g -fstrict-enums -O -c firstClass.C

 In this example, only -fstrict-enums is an option meant only for C++ programs; you

 can use the other options with any language supported by GCC.

 Some options for compiling C programs, such as -std, are also relevant for C++

 programs.

 Here is a list of options that are only for compiling C++ programs:

 -fabi-version=n

 Use version n of the C++ ABI. The default is version 0.

 Version 0 refers to the version conforming most closely to the C++ ABI

 specification. Therefore, the ABI obtained using version 0 will change in

 different versions of G++ as ABI bugs are fixed.

 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.

 Version 2 is the version of the C++ ABI that first appeared in G++ 3.4, and was

 the default through G++ 4.9.

 Version 3 corrects an error in mangling a constant address as a template

 argument.

 Version 4, which first appeared in G++ 4.5, implements a standard mangling for

 vector types.

 Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute

 const/volatile on function pointer types, decltype of a plain decl, and use of

 a function parameter in the declaration of another parameter.

 Version 6, which first appeared in G++ 4.7, corrects the promotion behavior of

 C++11 scoped enums and the mangling of template argument packs,

 const/static_cast, prefix ++ and --, and a class scope function used as a

 template argument.

 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a builtin

 type and corrects the mangling of lambdas in default argument scope. Page 38/493

 Version 8, which first appeared in G++ 4.9, corrects the substitution behavior

 of function types with function-cv-qualifiers.

 Version 9, which first appeared in G++ 5.2, corrects the alignment of

 "nullptr_t".

 Version 10, which first appeared in G++ 6.1, adds mangling of attributes that

 affect type identity, such as ia32 calling convention attributes (e.g.

 stdcall).

 Version 11, which first appeared in G++ 7, corrects the mangling of sizeof...

 expressions and operator names. For multiple entities with the same name

 within a function, that are declared in different scopes, the mangling now

 changes starting with the twelfth occurrence. It also implies

 -fnew-inheriting-ctors.

 See also -Wabi.

 -fabi-compat-version=n

 On targets that support strong aliases, G++ works around mangling changes by

 creating an alias with the correct mangled name when defining a symbol with an

 incorrect mangled name. This switch specifies which ABI version to use for the

 alias.

 With -fabi-version=0 (the default), this defaults to 8 (GCC 5 compatibility).

 If another ABI version is explicitly selected, this defaults to 0. For

 compatibility with GCC versions 3.2 through 4.9, use -fabi-compat-version=2.

 If this option is not provided but -Wabi=n is, that version is used for

 compatibility aliases. If this option is provided along with -Wabi (without

 the version), the version from this option is used for the warning.

 -fno-access-control

 Turn off all access checking. This switch is mainly useful for working around

 bugs in the access control code.

 -faligned-new

 Enable support for C++17 "new" of types that require more alignment than "void*

 ::operator new(std::size_t)" provides. A numeric argument such as

 "-faligned-new=32" can be used to specify how much alignment (in bytes) is

 provided by that function, but few users will need to override the default of

 "alignof(std::max_align_t)". Page 39/493

 -fcheck-new

 Check that the pointer returned by "operator new" is non-null before attempting

 to modify the storage allocated. This check is normally unnecessary because

 the C++ standard specifies that "operator new" only returns 0 if it is declared

 "throw()", in which case the compiler always checks the return value even

 without this option. In all other cases, when "operator new" has a non-empty

 exception specification, memory exhaustion is signalled by throwing

 "std::bad_alloc". See also new (nothrow).

 -fconcepts

 Enable support for the C++ Extensions for Concepts Technical Specification, ISO

 19217 (2015), which allows code like

 template <class T> concept bool Addable = requires (T t) { t + t; };

 template <Addable T> T add (T a, T b) { return a + b; }

 -fconstexpr-depth=n

 Set the maximum nested evaluation depth for C++11 constexpr functions to n. A

 limit is needed to detect endless recursion during constant expression

 evaluation. The minimum specified by the standard is 512.

 -fconstexpr-loop-limit=n

 Set the maximum number of iterations for a loop in C++14 constexpr functions to

 n. A limit is needed to detect infinite loops during constant expression

 evaluation. The default is 262144 (1<<18).

 -fdeduce-init-list

 Enable deduction of a template type parameter as "std::initializer_list" from a

 brace-enclosed initializer list, i.e.

 template <class T> auto forward(T t) -> decltype (realfn (t))

 {

 return realfn (t);

 }

 void f()

 {

 forward({1,2}); // call forward<std::initializer_list<int>>

 }

 This deduction was implemented as a possible extension to the originally Page 40/493

 proposed semantics for the C++11 standard, but was not part of the final

 standard, so it is disabled by default. This option is deprecated, and may be

 removed in a future version of G++.

 -ffriend-injection

 Inject friend functions into the enclosing namespace, so that they are visible

 outside the scope of the class in which they are declared. Friend functions

 were documented to work this way in the old Annotated C++ Reference Manual.

 However, in ISO C++ a friend function that is not declared in an enclosing

 scope can only be found using argument dependent lookup. GCC defaults to the

 standard behavior.

 This option is for compatibility, and may be removed in a future release of

 G++.

 -fno-elide-constructors

 The C++ standard allows an implementation to omit creating a temporary that is

 only used to initialize another object of the same type. Specifying this

 option disables that optimization, and forces G++ to call the copy constructor

 in all cases. This option also causes G++ to call trivial member functions

 which otherwise would be expanded inline.

 In C++17, the compiler is required to omit these temporaries, but this option

 still affects trivial member functions.

 -fno-enforce-eh-specs

 Don't generate code to check for violation of exception specifications at run

 time. This option violates the C++ standard, but may be useful for reducing

 code size in production builds, much like defining "NDEBUG". This does not

 give user code permission to throw exceptions in violation of the exception

 specifications; the compiler still optimizes based on the specifications, so

 throwing an unexpected exception results in undefined behavior at run time.

 -fextern-tls-init

 -fno-extern-tls-init

 The C++11 and OpenMP standards allow "thread_local" and "threadprivate"

 variables to have dynamic (runtime) initialization. To support this, any use

 of such a variable goes through a wrapper function that performs any necessary

 initialization. When the use and definition of the variable are in the same Page 41/493

 translation unit, this overhead can be optimized away, but when the use is in a

 different translation unit there is significant overhead even if the variable

 doesn't actually need dynamic initialization. If the programmer can be sure

 that no use of the variable in a non-defining TU needs to trigger dynamic

 initialization (either because the variable is statically initialized, or a use

 of the variable in the defining TU will be executed before any uses in another

 TU), they can avoid this overhead with the -fno-extern-tls-init option.

 On targets that support symbol aliases, the default is -fextern-tls-init. On

 targets that do not support symbol aliases, the default is

 -fno-extern-tls-init.

 -ffor-scope

 -fno-for-scope

 If -ffor-scope is specified, the scope of variables declared in a for-init-

 statement is limited to the "for" loop itself, as specified by the C++

 standard. If -fno-for-scope is specified, the scope of variables declared in a

 for-init-statement extends to the end of the enclosing scope, as was the case

 in old versions of G++, and other (traditional) implementations of C++.

 If neither flag is given, the default is to follow the standard, but to allow

 and give a warning for old-style code that would otherwise be invalid, or have

 different behavior.

 -fno-gnu-keywords

 Do not recognize "typeof" as a keyword, so that code can use this word as an

 identifier. You can use the keyword "__typeof__" instead. This option is

 implied by the strict ISO C++ dialects: -ansi, -std=c++98, -std=c++11, etc.

 -fno-implicit-templates

 Never emit code for non-inline templates that are instantiated implicitly (i.e.

 by use); only emit code for explicit instantiations.

 -fno-implicit-inline-templates

 Don't emit code for implicit instantiations of inline templates, either. The

 default is to handle inlines differently so that compiles with and without

 optimization need the same set of explicit instantiations.

 -fno-implement-inlines

 To save space, do not emit out-of-line copies of inline functions controlled by Page 42/493

 "#pragma implementation". This causes linker errors if these functions are not

 inlined everywhere they are called.

 -fms-extensions

 Disable Wpedantic warnings about constructs used in MFC, such as implicit int

 and getting a pointer to member function via non-standard syntax.

 -fnew-inheriting-ctors

 Enable the P0136 adjustment to the semantics of C++11 constructor inheritance.

 This is part of C++17 but also considered to be a Defect Report against C++11

 and C++14. This flag is enabled by default unless -fabi-version=10 or lower is

 specified.

 -fnew-ttp-matching

 Enable the P0522 resolution to Core issue 150, template template parameters and

 default arguments: this allows a template with default template arguments as an

 argument for a template template parameter with fewer template parameters.

 This flag is enabled by default for -std=c++1z.

 -fno-nonansi-builtins

 Disable built-in declarations of functions that are not mandated by ANSI/ISO C.

 These include "ffs", "alloca", "_exit", "index", "bzero", "conjf", and other

 related functions.

 -fnothrow-opt

 Treat a "throw()" exception specification as if it were a "noexcept"

 specification to reduce or eliminate the text size overhead relative to a

 function with no exception specification. If the function has local variables

 of types with non-trivial destructors, the exception specification actually

 makes the function smaller because the EH cleanups for those variables can be

 optimized away. The semantic effect is that an exception thrown out of a

 function with such an exception specification results in a call to "terminate"

 rather than "unexpected".

 -fno-operator-names

 Do not treat the operator name keywords "and", "bitand", "bitor", "compl",

 "not", "or" and "xor" as synonyms as keywords.

 -fno-optional-diags

 Disable diagnostics that the standard says a compiler does not need to issue. Page 43/493

 Currently, the only such diagnostic issued by G++ is the one for a name having

 multiple meanings within a class.

 -fpermissive

 Downgrade some diagnostics about nonconformant code from errors to warnings.

 Thus, using -fpermissive allows some nonconforming code to compile.

 -fno-pretty-templates

 When an error message refers to a specialization of a function template, the

 compiler normally prints the signature of the template followed by the template

 arguments and any typedefs or typenames in the signature (e.g. "void f(T) [with

 T = int]" rather than "void f(int)") so that it's clear which template is

 involved. When an error message refers to a specialization of a class

 template, the compiler omits any template arguments that match the default

 template arguments for that template. If either of these behaviors make it

 harder to understand the error message rather than easier, you can use

 -fno-pretty-templates to disable them.

 -frepo

 Enable automatic template instantiation at link time. This option also implies

 -fno-implicit-templates.

 -fno-rtti

 Disable generation of information about every class with virtual functions for

 use by the C++ run-time type identification features ("dynamic_cast" and

 "typeid"). If you don't use those parts of the language, you can save some

 space by using this flag. Note that exception handling uses the same

 information, but G++ generates it as needed. The "dynamic_cast" operator can

 still be used for casts that do not require run-time type information, i.e.

 casts to "void *" or to unambiguous base classes.

 -fsized-deallocation

 Enable the built-in global declarations

 void operator delete (void *, std::size_t) noexcept;

 void operator delete[] (void *, std::size_t) noexcept;

 as introduced in C++14. This is useful for user-defined replacement

 deallocation functions that, for example, use the size of the object to make

 deallocation faster. Enabled by default under -std=c++14 and above. The flag Page 44/493

 -Wsized-deallocation warns about places that might want to add a definition.

 -fstrict-enums

 Allow the compiler to optimize using the assumption that a value of enumerated

 type can only be one of the values of the enumeration (as defined in the C++

 standard; basically, a value that can be represented in the minimum number of

 bits needed to represent all the enumerators). This assumption may not be

 valid if the program uses a cast to convert an arbitrary integer value to the

 enumerated type.

 -fstrong-eval-order

 Evaluate member access, array subscripting, and shift expressions in left-to-

 right order, and evaluate assignment in right-to-left order, as adopted for

 C++17. Enabled by default with -std=c++1z. -fstrong-eval-order=some enables

 just the ordering of member access and shift expressions, and is the default

 without -std=c++1z.

 -ftemplate-backtrace-limit=n

 Set the maximum number of template instantiation notes for a single warning or

 error to n. The default value is 10.

 -ftemplate-depth=n

 Set the maximum instantiation depth for template classes to n. A limit on the

 template instantiation depth is needed to detect endless recursions during

 template class instantiation. ANSI/ISO C++ conforming programs must not rely

 on a maximum depth greater than 17 (changed to 1024 in C++11). The default

 value is 900, as the compiler can run out of stack space before hitting 1024 in

 some situations.

 -fno-threadsafe-statics

 Do not emit the extra code to use the routines specified in the C++ ABI for

 thread-safe initialization of local statics. You can use this option to reduce

 code size slightly in code that doesn't need to be thread-safe.

 -fuse-cxa-atexit

 Register destructors for objects with static storage duration with the

 "__cxa_atexit" function rather than the "atexit" function. This option is

 required for fully standards-compliant handling of static destructors, but only

 works if your C library supports "__cxa_atexit". Page 45/493

 -fno-use-cxa-get-exception-ptr

 Don't use the "__cxa_get_exception_ptr" runtime routine. This causes

 "std::uncaught_exception" to be incorrect, but is necessary if the runtime

 routine is not available.

 -fvisibility-inlines-hidden

 This switch declares that the user does not attempt to compare pointers to

 inline functions or methods where the addresses of the two functions are taken

 in different shared objects.

 The effect of this is that GCC may, effectively, mark inline methods with

 "__attribute__ ((visibility ("hidden")))" so that they do not appear in the

 export table of a DSO and do not require a PLT indirection when used within the

 DSO. Enabling this option can have a dramatic effect on load and link times of

 a DSO as it massively reduces the size of the dynamic export table when the

 library makes heavy use of templates.

 The behavior of this switch is not quite the same as marking the methods as

 hidden directly, because it does not affect static variables local to the

 function or cause the compiler to deduce that the function is defined in only

 one shared object.

 You may mark a method as having a visibility explicitly to negate the effect of

 the switch for that method. For example, if you do want to compare pointers to

 a particular inline method, you might mark it as having default visibility.

 Marking the enclosing class with explicit visibility has no effect.

 Explicitly instantiated inline methods are unaffected by this option as their

 linkage might otherwise cross a shared library boundary.

 -fvisibility-ms-compat

 This flag attempts to use visibility settings to make GCC's C++ linkage model

 compatible with that of Microsoft Visual Studio.

 The flag makes these changes to GCC's linkage model:

 1. It sets the default visibility to "hidden", like -fvisibility=hidden.

 2. Types, but not their members, are not hidden by default.

 3. The One Definition Rule is relaxed for types without explicit visibility

 specifications that are defined in more than one shared object: those

 declarations are permitted if they are permitted when this option is not Page 46/493

 used.

 In new code it is better to use -fvisibility=hidden and export those classes

 that are intended to be externally visible. Unfortunately it is possible for

 code to rely, perhaps accidentally, on the Visual Studio behavior.

 Among the consequences of these changes are that static data members of the

 same type with the same name but defined in different shared objects are

 different, so changing one does not change the other; and that pointers to

 function members defined in different shared objects may not compare equal.

 When this flag is given, it is a violation of the ODR to define types with the

 same name differently.

 -fno-weak

 Do not use weak symbol support, even if it is provided by the linker. By

 default, G++ uses weak symbols if they are available. This option exists only

 for testing, and should not be used by end-users; it results in inferior code

 and has no benefits. This option may be removed in a future release of G++.

 -nostdinc++

 Do not search for header files in the standard directories specific to C++, but

 do still search the other standard directories. (This option is used when

 building the C++ library.)

 In addition, these optimization, warning, and code generation options have meanings

 only for C++ programs:

 -Wabi (C, Objective-C, C++ and Objective-C++ only)

 Warn when G++ it generates code that is probably not compatible with the

 vendor-neutral C++ ABI. Since G++ now defaults to updating the ABI with each

 major release, normally -Wabi will warn only if there is a check added later in

 a release series for an ABI issue discovered since the initial release. -Wabi

 will warn about more things if an older ABI version is selected (with

 -fabi-version=n).

 -Wabi can also be used with an explicit version number to warn about

 compatibility with a particular -fabi-version level, e.g. -Wabi=2 to warn about

 changes relative to -fabi-version=2.

 If an explicit version number is provided and -fabi-compat-version is not

 specified, the version number from this option is used for compatibility Page 47/493

 aliases. If no explicit version number is provided with this option, but

 -fabi-compat-version is specified, that version number is used for ABI

 warnings.

 Although an effort has been made to warn about all such cases, there are

 probably some cases that are not warned about, even though G++ is generating

 incompatible code. There may also be cases where warnings are emitted even

 though the code that is generated is compatible.

 You should rewrite your code to avoid these warnings if you are concerned about

 the fact that code generated by G++ may not be binary compatible with code

 generated by other compilers.

 Known incompatibilities in -fabi-version=2 (which was the default from GCC 3.4

 to 4.9) include:

 * A template with a non-type template parameter of reference type was mangled

 incorrectly:

 extern int N;

 template <int &> struct S {};

 void n (S<N>) {2}

 This was fixed in -fabi-version=3.

 * SIMD vector types declared using "__attribute ((vector_size))" were mangled

 in a non-standard way that does not allow for overloading of functions

 taking vectors of different sizes.

 The mangling was changed in -fabi-version=4.

 * "__attribute ((const))" and "noreturn" were mangled as type qualifiers, and

 "decltype" of a plain declaration was folded away.

 These mangling issues were fixed in -fabi-version=5.

 * Scoped enumerators passed as arguments to a variadic function are promoted

 like unscoped enumerators, causing "va_arg" to complain. On most targets

 this does not actually affect the parameter passing ABI, as there is no way

 to pass an argument smaller than "int".

 Also, the ABI changed the mangling of template argument packs,

 "const_cast", "static_cast", prefix increment/decrement, and a class scope

 function used as a template argument.

 These issues were corrected in -fabi-version=6. Page 48/493

 * Lambdas in default argument scope were mangled incorrectly, and the ABI

 changed the mangling of "nullptr_t".

 These issues were corrected in -fabi-version=7.

 * When mangling a function type with function-cv-qualifiers, the un-qualified

 function type was incorrectly treated as a substitution candidate.

 This was fixed in -fabi-version=8, the default for GCC 5.1.

 * "decltype(nullptr)" incorrectly had an alignment of 1, leading to unaligned

 accesses. Note that this did not affect the ABI of a function with a

 "nullptr_t" parameter, as parameters have a minimum alignment.

 This was fixed in -fabi-version=9, the default for GCC 5.2.

 * Target-specific attributes that affect the identity of a type, such as ia32

 calling conventions on a function type (stdcall, regparm, etc.), did not

 affect the mangled name, leading to name collisions when function pointers

 were used as template arguments.

 This was fixed in -fabi-version=10, the default for GCC 6.1.

 It also warns about psABI-related changes. The known psABI changes at this

 point include:

 * For SysV/x86-64, unions with "long double" members are passed in memory as

 specified in psABI. For example:

 union U {

 long double ld;

 int i;

 };

 "union U" is always passed in memory.

 -Wabi-tag (C++ and Objective-C++ only)

 Warn when a type with an ABI tag is used in a context that does not have that

 ABI tag. See C++ Attributes for more information about ABI tags.

 -Wctor-dtor-privacy (C++ and Objective-C++ only)

 Warn when a class seems unusable because all the constructors or destructors in

 that class are private, and it has neither friends nor public static member

 functions. Also warn if there are no non-private methods, and there's at least

 one private member function that isn't a constructor or destructor.

 -Wdelete-non-virtual-dtor (C++ and Objective-C++ only) Page 49/493

 Warn when "delete" is used to destroy an instance of a class that has virtual

 functions and non-virtual destructor. It is unsafe to delete an instance of a

 derived class through a pointer to a base class if the base class does not have

 a virtual destructor. This warning is enabled by -Wall.

 -Wliteral-suffix (C++ and Objective-C++ only)

 Warn when a string or character literal is followed by a ud-suffix which does

 not begin with an underscore. As a conforming extension, GCC treats such

 suffixes as separate preprocessing tokens in order to maintain backwards

 compatibility with code that uses formatting macros from "<inttypes.h>". For

 example:

 #define __STDC_FORMAT_MACROS

 #include <inttypes.h>

 #include <stdio.h>

 int main() {

 int64_t i64 = 123;

 printf("My int64: %" PRId64"\n", i64);

 }

 In this case, "PRId64" is treated as a separate preprocessing token.

 Additionally, warn when a user-defined literal operator is declared with a

 literal suffix identifier that doesn't begin with an underscore. Literal suffix

 identifiers that don't begin with an underscore are reserved for future

 standardization.

 This warning is enabled by default.

 -Wlto-type-mismatch

 During the link-time optimization warn about type mismatches in global

 declarations from different compilation units. Requires -flto to be enabled.

 Enabled by default.

 -Wno-narrowing (C++ and Objective-C++ only)

 For C++11 and later standards, narrowing conversions are diagnosed by default,

 as required by the standard. A narrowing conversion from a constant produces

 an error, and a narrowing conversion from a non-constant produces a warning,

 but -Wno-narrowing suppresses the diagnostic. Note that this does not affect

 the meaning of well-formed code; narrowing conversions are still considered Page 50/493

 ill-formed in SFINAE contexts.

 With -Wnarrowing in C++98, warn when a narrowing conversion prohibited by C++11

 occurs within { }, e.g.

 int i = { 2.2 }; // error: narrowing from double to int

 This flag is included in -Wall and -Wc++11-compat.

 -Wnoexcept (C++ and Objective-C++ only)

 Warn when a noexcept-expression evaluates to false because of a call to a

 function that does not have a non-throwing exception specification (i.e.

 "throw()" or "noexcept") but is known by the compiler to never throw an

 exception.

 -Wnoexcept-type (C++ and Objective-C++ only)

 Warn if the C++1z feature making "noexcept" part of a function type changes the

 mangled name of a symbol relative to C++14. Enabled by -Wabi and

 -Wc++1z-compat.

 template <class T> void f(T t) { t(); };

 void g() noexcept;

 void h() { f(g); } // in C++14 calls f<void(*)()>, in C++1z calls f<void(*)()noexcept>

 -Wnon-virtual-dtor (C++ and Objective-C++ only)

 Warn when a class has virtual functions and an accessible non-virtual

 destructor itself or in an accessible polymorphic base class, in which case it

 is possible but unsafe to delete an instance of a derived class through a

 pointer to the class itself or base class. This warning is automatically

 enabled if -Weffc++ is specified.

 -Wregister (C++ and Objective-C++ only)

 Warn on uses of the "register" storage class specifier, except when it is part

 of the GNU Explicit Register Variables extension. The use of the "register"

 keyword as storage class specifier has been deprecated in C++11 and removed in

 C++17. Enabled by default with -std=c++1z.

 -Wreorder (C++ and Objective-C++ only)

 Warn when the order of member initializers given in the code does not match the

 order in which they must be executed. For instance:

 struct A {

 int i; Page 51/493

 int j;

 A(): j (0), i (1) { }

 };

 The compiler rearranges the member initializers for "i" and "j" to match the

 declaration order of the members, emitting a warning to that effect. This

 warning is enabled by -Wall.

 -fext-numeric-literals (C++ and Objective-C++ only)

 Accept imaginary, fixed-point, or machine-defined literal number suffixes as

 GNU extensions. When this option is turned off these suffixes are treated as

 C++11 user-defined literal numeric suffixes. This is on by default for all

 pre-C++11 dialects and all GNU dialects: -std=c++98, -std=gnu++98,

 -std=gnu++11, -std=gnu++14. This option is off by default for ISO C++11

 onwards (-std=c++11, ...).

 The following -W... options are not affected by -Wall.

 -Weffc++ (C++ and Objective-C++ only)

 Warn about violations of the following style guidelines from Scott Meyers'

 Effective C++ series of books:

 * Define a copy constructor and an assignment operator for classes with

 dynamically-allocated memory.

 * Prefer initialization to assignment in constructors.

 * Have "operator=" return a reference to *this.

 * Don't try to return a reference when you must return an object.

 * Distinguish between prefix and postfix forms of increment and decrement

 operators.

 * Never overload "&&", "||", or ",".

 This option also enables -Wnon-virtual-dtor, which is also one of the effective

 C++ recommendations. However, the check is extended to warn about the lack of

 virtual destructor in accessible non-polymorphic bases classes too.

 When selecting this option, be aware that the standard library headers do not

 obey all of these guidelines; use grep -v to filter out those warnings.

 -Wstrict-null-sentinel (C++ and Objective-C++ only)

 Warn about the use of an uncasted "NULL" as sentinel. When compiling only with

 GCC this is a valid sentinel, as "NULL" is defined to "__null". Although it is Page 52/493

 a null pointer constant rather than a null pointer, it is guaranteed to be of

 the same size as a pointer. But this use is not portable across different

 compilers.

 -Wno-non-template-friend (C++ and Objective-C++ only)

 Disable warnings when non-template friend functions are declared within a

 template. In very old versions of GCC that predate implementation of the ISO

 standard, declarations such as friend int foo(int), where the name of the

 friend is an unqualified-id, could be interpreted as a particular

 specialization of a template function; the warning exists to diagnose

 compatibility problems, and is enabled by default.

 -Wold-style-cast (C++ and Objective-C++ only)

 Warn if an old-style (C-style) cast to a non-void type is used within a C++

 program. The new-style casts ("dynamic_cast", "static_cast",

 "reinterpret_cast", and "const_cast") are less vulnerable to unintended effects

 and much easier to search for.

 -Woverloaded-virtual (C++ and Objective-C++ only)

 Warn when a function declaration hides virtual functions from a base class.

 For example, in:

 struct A {

 virtual void f();

 };

 struct B: public A {

 void f(int);

 };

 the "A" class version of "f" is hidden in "B", and code like:

 B* b;

 b->f();

 fails to compile.

 -Wno-pmf-conversions (C++ and Objective-C++ only)

 Disable the diagnostic for converting a bound pointer to member function to a

 plain pointer.

 -Wsign-promo (C++ and Objective-C++ only)

 Warn when overload resolution chooses a promotion from unsigned or enumerated Page 53/493

 type to a signed type, over a conversion to an unsigned type of the same size.

 Previous versions of G++ tried to preserve unsignedness, but the standard

 mandates the current behavior.

 -Wtemplates (C++ and Objective-C++ only)

 Warn when a primary template declaration is encountered. Some coding rules

 disallow templates, and this may be used to enforce that rule. The warning is

 inactive inside a system header file, such as the STL, so one can still use the

 STL. One may also instantiate or specialize templates.

 -Wmultiple-inheritance (C++ and Objective-C++ only)

 Warn when a class is defined with multiple direct base classes. Some coding

 rules disallow multiple inheritance, and this may be used to enforce that rule.

 The warning is inactive inside a system header file, such as the STL, so one

 can still use the STL. One may also define classes that indirectly use

 multiple inheritance.

 -Wvirtual-inheritance

 Warn when a class is defined with a virtual direct base class. Some coding

 rules disallow multiple inheritance, and this may be used to enforce that rule.

 The warning is inactive inside a system header file, such as the STL, so one

 can still use the STL. One may also define classes that indirectly use virtual

 inheritance.

 -Wnamespaces

 Warn when a namespace definition is opened. Some coding rules disallow

 namespaces, and this may be used to enforce that rule. The warning is inactive

 inside a system header file, such as the STL, so one can still use the STL.

 One may also use using directives and qualified names.

 -Wno-terminate (C++ and Objective-C++ only)

 Disable the warning about a throw-expression that will immediately result in a

 call to "terminate".

 Options Controlling Objective-C and Objective-C++ Dialects

 (NOTE: This manual does not describe the Objective-C and Objective-C++ languages

 themselves.

 This section describes the command-line options that are only meaningful for

 Objective-C and Objective-C++ programs. You can also use most of the language- Page 54/493

 independent GNU compiler options. For example, you might compile a file

 some_class.m like this:

 gcc -g -fgnu-runtime -O -c some_class.m

 In this example, -fgnu-runtime is an option meant only for Objective-C and

 Objective-C++ programs; you can use the other options with any language supported

 by GCC.

 Note that since Objective-C is an extension of the C language, Objective-C

 compilations may also use options specific to the C front-end (e.g.,

 -Wtraditional). Similarly, Objective-C++ compilations may use C++-specific options

 (e.g., -Wabi).

 Here is a list of options that are only for compiling Objective-C and Objective-C++

 programs:

 -fconstant-string-class=class-name

 Use class-name as the name of the class to instantiate for each literal string

 specified with the syntax "@"..."". The default class name is

 "NXConstantString" if the GNU runtime is being used, and "NSConstantString" if

 the NeXT runtime is being used (see below). The -fconstant-cfstrings option,

 if also present, overrides the -fconstant-string-class setting and cause

 "@"..."" literals to be laid out as constant CoreFoundation strings.

 -fgnu-runtime

 Generate object code compatible with the standard GNU Objective-C runtime.

 This is the default for most types of systems.

 -fnext-runtime

 Generate output compatible with the NeXT runtime. This is the default for

 NeXT-based systems, including Darwin and Mac OS X. The macro

 "__NEXT_RUNTIME__" is predefined if (and only if) this option is used.

 -fno-nil-receivers

 Assume that all Objective-C message dispatches ("[receiver message:arg]") in

 this translation unit ensure that the receiver is not "nil". This allows for

 more efficient entry points in the runtime to be used. This option is only

 available in conjunction with the NeXT runtime and ABI version 0 or 1.

 -fobjc-abi-version=n

 Use version n of the Objective-C ABI for the selected runtime. This option is Page 55/493

 currently supported only for the NeXT runtime. In that case, Version 0 is the

 traditional (32-bit) ABI without support for properties and other Objective-C

 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for

 properties and other Objective-C 2.0 additions. Version 2 is the modern

 (64-bit) ABI. If nothing is specified, the default is Version 0 on 32-bit

 target machines, and Version 2 on 64-bit target machines.

 -fobjc-call-cxx-cdtors

 For each Objective-C class, check if any of its instance variables is a C++

 object with a non-trivial default constructor. If so, synthesize a special "-

 (id) .cxx_construct" instance method which runs non-trivial default

 constructors on any such instance variables, in order, and then return "self".

 Similarly, check if any instance variable is a C++ object with a non-trivial

 destructor, and if so, synthesize a special "- (void) .cxx_destruct" method

 which runs all such default destructors, in reverse order.

 The "- (id) .cxx_construct" and "- (void) .cxx_destruct" methods thusly

 generated only operate on instance variables declared in the current Objective-

 C class, and not those inherited from superclasses. It is the responsibility

 of the Objective-C runtime to invoke all such methods in an object's

 inheritance hierarchy. The "- (id) .cxx_construct" methods are invoked by the

 runtime immediately after a new object instance is allocated; the "- (void)

 .cxx_destruct" methods are invoked immediately before the runtime deallocates

 an object instance.

 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has

 support for invoking the "- (id) .cxx_construct" and "- (void) .cxx_destruct"

 methods.

 -fobjc-direct-dispatch

 Allow fast jumps to the message dispatcher. On Darwin this is accomplished via

 the comm page.

 -fobjc-exceptions

 Enable syntactic support for structured exception handling in Objective-C,

 similar to what is offered by C++. This option is required to use the

 Objective-C keywords @try, @throw, @catch, @finally and @synchronized. This

 option is available with both the GNU runtime and the NeXT runtime (but not Page 56/493

 available in conjunction with the NeXT runtime on Mac OS X 10.2 and earlier).

 -fobjc-gc

 Enable garbage collection (GC) in Objective-C and Objective-C++ programs. This

 option is only available with the NeXT runtime; the GNU runtime has a different

 garbage collection implementation that does not require special compiler flags.

 -fobjc-nilcheck

 For the NeXT runtime with version 2 of the ABI, check for a nil receiver in

 method invocations before doing the actual method call. This is the default

 and can be disabled using -fno-objc-nilcheck. Class methods and super calls

 are never checked for nil in this way no matter what this flag is set to.

 Currently this flag does nothing when the GNU runtime, or an older version of

 the NeXT runtime ABI, is used.

 -fobjc-std=objc1

 Conform to the language syntax of Objective-C 1.0, the language recognized by

 GCC 4.0. This only affects the Objective-C additions to the C/C++ language; it

 does not affect conformance to C/C++ standards, which is controlled by the

 separate C/C++ dialect option flags. When this option is used with the

 Objective-C or Objective-C++ compiler, any Objective-C syntax that is not

 recognized by GCC 4.0 is rejected. This is useful if you need to make sure

 that your Objective-C code can be compiled with older versions of GCC.

 -freplace-objc-classes

 Emit a special marker instructing ld(1) not to statically link in the resulting

 object file, and allow dyld(1) to load it in at run time instead. This is used

 in conjunction with the Fix-and-Continue debugging mode, where the object file

 in question may be recompiled and dynamically reloaded in the course of program

 execution, without the need to restart the program itself. Currently, Fix-and-

 Continue functionality is only available in conjunction with the NeXT runtime

 on Mac OS X 10.3 and later.

 -fzero-link

 When compiling for the NeXT runtime, the compiler ordinarily replaces calls to

 "objc_getClass("...")" (when the name of the class is known at compile time)

 with static class references that get initialized at load time, which improves

 run-time performance. Specifying the -fzero-link flag suppresses this behavior Page 57/493

 and causes calls to "objc_getClass("...")" to be retained. This is useful in

 Zero-Link debugging mode, since it allows for individual class implementations

 to be modified during program execution. The GNU runtime currently always

 retains calls to "objc_get_class("...")" regardless of command-line options.

 -fno-local-ivars

 By default instance variables in Objective-C can be accessed as if they were

 local variables from within the methods of the class they're declared in. This

 can lead to shadowing between instance variables and other variables declared

 either locally inside a class method or globally with the same name.

 Specifying the -fno-local-ivars flag disables this behavior thus avoiding

 variable shadowing issues.

 -fivar-visibility=[public|protected|private|package]

 Set the default instance variable visibility to the specified option so that

 instance variables declared outside the scope of any access modifier directives

 default to the specified visibility.

 -gen-decls

 Dump interface declarations for all classes seen in the source file to a file

 named sourcename.decl.

 -Wassign-intercept (Objective-C and Objective-C++ only)

 Warn whenever an Objective-C assignment is being intercepted by the garbage

 collector.

 -Wno-protocol (Objective-C and Objective-C++ only)

 If a class is declared to implement a protocol, a warning is issued for every

 method in the protocol that is not implemented by the class. The default

 behavior is to issue a warning for every method not explicitly implemented in

 the class, even if a method implementation is inherited from the superclass.

 If you use the -Wno-protocol option, then methods inherited from the superclass

 are considered to be implemented, and no warning is issued for them.

 -Wselector (Objective-C and Objective-C++ only)

 Warn if multiple methods of different types for the same selector are found

 during compilation. The check is performed on the list of methods in the final

 stage of compilation. Additionally, a check is performed for each selector

 appearing in a "@selector(...)" expression, and a corresponding method for Page 58/493

 that selector has been found during compilation. Because these checks scan the

 method table only at the end of compilation, these warnings are not produced if

 the final stage of compilation is not reached, for example because an error is

 found during compilation, or because the -fsyntax-only option is being used.

 -Wstrict-selector-match (Objective-C and Objective-C++ only)

 Warn if multiple methods with differing argument and/or return types are found

 for a given selector when attempting to send a message using this selector to a

 receiver of type "id" or "Class". When this flag is off (which is the default

 behavior), the compiler omits such warnings if any differences found are

 confined to types that share the same size and alignment.

 -Wundeclared-selector (Objective-C and Objective-C++ only)

 Warn if a "@selector(...)" expression referring to an undeclared selector is

 found. A selector is considered undeclared if no method with that name has

 been declared before the "@selector(...)" expression, either explicitly in an

 @interface or @protocol declaration, or implicitly in an @implementation

 section. This option always performs its checks as soon as a "@selector(...)"

 expression is found, while -Wselector only performs its checks in the final

 stage of compilation. This also enforces the coding style convention that

 methods and selectors must be declared before being used.

 -print-objc-runtime-info

 Generate C header describing the largest structure that is passed by value, if

 any.

 Options to Control Diagnostic Messages Formatting

 Traditionally, diagnostic messages have been formatted irrespective of the output

 device's aspect (e.g. its width, ...). You can use the options described below to

 control the formatting algorithm for diagnostic messages, e.g. how many characters

 per line, how often source location information should be reported. Note that some

 language front ends may not honor these options.

 -fmessage-length=n

 Try to format error messages so that they fit on lines of about n characters.

 If n is zero, then no line-wrapping is done; each error message appears on a

 single line. This is the default for all front ends.

 -fdiagnostics-show-location=once Page 59/493

 Only meaningful in line-wrapping mode. Instructs the diagnostic messages

 reporter to emit source location information once; that is, in case the message

 is too long to fit on a single physical line and has to be wrapped, the source

 location won't be emitted (as prefix) again, over and over, in subsequent

 continuation lines. This is the default behavior.

 -fdiagnostics-show-location=every-line

 Only meaningful in line-wrapping mode. Instructs the diagnostic messages

 reporter to emit the same source location information (as prefix) for physical

 lines that result from the process of breaking a message which is too long to

 fit on a single line.

 -fdiagnostics-color[=WHEN]

 -fno-diagnostics-color

 Use color in diagnostics. WHEN is never, always, or auto. The default depends

 on how the compiler has been configured, it can be any of the above WHEN

 options or also never if GCC_COLORS environment variable isn't present in the

 environment, and auto otherwise. auto means to use color only when the

 standard error is a terminal. The forms -fdiagnostics-color and

 -fno-diagnostics-color are aliases for -fdiagnostics-color=always and

 -fdiagnostics-color=never, respectively.

 The colors are defined by the environment variable GCC_COLORS. Its value is a

 colon-separated list of capabilities and Select Graphic Rendition (SGR)

 substrings. SGR commands are interpreted by the terminal or terminal emulator.

 (See the section in the documentation of your text terminal for permitted

 values and their meanings as character attributes.) These substring values are

 integers in decimal representation and can be concatenated with semicolons.

 Common values to concatenate include 1 for bold, 4 for underline, 5 for blink,

 7 for inverse, 39 for default foreground color, 30 to 37 for foreground colors,

 90 to 97 for 16-color mode foreground colors, 38;5;0 to 38;5;255 for 88-color

 and 256-color modes foreground colors, 49 for default background color, 40 to

 47 for background colors, 100 to 107 for 16-color mode background colors, and

 48;5;0 to 48;5;255 for 88-color and 256-color modes background colors.

 The default GCC_COLORS is

 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\ Page 60/493

 quote=01:fixit-insert=32:fixit-delete=31:\

 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32

 where 01;31 is bold red, 01;35 is bold magenta, 01;36 is bold cyan, 32 is

 green, 34 is blue, 01 is bold, and 31 is red. Setting GCC_COLORS to the empty

 string disables colors. Supported capabilities are as follows.

 "error="

 SGR substring for error: markers.

 "warning="

 SGR substring for warning: markers.

 "note="

 SGR substring for note: markers.

 "range1="

 SGR substring for first additional range.

 "range2="

 SGR substring for second additional range.

 "locus="

 SGR substring for location information, file:line or file:line:column etc.

 "quote="

 SGR substring for information printed within quotes.

 "fixit-insert="

 SGR substring for fix-it hints suggesting text to be inserted or replaced.

 "fixit-delete="

 SGR substring for fix-it hints suggesting text to be deleted.

 "diff-filename="

 SGR substring for filename headers within generated patches.

 "diff-hunk="

 SGR substring for the starts of hunks within generated patches.

 "diff-delete="

 SGR substring for deleted lines within generated patches.

 "diff-insert="

 SGR substring for inserted lines within generated patches.

 -fno-diagnostics-show-option

 By default, each diagnostic emitted includes text indicating the command-line Page 61/493

 option that directly controls the diagnostic (if such an option is known to the

 diagnostic machinery). Specifying the -fno-diagnostics-show-option flag

 suppresses that behavior.

 -fno-diagnostics-show-caret

 By default, each diagnostic emitted includes the original source line and a

 caret ^ indicating the column. This option suppresses this information. The

 source line is truncated to n characters, if the -fmessage-length=n option is

 given. When the output is done to the terminal, the width is limited to the

 width given by the COLUMNS environment variable or, if not set, to the terminal

 width.

 -fdiagnostics-parseable-fixits

 Emit fix-it hints in a machine-parseable format, suitable for consumption by

 IDEs. For each fix-it, a line will be printed after the relevant diagnostic,

 starting with the string "fix-it:". For example:

 fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"

 The location is expressed as a half-open range, expressed as a count of bytes,

 starting at byte 1 for the initial column. In the above example, bytes 3

 through 20 of line 45 of "test.c" are to be replaced with the given string:

 00000000011111111112222222222

 12345678901234567890123456789

 gtk_widget_showall (dlg);

 ^^^^^^^^^^^^^^^^^^

 gtk_widget_show_all

 The filename and replacement string escape backslash as "\\", tab as "\t",

 newline as "\n", double quotes as "\"", non-printable characters as octal (e.g.

 vertical tab as "\013").

 An empty replacement string indicates that the given range is to be removed.

 An empty range (e.g. "45:3-45:3") indicates that the string is to be inserted

 at the given position.

 -fdiagnostics-generate-patch

 Print fix-it hints to stderr in unified diff format, after any diagnostics are

 printed. For example:

 --- test.c Page 62/493

 +++ test.c

 @ -42,5 +42,5 @

 void show_cb(GtkDialog *dlg)

 {

 - gtk_widget_showall(dlg);

 + gtk_widget_show_all(dlg);

 }

 The diff may or may not be colorized, following the same rules as for

 diagnostics (see -fdiagnostics-color).

 -fno-show-column

 Do not print column numbers in diagnostics. This may be necessary if

 diagnostics are being scanned by a program that does not understand the column

 numbers, such as dejagnu.

 Options to Request or Suppress Warnings

 Warnings are diagnostic messages that report constructions that are not inherently

 erroneous but that are risky or suggest there may have been an error.

 The following language-independent options do not enable specific warnings but

 control the kinds of diagnostics produced by GCC.

 -fsyntax-only

 Check the code for syntax errors, but don't do anything beyond that.

 -fmax-errors=n

 Limits the maximum number of error messages to n, at which point GCC bails out

 rather than attempting to continue processing the source code. If n is 0 (the

 default), there is no limit on the number of error messages produced. If

 -Wfatal-errors is also specified, then -Wfatal-errors takes precedence over

 this option.

 -w Inhibit all warning messages.

 -Werror

 Make all warnings into errors.

 -Werror=

 Make the specified warning into an error. The specifier for a warning is

 appended; for example -Werror=switch turns the warnings controlled by -Wswitch

 into errors. This switch takes a negative form, to be used to negate -Werror Page 63/493

 for specific warnings; for example -Wno-error=switch makes -Wswitch warnings

 not be errors, even when -Werror is in effect.

 The warning message for each controllable warning includes the option that

 controls the warning. That option can then be used with -Werror= and

 -Wno-error= as described above. (Printing of the option in the warning message

 can be disabled using the -fno-diagnostics-show-option flag.)

 Note that specifying -Werror=foo automatically implies -Wfoo. However,

 -Wno-error=foo does not imply anything.

 -Wfatal-errors

 This option causes the compiler to abort compilation on the first error

 occurred rather than trying to keep going and printing further error messages.

 You can request many specific warnings with options beginning with -W, for example

 -Wimplicit to request warnings on implicit declarations. Each of these specific

 warning options also has a negative form beginning -Wno- to turn off warnings; for

 example, -Wno-implicit. This manual lists only one of the two forms, whichever is

 not the default. For further language-specific options also refer to C++ Dialect

 Options and Objective-C and Objective-C++ Dialect Options.

 Some options, such as -Wall and -Wextra, turn on other options, such as -Wunused,

 which may turn on further options, such as -Wunused-value. The combined effect of

 positive and negative forms is that more specific options have priority over less

 specific ones, independently of their position in the command-line. For options of

 the same specificity, the last one takes effect. Options enabled or disabled via

 pragmas take effect as if they appeared at the end of the command-line.

 When an unrecognized warning option is requested (e.g., -Wunknown-warning), GCC

 emits a diagnostic stating that the option is not recognized. However, if the

 -Wno- form is used, the behavior is slightly different: no diagnostic is produced

 for -Wno-unknown-warning unless other diagnostics are being produced. This allows

 the use of new -Wno- options with old compilers, but if something goes wrong, the

 compiler warns that an unrecognized option is present.

 -Wpedantic

 -pedantic

 Issue all the warnings demanded by strict ISO C and ISO C++; reject all

 programs that use forbidden extensions, and some other programs that do not Page 64/493

 follow ISO C and ISO C++. For ISO C, follows the version of the ISO C standard

 specified by any -std option used.

 Valid ISO C and ISO C++ programs should compile properly with or without this

 option (though a rare few require -ansi or a -std option specifying the

 required version of ISO C). However, without this option, certain GNU

 extensions and traditional C and C++ features are supported as well. With this

 option, they are rejected.

 -Wpedantic does not cause warning messages for use of the alternate keywords

 whose names begin and end with __. Pedantic warnings are also disabled in the

 expression that follows "__extension__". However, only system header files

 should use these escape routes; application programs should avoid them.

 Some users try to use -Wpedantic to check programs for strict ISO C

 conformance. They soon find that it does not do quite what they want: it finds

 some non-ISO practices, but not all---only those for which ISO C requires a

 diagnostic, and some others for which diagnostics have been added.

 A feature to report any failure to conform to ISO C might be useful in some

 instances, but would require considerable additional work and would be quite

 different from -Wpedantic. We don't have plans to support such a feature in

 the near future.

 Where the standard specified with -std represents a GNU extended dialect of C,

 such as gnu90 or gnu99, there is a corresponding base standard, the version of

 ISO C on which the GNU extended dialect is based. Warnings from -Wpedantic are

 given where they are required by the base standard. (It does not make sense

 for such warnings to be given only for features not in the specified GNU C

 dialect, since by definition the GNU dialects of C include all features the

 compiler supports with the given option, and there would be nothing to warn

 about.)

 -pedantic-errors

 Give an error whenever the base standard (see -Wpedantic) requires a

 diagnostic, in some cases where there is undefined behavior at compile-time and

 in some other cases that do not prevent compilation of programs that are valid

 according to the standard. This is not equivalent to -Werror=pedantic, since

 there are errors enabled by this option and not enabled by the latter and vice Page 65/493

 versa.

 -Wall

 This enables all the warnings about constructions that some users consider

 questionable, and that are easy to avoid (or modify to prevent the warning),

 even in conjunction with macros. This also enables some language-specific

 warnings described in C++ Dialect Options and Objective-C and Objective-C++

 Dialect Options.

 -Wall turns on the following warning flags:

 -Waddress -Warray-bounds=1 (only with -O2) -Wbool-compare -Wbool-operation

 -Wc++11-compat -Wc++14-compat -Wchar-subscripts -Wcomment

 -Wduplicate-decl-specifier (C and Objective-C only) -Wenum-compare (in C/ObjC;

 this is on by default in C++) -Wformat -Wint-in-bool-context -Wimplicit (C and

 Objective-C only) -Wimplicit-int (C and Objective-C only)

 -Wimplicit-function-declaration (C and Objective-C only) -Winit-self (only for

 C++) -Wlogical-not-parentheses -Wmain (only for C/ObjC and unless

 -ffreestanding) -Wmaybe-uninitialized -Wmemset-elt-size

 -Wmemset-transposed-args -Wmisleading-indentation (only for C/C++)

 -Wmissing-braces (only for C/ObjC) -Wnarrowing (only for C++) -Wnonnull

 -Wnonnull-compare -Wopenmp-simd -Wparentheses -Wpointer-sign -Wreorder

 -Wreturn-type -Wsequence-point -Wsign-compare (only in C++)

 -Wsizeof-pointer-memaccess -Wstrict-aliasing -Wstrict-overflow=1 -Wswitch

 -Wtautological-compare -Wtrigraphs -Wuninitialized -Wunknown-pragmas

 -Wunused-function -Wunused-label -Wunused-value -Wunused-variable

 -Wvolatile-register-var

 Note that some warning flags are not implied by -Wall. Some of them warn about

 constructions that users generally do not consider questionable, but which

 occasionally you might wish to check for; others warn about constructions that

 are necessary or hard to avoid in some cases, and there is no simple way to

 modify the code to suppress the warning. Some of them are enabled by -Wextra

 but many of them must be enabled individually.

 -Wextra

 This enables some extra warning flags that are not enabled by -Wall. (This

 option used to be called -W. The older name is still supported, but the newer Page 66/493

 name is more descriptive.)

 -Wclobbered -Wempty-body -Wignored-qualifiers -Wimplicit-fallthrough=3

 -Wmissing-field-initializers -Wmissing-parameter-type (C only)

 -Wold-style-declaration (C only) -Woverride-init -Wsign-compare (C only)

 -Wtype-limits -Wuninitialized -Wshift-negative-value (in C++03 and in C99 and

 newer) -Wunused-parameter (only with -Wunused or -Wall)

 -Wunused-but-set-parameter (only with -Wunused or -Wall)

 The option -Wextra also prints warning messages for the following cases:

 * A pointer is compared against integer zero with "<", "<=", ">", or ">=".

 * (C++ only) An enumerator and a non-enumerator both appear in a conditional

 expression.

 * (C++ only) Ambiguous virtual bases.

 * (C++ only) Subscripting an array that has been declared "register".

 * (C++ only) Taking the address of a variable that has been declared

 "register".

 * (C++ only) A base class is not initialized in the copy constructor of a

 derived class.

 -Wchar-subscripts

 Warn if an array subscript has type "char". This is a common cause of error,

 as programmers often forget that this type is signed on some machines. This

 warning is enabled by -Wall.

 -Wchkp

 Warn about an invalid memory access that is found by Pointer Bounds Checker

 (-fcheck-pointer-bounds).

 -Wno-coverage-mismatch

 Warn if feedback profiles do not match when using the -fprofile-use option. If

 a source file is changed between compiling with -fprofile-gen and with

 -fprofile-use, the files with the profile feedback can fail to match the source

 file and GCC cannot use the profile feedback information. By default, this

 warning is enabled and is treated as an error. -Wno-coverage-mismatch can be

 used to disable the warning or -Wno-error=coverage-mismatch can be used to

 disable the error. Disabling the error for this warning can result in poorly

 optimized code and is useful only in the case of very minor changes such as bug Page 67/493

 fixes to an existing code-base. Completely disabling the warning is not

 recommended.

 -Wno-cpp

 (C, Objective-C, C++, Objective-C++ and Fortran only)

 Suppress warning messages emitted by "#warning" directives.

 -Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)

 Give a warning when a value of type "float" is implicitly promoted to "double".

 CPUs with a 32-bit "single-precision" floating-point unit implement "float" in

 hardware, but emulate "double" in software. On such a machine, doing

 computations using "double" values is much more expensive because of the

 overhead required for software emulation.

 It is easy to accidentally do computations with "double" because floating-point

 literals are implicitly of type "double". For example, in:

 float area(float radius)

 {

 return 3.14159 * radius * radius;

 }

 the compiler performs the entire computation with "double" because the

 floating-point literal is a "double".

 -Wduplicate-decl-specifier (C and Objective-C only)

 Warn if a declaration has duplicate "const", "volatile", "restrict" or

 "_Atomic" specifier. This warning is enabled by -Wall.

 -Wformat

 -Wformat=n

 Check calls to "printf" and "scanf", etc., to make sure that the arguments

 supplied have types appropriate to the format string specified, and that the

 conversions specified in the format string make sense. This includes standard

 functions, and others specified by format attributes, in the "printf", "scanf",

 "strftime" and "strfmon" (an X/Open extension, not in the C standard) families

 (or other target-specific families). Which functions are checked without

 format attributes having been specified depends on the standard version

 selected, and such checks of functions without the attribute specified are

 disabled by -ffreestanding or -fno-builtin. Page 68/493

 The formats are checked against the format features supported by GNU libc

 version 2.2. These include all ISO C90 and C99 features, as well as features

 from the Single Unix Specification and some BSD and GNU extensions. Other

 library implementations may not support all these features; GCC does not

 support warning about features that go beyond a particular library's

 limitations. However, if -Wpedantic is used with -Wformat, warnings are given

 about format features not in the selected standard version (but not for

 "strfmon" formats, since those are not in any version of the C standard).

 -Wformat=1

 -Wformat

 Option -Wformat is equivalent to -Wformat=1, and -Wno-format is equivalent

 to -Wformat=0. Since -Wformat also checks for null format arguments for

 several functions, -Wformat also implies -Wnonnull. Some aspects of this

 level of format checking can be disabled by the options:

 -Wno-format-contains-nul, -Wno-format-extra-args, and

 -Wno-format-zero-length. -Wformat is enabled by -Wall.

 -Wno-format-contains-nul

 If -Wformat is specified, do not warn about format strings that contain NUL

 bytes.

 -Wno-format-extra-args

 If -Wformat is specified, do not warn about excess arguments to a "printf"

 or "scanf" format function. The C standard specifies that such arguments

 are ignored.

 Where the unused arguments lie between used arguments that are specified

 with $ operand number specifications, normally warnings are still given,

 since the implementation could not know what type to pass to "va_arg" to

 skip the unused arguments. However, in the case of "scanf" formats, this

 option suppresses the warning if the unused arguments are all pointers,

 since the Single Unix Specification says that such unused arguments are

 allowed.

 -Wformat-overflow

 -Wformat-overflow=level

 Warn about calls to formatted input/output functions such as "sprintf" and Page 69/493

 "vsprintf" that might overflow the destination buffer. When the exact

 number of bytes written by a format directive cannot be determined at

 compile-time it is estimated based on heuristics that depend on the level

 argument and on optimization. While enabling optimization will in most

 cases improve the accuracy of the warning, it may also result in false

 positives.

 -Wformat-overflow

 -Wformat-overflow=1

 Level 1 of -Wformat-overflow enabled by -Wformat employs a conservative

 approach that warns only about calls that most likely overflow the

 buffer. At this level, numeric arguments to format directives with

 unknown values are assumed to have the value of one, and strings of

 unknown length to be empty. Numeric arguments that are known to be

 bounded to a subrange of their type, or string arguments whose output

 is bounded either by their directive's precision or by a finite set of

 string literals, are assumed to take on the value within the range that

 results in the most bytes on output. For example, the call to

 "sprintf" below is diagnosed because even with both a and b equal to

 zero, the terminating NUL character ('\0') appended by the function to

 the destination buffer will be written past its end. Increasing the

 size of the buffer by a single byte is sufficient to avoid the warning,

 though it may not be sufficient to avoid the overflow.

 void f (int a, int b)

 {

 char buf [12];

 sprintf (buf, "a = %i, b = %i\n", a, b);

 }

 -Wformat-overflow=2

 Level 2 warns also about calls that might overflow the destination

 buffer given an argument of sufficient length or magnitude. At level

 2, unknown numeric arguments are assumed to have the minimum

 representable value for signed types with a precision greater than 1,

 and the maximum representable value otherwise. Unknown string Page 70/493

 arguments whose length cannot be assumed to be bounded either by the

 directive's precision, or by a finite set of string literals they may

 evaluate to, or the character array they may point to, are assumed to

 be 1 character long.

 At level 2, the call in the example above is again diagnosed, but this

 time because with a equal to a 32-bit "INT_MIN" the first %i directive

 will write some of its digits beyond the end of the destination buffer.

 To make the call safe regardless of the values of the two variables,

 the size of the destination buffer must be increased to at least 34

 bytes. GCC includes the minimum size of the buffer in an informational

 note following the warning.

 An alternative to increasing the size of the destination buffer is to

 constrain the range of formatted values. The maximum length of string

 arguments can be bounded by specifying the precision in the format

 directive. When numeric arguments of format directives can be assumed

 to be bounded by less than the precision of their type, choosing an

 appropriate length modifier to the format specifier will reduce the

 required buffer size. For example, if a and b in the example above can

 be assumed to be within the precision of the "short int" type then

 using either the %hi format directive or casting the argument to

 "short" reduces the maximum required size of the buffer to 24 bytes.

 void f (int a, int b)

 {

 char buf [23];

 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);

 }

 -Wno-format-zero-length

 If -Wformat is specified, do not warn about zero-length formats. The C

 standard specifies that zero-length formats are allowed.

 -Wformat=2

 Enable -Wformat plus additional format checks. Currently equivalent to

 -Wformat -Wformat-nonliteral -Wformat-security -Wformat-y2k.

 -Wformat-nonliteral Page 71/493

 If -Wformat is specified, also warn if the format string is not a string

 literal and so cannot be checked, unless the format function takes its

 format arguments as a "va_list".

 -Wformat-security

 If -Wformat is specified, also warn about uses of format functions that

 represent possible security problems. At present, this warns about calls

 to "printf" and "scanf" functions where the format string is not a string

 literal and there are no format arguments, as in "printf (foo);". This may

 be a security hole if the format string came from untrusted input and

 contains %n. (This is currently a subset of what -Wformat-nonliteral warns

 about, but in future warnings may be added to -Wformat-security that are

 not included in -Wformat-nonliteral.)

 -Wformat-signedness

 If -Wformat is specified, also warn if the format string requires an

 unsigned argument and the argument is signed and vice versa.

 -Wformat-truncation

 -Wformat-truncation=level

 Warn about calls to formatted input/output functions such as "snprintf" and

 "vsnprintf" that might result in output truncation. When the exact number

 of bytes written by a format directive cannot be determined at compile-time

 it is estimated based on heuristics that depend on the level argument and

 on optimization. While enabling optimization will in most cases improve

 the accuracy of the warning, it may also result in false positives. Except

 as noted otherwise, the option uses the same logic -Wformat-overflow.

 -Wformat-truncation

 -Wformat-truncation=1

 Level 1 of -Wformat-truncation enabled by -Wformat employs a

 conservative approach that warns only about calls to bounded functions

 whose return value is unused and that will most likely result in output

 truncation.

 -Wformat-truncation=2

 Level 2 warns also about calls to bounded functions whose return value

 is used and that might result in truncation given an argument of Page 72/493

 sufficient length or magnitude.

 NOTE: In Ubuntu 8.10 and later versions this option is enabled by default

 for C, C++, ObjC, ObjC++. To disable, use -Wno-format-security, or disable

 all format warnings with -Wformat=0. To make format security warnings

 fatal, specify -Werror=format-security.

 -Wformat-y2k

 If -Wformat is specified, also warn about "strftime" formats that may yield

 only a two-digit year.

 -Wnonnull

 Warn about passing a null pointer for arguments marked as requiring a non-null

 value by the "nonnull" function attribute.

 -Wnonnull is included in -Wall and -Wformat. It can be disabled with the

 -Wno-nonnull option.

 -Wnonnull-compare

 Warn when comparing an argument marked with the "nonnull" function attribute

 against null inside the function.

 -Wnonnull-compare is included in -Wall. It can be disabled with the

 -Wno-nonnull-compare option.

 -Wnull-dereference

 Warn if the compiler detects paths that trigger erroneous or undefined behavior

 due to dereferencing a null pointer. This option is only active when

 -fdelete-null-pointer-checks is active, which is enabled by optimizations in

 most targets. The precision of the warnings depends on the optimization

 options used.

 -Winit-self (C, C++, Objective-C and Objective-C++ only)

 Warn about uninitialized variables that are initialized with themselves. Note

 this option can only be used with the -Wuninitialized option.

 For example, GCC warns about "i" being uninitialized in the following snippet

 only when -Winit-self has been specified:

 int f()

 {

 int i = i;

 return i; Page 73/493

 }

 This warning is enabled by -Wall in C++.

 -Wimplicit-int (C and Objective-C only)

 Warn when a declaration does not specify a type. This warning is enabled by

 -Wall.

 -Wimplicit-function-declaration (C and Objective-C only)

 Give a warning whenever a function is used before being declared. In C99 mode

 (-std=c99 or -std=gnu99), this warning is enabled by default and it is made

 into an error by -pedantic-errors. This warning is also enabled by -Wall.

 -Wimplicit (C and Objective-C only)

 Same as -Wimplicit-int and -Wimplicit-function-declaration. This warning is

 enabled by -Wall.

 -Wimplicit-fallthrough

 -Wimplicit-fallthrough is the same as -Wimplicit-fallthrough=3 and

 -Wno-implicit-fallthrough is the same as -Wimplicit-fallthrough=0.

 -Wimplicit-fallthrough=n

 Warn when a switch case falls through. For example:

 switch (cond)

 {

 case 1:

 a = 1;

 break;

 case 2:

 a = 2;

 case 3:

 a = 3;

 break;

 }

 This warning does not warn when the last statement of a case cannot fall

 through, e.g. when there is a return statement or a call to function declared

 with the noreturn attribute. -Wimplicit-fallthrough= also takes into account

 control flow statements, such as ifs, and only warns when appropriate. E.g.

 switch (cond) Page 74/493

 {

 case 1:

 if (i > 3) {

 bar (5);

 break;

 } else if (i < 1) {

 bar (0);

 } else

 return;

 default:

 ...

 }

 Since there are occasions where a switch case fall through is desirable, GCC

 provides an attribute, "__attribute__ ((fallthrough))", that is to be used

 along with a null statement to suppress this warning that would normally occur:

 switch (cond)

 {

 case 1:

 bar (0);

 __attribute__ ((fallthrough));

 default:

 ...

 }

 C++17 provides a standard way to suppress the -Wimplicit-fallthrough warning

 using "[[fallthrough]];" instead of the GNU attribute. In C++11 or C++14 users

 can use "[[gnu::fallthrough]];", which is a GNU extension. Instead of the

 these attributes, it is also possible to add a fallthrough comment to silence

 the warning. The whole body of the C or C++ style comment should match the

 given regular expressions listed below. The option argument n specifies what

 kind of comments are accepted:

 *<-Wimplicit-fallthrough=0 disables the warning altogether.>

 <-Wimplicit-fallthrough=1 matches "." regular>

 expression, any comment is used as fallthrough comment. Page 75/493

 *<-Wimplicit-fallthrough=2 case insensitively matches>

 ".*falls?[\t-]*thr(ough|u).*" regular expression.

 *<-Wimplicit-fallthrough=3 case sensitively matches one of the>

 following regular expressions:

 *<"-fallthrough">

 *<"@fallthrough@">

 <"lint -fallthrough[\t]">

 <"[\t.!](ELSE,? |INTENTIONAL(LY)?)?FALL(S | |-)?THR(OUGH|U)[

 \t.!]*(-[^\n\r]*)?">

 <"[\t.!](Else,? |Intentional(ly)?)?Fall((s | |-)[Tt]|t)hr(ough|u)[

 \t.!]*(-[^\n\r]*)?">

 <"[\t.!]([Ee]lse,? |[Ii]ntentional(ly)?)?fall(s | |-)?thr(ough|u)[

 \t.!]*(-[^\n\r]*)?">

 *<-Wimplicit-fallthrough=4 case sensitively matches one of the>

 following regular expressions:

 *<"-fallthrough">

 *<"@fallthrough@">

 <"lint -fallthrough[\t]">

 *<"[\t]*FALLTHR(OUGH|U)[\t]*">

 *<-Wimplicit-fallthrough=5 doesn't recognize any comments as>

 fallthrough comments, only attributes disable the warning.

 The comment needs to be followed after optional whitespace and other comments

 by "case" or "default" keywords or by a user label that precedes some "case" or

 "default" label.

 switch (cond)

 {

 case 1:

 bar (0);

 /* FALLTHRU */

 default:

 ...

 }

 The -Wimplicit-fallthrough=3 warning is enabled by -Wextra. Page 76/493

 -Wignored-qualifiers (C and C++ only)

 Warn if the return type of a function has a type qualifier such as "const".

 For ISO C such a type qualifier has no effect, since the value returned by a

 function is not an lvalue. For C++, the warning is only emitted for scalar

 types or "void". ISO C prohibits qualified "void" return types on function

 definitions, so such return types always receive a warning even without this

 option.

 This warning is also enabled by -Wextra.

 -Wignored-attributes (C and C++ only)

 Warn when an attribute is ignored. This is different from the -Wattributes

 option in that it warns whenever the compiler decides to drop an attribute, not

 that the attribute is either unknown, used in a wrong place, etc. This warning

 is enabled by default.

 -Wmain

 Warn if the type of "main" is suspicious. "main" should be a function with

 external linkage, returning int, taking either zero arguments, two, or three

 arguments of appropriate types. This warning is enabled by default in C++ and

 is enabled by either -Wall or -Wpedantic.

 -Wmisleading-indentation (C and C++ only)

 Warn when the indentation of the code does not reflect the block structure.

 Specifically, a warning is issued for "if", "else", "while", and "for" clauses

 with a guarded statement that does not use braces, followed by an unguarded

 statement with the same indentation.

 In the following example, the call to "bar" is misleadingly indented as if it

 were guarded by the "if" conditional.

 if (some_condition ())

 foo ();

 bar (); /* Gotcha: this is not guarded by the "if". */

 In the case of mixed tabs and spaces, the warning uses the -ftabstop= option to

 determine if the statements line up (defaulting to 8).

 The warning is not issued for code involving multiline preprocessor logic such

 as the following example.

 if (flagA) Page 77/493

 foo (0);

 #if SOME_CONDITION_THAT_DOES_NOT_HOLD

 if (flagB)

 #endif

 foo (1);

 The warning is not issued after a "#line" directive, since this typically

 indicates autogenerated code, and no assumptions can be made about the layout

 of the file that the directive references.

 This warning is enabled by -Wall in C and C++.

 -Wmissing-braces

 Warn if an aggregate or union initializer is not fully bracketed. In the

 following example, the initializer for "a" is not fully bracketed, but that for

 "b" is fully bracketed. This warning is enabled by -Wall in C.

 int a[2][2] = { 0, 1, 2, 3 };

 int b[2][2] = { { 0, 1 }, { 2, 3 } };

 This warning is enabled by -Wall.

 -Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)

 Warn if a user-supplied include directory does not exist.

 -Wparentheses

 Warn if parentheses are omitted in certain contexts, such as when there is an

 assignment in a context where a truth value is expected, or when operators are

 nested whose precedence people often get confused about.

 Also warn if a comparison like "x<=y<=z" appears; this is equivalent to "(x<=y

 ? 1 : 0) <= z", which is a different interpretation from that of ordinary

 mathematical notation.

 Also warn for dangerous uses of the GNU extension to "?:" with omitted middle

 operand. When the condition in the "?": operator is a boolean expression, the

 omitted value is always 1. Often programmers expect it to be a value computed

 inside the conditional expression instead.

 This warning is enabled by -Wall.

 -Wsequence-point

 Warn about code that may have undefined semantics because of violations of

 sequence point rules in the C and C++ standards. Page 78/493

 The C and C++ standards define the order in which expressions in a C/C++

 program are evaluated in terms of sequence points, which represent a partial

 ordering between the execution of parts of the program: those executed before

 the sequence point, and those executed after it. These occur after the

 evaluation of a full expression (one which is not part of a larger expression),

 after the evaluation of the first operand of a "&&", "||", "? :" or "," (comma)

 operator, before a function is called (but after the evaluation of its

 arguments and the expression denoting the called function), and in certain

 other places. Other than as expressed by the sequence point rules, the order

 of evaluation of subexpressions of an expression is not specified. All these

 rules describe only a partial order rather than a total order, since, for

 example, if two functions are called within one expression with no sequence

 point between them, the order in which the functions are called is not

 specified. However, the standards committee have ruled that function calls do

 not overlap.

 It is not specified when between sequence points modifications to the values of

 objects take effect. Programs whose behavior depends on this have undefined

 behavior; the C and C++ standards specify that "Between the previous and next

 sequence point an object shall have its stored value modified at most once by

 the evaluation of an expression. Furthermore, the prior value shall be read

 only to determine the value to be stored.". If a program breaks these rules,

 the results on any particular implementation are entirely unpredictable.

 Examples of code with undefined behavior are "a = a++;", "a[n] = b[n++]" and

 "a[i++] = i;". Some more complicated cases are not diagnosed by this option,

 and it may give an occasional false positive result, but in general it has been

 found fairly effective at detecting this sort of problem in programs.

 The C++17 standard will define the order of evaluation of operands in more

 cases: in particular it requires that the right-hand side of an assignment be

 evaluated before the left-hand side, so the above examples are no longer

 undefined. But this warning will still warn about them, to help people avoid

 writing code that is undefined in C and earlier revisions of C++.

 The standard is worded confusingly, therefore there is some debate over the

 precise meaning of the sequence point rules in subtle cases. Links to Page 79/493

 discussions of the problem, including proposed formal definitions, may be found

 on the GCC readings page, at <http://gcc.gnu.org/readings.html>.

 This warning is enabled by -Wall for C and C++.

 -Wno-return-local-addr

 Do not warn about returning a pointer (or in C++, a reference) to a variable

 that goes out of scope after the function returns.

 -Wreturn-type

 Warn whenever a function is defined with a return type that defaults to "int".

 Also warn about any "return" statement with no return value in a function whose

 return type is not "void" (falling off the end of the function body is

 considered returning without a value).

 For C only, warn about a "return" statement with an expression in a function

 whose return type is "void", unless the expression type is also "void". As a

 GNU extension, the latter case is accepted without a warning unless -Wpedantic

 is used.

 For C++, a function without return type always produces a diagnostic message,

 even when -Wno-return-type is specified. The only exceptions are "main" and

 functions defined in system headers.

 This warning is enabled by -Wall.

 -Wshift-count-negative

 Warn if shift count is negative. This warning is enabled by default.

 -Wshift-count-overflow

 Warn if shift count >= width of type. This warning is enabled by default.

 -Wshift-negative-value

 Warn if left shifting a negative value. This warning is enabled by -Wextra in

 C99 and C++11 modes (and newer).

 -Wshift-overflow

 -Wshift-overflow=n

 Warn about left shift overflows. This warning is enabled by default in C99 and

 C++11 modes (and newer).

 -Wshift-overflow=1

 This is the warning level of -Wshift-overflow and is enabled by default in

 C99 and C++11 modes (and newer). This warning level does not warn about Page 80/493

 left-shifting 1 into the sign bit. (However, in C, such an overflow is

 still rejected in contexts where an integer constant expression is

 required.)

 -Wshift-overflow=2

 This warning level also warns about left-shifting 1 into the sign bit,

 unless C++14 mode is active.

 -Wswitch

 Warn whenever a "switch" statement has an index of enumerated type and lacks a

 "case" for one or more of the named codes of that enumeration. (The presence

 of a "default" label prevents this warning.) "case" labels outside the

 enumeration range also provoke warnings when this option is used (even if there

 is a "default" label). This warning is enabled by -Wall.

 -Wswitch-default

 Warn whenever a "switch" statement does not have a "default" case.

 -Wswitch-enum

 Warn whenever a "switch" statement has an index of enumerated type and lacks a

 "case" for one or more of the named codes of that enumeration. "case" labels

 outside the enumeration range also provoke warnings when this option is used.

 The only difference between -Wswitch and this option is that this option gives

 a warning about an omitted enumeration code even if there is a "default" label.

 -Wswitch-bool

 Warn whenever a "switch" statement has an index of boolean type and the case

 values are outside the range of a boolean type. It is possible to suppress

 this warning by casting the controlling expression to a type other than "bool".

 For example:

 switch ((int) (a == 4))

 {

 ...

 }

 This warning is enabled by default for C and C++ programs.

 -Wswitch-unreachable

 Warn whenever a "switch" statement contains statements between the controlling

 expression and the first case label, which will never be executed. For Page 81/493

 example:

 switch (cond)

 {

 i = 15;

 ...

 case 5:

 ...

 }

 -Wswitch-unreachable does not warn if the statement between the controlling

 expression and the first case label is just a declaration:

 switch (cond)

 {

 int i;

 ...

 case 5:

 i = 5;

 ...

 }

 This warning is enabled by default for C and C++ programs.

 -Wsync-nand (C and C++ only)

 Warn when "__sync_fetch_and_nand" and "__sync_nand_and_fetch" built-in

 functions are used. These functions changed semantics in GCC 4.4.

 -Wunused-but-set-parameter

 Warn whenever a function parameter is assigned to, but otherwise unused (aside

 from its declaration).

 To suppress this warning use the "unused" attribute.

 This warning is also enabled by -Wunused together with -Wextra.

 -Wunused-but-set-variable

 Warn whenever a local variable is assigned to, but otherwise unused (aside from

 its declaration). This warning is enabled by -Wall.

 To suppress this warning use the "unused" attribute.

 This warning is also enabled by -Wunused, which is enabled by -Wall.

 -Wunused-function Page 82/493

 Warn whenever a static function is declared but not defined or a non-inline

 static function is unused. This warning is enabled by -Wall.

 -Wunused-label

 Warn whenever a label is declared but not used. This warning is enabled by

 -Wall.

 To suppress this warning use the "unused" attribute.

 -Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)

 Warn when a typedef locally defined in a function is not used. This warning is

 enabled by -Wall.

 -Wunused-parameter

 Warn whenever a function parameter is unused aside from its declaration.

 To suppress this warning use the "unused" attribute.

 -Wno-unused-result

 Do not warn if a caller of a function marked with attribute

 "warn_unused_result" does not use its return value. The default is

 -Wunused-result.

 -Wunused-variable

 Warn whenever a local or static variable is unused aside from its declaration.

 This option implies -Wunused-const-variable=1 for C, but not for C++. This

 warning is enabled by -Wall.

 To suppress this warning use the "unused" attribute.

 -Wunused-const-variable

 -Wunused-const-variable=n

 Warn whenever a constant static variable is unused aside from its declaration.

 -Wunused-const-variable=1 is enabled by -Wunused-variable for C, but not for

 C++. In C this declares variable storage, but in C++ this is not an error since

 const variables take the place of "#define"s.

 To suppress this warning use the "unused" attribute.

 -Wunused-const-variable=1

 This is the warning level that is enabled by -Wunused-variable for C. It

 warns only about unused static const variables defined in the main

 compilation unit, but not about static const variables declared in any

 header included. Page 83/493

 -Wunused-const-variable=2

 This warning level also warns for unused constant static variables in

 headers (excluding system headers). This is the warning level of

 -Wunused-const-variable and must be explicitly requested since in C++ this

 isn't an error and in C it might be harder to clean up all headers

 included.

 -Wunused-value

 Warn whenever a statement computes a result that is explicitly not used. To

 suppress this warning cast the unused expression to "void". This includes an

 expression-statement or the left-hand side of a comma expression that contains

 no side effects. For example, an expression such as "x[i,j]" causes a warning,

 while "x[(void)i,j]" does not.

 This warning is enabled by -Wall.

 -Wunused

 All the above -Wunused options combined.

 In order to get a warning about an unused function parameter, you must either

 specify -Wextra -Wunused (note that -Wall implies -Wunused), or separately

 specify -Wunused-parameter.

 -Wuninitialized

 Warn if an automatic variable is used without first being initialized or if a

 variable may be clobbered by a "setjmp" call. In C++, warn if a non-static

 reference or non-static "const" member appears in a class without constructors.

 If you want to warn about code that uses the uninitialized value of the

 variable in its own initializer, use the -Winit-self option.

 These warnings occur for individual uninitialized or clobbered elements of

 structure, union or array variables as well as for variables that are

 uninitialized or clobbered as a whole. They do not occur for variables or

 elements declared "volatile". Because these warnings depend on optimization,

 the exact variables or elements for which there are warnings depends on the

 precise optimization options and version of GCC used.

 Note that there may be no warning about a variable that is used only to compute

 a value that itself is never used, because such computations may be deleted by

 data flow analysis before the warnings are printed. Page 84/493

 -Winvalid-memory-model

 Warn for invocations of __atomic Builtins, __sync Builtins, and the C11 atomic

 generic functions with a memory consistency argument that is either invalid for

 the operation or outside the range of values of the "memory_order" enumeration.

 For example, since the "__atomic_store" and "__atomic_store_n" built-ins are

 only defined for the relaxed, release, and sequentially consistent memory

 orders the following code is diagnosed:

 void store (int *i)

 {

 __atomic_store_n (i, 0, memory_order_consume);

 }

 -Winvalid-memory-model is enabled by default.

 -Wmaybe-uninitialized

 For an automatic variable, if there exists a path from the function entry to a

 use of the variable that is initialized, but there exist some other paths for

 which the variable is not initialized, the compiler emits a warning if it

 cannot prove the uninitialized paths are not executed at run time. These

 warnings are made optional because GCC is not smart enough to see all the

 reasons why the code might be correct in spite of appearing to have an error.

 Here is one example of how this can happen:

 {

 int x;

 switch (y)

 {

 case 1: x = 1;

 break;

 case 2: x = 4;

 break;

 case 3: x = 5;

 }

 foo (x);

 }

 If the value of "y" is always 1, 2 or 3, then "x" is always initialized, but Page 85/493

 GCC doesn't know this. To suppress the warning, you need to provide a default

 case with assert(0) or similar code.

 This option also warns when a non-volatile automatic variable might be changed

 by a call to "longjmp". These warnings as well are possible only in optimizing

 compilation.

 The compiler sees only the calls to "setjmp". It cannot know where "longjmp"

 will be called; in fact, a signal handler could call it at any point in the

 code. As a result, you may get a warning even when there is in fact no problem

 because "longjmp" cannot in fact be called at the place that would cause a

 problem.

 Some spurious warnings can be avoided if you declare all the functions you use

 that never return as "noreturn".

 This warning is enabled by -Wall or -Wextra.

 -Wunknown-pragmas

 Warn when a "#pragma" directive is encountered that is not understood by GCC.

 If this command-line option is used, warnings are even issued for unknown

 pragmas in system header files. This is not the case if the warnings are only

 enabled by the -Wall command-line option.

 -Wno-pragmas

 Do not warn about misuses of pragmas, such as incorrect parameters, invalid

 syntax, or conflicts between pragmas. See also -Wunknown-pragmas.

 -Wstrict-aliasing

 This option is only active when -fstrict-aliasing is active. It warns about

 code that might break the strict aliasing rules that the compiler is using for

 optimization. The warning does not catch all cases, but does attempt to catch

 the more common pitfalls. It is included in -Wall. It is equivalent to

 -Wstrict-aliasing=3

 -Wstrict-aliasing=n

 This option is only active when -fstrict-aliasing is active. It warns about

 code that might break the strict aliasing rules that the compiler is using for

 optimization. Higher levels correspond to higher accuracy (fewer false

 positives). Higher levels also correspond to more effort, similar to the way

 -O works. -Wstrict-aliasing is equivalent to -Wstrict-aliasing=3. Page 86/493

 Level 1: Most aggressive, quick, least accurate. Possibly useful when higher

 levels do not warn but -fstrict-aliasing still breaks the code, as it has very

 few false negatives. However, it has many false positives. Warns for all

 pointer conversions between possibly incompatible types, even if never

 dereferenced. Runs in the front end only.

 Level 2: Aggressive, quick, not too precise. May still have many false

 positives (not as many as level 1 though), and few false negatives (but

 possibly more than level 1). Unlike level 1, it only warns when an address is

 taken. Warns about incomplete types. Runs in the front end only.

 Level 3 (default for -Wstrict-aliasing): Should have very few false positives

 and few false negatives. Slightly slower than levels 1 or 2 when optimization

 is enabled. Takes care of the common pun+dereference pattern in the front end:

 "*(int*)&some_float". If optimization is enabled, it also runs in the back

 end, where it deals with multiple statement cases using flow-sensitive points-

 to information. Only warns when the converted pointer is dereferenced. Does

 not warn about incomplete types.

 -Wstrict-overflow

 -Wstrict-overflow=n

 This option is only active when -fstrict-overflow is active. It warns about

 cases where the compiler optimizes based on the assumption that signed overflow

 does not occur. Note that it does not warn about all cases where the code

 might overflow: it only warns about cases where the compiler implements some

 optimization. Thus this warning depends on the optimization level.

 An optimization that assumes that signed overflow does not occur is perfectly

 safe if the values of the variables involved are such that overflow never does,

 in fact, occur. Therefore this warning can easily give a false positive: a

 warning about code that is not actually a problem. To help focus on important

 issues, several warning levels are defined. No warnings are issued for the use

 of undefined signed overflow when estimating how many iterations a loop

 requires, in particular when determining whether a loop will be executed at

 all.

 -Wstrict-overflow=1

 Warn about cases that are both questionable and easy to avoid. For Page 87/493

 example, with -fstrict-overflow, the compiler simplifies "x + 1 > x" to 1.

 This level of -Wstrict-overflow is enabled by -Wall; higher levels are not,

 and must be explicitly requested.

 -Wstrict-overflow=2

 Also warn about other cases where a comparison is simplified to a constant.

 For example: "abs (x) >= 0". This can only be simplified when

 -fstrict-overflow is in effect, because "abs (INT_MIN)" overflows to

 "INT_MIN", which is less than zero. -Wstrict-overflow (with no level) is

 the same as -Wstrict-overflow=2.

 -Wstrict-overflow=3

 Also warn about other cases where a comparison is simplified. For example:

 "x + 1 > 1" is simplified to "x > 0".

 -Wstrict-overflow=4

 Also warn about other simplifications not covered by the above cases. For

 example: "(x * 10) / 5" is simplified to "x * 2".

 -Wstrict-overflow=5

 Also warn about cases where the compiler reduces the magnitude of a

 constant involved in a comparison. For example: "x + 2 > y" is simplified

 to "x + 1 >= y". This is reported only at the highest warning level

 because this simplification applies to many comparisons, so this warning

 level gives a very large number of false positives.

 -Wstringop-overflow

 -Wstringop-overflow=type

 Warn for calls to string manipulation functions such as "memcpy" and "strcpy"

 that are determined to overflow the destination buffer. The optional argument

 is one greater than the type of Object Size Checking to perform to determine

 the size of the destination. The argument is meaningful only for functions

 that operate on character arrays but not for raw memory functions like "memcpy"

 which always make use of Object Size type-0. The option also warns for calls

 that specify a size in excess of the largest possible object or at most

 "SIZE_MAX / 2" bytes. The option produces the best results with optimization

 enabled but can detect a small subset of simple buffer overflows even without

 optimization in calls to the GCC built-in functions like "__builtin_memcpy" Page 88/493

 that correspond to the standard functions. In any case, the option warns about

 just a subset of buffer overflows detected by the corresponding overflow

 checking built-ins. For example, the option will issue a warning for the

 "strcpy" call below because it copies at least 5 characters (the string "blue"

 including the terminating NUL) into the buffer of size 4.

 enum Color { blue, purple, yellow };

 const char* f (enum Color clr)

 {

 static char buf [4];

 const char *str;

 switch (clr)

 {

 case blue: str = "blue"; break;

 case purple: str = "purple"; break;

 case yellow: str = "yellow"; break;

 }

 return strcpy (buf, str); // warning here

 }

 Option -Wstringop-overflow=2 is enabled by default.

 -Wstringop-overflow

 -Wstringop-overflow=1

 The -Wstringop-overflow=1 option uses type-zero Object Size Checking to

 determine the sizes of destination objects. This is the default setting of

 the option. At this setting the option will not warn for writes past the

 end of subobjects of larger objects accessed by pointers unless the size of

 the largest surrounding object is known. When the destination may be one

 of several objects it is assumed to be the largest one of them. On Linux

 systems, when optimization is enabled at this setting the option warns for

 the same code as when the "_FORTIFY_SOURCE" macro is defined to a non-zero

 value.

 -Wstringop-overflow=2

 The -Wstringop-overflow=2 option uses type-one Object Size Checking to

 determine the sizes of destination objects. At this setting the option Page 89/493

 will warn about overflows when writing to members of the largest complete

 objects whose exact size is known. It will, however, not warn for

 excessive writes to the same members of unknown objects referenced by

 pointers since they may point to arrays containing unknown numbers of

 elements.

 -Wstringop-overflow=3

 The -Wstringop-overflow=3 option uses type-two Object Size Checking to

 determine the sizes of destination objects. At this setting the option

 warns about overflowing the smallest object or data member. This is the

 most restrictive setting of the option that may result in warnings for safe

 code.

 -Wstringop-overflow=4

 The -Wstringop-overflow=4 option uses type-three Object Size Checking to

 determine the sizes of destination objects. At this setting the option

 will warn about overflowing any data members, and when the destination is

 one of several objects it uses the size of the largest of them to decide

 whether to issue a warning. Similarly to -Wstringop-overflow=3 this

 setting of the option may result in warnings for benign code.

 -Wsuggest-attribute=[pure|const|noreturn|format]

 Warn for cases where adding an attribute may be beneficial. The attributes

 currently supported are listed below.

 -Wsuggest-attribute=pure

 -Wsuggest-attribute=const

 -Wsuggest-attribute=noreturn

 Warn about functions that might be candidates for attributes "pure",

 "const" or "noreturn". The compiler only warns for functions visible in

 other compilation units or (in the case of "pure" and "const") if it cannot

 prove that the function returns normally. A function returns normally if it

 doesn't contain an infinite loop or return abnormally by throwing, calling

 "abort" or trapping. This analysis requires option -fipa-pure-const, which

 is enabled by default at -O and higher. Higher optimization levels improve

 the accuracy of the analysis.

 -Wsuggest-attribute=format Page 90/493

 -Wmissing-format-attribute

 Warn about function pointers that might be candidates for "format"

 attributes. Note these are only possible candidates, not absolute ones.

 GCC guesses that function pointers with "format" attributes that are used

 in assignment, initialization, parameter passing or return statements

 should have a corresponding "format" attribute in the resulting type. I.e.

 the left-hand side of the assignment or initialization, the type of the

 parameter variable, or the return type of the containing function

 respectively should also have a "format" attribute to avoid the warning.

 GCC also warns about function definitions that might be candidates for

 "format" attributes. Again, these are only possible candidates. GCC

 guesses that "format" attributes might be appropriate for any function that

 calls a function like "vprintf" or "vscanf", but this might not always be

 the case, and some functions for which "format" attributes are appropriate

 may not be detected.

 -Wsuggest-final-types

 Warn about types with virtual methods where code quality would be improved if

 the type were declared with the C++11 "final" specifier, or, if possible,

 declared in an anonymous namespace. This allows GCC to more aggressively

 devirtualize the polymorphic calls. This warning is more effective with link

 time optimization, where the information about the class hierarchy graph is

 more complete.

 -Wsuggest-final-methods

 Warn about virtual methods where code quality would be improved if the method

 were declared with the C++11 "final" specifier, or, if possible, its type were

 declared in an anonymous namespace or with the "final" specifier. This warning

 is more effective with link-time optimization, where the information about the

 class hierarchy graph is more complete. It is recommended to first consider

 suggestions of -Wsuggest-final-types and then rebuild with new annotations.

 -Wsuggest-override

 Warn about overriding virtual functions that are not marked with the override

 keyword.

 -Walloc-zero Page 91/493

 Warn about calls to allocation functions decorated with attribute "alloc_size"

 that specify zero bytes, including those to the built-in forms of the functions

 "aligned_alloc", "alloca", "calloc", "malloc", and "realloc". Because the

 behavior of these functions when called with a zero size differs among

 implementations (and in the case of "realloc" has been deprecated) relying on

 it may result in subtle portability bugs and should be avoided.

 -Walloc-size-larger-than=n

 Warn about calls to functions decorated with attribute "alloc_size" that

 attempt to allocate objects larger than the specified number of bytes, or where

 the result of the size computation in an integer type with infinite precision

 would exceed "SIZE_MAX / 2". The option argument n may end in one of the

 standard suffixes designating a multiple of bytes such as "kB" and "KiB" for

 kilobyte and kibibyte, respectively, "MB" and "MiB" for megabyte and mebibyte,

 and so on. -Walloc-size-larger-than=PTRDIFF_MAX is enabled by default.

 Warnings controlled by the option can be disabled by specifying n of SIZE_MAX

 or more.

 -Walloca

 This option warns on all uses of "alloca" in the source.

 -Walloca-larger-than=n

 This option warns on calls to "alloca" that are not bounded by a controlling

 predicate limiting its argument of integer type to at most n bytes, or calls to

 "alloca" where the bound is unknown. Arguments of non-integer types are

 considered unbounded even if they appear to be constrained to the expected

 range.

 For example, a bounded case of "alloca" could be:

 void func (size_t n)

 {

 void *p;

 if (n <= 1000)

 p = alloca (n);

 else

 p = malloc (n);

 f (p); Page 92/493

 }

 In the above example, passing "-Walloca-larger-than=1000" would not issue a

 warning because the call to "alloca" is known to be at most 1000 bytes.

 However, if "-Walloca-larger-than=500" were passed, the compiler would emit a

 warning.

 Unbounded uses, on the other hand, are uses of "alloca" with no controlling

 predicate constraining its integer argument. For example:

 void func ()

 {

 void *p = alloca (n);

 f (p);

 }

 If "-Walloca-larger-than=500" were passed, the above would trigger a warning,

 but this time because of the lack of bounds checking.

 Note, that even seemingly correct code involving signed integers could cause a

 warning:

 void func (signed int n)

 {

 if (n < 500)

 {

 p = alloca (n);

 f (p);

 }

 }

 In the above example, n could be negative, causing a larger than expected

 argument to be implicitly cast into the "alloca" call.

 This option also warns when "alloca" is used in a loop.

 This warning is not enabled by -Wall, and is only active when -ftree-vrp is

 active (default for -O2 and above).

 See also -Wvla-larger-than=n.

 -Warray-bounds

 -Warray-bounds=n

 This option is only active when -ftree-vrp is active (default for -O2 and Page 93/493

 above). It warns about subscripts to arrays that are always out of bounds. This

 warning is enabled by -Wall.

 -Warray-bounds=1

 This is the warning level of -Warray-bounds and is enabled by -Wall; higher

 levels are not, and must be explicitly requested.

 -Warray-bounds=2

 This warning level also warns about out of bounds access for arrays at the

 end of a struct and for arrays accessed through pointers. This warning

 level may give a larger number of false positives and is deactivated by

 default.

 -Wbool-compare

 Warn about boolean expression compared with an integer value different from

 "true"/"false". For instance, the following comparison is always false:

 int n = 5;

 ...

 if ((n > 1) == 2) { ... }

 This warning is enabled by -Wall.

 -Wbool-operation

 Warn about suspicious operations on expressions of a boolean type. For

 instance, bitwise negation of a boolean is very likely a bug in the program.

 For C, this warning also warns about incrementing or decrementing a boolean,

 which rarely makes sense. (In C++, decrementing a boolean is always invalid.

 Incrementing a boolean is invalid in C++1z, and deprecated otherwise.)

 This warning is enabled by -Wall.

 -Wduplicated-branches

 Warn when an if-else has identical branches. This warning detects cases like

 if (p != NULL)

 return 0;

 else

 return 0;

 It doesn't warn when both branches contain just a null statement. This warning

 also warn for conditional operators:

 int i = x ? *p : *p; Page 94/493

 -Wduplicated-cond

 Warn about duplicated conditions in an if-else-if chain. For instance, warn

 for the following code:

 if (p->q != NULL) { ... }

 else if (p->q != NULL) { ... }

 -Wframe-address

 Warn when the __builtin_frame_address or __builtin_return_address is called

 with an argument greater than 0. Such calls may return indeterminate values or

 crash the program. The warning is included in -Wall.

 -Wno-discarded-qualifiers (C and Objective-C only)

 Do not warn if type qualifiers on pointers are being discarded. Typically, the

 compiler warns if a "const char *" variable is passed to a function that takes

 a "char *" parameter. This option can be used to suppress such a warning.

 -Wno-discarded-array-qualifiers (C and Objective-C only)

 Do not warn if type qualifiers on arrays which are pointer targets are being

 discarded. Typically, the compiler warns if a "const int (*)[]" variable is

 passed to a function that takes a "int (*)[]" parameter. This option can be

 used to suppress such a warning.

 -Wno-incompatible-pointer-types (C and Objective-C only)

 Do not warn when there is a conversion between pointers that have incompatible

 types. This warning is for cases not covered by -Wno-pointer-sign, which warns

 for pointer argument passing or assignment with different signedness.

 -Wno-int-conversion (C and Objective-C only)

 Do not warn about incompatible integer to pointer and pointer to integer

 conversions. This warning is about implicit conversions; for explicit

 conversions the warnings -Wno-int-to-pointer-cast and -Wno-pointer-to-int-cast

 may be used.

 -Wno-div-by-zero

 Do not warn about compile-time integer division by zero. Floating-point

 division by zero is not warned about, as it can be a legitimate way of

 obtaining infinities and NaNs.

 -Wsystem-headers

 Print warning messages for constructs found in system header files. Warnings Page 95/493

 from system headers are normally suppressed, on the assumption that they

 usually do not indicate real problems and would only make the compiler output

 harder to read. Using this command-line option tells GCC to emit warnings from

 system headers as if they occurred in user code. However, note that using

 -Wall in conjunction with this option does not warn about unknown pragmas in

 system headers---for that, -Wunknown-pragmas must also be used.

 -Wtautological-compare

 Warn if a self-comparison always evaluates to true or false. This warning

 detects various mistakes such as:

 int i = 1;

 ...

 if (i > i) { ... }

 This warning is enabled by -Wall.

 -Wtrampolines

 Warn about trampolines generated for pointers to nested functions. A

 trampoline is a small piece of data or code that is created at run time on the

 stack when the address of a nested function is taken, and is used to call the

 nested function indirectly. For some targets, it is made up of data only and

 thus requires no special treatment. But, for most targets, it is made up of

 code and thus requires the stack to be made executable in order for the program

 to work properly.

 -Wfloat-equal

 Warn if floating-point values are used in equality comparisons.

 The idea behind this is that sometimes it is convenient (for the programmer) to

 consider floating-point values as approximations to infinitely precise real

 numbers. If you are doing this, then you need to compute (by analyzing the

 code, or in some other way) the maximum or likely maximum error that the

 computation introduces, and allow for it when performing comparisons (and when

 producing output, but that's a different problem). In particular, instead of

 testing for equality, you should check to see whether the two values have

 ranges that overlap; and this is done with the relational operators, so

 equality comparisons are probably mistaken.

 -Wtraditional (C and Objective-C only) Page 96/493

 Warn about certain constructs that behave differently in traditional and ISO C.

 Also warn about ISO C constructs that have no traditional C equivalent, and/or

 problematic constructs that should be avoided.

 * Macro parameters that appear within string literals in the macro body. In

 traditional C macro replacement takes place within string literals, but in

 ISO C it does not.

 * In traditional C, some preprocessor directives did not exist. Traditional

 preprocessors only considered a line to be a directive if the # appeared in

 column 1 on the line. Therefore -Wtraditional warns about directives that

 traditional C understands but ignores because the # does not appear as the

 first character on the line. It also suggests you hide directives like

 "#pragma" not understood by traditional C by indenting them. Some

 traditional implementations do not recognize "#elif", so this option

 suggests avoiding it altogether.

 * A function-like macro that appears without arguments.

 * The unary plus operator.

 * The U integer constant suffix, or the F or L floating-point constant

 suffixes. (Traditional C does support the L suffix on integer constants.)

 Note, these suffixes appear in macros defined in the system headers of most

 modern systems, e.g. the _MIN/_MAX macros in "<limits.h>". Use of these

 macros in user code might normally lead to spurious warnings, however GCC's

 integrated preprocessor has enough context to avoid warning in these cases.

 * A function declared external in one block and then used after the end of

 the block.

 * A "switch" statement has an operand of type "long".

 * A non-"static" function declaration follows a "static" one. This construct

 is not accepted by some traditional C compilers.

 * The ISO type of an integer constant has a different width or signedness

 from its traditional type. This warning is only issued if the base of the

 constant is ten. I.e. hexadecimal or octal values, which typically

 represent bit patterns, are not warned about.

 * Usage of ISO string concatenation is detected.

 * Initialization of automatic aggregates. Page 97/493

 * Identifier conflicts with labels. Traditional C lacks a separate namespace

 for labels.

 * Initialization of unions. If the initializer is zero, the warning is

 omitted. This is done under the assumption that the zero initializer in

 user code appears conditioned on e.g. "__STDC__" to avoid missing

 initializer warnings and relies on default initialization to zero in the

 traditional C case.

 * Conversions by prototypes between fixed/floating-point values and vice

 versa. The absence of these prototypes when compiling with traditional C

 causes serious problems. This is a subset of the possible conversion

 warnings; for the full set use -Wtraditional-conversion.

 * Use of ISO C style function definitions. This warning intentionally is not

 issued for prototype declarations or variadic functions because these ISO C

 features appear in your code when using libiberty's traditional C

 compatibility macros, "PARAMS" and "VPARAMS". This warning is also

 bypassed for nested functions because that feature is already a GCC

 extension and thus not relevant to traditional C compatibility.

 -Wtraditional-conversion (C and Objective-C only)

 Warn if a prototype causes a type conversion that is different from what would

 happen to the same argument in the absence of a prototype. This includes

 conversions of fixed point to floating and vice versa, and conversions changing

 the width or signedness of a fixed-point argument except when the same as the

 default promotion.

 -Wdeclaration-after-statement (C and Objective-C only)

 Warn when a declaration is found after a statement in a block. This construct,

 known from C++, was introduced with ISO C99 and is by default allowed in GCC.

 It is not supported by ISO C90.

 -Wshadow

 Warn whenever a local variable or type declaration shadows another variable,

 parameter, type, class member (in C++), or instance variable (in Objective-C)

 or whenever a built-in function is shadowed. Note that in C++, the compiler

 warns if a local variable shadows an explicit typedef, but not if it shadows a

 struct/class/enum. Same as -Wshadow=global. Page 98/493

 -Wno-shadow-ivar (Objective-C only)

 Do not warn whenever a local variable shadows an instance variable in an

 Objective-C method.

 -Wshadow=global

 The default for -Wshadow. Warns for any (global) shadowing.

 -Wshadow=local

 Warn when a local variable shadows another local variable or parameter. This

 warning is enabled by -Wshadow=global.

 -Wshadow=compatible-local

 Warn when a local variable shadows another local variable or parameter whose

 type is compatible with that of the shadowing variable. In C++, type

 compatibility here means the type of the shadowing variable can be converted to

 that of the shadowed variable. The creation of this flag (in addition to

 -Wshadow=local) is based on the idea that when a local variable shadows another

 one of incompatible type, it is most likely intentional, not a bug or typo, as

 shown in the following example:

 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)

 {

 for (int i = 0; i < N; ++i)

 {

 ...

 }

 ...

 }

 Since the two variable "i" in the example above have incompatible types,

 enabling only -Wshadow=compatible-local will not emit a warning. Because their

 types are incompatible, if a programmer accidentally uses one in place of the

 other, type checking will catch that and emit an error or warning. So not

 warning (about shadowing) in this case will not lead to undetected bugs. Use of

 this flag instead of -Wshadow=local can possibly reduce the number of warnings

 triggered by intentional shadowing.

 This warning is enabled by -Wshadow=local.

 -Wlarger-than=len Page 99/493

 Warn whenever an object of larger than len bytes is defined.

 -Wframe-larger-than=len

 Warn if the size of a function frame is larger than len bytes. The computation

 done to determine the stack frame size is approximate and not conservative.

 The actual requirements may be somewhat greater than len even if you do not get

 a warning. In addition, any space allocated via "alloca", variable-length

 arrays, or related constructs is not included by the compiler when determining

 whether or not to issue a warning.

 -Wno-free-nonheap-object

 Do not warn when attempting to free an object that was not allocated on the

 heap.

 -Wstack-usage=len

 Warn if the stack usage of a function might be larger than len bytes. The

 computation done to determine the stack usage is conservative. Any space

 allocated via "alloca", variable-length arrays, or related constructs is

 included by the compiler when determining whether or not to issue a warning.

 The message is in keeping with the output of -fstack-usage.

 * If the stack usage is fully static but exceeds the specified amount, it's:

 warning: stack usage is 1120 bytes

 * If the stack usage is (partly) dynamic but bounded, it's:

 warning: stack usage might be 1648 bytes

 * If the stack usage is (partly) dynamic and not bounded, it's:

 warning: stack usage might be unbounded

 -Wunsafe-loop-optimizations

 Warn if the loop cannot be optimized because the compiler cannot assume

 anything on the bounds of the loop indices. With -funsafe-loop-optimizations

 warn if the compiler makes such assumptions.

 -Wno-pedantic-ms-format (MinGW targets only)

 When used in combination with -Wformat and -pedantic without GNU extensions,

 this option disables the warnings about non-ISO "printf" / "scanf" format width

 specifiers "I32", "I64", and "I" used on Windows targets, which depend on the

 MS runtime.

 -Waligned-new Page 100/493

 Warn about a new-expression of a type that requires greater alignment than the

 "alignof(std::max_align_t)" but uses an allocation function without an explicit

 alignment parameter. This option is enabled by -Wall.

 Normally this only warns about global allocation functions, but

 -Waligned-new=all also warns about class member allocation functions.

 -Wplacement-new

 -Wplacement-new=n

 Warn about placement new expressions with undefined behavior, such as

 constructing an object in a buffer that is smaller than the type of the object.

 For example, the placement new expression below is diagnosed because it

 attempts to construct an array of 64 integers in a buffer only 64 bytes large.

 char buf [64];

 new (buf) int[64];

 This warning is enabled by default.

 -Wplacement-new=1

 This is the default warning level of -Wplacement-new. At this level the

 warning is not issued for some strictly undefined constructs that GCC

 allows as extensions for compatibility with legacy code. For example, the

 following "new" expression is not diagnosed at this level even though it

 has undefined behavior according to the C++ standard because it writes past

 the end of the one-element array.

 struct S { int n, a[1]; };

 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);

 new (s->a)int [32]();

 -Wplacement-new=2

 At this level, in addition to diagnosing all the same constructs as at

 level 1, a diagnostic is also issued for placement new expressions that

 construct an object in the last member of structure whose type is an array

 of a single element and whose size is less than the size of the object

 being constructed. While the previous example would be diagnosed, the

 following construct makes use of the flexible member array extension to

 avoid the warning at level 2.

 struct S { int n, a[]; }; Page 101/493

 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);

 new (s->a)int [32]();

 -Wpointer-arith

 Warn about anything that depends on the "size of" a function type or of "void".

 GNU C assigns these types a size of 1, for convenience in calculations with

 "void *" pointers and pointers to functions. In C++, warn also when an

 arithmetic operation involves "NULL". This warning is also enabled by

 -Wpedantic.

 -Wpointer-compare

 Warn if a pointer is compared with a zero character constant. This usually

 means that the pointer was meant to be dereferenced. For example:

 const char *p = foo ();

 if (p == '\0')

 return 42;

 Note that the code above is invalid in C++11.

 This warning is enabled by default.

 -Wtype-limits

 Warn if a comparison is always true or always false due to the limited range of

 the data type, but do not warn for constant expressions. For example, warn if

 an unsigned variable is compared against zero with "<" or ">=". This warning

 is also enabled by -Wextra.

 -Wcomment

 -Wcomments

 Warn whenever a comment-start sequence /* appears in a /* comment, or whenever

 a backslash-newline appears in a // comment. This warning is enabled by -Wall.

 -Wtrigraphs

 Warn if any trigraphs are encountered that might change the meaning of the

 program. Trigraphs within comments are not warned about, except those that

 would form escaped newlines.

 This option is implied by -Wall. If -Wall is not given, this option is still

 enabled unless trigraphs are enabled. To get trigraph conversion without

 warnings, but get the other -Wall warnings, use -trigraphs -Wall

 -Wno-trigraphs. Page 102/493

 -Wundef

 Warn if an undefined identifier is evaluated in an "#if" directive. Such

 identifiers are replaced with zero.

 -Wexpansion-to-defined

 Warn whenever defined is encountered in the expansion of a macro (including the

 case where the macro is expanded by an #if directive). Such usage is not

 portable. This warning is also enabled by -Wpedantic and -Wextra.

 -Wunused-macros

 Warn about macros defined in the main file that are unused. A macro is used if

 it is expanded or tested for existence at least once. The preprocessor also

 warns if the macro has not been used at the time it is redefined or undefined.

 Built-in macros, macros defined on the command line, and macros defined in

 include files are not warned about.

 Note: If a macro is actually used, but only used in skipped conditional blocks,

 then the preprocessor reports it as unused. To avoid the warning in such a

 case, you might improve the scope of the macro's definition by, for example,

 moving it into the first skipped block. Alternatively, you could provide a

 dummy use with something like:

 #if defined the_macro_causing_the_warning

 #endif

 -Wno-endif-labels

 Do not warn whenever an "#else" or an "#endif" are followed by text. This

 sometimes happens in older programs with code of the form

 #if FOO

 ...

 #else FOO

 ...

 #endif FOO

 The second and third "FOO" should be in comments. This warning is on by

 default.

 -Wbad-function-cast (C and Objective-C only)

 Warn when a function call is cast to a non-matching type. For example, warn if

 a call to a function returning an integer type is cast to a pointer type. Page 103/493

 -Wc90-c99-compat (C and Objective-C only)

 Warn about features not present in ISO C90, but present in ISO C99. For

 instance, warn about use of variable length arrays, "long long" type, "bool"

 type, compound literals, designated initializers, and so on. This option is

 independent of the standards mode. Warnings are disabled in the expression

 that follows "__extension__".

 -Wc99-c11-compat (C and Objective-C only)

 Warn about features not present in ISO C99, but present in ISO C11. For

 instance, warn about use of anonymous structures and unions, "_Atomic" type

 qualifier, "_Thread_local" storage-class specifier, "_Alignas" specifier,

 "Alignof" operator, "_Generic" keyword, and so on. This option is independent

 of the standards mode. Warnings are disabled in the expression that follows

 "__extension__".

 -Wc++-compat (C and Objective-C only)

 Warn about ISO C constructs that are outside of the common subset of ISO C and

 ISO C++, e.g. request for implicit conversion from "void *" to a pointer to

 non-"void" type.

 -Wc++11-compat (C++ and Objective-C++ only)

 Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO

 C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++ 2011.

 This warning turns on -Wnarrowing and is enabled by -Wall.

 -Wc++14-compat (C++ and Objective-C++ only)

 Warn about C++ constructs whose meaning differs between ISO C++ 2011 and ISO

 C++ 2014. This warning is enabled by -Wall.

 -Wc++1z-compat (C++ and Objective-C++ only)

 Warn about C++ constructs whose meaning differs between ISO C++ 2014 and the

 forthoming ISO C++ 2017(?). This warning is enabled by -Wall.

 -Wcast-qual

 Warn whenever a pointer is cast so as to remove a type qualifier from the

 target type. For example, warn if a "const char *" is cast to an ordinary

 "char *".

 Also warn when making a cast that introduces a type qualifier in an unsafe way.

 For example, casting "char **" to "const char **" is unsafe, as in this Page 104/493

 example:

 /* p is char ** value. */

 const char **q = (const char **) p;

 /* Assignment of readonly string to const char * is OK. */

 *q = "string";

 /* Now char** pointer points to read-only memory. */

 **p = 'b';

 -Wcast-align

 Warn whenever a pointer is cast such that the required alignment of the target

 is increased. For example, warn if a "char *" is cast to an "int *" on

 machines where integers can only be accessed at two- or four-byte boundaries.

 -Wwrite-strings

 When compiling C, give string constants the type "const char[length]" so that

 copying the address of one into a non-"const" "char *" pointer produces a

 warning. These warnings help you find at compile time code that can try to

 write into a string constant, but only if you have been very careful about

 using "const" in declarations and prototypes. Otherwise, it is just a

 nuisance. This is why we did not make -Wall request these warnings.

 When compiling C++, warn about the deprecated conversion from string literals

 to "char *". This warning is enabled by default for C++ programs.

 -Wclobbered

 Warn for variables that might be changed by "longjmp" or "vfork". This warning

 is also enabled by -Wextra.

 -Wconditionally-supported (C++ and Objective-C++ only)

 Warn for conditionally-supported (C++11 [intro.defs]) constructs.

 -Wconversion

 Warn for implicit conversions that may alter a value. This includes conversions

 between real and integer, like "abs (x)" when "x" is "double"; conversions

 between signed and unsigned, like "unsigned ui = -1"; and conversions to

 smaller types, like "sqrtf (M_PI)". Do not warn for explicit casts like "abs

 ((int) x)" and "ui = (unsigned) -1", or if the value is not changed by the

 conversion like in "abs (2.0)". Warnings about conversions between signed and

 unsigned integers can be disabled by using -Wno-sign-conversion. Page 105/493

 For C++, also warn for confusing overload resolution for user-defined

 conversions; and conversions that never use a type conversion operator:

 conversions to "void", the same type, a base class or a reference to them.

 Warnings about conversions between signed and unsigned integers are disabled by

 default in C++ unless -Wsign-conversion is explicitly enabled.

 -Wno-conversion-null (C++ and Objective-C++ only)

 Do not warn for conversions between "NULL" and non-pointer types.

 -Wconversion-null is enabled by default.

 -Wzero-as-null-pointer-constant (C++ and Objective-C++ only)

 Warn when a literal 0 is used as null pointer constant. This can be useful to

 facilitate the conversion to "nullptr" in C++11.

 -Wsubobject-linkage (C++ and Objective-C++ only)

 Warn if a class type has a base or a field whose type uses the anonymous

 namespace or depends on a type with no linkage. If a type A depends on a type

 B with no or internal linkage, defining it in multiple translation units would

 be an ODR violation because the meaning of B is different in each translation

 unit. If A only appears in a single translation unit, the best way to silence

 the warning is to give it internal linkage by putting it in an anonymous

 namespace as well. The compiler doesn't give this warning for types defined in

 the main .C file, as those are unlikely to have multiple definitions.

 -Wsubobject-linkage is enabled by default.

 -Wdangling-else

 Warn about constructions where there may be confusion to which "if" statement

 an "else" branch belongs. Here is an example of such a case:

 {

 if (a)

 if (b)

 foo ();

 else

 bar ();

 }

 In C/C++, every "else" branch belongs to the innermost possible "if" statement,

 which in this example is "if (b)". This is often not what the programmer Page 106/493

 expected, as illustrated in the above example by indentation the programmer

 chose. When there is the potential for this confusion, GCC issues a warning

 when this flag is specified. To eliminate the warning, add explicit braces

 around the innermost "if" statement so there is no way the "else" can belong to

 the enclosing "if". The resulting code looks like this:

 {

 if (a)

 {

 if (b)

 foo ();

 else

 bar ();

 }

 }

 This warning is enabled by -Wparentheses.

 -Wdate-time

 Warn when macros "__TIME__", "__DATE__" or "__TIMESTAMP__" are encountered as

 they might prevent bit-wise-identical reproducible compilations.

 -Wdelete-incomplete (C++ and Objective-C++ only)

 Warn when deleting a pointer to incomplete type, which may cause undefined

 behavior at runtime. This warning is enabled by default.

 -Wuseless-cast (C++ and Objective-C++ only)

 Warn when an expression is casted to its own type.

 -Wempty-body

 Warn if an empty body occurs in an "if", "else" or "do while" statement. This

 warning is also enabled by -Wextra.

 -Wenum-compare

 Warn about a comparison between values of different enumerated types. In C++

 enumerated type mismatches in conditional expressions are also diagnosed and

 the warning is enabled by default. In C this warning is enabled by -Wall.

 -Wjump-misses-init (C, Objective-C only)

 Warn if a "goto" statement or a "switch" statement jumps forward across the

 initialization of a variable, or jumps backward to a label after the variable Page 107/493

 has been initialized. This only warns about variables that are initialized

 when they are declared. This warning is only supported for C and Objective-C;

 in C++ this sort of branch is an error in any case.

 -Wjump-misses-init is included in -Wc++-compat. It can be disabled with the

 -Wno-jump-misses-init option.

 -Wsign-compare

 Warn when a comparison between signed and unsigned values could produce an

 incorrect result when the signed value is converted to unsigned. In C++, this

 warning is also enabled by -Wall. In C, it is also enabled by -Wextra.

 -Wsign-conversion

 Warn for implicit conversions that may change the sign of an integer value,

 like assigning a signed integer expression to an unsigned integer variable. An

 explicit cast silences the warning. In C, this option is enabled also by

 -Wconversion.

 -Wfloat-conversion

 Warn for implicit conversions that reduce the precision of a real value. This

 includes conversions from real to integer, and from higher precision real to

 lower precision real values. This option is also enabled by -Wconversion.

 -Wno-scalar-storage-order

 Do not warn on suspicious constructs involving reverse scalar storage order.

 -Wsized-deallocation (C++ and Objective-C++ only)

 Warn about a definition of an unsized deallocation function

 void operator delete (void *) noexcept;

 void operator delete[] (void *) noexcept;

 without a definition of the corresponding sized deallocation function

 void operator delete (void *, std::size_t) noexcept;

 void operator delete[] (void *, std::size_t) noexcept;

 or vice versa. Enabled by -Wextra along with -fsized-deallocation.

 -Wsizeof-pointer-memaccess

 Warn for suspicious length parameters to certain string and memory built-in

 functions if the argument uses "sizeof". This warning warns e.g. about

 "memset (ptr, 0, sizeof (ptr));" if "ptr" is not an array, but a pointer, and

 suggests a possible fix, or about "memcpy (&foo, ptr, sizeof (&foo));". This Page 108/493

 warning is enabled by -Wall.

 -Wsizeof-array-argument

 Warn when the "sizeof" operator is applied to a parameter that is declared as

 an array in a function definition. This warning is enabled by default for C

 and C++ programs.

 -Wmemset-elt-size

 Warn for suspicious calls to the "memset" built-in function, if the first

 argument references an array, and the third argument is a number equal to the

 number of elements, but not equal to the size of the array in memory. This

 indicates that the user has omitted a multiplication by the element size. This

 warning is enabled by -Wall.

 -Wmemset-transposed-args

 Warn for suspicious calls to the "memset" built-in function, if the second

 argument is not zero and the third argument is zero. This warns e.g.@ about

 "memset (buf, sizeof buf, 0)" where most probably "memset (buf, 0, sizeof buf)"

 was meant instead. The diagnostics is only emitted if the third argument is

 literal zero. If it is some expression that is folded to zero, a cast of zero

 to some type, etc., it is far less likely that the user has mistakenly

 exchanged the arguments and no warning is emitted. This warning is enabled by

 -Wall.

 -Waddress

 Warn about suspicious uses of memory addresses. These include using the address

 of a function in a conditional expression, such as "void func(void); if

 (func)", and comparisons against the memory address of a string literal, such

 as "if (x == "abc")". Such uses typically indicate a programmer error: the

 address of a function always evaluates to true, so their use in a conditional

 usually indicate that the programmer forgot the parentheses in a function call;

 and comparisons against string literals result in unspecified behavior and are

 not portable in C, so they usually indicate that the programmer intended to use

 "strcmp". This warning is enabled by -Wall.

 -Wlogical-op

 Warn about suspicious uses of logical operators in expressions. This includes

 using logical operators in contexts where a bit-wise operator is likely to be Page 109/493

 expected. Also warns when the operands of a logical operator are the same:

 extern int a;

 if (a < 0 && a < 0) { ... }

 -Wlogical-not-parentheses

 Warn about logical not used on the left hand side operand of a comparison.

 This option does not warn if the right operand is considered to be a boolean

 expression. Its purpose is to detect suspicious code like the following:

 int a;

 ...

 if (!a > 1) { ... }

 It is possible to suppress the warning by wrapping the LHS into parentheses:

 if ((!a) > 1) { ... }

 This warning is enabled by -Wall.

 -Waggregate-return

 Warn if any functions that return structures or unions are defined or called.

 (In languages where you can return an array, this also elicits a warning.)

 -Wno-aggressive-loop-optimizations

 Warn if in a loop with constant number of iterations the compiler detects

 undefined behavior in some statement during one or more of the iterations.

 -Wno-attributes

 Do not warn if an unexpected "__attribute__" is used, such as unrecognized

 attributes, function attributes applied to variables, etc. This does not stop

 errors for incorrect use of supported attributes.

 -Wno-builtin-declaration-mismatch

 Warn if a built-in function is declared with the wrong signature. This warning

 is enabled by default.

 -Wno-builtin-macro-redefined

 Do not warn if certain built-in macros are redefined. This suppresses warnings

 for redefinition of "__TIMESTAMP__", "__TIME__", "__DATE__", "__FILE__", and

 "__BASE_FILE__".

 -Wstrict-prototypes (C and Objective-C only)

 Warn if a function is declared or defined without specifying the argument

 types. (An old-style function definition is permitted without a warning if Page 110/493

 preceded by a declaration that specifies the argument types.)

 -Wold-style-declaration (C and Objective-C only)

 Warn for obsolescent usages, according to the C Standard, in a declaration. For

 example, warn if storage-class specifiers like "static" are not the first

 things in a declaration. This warning is also enabled by -Wextra.

 -Wold-style-definition (C and Objective-C only)

 Warn if an old-style function definition is used. A warning is given even if

 there is a previous prototype.

 -Wmissing-parameter-type (C and Objective-C only)

 A function parameter is declared without a type specifier in K&R-style

 functions:

 void foo(bar) { }

 This warning is also enabled by -Wextra.

 -Wmissing-prototypes (C and Objective-C only)

 Warn if a global function is defined without a previous prototype declaration.

 This warning is issued even if the definition itself provides a prototype. Use

 this option to detect global functions that do not have a matching prototype

 declaration in a header file. This option is not valid for C++ because all

 function declarations provide prototypes and a non-matching declaration

 declares an overload rather than conflict with an earlier declaration. Use

 -Wmissing-declarations to detect missing declarations in C++.

 -Wmissing-declarations

 Warn if a global function is defined without a previous declaration. Do so

 even if the definition itself provides a prototype. Use this option to detect

 global functions that are not declared in header files. In C, no warnings are

 issued for functions with previous non-prototype declarations; use

 -Wmissing-prototypes to detect missing prototypes. In C++, no warnings are

 issued for function templates, or for inline functions, or for functions in

 anonymous namespaces.

 -Wmissing-field-initializers

 Warn if a structure's initializer has some fields missing. For example, the

 following code causes such a warning, because "x.h" is implicitly zero:

 struct s { int f, g, h; }; Page 111/493

 struct s x = { 3, 4 };

 This option does not warn about designated initializers, so the following

 modification does not trigger a warning:

 struct s { int f, g, h; };

 struct s x = { .f = 3, .g = 4 };

 In C++ this option does not warn either about the empty { } initializer, for

 example:

 struct s { int f, g, h; };

 s x = { };

 This warning is included in -Wextra. To get other -Wextra warnings without

 this one, use -Wextra -Wno-missing-field-initializers.

 -Wno-multichar

 Do not warn if a multicharacter constant ('FOOF') is used. Usually they

 indicate a typo in the user's code, as they have implementation-defined values,

 and should not be used in portable code.

 -Wnormalized=[none|id|nfc|nfkc]

 In ISO C and ISO C++, two identifiers are different if they are different

 sequences of characters. However, sometimes when characters outside the basic

 ASCII character set are used, you can have two different character sequences

 that look the same. To avoid confusion, the ISO 10646 standard sets out some

 normalization rules which when applied ensure that two sequences that look the

 same are turned into the same sequence. GCC can warn you if you are using

 identifiers that have not been normalized; this option controls that warning.

 There are four levels of warning supported by GCC. The default is

 -Wnormalized=nfc, which warns about any identifier that is not in the ISO 10646

 "C" normalized form, NFC. NFC is the recommended form for most uses. It is

 equivalent to -Wnormalized.

 Unfortunately, there are some characters allowed in identifiers by ISO C and

 ISO C++ that, when turned into NFC, are not allowed in identifiers. That is,

 there's no way to use these symbols in portable ISO C or C++ and have all your

 identifiers in NFC. -Wnormalized=id suppresses the warning for these

 characters. It is hoped that future versions of the standards involved will

 correct this, which is why this option is not the default. Page 112/493

 You can switch the warning off for all characters by writing -Wnormalized=none

 or -Wno-normalized. You should only do this if you are using some other

 normalization scheme (like "D"), because otherwise you can easily create bugs

 that are literally impossible to see.

 Some characters in ISO 10646 have distinct meanings but look identical in some

 fonts or display methodologies, especially once formatting has been applied.

 For instance "\u207F", "SUPERSCRIPT LATIN SMALL LETTER N", displays just like a

 regular "n" that has been placed in a superscript. ISO 10646 defines the NFKC

 normalization scheme to convert all these into a standard form as well, and GCC

 warns if your code is not in NFKC if you use -Wnormalized=nfkc. This warning

 is comparable to warning about every identifier that contains the letter O

 because it might be confused with the digit 0, and so is not the default, but

 may be useful as a local coding convention if the programming environment

 cannot be fixed to display these characters distinctly.

 -Wno-deprecated

 Do not warn about usage of deprecated features.

 -Wno-deprecated-declarations

 Do not warn about uses of functions, variables, and types marked as deprecated

 by using the "deprecated" attribute.

 -Wno-overflow

 Do not warn about compile-time overflow in constant expressions.

 -Wno-odr

 Warn about One Definition Rule violations during link-time optimization.

 Requires -flto-odr-type-merging to be enabled. Enabled by default.

 -Wopenmp-simd

 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus simd

 directive set by user. The -fsimd-cost-model=unlimited option can be used to

 relax the cost model.

 -Woverride-init (C and Objective-C only)

 Warn if an initialized field without side effects is overridden when using

 designated initializers.

 This warning is included in -Wextra. To get other -Wextra warnings without

 this one, use -Wextra -Wno-override-init. Page 113/493

 -Woverride-init-side-effects (C and Objective-C only)

 Warn if an initialized field with side effects is overridden when using

 designated initializers. This warning is enabled by default.

 -Wpacked

 Warn if a structure is given the packed attribute, but the packed attribute has

 no effect on the layout or size of the structure. Such structures may be mis-

 aligned for little benefit. For instance, in this code, the variable "f.x" in

 "struct bar" is misaligned even though "struct bar" does not itself have the

 packed attribute:

 struct foo {

 int x;

 char a, b, c, d;

 } __attribute__((packed));

 struct bar {

 char z;

 struct foo f;

 };

 -Wpacked-bitfield-compat

 The 4.1, 4.2 and 4.3 series of GCC ignore the "packed" attribute on bit-fields

 of type "char". This has been fixed in GCC 4.4 but the change can lead to

 differences in the structure layout. GCC informs you when the offset of such a

 field has changed in GCC 4.4. For example there is no longer a 4-bit padding

 between field "a" and "b" in this structure:

 struct foo

 {

 char a:4;

 char b:8;

 } __attribute__ ((packed));

 This warning is enabled by default. Use -Wno-packed-bitfield-compat to disable

 this warning.

 -Wpadded

 Warn if padding is included in a structure, either to align an element of the

 structure or to align the whole structure. Sometimes when this happens it is Page 114/493

 possible to rearrange the fields of the structure to reduce the padding and so

 make the structure smaller.

 -Wredundant-decls

 Warn if anything is declared more than once in the same scope, even in cases

 where multiple declaration is valid and changes nothing.

 -Wrestrict

 Warn when an argument passed to a restrict-qualified parameter aliases with

 another argument.

 -Wnested-externs (C and Objective-C only)

 Warn if an "extern" declaration is encountered within a function.

 -Wno-inherited-variadic-ctor

 Suppress warnings about use of C++11 inheriting constructors when the base

 class inherited from has a C variadic constructor; the warning is on by default

 because the ellipsis is not inherited.

 -Winline

 Warn if a function that is declared as inline cannot be inlined. Even with

 this option, the compiler does not warn about failures to inline functions

 declared in system headers.

 The compiler uses a variety of heuristics to determine whether or not to inline

 a function. For example, the compiler takes into account the size of the

 function being inlined and the amount of inlining that has already been done in

 the current function. Therefore, seemingly insignificant changes in the source

 program can cause the warnings produced by -Winline to appear or disappear.

 -Wno-invalid-offsetof (C++ and Objective-C++ only)

 Suppress warnings from applying the "offsetof" macro to a non-POD type.

 According to the 2014 ISO C++ standard, applying "offsetof" to a non-standard-

 layout type is undefined. In existing C++ implementations, however, "offsetof"

 typically gives meaningful results. This flag is for users who are aware that

 they are writing nonportable code and who have deliberately chosen to ignore

 the warning about it.

 The restrictions on "offsetof" may be relaxed in a future version of the C++

 standard.

 -Wint-in-bool-context Page 115/493

 Warn for suspicious use of integer values where boolean values are expected,

 such as conditional expressions (?:) using non-boolean integer constants in

 boolean context, like "if (a <= b ? 2 : 3)". Or left shifting of signed

 integers in boolean context, like "for (a = 0; 1 << a; a++);". Likewise for

 all kinds of multiplications regardless of the data type. This warning is

 enabled by -Wall.

 -Wno-int-to-pointer-cast

 Suppress warnings from casts to pointer type of an integer of a different size.

 In C++, casting to a pointer type of smaller size is an error. Wint-to-pointer-

 cast is enabled by default.

 -Wno-pointer-to-int-cast (C and Objective-C only)

 Suppress warnings from casts from a pointer to an integer type of a different

 size.

 -Winvalid-pch

 Warn if a precompiled header is found in the search path but cannot be used.

 -Wlong-long

 Warn if "long long" type is used. This is enabled by either -Wpedantic or

 -Wtraditional in ISO C90 and C++98 modes. To inhibit the warning messages, use

 -Wno-long-long.

 -Wvariadic-macros

 Warn if variadic macros are used in ISO C90 mode, or if the GNU alternate

 syntax is used in ISO C99 mode. This is enabled by either -Wpedantic or

 -Wtraditional. To inhibit the warning messages, use -Wno-variadic-macros.

 -Wvarargs

 Warn upon questionable usage of the macros used to handle variable arguments

 like "va_start". This is default. To inhibit the warning messages, use

 -Wno-varargs.

 -Wvector-operation-performance

 Warn if vector operation is not implemented via SIMD capabilities of the

 architecture. Mainly useful for the performance tuning. Vector operation can

 be implemented "piecewise", which means that the scalar operation is performed

 on every vector element; "in parallel", which means that the vector operation

 is implemented using scalars of wider type, which normally is more performance Page 116/493

 efficient; and "as a single scalar", which means that vector fits into a scalar

 type.

 -Wno-virtual-move-assign

 Suppress warnings about inheriting from a virtual base with a non-trivial C++11

 move assignment operator. This is dangerous because if the virtual base is

 reachable along more than one path, it is moved multiple times, which can mean

 both objects end up in the moved-from state. If the move assignment operator

 is written to avoid moving from a moved-from object, this warning can be

 disabled.

 -Wvla

 Warn if a variable-length array is used in the code. -Wno-vla prevents the

 -Wpedantic warning of the variable-length array.

 -Wvla-larger-than=n

 If this option is used, the compiler will warn on uses of variable-length

 arrays where the size is either unbounded, or bounded by an argument that can

 be larger than n bytes. This is similar to how -Walloca-larger-than=n works,

 but with variable-length arrays.

 Note that GCC may optimize small variable-length arrays of a known value into

 plain arrays, so this warning may not get triggered for such arrays.

 This warning is not enabled by -Wall, and is only active when -ftree-vrp is

 active (default for -O2 and above).

 See also -Walloca-larger-than=n.

 -Wvolatile-register-var

 Warn if a register variable is declared volatile. The volatile modifier does

 not inhibit all optimizations that may eliminate reads and/or writes to

 register variables. This warning is enabled by -Wall.

 -Wdisabled-optimization

 Warn if a requested optimization pass is disabled. This warning does not

 generally indicate that there is anything wrong with your code; it merely

 indicates that GCC's optimizers are unable to handle the code effectively.

 Often, the problem is that your code is too big or too complex; GCC refuses to

 optimize programs when the optimization itself is likely to take inordinate

 amounts of time. Page 117/493

 -Wpointer-sign (C and Objective-C only)

 Warn for pointer argument passing or assignment with different signedness.

 This option is only supported for C and Objective-C. It is implied by -Wall

 and by -Wpedantic, which can be disabled with -Wno-pointer-sign.

 -Wstack-protector

 This option is only active when -fstack-protector is active. It warns about

 functions that are not protected against stack smashing.

 -Woverlength-strings

 Warn about string constants that are longer than the "minimum maximum" length

 specified in the C standard. Modern compilers generally allow string constants

 that are much longer than the standard's minimum limit, but very portable

 programs should avoid using longer strings.

 The limit applies after string constant concatenation, and does not count the

 trailing NUL. In C90, the limit was 509 characters; in C99, it was raised to

 4095. C++98 does not specify a normative minimum maximum, so we do not

 diagnose overlength strings in C++.

 This option is implied by -Wpedantic, and can be disabled with

 -Wno-overlength-strings.

 -Wunsuffixed-float-constants (C and Objective-C only)

 Issue a warning for any floating constant that does not have a suffix. When

 used together with -Wsystem-headers it warns about such constants in system

 header files. This can be useful when preparing code to use with the

 "FLOAT_CONST_DECIMAL64" pragma from the decimal floating-point extension to

 C99.

 -Wno-designated-init (C and Objective-C only)

 Suppress warnings when a positional initializer is used to initialize a

 structure that has been marked with the "designated_init" attribute.

 -Whsa

 Issue a warning when HSAIL cannot be emitted for the compiled function or

 OpenMP construct.

 Options for Debugging Your Program

 To tell GCC to emit extra information for use by a debugger, in almost all cases

 you need only to add -g to your other options. Page 118/493

 GCC allows you to use -g with -O. The shortcuts taken by optimized code may

 occasionally be surprising: some variables you declared may not exist at all; flow

 of control may briefly move where you did not expect it; some statements may not be

 executed because they compute constant results or their values are already at hand;

 some statements may execute in different places because they have been moved out of

 loops. Nevertheless it is possible to debug optimized output. This makes it

 reasonable to use the optimizer for programs that might have bugs.

 If you are not using some other optimization option, consider using -Og with -g.

 With no -O option at all, some compiler passes that collect information useful for

 debugging do not run at all, so that -Og may result in a better debugging

 experience.

 -g Produce debugging information in the operating system's native format (stabs,

 COFF, XCOFF, or DWARF). GDB can work with this debugging information.

 On most systems that use stabs format, -g enables use of extra debugging

 information that only GDB can use; this extra information makes debugging work

 better in GDB but probably makes other debuggers crash or refuse to read the

 program. If you want to control for certain whether to generate the extra

 information, use -gstabs+, -gstabs, -gxcoff+, -gxcoff, or -gvms (see below).

 -ggdb

 Produce debugging information for use by GDB. This means to use the most

 expressive format available (DWARF, stabs, or the native format if neither of

 those are supported), including GDB extensions if at all possible.

 -gdwarf

 -gdwarf-version

 Produce debugging information in DWARF format (if that is supported). The

 value of version may be either 2, 3, 4 or 5; the default version for most

 targets is 4. DWARF Version 5 is only experimental.

 Note that with DWARF Version 2, some ports require and always use some non-

 conflicting DWARF 3 extensions in the unwind tables.

 Version 4 may require GDB 7.0 and -fvar-tracking-assignments for maximum

 benefit.

 GCC no longer supports DWARF Version 1, which is substantially different than

 Version 2 and later. For historical reasons, some other DWARF-related options Page 119/493

 (including -feliminate-dwarf2-dups and -fno-dwarf2-cfi-asm) retain a reference

 to DWARF Version 2 in their names, but apply to all currently-supported

 versions of DWARF.

 -gstabs

 Produce debugging information in stabs format (if that is supported), without

 GDB extensions. This is the format used by DBX on most BSD systems. On MIPS,

 Alpha and System V Release 4 systems this option produces stabs debugging

 output that is not understood by DBX or SDB. On System V Release 4 systems

 this option requires the GNU assembler.

 -gstabs+

 Produce debugging information in stabs format (if that is supported), using GNU

 extensions understood only by the GNU debugger (GDB). The use of these

 extensions is likely to make other debuggers crash or refuse to read the

 program.

 -gcoff

 Produce debugging information in COFF format (if that is supported). This is

 the format used by SDB on most System V systems prior to System V Release 4.

 -gxcoff

 Produce debugging information in XCOFF format (if that is supported). This is

 the format used by the DBX debugger on IBM RS/6000 systems.

 -gxcoff+

 Produce debugging information in XCOFF format (if that is supported), using GNU

 extensions understood only by the GNU debugger (GDB). The use of these

 extensions is likely to make other debuggers crash or refuse to read the

 program, and may cause assemblers other than the GNU assembler (GAS) to fail

 with an error.

 -gvms

 Produce debugging information in Alpha/VMS debug format (if that is supported).

 This is the format used by DEBUG on Alpha/VMS systems.

 -glevel

 -ggdblevel

 -gstabslevel

 -gcofflevel Page 120/493

 -gxcofflevel

 -gvmslevel

 Request debugging information and also use level to specify how much

 information. The default level is 2.

 Level 0 produces no debug information at all. Thus, -g0 negates -g.

 Level 1 produces minimal information, enough for making backtraces in parts of

 the program that you don't plan to debug. This includes descriptions of

 functions and external variables, and line number tables, but no information

 about local variables.

 Level 3 includes extra information, such as all the macro definitions present

 in the program. Some debuggers support macro expansion when you use -g3.

 -gdwarf does not accept a concatenated debug level, to avoid confusion with

 -gdwarf-level. Instead use an additional -glevel option to change the debug

 level for DWARF.

 -feliminate-unused-debug-symbols

 Produce debugging information in stabs format (if that is supported), for only

 symbols that are actually used.

 -femit-class-debug-always

 Instead of emitting debugging information for a C++ class in only one object

 file, emit it in all object files using the class. This option should be used

 only with debuggers that are unable to handle the way GCC normally emits

 debugging information for classes because using this option increases the size

 of debugging information by as much as a factor of two.

 -fno-merge-debug-strings

 Direct the linker to not merge together strings in the debugging information

 that are identical in different object files. Merging is not supported by all

 assemblers or linkers. Merging decreases the size of the debug information in

 the output file at the cost of increasing link processing time. Merging is

 enabled by default.

 -fdebug-prefix-map=old=new

 When compiling files in directory old, record debugging information describing

 them as in new instead.

 -fvar-tracking Page 121/493

 Run variable tracking pass. It computes where variables are stored at each

 position in code. Better debugging information is then generated (if the

 debugging information format supports this information).

 It is enabled by default when compiling with optimization (-Os, -O, -O2, ...),

 debugging information (-g) and the debug info format supports it.

 -fvar-tracking-assignments

 Annotate assignments to user variables early in the compilation and attempt to

 carry the annotations over throughout the compilation all the way to the end,

 in an attempt to improve debug information while optimizing. Use of -gdwarf-4

 is recommended along with it.

 It can be enabled even if var-tracking is disabled, in which case annotations

 are created and maintained, but discarded at the end. By default, this flag is

 enabled together with -fvar-tracking, except when selective scheduling is

 enabled.

 -gsplit-dwarf

 Separate as much DWARF debugging information as possible into a separate output

 file with the extension .dwo. This option allows the build system to avoid

 linking files with debug information. To be useful, this option requires a

 debugger capable of reading .dwo files.

 -gpubnames

 Generate DWARF ".debug_pubnames" and ".debug_pubtypes" sections.

 -ggnu-pubnames

 Generate ".debug_pubnames" and ".debug_pubtypes" sections in a format suitable

 for conversion into a GDB index. This option is only useful with a linker that

 can produce GDB index version 7.

 -fdebug-types-section

 When using DWARF Version 4 or higher, type DIEs can be put into their own

 ".debug_types" section instead of making them part of the ".debug_info"

 section. It is more efficient to put them in a separate comdat sections since

 the linker can then remove duplicates. But not all DWARF consumers support

 ".debug_types" sections yet and on some objects ".debug_types" produces larger

 instead of smaller debugging information.

 -grecord-gcc-switches Page 122/493

 -gno-record-gcc-switches

 This switch causes the command-line options used to invoke the compiler that

 may affect code generation to be appended to the DW_AT_producer attribute in

 DWARF debugging information. The options are concatenated with spaces

 separating them from each other and from the compiler version. It is enabled

 by default. See also -frecord-gcc-switches for another way of storing compiler

 options into the object file.

 -gstrict-dwarf

 Disallow using extensions of later DWARF standard version than selected with

 -gdwarf-version. On most targets using non-conflicting DWARF extensions from

 later standard versions is allowed.

 -gno-strict-dwarf

 Allow using extensions of later DWARF standard version than selected with

 -gdwarf-version.

 -gcolumn-info

 -gno-column-info

 Emit location column information into DWARF debugging information, rather than

 just file and line. This option is disabled by default.

 -gz[=type]

 Produce compressed debug sections in DWARF format, if that is supported. If

 type is not given, the default type depends on the capabilities of the

 assembler and linker used. type may be one of none (don't compress debug

 sections), zlib (use zlib compression in ELF gABI format), or zlib-gnu (use

 zlib compression in traditional GNU format). If the linker doesn't support

 writing compressed debug sections, the option is rejected. Otherwise, if the

 assembler does not support them, -gz is silently ignored when producing object

 files.

 -feliminate-dwarf2-dups

 Compress DWARF debugging information by eliminating duplicated information

 about each symbol. This option only makes sense when generating DWARF

 debugging information.

 -femit-struct-debug-baseonly

 Emit debug information for struct-like types only when the base name of the Page 123/493

 compilation source file matches the base name of file in which the struct is

 defined.

 This option substantially reduces the size of debugging information, but at

 significant potential loss in type information to the debugger. See

 -femit-struct-debug-reduced for a less aggressive option. See

 -femit-struct-debug-detailed for more detailed control.

 This option works only with DWARF debug output.

 -femit-struct-debug-reduced

 Emit debug information for struct-like types only when the base name of the

 compilation source file matches the base name of file in which the type is

 defined, unless the struct is a template or defined in a system header.

 This option significantly reduces the size of debugging information, with some

 potential loss in type information to the debugger. See

 -femit-struct-debug-baseonly for a more aggressive option. See

 -femit-struct-debug-detailed for more detailed control.

 This option works only with DWARF debug output.

 -femit-struct-debug-detailed[=spec-list]

 Specify the struct-like types for which the compiler generates debug

 information. The intent is to reduce duplicate struct debug information

 between different object files within the same program.

 This option is a detailed version of -femit-struct-debug-reduced and

 -femit-struct-debug-baseonly, which serves for most needs.

 A specification has the syntax[dir:|ind:][ord:|gen:](any|sys|base|none)

 The optional first word limits the specification to structs that are used

 directly (dir:) or used indirectly (ind:). A struct type is used directly when

 it is the type of a variable, member. Indirect uses arise through pointers to

 structs. That is, when use of an incomplete struct is valid, the use is

 indirect. An example is struct one direct; struct two * indirect;.

 The optional second word limits the specification to ordinary structs (ord:) or

 generic structs (gen:). Generic structs are a bit complicated to explain. For

 C++, these are non-explicit specializations of template classes, or non-

 template classes within the above. Other programming languages have generics,

 but -femit-struct-debug-detailed does not yet implement them. Page 124/493

 The third word specifies the source files for those structs for which the

 compiler should emit debug information. The values none and any have the

 normal meaning. The value base means that the base of name of the file in

 which the type declaration appears must match the base of the name of the main

 compilation file. In practice, this means that when compiling foo.c, debug

 information is generated for types declared in that file and foo.h, but not

 other header files. The value sys means those types satisfying base or

 declared in system or compiler headers.

 You may need to experiment to determine the best settings for your application.

 The default is -femit-struct-debug-detailed=all.

 This option works only with DWARF debug output.

 -fno-dwarf2-cfi-asm

 Emit DWARF unwind info as compiler generated ".eh_frame" section instead of

 using GAS ".cfi_*" directives.

 -fno-eliminate-unused-debug-types

 Normally, when producing DWARF output, GCC avoids producing debug symbol output

 for types that are nowhere used in the source file being compiled. Sometimes

 it is useful to have GCC emit debugging information for all types declared in a

 compilation unit, regardless of whether or not they are actually used in that

 compilation unit, for example if, in the debugger, you want to cast a value to

 a type that is not actually used in your program (but is declared). More

 often, however, this results in a significant amount of wasted space.

 Options That Control Optimization

 These options control various sorts of optimizations.

 Without any optimization option, the compiler's goal is to reduce the cost of

 compilation and to make debugging produce the expected results. Statements are

 independent: if you stop the program with a breakpoint between statements, you can

 then assign a new value to any variable or change the program counter to any other

 statement in the function and get exactly the results you expect from the source

 code.

 Turning on optimization flags makes the compiler attempt to improve the performance

 and/or code size at the expense of compilation time and possibly the ability to

 debug the program. Page 125/493

 The compiler performs optimization based on the knowledge it has of the program.

 Compiling multiple files at once to a single output file mode allows the compiler

 to use information gained from all of the files when compiling each of them.

 Not all optimizations are controlled directly by a flag. Only optimizations that

 have a flag are listed in this section.

 Most optimizations are only enabled if an -O level is set on the command line.

 Otherwise they are disabled, even if individual optimization flags are specified.

 Depending on the target and how GCC was configured, a slightly different set of

 optimizations may be enabled at each -O level than those listed here. You can

 invoke GCC with -Q --help=optimizers to find out the exact set of optimizations

 that are enabled at each level.

 -O

 -O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more

 memory for a large function.

 With -O, the compiler tries to reduce code size and execution time, without

 performing any optimizations that take a great deal of compilation time.

 -O turns on the following optimization flags:

 -fauto-inc-dec -fbranch-count-reg -fcombine-stack-adjustments -fcompare-elim

 -fcprop-registers -fdce -fdefer-pop -fdelayed-branch -fdse -fforward-propagate

 -fguess-branch-probability -fif-conversion2 -fif-conversion

 -finline-functions-called-once -fipa-pure-const -fipa-profile -fipa-reference

 -fmerge-constants -fmove-loop-invariants -freorder-blocks -fshrink-wrap

 -fshrink-wrap-separate -fsplit-wide-types -fssa-backprop -fssa-phiopt

 -ftree-bit-ccp -ftree-ccp -ftree-ch -ftree-coalesce-vars -ftree-copy-prop

 -ftree-dce -ftree-dominator-opts -ftree-dse -ftree-forwprop -ftree-fre

 -ftree-phiprop -ftree-sink -ftree-slsr -ftree-sra -ftree-pta -ftree-ter

 -funit-at-a-time

 -O also turns on -fomit-frame-pointer on machines where doing so does not

 interfere with debugging.

 -O2 Optimize even more. GCC performs nearly all supported optimizations that do

 not involve a space-speed tradeoff. As compared to -O, this option increases

 both compilation time and the performance of the generated code.

 -O2 turns on all optimization flags specified by -O. It also turns on the Page 126/493

 following optimization flags: -fthread-jumps -falign-functions -falign-jumps

 -falign-loops -falign-labels -fcaller-saves -fcrossjumping -fcse-follow-jumps

 -fcse-skip-blocks -fdelete-null-pointer-checks -fdevirtualize

 -fdevirtualize-speculatively -fexpensive-optimizations -fgcse -fgcse-lm

 -fhoist-adjacent-loads -finline-small-functions -findirect-inlining -fipa-cp

 -fipa-bit-cp -fipa-vrp -fipa-sra -fipa-icf

 -fisolate-erroneous-paths-dereference -flra-remat -foptimize-sibling-calls

 -foptimize-strlen -fpartial-inlining -fpeephole2 -freorder-blocks-algorithm=stc

 -freorder-blocks-and-partition -freorder-functions -frerun-cse-after-loop

 -fsched-interblock -fsched-spec -fschedule-insns -fschedule-insns2

 -fstore-merging -fstrict-aliasing -fstrict-overflow -ftree-builtin-call-dce

 -ftree-switch-conversion -ftree-tail-merge -fcode-hoisting -ftree-pre

 -ftree-vrp -fipa-ra

 Please note the warning under -fgcse about invoking -O2 on programs that use

 computed gotos.

 NOTE: In Ubuntu 8.10 and later versions, -D_FORTIFY_SOURCE=2 is set by default,

 and is activated when -O is set to 2 or higher. This enables additional

 compile-time and run-time checks for several libc functions. To disable,

 specify either -U_FORTIFY_SOURCE or -D_FORTIFY_SOURCE=0.

 -O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 and also

 turns on the -finline-functions, -funswitch-loops, -fpredictive-commoning,

 -fgcse-after-reload, -ftree-loop-vectorize, -ftree-loop-distribute-patterns,

 -fsplit-paths -ftree-slp-vectorize, -fvect-cost-model, -ftree-partial-pre,

 -fpeel-loops and -fipa-cp-clone options.

 -O0 Reduce compilation time and make debugging produce the expected results. This

 is the default.

 -Os Optimize for size. -Os enables all -O2 optimizations that do not typically

 increase code size.

 -Os disables the following optimization flags: -falign-functions -falign-jumps

 -falign-loops -falign-labels -fprefetch-loop-arrays

 It also enables -finline-functions, causes the compiler to tune for code size

 rather than execution speed, and performs further optimizations designed to

 reduce code size. Page 127/493

 -Ofast

 Disregard strict standards compliance. -Ofast enables all -O3 optimizations.

 It also enables optimizations that are not valid for all standard-compliant

 programs. It turns on -ffast-math and the Fortran-specific -fno-protect-parens

 and -fstack-arrays.

 -Og Optimize debugging experience. -Og enables optimizations that do not interfere

 with debugging. It should be the optimization level of choice for the standard

 edit-compile-debug cycle, offering a reasonable level of optimization while

 maintaining fast compilation and a good debugging experience.

 If you use multiple -O options, with or without level numbers, the last such option

 is the one that is effective.

 Options of the form -fflag specify machine-independent flags. Most flags have both

 positive and negative forms; the negative form of -ffoo is -fno-foo. In the table

 below, only one of the forms is listed---the one you typically use. You can figure

 out the other form by either removing no- or adding it.

 The following options control specific optimizations. They are either activated by

 -O options or are related to ones that are. You can use the following flags in the

 rare cases when "fine-tuning" of optimizations to be performed is desired.

 -fno-defer-pop

 Always pop the arguments to each function call as soon as that function

 returns. For machines that must pop arguments after a function call, the

 compiler normally lets arguments accumulate on the stack for several function

 calls and pops them all at once.

 Disabled at levels -O, -O2, -O3, -Os.

 -fforward-propagate

 Perform a forward propagation pass on RTL. The pass tries to combine two

 instructions and checks if the result can be simplified. If loop unrolling is

 active, two passes are performed and the second is scheduled after loop

 unrolling.

 This option is enabled by default at optimization levels -O, -O2, -O3, -Os.

 -ffp-contract=style

 -ffp-contract=off disables floating-point expression contraction.

 -ffp-contract=fast enables floating-point expression contraction such as Page 128/493

 forming of fused multiply-add operations if the target has native support for

 them. -ffp-contract=on enables floating-point expression contraction if

 allowed by the language standard. This is currently not implemented and

 treated equal to -ffp-contract=off.

 The default is -ffp-contract=fast.

 -fomit-frame-pointer

 Don't keep the frame pointer in a register for functions that don't need one.

 This avoids the instructions to save, set up and restore frame pointers; it

 also makes an extra register available in many functions. It also makes

 debugging impossible on some machines.

 On some machines, such as the VAX, this flag has no effect, because the

 standard calling sequence automatically handles the frame pointer and nothing

 is saved by pretending it doesn't exist. The machine-description macro

 "FRAME_POINTER_REQUIRED" controls whether a target machine supports this flag.

 The default setting (when not optimizing for size) for 32-bit GNU/Linux x86 and

 32-bit Darwin x86 targets is -fomit-frame-pointer. You can configure GCC with

 the --enable-frame-pointer configure option to change the default.

 Enabled at levels -O, -O2, -O3, -Os.

 -foptimize-sibling-calls

 Optimize sibling and tail recursive calls.

 Enabled at levels -O2, -O3, -Os.

 -foptimize-strlen

 Optimize various standard C string functions (e.g. "strlen", "strchr" or

 "strcpy") and their "_FORTIFY_SOURCE" counterparts into faster alternatives.

 Enabled at levels -O2, -O3.

 -fno-inline

 Do not expand any functions inline apart from those marked with the

 "always_inline" attribute. This is the default when not optimizing.

 Single functions can be exempted from inlining by marking them with the

 "noinline" attribute.

 -finline-small-functions

 Integrate functions into their callers when their body is smaller than expected

 function call code (so overall size of program gets smaller). The compiler Page 129/493

 heuristically decides which functions are simple enough to be worth integrating

 in this way. This inlining applies to all functions, even those not declared

 inline.

 Enabled at level -O2, -O3, -Os.

 -findirect-inlining

 Inline also indirect calls that are discovered to be known at compile time

 thanks to previous inlining. This option has any effect only when inlining

 itself is turned on by the -finline-functions or -finline-small-functions

 options.

 Enabled at level -O2, -O3, -Os.

 -finline-functions

 Consider all functions for inlining, even if they are not declared inline. The

 compiler heuristically decides which functions are worth integrating in this

 way.

 If all calls to a given function are integrated, and the function is declared

 "static", then the function is normally not output as assembler code in its own

 right.

 Enabled at levels -O3, -Os. Also enabled by -fprofile-use and -fauto-profile.

 -finline-functions-called-once

 Consider all "static" functions called once for inlining into their caller even

 if they are not marked "inline". If a call to a given function is integrated,

 then the function is not output as assembler code in its own right.

 Enabled at levels -O1, -O2, -O3 and -Os.

 -fearly-inlining

 Inline functions marked by "always_inline" and functions whose body seems

 smaller than the function call overhead early before doing -fprofile-generate

 instrumentation and real inlining pass. Doing so makes profiling significantly

 cheaper and usually inlining faster on programs having large chains of nested

 wrapper functions.

 Enabled by default.

 -fipa-sra

 Perform interprocedural scalar replacement of aggregates, removal of unused

 parameters and replacement of parameters passed by reference by parameters Page 130/493

 passed by value.

 Enabled at levels -O2, -O3 and -Os.

 -finline-limit=n

 By default, GCC limits the size of functions that can be inlined. This flag

 allows coarse control of this limit. n is the size of functions that can be

 inlined in number of pseudo instructions.

 Inlining is actually controlled by a number of parameters, which may be

 specified individually by using --param name=value. The -finline-limit=n

 option sets some of these parameters as follows:

 max-inline-insns-single

 is set to n/2.

 max-inline-insns-auto

 is set to n/2.

 See below for a documentation of the individual parameters controlling inlining

 and for the defaults of these parameters.

 Note: there may be no value to -finline-limit that results in default behavior.

 Note: pseudo instruction represents, in this particular context, an abstract

 measurement of function's size. In no way does it represent a count of

 assembly instructions and as such its exact meaning might change from one

 release to an another.

 -fno-keep-inline-dllexport

 This is a more fine-grained version of -fkeep-inline-functions, which applies

 only to functions that are declared using the "dllexport" attribute or

 declspec.

 -fkeep-inline-functions

 In C, emit "static" functions that are declared "inline" into the object file,

 even if the function has been inlined into all of its callers. This switch

 does not affect functions using the "extern inline" extension in GNU C90. In

 C++, emit any and all inline functions into the object file.

 -fkeep-static-functions

 Emit "static" functions into the object file, even if the function is never

 used.

 -fkeep-static-consts Page 131/493

 Emit variables declared "static const" when optimization isn't turned on, even

 if the variables aren't referenced.

 GCC enables this option by default. If you want to force the compiler to check

 if a variable is referenced, regardless of whether or not optimization is

 turned on, use the -fno-keep-static-consts option.

 -fmerge-constants

 Attempt to merge identical constants (string constants and floating-point

 constants) across compilation units.

 This option is the default for optimized compilation if the assembler and

 linker support it. Use -fno-merge-constants to inhibit this behavior.

 Enabled at levels -O, -O2, -O3, -Os.

 -fmerge-all-constants

 Attempt to merge identical constants and identical variables.

 This option implies -fmerge-constants. In addition to -fmerge-constants this

 considers e.g. even constant initialized arrays or initialized constant

 variables with integral or floating-point types. Languages like C or C++

 require each variable, including multiple instances of the same variable in

 recursive calls, to have distinct locations, so using this option results in

 non-conforming behavior.

 -fmodulo-sched

 Perform swing modulo scheduling immediately before the first scheduling pass.

 This pass looks at innermost loops and reorders their instructions by

 overlapping different iterations.

 -fmodulo-sched-allow-regmoves

 Perform more aggressive SMS-based modulo scheduling with register moves

 allowed. By setting this flag certain anti-dependences edges are deleted,

 which triggers the generation of reg-moves based on the life-range analysis.

 This option is effective only with -fmodulo-sched enabled.

 -fno-branch-count-reg

 Avoid running a pass scanning for opportunities to use "decrement and branch"

 instructions on a count register instead of generating sequences of

 instructions that decrement a register, compare it against zero, and then

 branch based upon the result. This option is only meaningful on architectures Page 132/493

 that support such instructions, which include x86, PowerPC, IA-64 and S/390.

 Note that the -fno-branch-count-reg option doesn't remove the decrement and

 branch instructions from the generated instruction stream introduced by other

 optimization passes.

 Enabled by default at -O1 and higher.

 The default is -fbranch-count-reg.

 -fno-function-cse

 Do not put function addresses in registers; make each instruction that calls a

 constant function contain the function's address explicitly.

 This option results in less efficient code, but some strange hacks that alter

 the assembler output may be confused by the optimizations performed when this

 option is not used.

 The default is -ffunction-cse

 -fno-zero-initialized-in-bss

 If the target supports a BSS section, GCC by default puts variables that are

 initialized to zero into BSS. This can save space in the resulting code.

 This option turns off this behavior because some programs explicitly rely on

 variables going to the data section---e.g., so that the resulting executable

 can find the beginning of that section and/or make assumptions based on that.

 The default is -fzero-initialized-in-bss.

 -fthread-jumps

 Perform optimizations that check to see if a jump branches to a location where

 another comparison subsumed by the first is found. If so, the first branch is

 redirected to either the destination of the second branch or a point

 immediately following it, depending on whether the condition is known to be

 true or false.

 Enabled at levels -O2, -O3, -Os.

 -fsplit-wide-types

 When using a type that occupies multiple registers, such as "long long" on a

 32-bit system, split the registers apart and allocate them independently. This

 normally generates better code for those types, but may make debugging more

 difficult.

 Enabled at levels -O, -O2, -O3, -Os. Page 133/493

 -fcse-follow-jumps

 In common subexpression elimination (CSE), scan through jump instructions when

 the target of the jump is not reached by any other path. For example, when CSE

 encounters an "if" statement with an "else" clause, CSE follows the jump when

 the condition tested is false.

 Enabled at levels -O2, -O3, -Os.

 -fcse-skip-blocks

 This is similar to -fcse-follow-jumps, but causes CSE to follow jumps that

 conditionally skip over blocks. When CSE encounters a simple "if" statement

 with no else clause, -fcse-skip-blocks causes CSE to follow the jump around the

 body of the "if".

 Enabled at levels -O2, -O3, -Os.

 -frerun-cse-after-loop

 Re-run common subexpression elimination after loop optimizations are performed.

 Enabled at levels -O2, -O3, -Os.

 -fgcse

 Perform a global common subexpression elimination pass. This pass also

 performs global constant and copy propagation.

 Note: When compiling a program using computed gotos, a GCC extension, you may

 get better run-time performance if you disable the global common subexpression

 elimination pass by adding -fno-gcse to the command line.

 Enabled at levels -O2, -O3, -Os.

 -fgcse-lm

 When -fgcse-lm is enabled, global common subexpression elimination attempts to

 move loads that are only killed by stores into themselves. This allows a loop

 containing a load/store sequence to be changed to a load outside the loop, and

 a copy/store within the loop.

 Enabled by default when -fgcse is enabled.

 -fgcse-sm

 When -fgcse-sm is enabled, a store motion pass is run after global common

 subexpression elimination. This pass attempts to move stores out of loops.

 When used in conjunction with -fgcse-lm, loops containing a load/store sequence

 can be changed to a load before the loop and a store after the loop. Page 134/493

 Not enabled at any optimization level.

 -fgcse-las

 When -fgcse-las is enabled, the global common subexpression elimination pass

 eliminates redundant loads that come after stores to the same memory location

 (both partial and full redundancies).

 Not enabled at any optimization level.

 -fgcse-after-reload

 When -fgcse-after-reload is enabled, a redundant load elimination pass is

 performed after reload. The purpose of this pass is to clean up redundant

 spilling.

 -faggressive-loop-optimizations

 This option tells the loop optimizer to use language constraints to derive

 bounds for the number of iterations of a loop. This assumes that loop code

 does not invoke undefined behavior by for example causing signed integer

 overflows or out-of-bound array accesses. The bounds for the number of

 iterations of a loop are used to guide loop unrolling and peeling and loop exit

 test optimizations. This option is enabled by default.

 -funconstrained-commons

 This option tells the compiler that variables declared in common blocks (e.g.

 Fortran) may later be overridden with longer trailing arrays. This prevents

 certain optimizations that depend on knowing the array bounds.

 -fcrossjumping

 Perform cross-jumping transformation. This transformation unifies equivalent

 code and saves code size. The resulting code may or may not perform better

 than without cross-jumping.

 Enabled at levels -O2, -O3, -Os.

 -fauto-inc-dec

 Combine increments or decrements of addresses with memory accesses. This pass

 is always skipped on architectures that do not have instructions to support

 this. Enabled by default at -O and higher on architectures that support this.

 -fdce

 Perform dead code elimination (DCE) on RTL. Enabled by default at -O and

 higher. Page 135/493

 -fdse

 Perform dead store elimination (DSE) on RTL. Enabled by default at -O and

 higher.

 -fif-conversion

 Attempt to transform conditional jumps into branch-less equivalents. This

 includes use of conditional moves, min, max, set flags and abs instructions,

 and some tricks doable by standard arithmetics. The use of conditional

 execution on chips where it is available is controlled by -fif-conversion2.

 Enabled at levels -O, -O2, -O3, -Os.

 -fif-conversion2

 Use conditional execution (where available) to transform conditional jumps into

 branch-less equivalents.

 Enabled at levels -O, -O2, -O3, -Os.

 -fdeclone-ctor-dtor

 The C++ ABI requires multiple entry points for constructors and destructors:

 one for a base subobject, one for a complete object, and one for a virtual

 destructor that calls operator delete afterwards. For a hierarchy with virtual

 bases, the base and complete variants are clones, which means two copies of the

 function. With this option, the base and complete variants are changed to be

 thunks that call a common implementation.

 Enabled by -Os.

 -fdelete-null-pointer-checks

 Assume that programs cannot safely dereference null pointers, and that no code

 or data element resides at address zero. This option enables simple constant

 folding optimizations at all optimization levels. In addition, other

 optimization passes in GCC use this flag to control global dataflow analyses

 that eliminate useless checks for null pointers; these assume that a memory

 access to address zero always results in a trap, so that if a pointer is

 checked after it has already been dereferenced, it cannot be null.

 Note however that in some environments this assumption is not true. Use

 -fno-delete-null-pointer-checks to disable this optimization for programs that

 depend on that behavior.

 This option is enabled by default on most targets. On Nios II ELF, it defaults Page 136/493

 to off. On AVR and CR16, this option is completely disabled.

 Passes that use the dataflow information are enabled independently at different

 optimization levels.

 -fdevirtualize

 Attempt to convert calls to virtual functions to direct calls. This is done

 both within a procedure and interprocedurally as part of indirect inlining

 (-findirect-inlining) and interprocedural constant propagation (-fipa-cp).

 Enabled at levels -O2, -O3, -Os.

 -fdevirtualize-speculatively

 Attempt to convert calls to virtual functions to speculative direct calls.

 Based on the analysis of the type inheritance graph, determine for a given call

 the set of likely targets. If the set is small, preferably of size 1, change

 the call into a conditional deciding between direct and indirect calls. The

 speculative calls enable more optimizations, such as inlining. When they seem

 useless after further optimization, they are converted back into original form.

 -fdevirtualize-at-ltrans

 Stream extra information needed for aggressive devirtualization when running

 the link-time optimizer in local transformation mode. This option enables more

 devirtualization but significantly increases the size of streamed data. For

 this reason it is disabled by default.

 -fexpensive-optimizations

 Perform a number of minor optimizations that are relatively expensive.

 Enabled at levels -O2, -O3, -Os.

 -free

 Attempt to remove redundant extension instructions. This is especially helpful

 for the x86-64 architecture, which implicitly zero-extends in 64-bit registers

 after writing to their lower 32-bit half.

 Enabled for Alpha, AArch64 and x86 at levels -O2, -O3, -Os.

 -fno-lifetime-dse

 In C++ the value of an object is only affected by changes within its lifetime:

 when the constructor begins, the object has an indeterminate value, and any

 changes during the lifetime of the object are dead when the object is

 destroyed. Normally dead store elimination will take advantage of this; if Page 137/493

 your code relies on the value of the object storage persisting beyond the

 lifetime of the object, you can use this flag to disable this optimization. To

 preserve stores before the constructor starts (e.g. because your operator new

 clears the object storage) but still treat the object as dead after the

 destructor you, can use -flifetime-dse=1. The default behavior can be

 explicitly selected with -flifetime-dse=2. -flifetime-dse=0 is equivalent to

 -fno-lifetime-dse.

 -flive-range-shrinkage

 Attempt to decrease register pressure through register live range shrinkage.

 This is helpful for fast processors with small or moderate size register sets.

 -fira-algorithm=algorithm

 Use the specified coloring algorithm for the integrated register allocator.

 The algorithm argument can be priority, which specifies Chow's priority

 coloring, or CB, which specifies Chaitin-Briggs coloring. Chaitin-Briggs

 coloring is not implemented for all architectures, but for those targets that

 do support it, it is the default because it generates better code.

 -fira-region=region

 Use specified regions for the integrated register allocator. The region

 argument should be one of the following:

 all Use all loops as register allocation regions. This can give the best

 results for machines with a small and/or irregular register set.

 mixed

 Use all loops except for loops with small register pressure as the regions.

 This value usually gives the best results in most cases and for most

 architectures, and is enabled by default when compiling with optimization

 for speed (-O, -O2, ...).

 one Use all functions as a single region. This typically results in the

 smallest code size, and is enabled by default for -Os or -O0.

 -fira-hoist-pressure

 Use IRA to evaluate register pressure in the code hoisting pass for decisions

 to hoist expressions. This option usually results in smaller code, but it can

 slow the compiler down.

 This option is enabled at level -Os for all targets. Page 138/493

 -fira-loop-pressure

 Use IRA to evaluate register pressure in loops for decisions to move loop

 invariants. This option usually results in generation of faster and smaller

 code on machines with large register files (>= 32 registers), but it can slow

 the compiler down.

 This option is enabled at level -O3 for some targets.

 -fno-ira-share-save-slots

 Disable sharing of stack slots used for saving call-used hard registers living

 through a call. Each hard register gets a separate stack slot, and as a result

 function stack frames are larger.

 -fno-ira-share-spill-slots

 Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-

 register that does not get a hard register gets a separate stack slot, and as a

 result function stack frames are larger.

 -flra-remat

 Enable CFG-sensitive rematerialization in LRA. Instead of loading values of

 spilled pseudos, LRA tries to rematerialize (recalculate) values if it is

 profitable.

 Enabled at levels -O2, -O3, -Os.

 -fdelayed-branch

 If supported for the target machine, attempt to reorder instructions to exploit

 instruction slots available after delayed branch instructions.

 Enabled at levels -O, -O2, -O3, -Os.

 -fschedule-insns

 If supported for the target machine, attempt to reorder instructions to

 eliminate execution stalls due to required data being unavailable. This helps

 machines that have slow floating point or memory load instructions by allowing

 other instructions to be issued until the result of the load or floating-point

 instruction is required.

 Enabled at levels -O2, -O3.

 -fschedule-insns2

 Similar to -fschedule-insns, but requests an additional pass of instruction

 scheduling after register allocation has been done. This is especially useful Page 139/493

 on machines with a relatively small number of registers and where memory load

 instructions take more than one cycle.

 Enabled at levels -O2, -O3, -Os.

 -fno-sched-interblock

 Don't schedule instructions across basic blocks. This is normally enabled by

 default when scheduling before register allocation, i.e. with -fschedule-insns

 or at -O2 or higher.

 -fno-sched-spec

 Don't allow speculative motion of non-load instructions. This is normally

 enabled by default when scheduling before register allocation, i.e. with

 -fschedule-insns or at -O2 or higher.

 -fsched-pressure

 Enable register pressure sensitive insn scheduling before register allocation.

 This only makes sense when scheduling before register allocation is enabled,

 i.e. with -fschedule-insns or at -O2 or higher. Usage of this option can

 improve the generated code and decrease its size by preventing register

 pressure increase above the number of available hard registers and subsequent

 spills in register allocation.

 -fsched-spec-load

 Allow speculative motion of some load instructions. This only makes sense when

 scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or

 higher.

 -fsched-spec-load-dangerous

 Allow speculative motion of more load instructions. This only makes sense when

 scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or

 higher.

 -fsched-stalled-insns

 -fsched-stalled-insns=n

 Define how many insns (if any) can be moved prematurely from the queue of

 stalled insns into the ready list during the second scheduling pass.

 -fno-sched-stalled-insns means that no insns are moved prematurely,

 -fsched-stalled-insns=0 means there is no limit on how many queued insns can be

 moved prematurely. -fsched-stalled-insns without a value is equivalent to Page 140/493

 -fsched-stalled-insns=1.

 -fsched-stalled-insns-dep

 -fsched-stalled-insns-dep=n

 Define how many insn groups (cycles) are examined for a dependency on a stalled

 insn that is a candidate for premature removal from the queue of stalled insns.

 This has an effect only during the second scheduling pass, and only if

 -fsched-stalled-insns is used. -fno-sched-stalled-insns-dep is equivalent to

 -fsched-stalled-insns-dep=0. -fsched-stalled-insns-dep without a value is

 equivalent to -fsched-stalled-insns-dep=1.

 -fsched2-use-superblocks

 When scheduling after register allocation, use superblock scheduling. This

 allows motion across basic block boundaries, resulting in faster schedules.

 This option is experimental, as not all machine descriptions used by GCC model

 the CPU closely enough to avoid unreliable results from the algorithm.

 This only makes sense when scheduling after register allocation, i.e. with

 -fschedule-insns2 or at -O2 or higher.

 -fsched-group-heuristic

 Enable the group heuristic in the scheduler. This heuristic favors the

 instruction that belongs to a schedule group. This is enabled by default when

 scheduling is enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at

 -O2 or higher.

 -fsched-critical-path-heuristic

 Enable the critical-path heuristic in the scheduler. This heuristic favors

 instructions on the critical path. This is enabled by default when scheduling

 is enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at -O2 or

 higher.

 -fsched-spec-insn-heuristic

 Enable the speculative instruction heuristic in the scheduler. This heuristic

 favors speculative instructions with greater dependency weakness. This is

 enabled by default when scheduling is enabled, i.e. with -fschedule-insns or

 -fschedule-insns2 or at -O2 or higher.

 -fsched-rank-heuristic

 Enable the rank heuristic in the scheduler. This heuristic favors the Page 141/493

 instruction belonging to a basic block with greater size or frequency. This is

 enabled by default when scheduling is enabled, i.e. with -fschedule-insns or

 -fschedule-insns2 or at -O2 or higher.

 -fsched-last-insn-heuristic

 Enable the last-instruction heuristic in the scheduler. This heuristic favors

 the instruction that is less dependent on the last instruction scheduled. This

 is enabled by default when scheduling is enabled, i.e. with -fschedule-insns or

 -fschedule-insns2 or at -O2 or higher.

 -fsched-dep-count-heuristic

 Enable the dependent-count heuristic in the scheduler. This heuristic favors

 the instruction that has more instructions depending on it. This is enabled by

 default when scheduling is enabled, i.e. with -fschedule-insns or

 -fschedule-insns2 or at -O2 or higher.

 -freschedule-modulo-scheduled-loops

 Modulo scheduling is performed before traditional scheduling. If a loop is

 modulo scheduled, later scheduling passes may change its schedule. Use this

 option to control that behavior.

 -fselective-scheduling

 Schedule instructions using selective scheduling algorithm. Selective

 scheduling runs instead of the first scheduler pass.

 -fselective-scheduling2

 Schedule instructions using selective scheduling algorithm. Selective

 scheduling runs instead of the second scheduler pass.

 -fsel-sched-pipelining

 Enable software pipelining of innermost loops during selective scheduling.

 This option has no effect unless one of -fselective-scheduling or

 -fselective-scheduling2 is turned on.

 -fsel-sched-pipelining-outer-loops

 When pipelining loops during selective scheduling, also pipeline outer loops.

 This option has no effect unless -fsel-sched-pipelining is turned on.

 -fsemantic-interposition

 Some object formats, like ELF, allow interposing of symbols by the dynamic

 linker. This means that for symbols exported from the DSO, the compiler cannot Page 142/493

 perform interprocedural propagation, inlining and other optimizations in

 anticipation that the function or variable in question may change. While this

 feature is useful, for example, to rewrite memory allocation functions by a

 debugging implementation, it is expensive in the terms of code quality. With

 -fno-semantic-interposition the compiler assumes that if interposition happens

 for functions the overwriting function will have precisely the same semantics

 (and side effects). Similarly if interposition happens for variables, the

 constructor of the variable will be the same. The flag has no effect for

 functions explicitly declared inline (where it is never allowed for

 interposition to change semantics) and for symbols explicitly declared weak.

 -fshrink-wrap

 Emit function prologues only before parts of the function that need it, rather

 than at the top of the function. This flag is enabled by default at -O and

 higher.

 -fshrink-wrap-separate

 Shrink-wrap separate parts of the prologue and epilogue separately, so that

 those parts are only executed when needed. This option is on by default, but

 has no effect unless -fshrink-wrap is also turned on and the target supports

 this.

 -fcaller-saves

 Enable allocation of values to registers that are clobbered by function calls,

 by emitting extra instructions to save and restore the registers around such

 calls. Such allocation is done only when it seems to result in better code.

 This option is always enabled by default on certain machines, usually those

 which have no call-preserved registers to use instead.

 Enabled at levels -O2, -O3, -Os.

 -fcombine-stack-adjustments

 Tracks stack adjustments (pushes and pops) and stack memory references and then

 tries to find ways to combine them.

 Enabled by default at -O1 and higher.

 -fipa-ra

 Use caller save registers for allocation if those registers are not used by any

 called function. In that case it is not necessary to save and restore them Page 143/493

 around calls. This is only possible if called functions are part of same

 compilation unit as current function and they are compiled before it.

 Enabled at levels -O2, -O3, -Os, however the option is disabled if generated

 code will be instrumented for profiling (-p, or -pg) or if callee's register

 usage cannot be known exactly (this happens on targets that do not expose

 prologues and epilogues in RTL).

 -fconserve-stack

 Attempt to minimize stack usage. The compiler attempts to use less stack

 space, even if that makes the program slower. This option implies setting the

 large-stack-frame parameter to 100 and the large-stack-frame-growth parameter

 to 400.

 -ftree-reassoc

 Perform reassociation on trees. This flag is enabled by default at -O and

 higher.

 -fcode-hoisting

 Perform code hoisting. Code hoisting tries to move the evaluation of

 expressions executed on all paths to the function exit as early as possible.

 This is especially useful as a code size optimization, but it often helps for

 code speed as well. This flag is enabled by default at -O2 and higher.

 -ftree-pre

 Perform partial redundancy elimination (PRE) on trees. This flag is enabled by

 default at -O2 and -O3.

 -ftree-partial-pre

 Make partial redundancy elimination (PRE) more aggressive. This flag is

 enabled by default at -O3.

 -ftree-forwprop

 Perform forward propagation on trees. This flag is enabled by default at -O

 and higher.

 -ftree-fre

 Perform full redundancy elimination (FRE) on trees. The difference between FRE

 and PRE is that FRE only considers expressions that are computed on all paths

 leading to the redundant computation. This analysis is faster than PRE, though

 it exposes fewer redundancies. This flag is enabled by default at -O and Page 144/493

 higher.

 -ftree-phiprop

 Perform hoisting of loads from conditional pointers on trees. This pass is

 enabled by default at -O and higher.

 -fhoist-adjacent-loads

 Speculatively hoist loads from both branches of an if-then-else if the loads

 are from adjacent locations in the same structure and the target architecture

 has a conditional move instruction. This flag is enabled by default at -O2 and

 higher.

 -ftree-copy-prop

 Perform copy propagation on trees. This pass eliminates unnecessary copy

 operations. This flag is enabled by default at -O and higher.

 -fipa-pure-const

 Discover which functions are pure or constant. Enabled by default at -O and

 higher.

 -fipa-reference

 Discover which static variables do not escape the compilation unit. Enabled by

 default at -O and higher.

 -fipa-pta

 Perform interprocedural pointer analysis and interprocedural modification and

 reference analysis. This option can cause excessive memory and compile-time

 usage on large compilation units. It is not enabled by default at any

 optimization level.

 -fipa-profile

 Perform interprocedural profile propagation. The functions called only from

 cold functions are marked as cold. Also functions executed once (such as

 "cold", "noreturn", static constructors or destructors) are identified. Cold

 functions and loop less parts of functions executed once are then optimized for

 size. Enabled by default at -O and higher.

 -fipa-cp

 Perform interprocedural constant propagation. This optimization analyzes the

 program to determine when values passed to functions are constants and then

 optimizes accordingly. This optimization can substantially increase Page 145/493

 performance if the application has constants passed to functions. This flag is

 enabled by default at -O2, -Os and -O3.

 -fipa-cp-clone

 Perform function cloning to make interprocedural constant propagation stronger.

 When enabled, interprocedural constant propagation performs function cloning

 when externally visible function can be called with constant arguments.

 Because this optimization can create multiple copies of functions, it may

 significantly increase code size (see --param ipcp-unit-growth=value). This

 flag is enabled by default at -O3.

 -fipa-bit-cp

 When enabled, perform interprocedural bitwise constant propagation. This flag

 is enabled by default at -O2. It requires that -fipa-cp is enabled.

 -fipa-vrp

 When enabled, perform interprocedural propagation of value ranges. This flag is

 enabled by default at -O2. It requires that -fipa-cp is enabled.

 -fipa-icf

 Perform Identical Code Folding for functions and read-only variables. The

 optimization reduces code size and may disturb unwind stacks by replacing a

 function by equivalent one with a different name. The optimization works more

 effectively with link-time optimization enabled.

 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF

 works on different levels and thus the optimizations are not same - there are

 equivalences that are found only by GCC and equivalences found only by Gold.

 This flag is enabled by default at -O2 and -Os.

 -fisolate-erroneous-paths-dereference

 Detect paths that trigger erroneous or undefined behavior due to dereferencing

 a null pointer. Isolate those paths from the main control flow and turn the

 statement with erroneous or undefined behavior into a trap. This flag is

 enabled by default at -O2 and higher and depends on

 -fdelete-null-pointer-checks also being enabled.

 -fisolate-erroneous-paths-attribute

 Detect paths that trigger erroneous or undefined behavior due to a null value

 being used in a way forbidden by a "returns_nonnull" or "nonnull" attribute. Page 146/493

 Isolate those paths from the main control flow and turn the statement with

 erroneous or undefined behavior into a trap. This is not currently enabled,

 but may be enabled by -O2 in the future.

 -ftree-sink

 Perform forward store motion on trees. This flag is enabled by default at -O

 and higher.

 -ftree-bit-ccp

 Perform sparse conditional bit constant propagation on trees and propagate

 pointer alignment information. This pass only operates on local scalar

 variables and is enabled by default at -O and higher. It requires that

 -ftree-ccp is enabled.

 -ftree-ccp

 Perform sparse conditional constant propagation (CCP) on trees. This pass only

 operates on local scalar variables and is enabled by default at -O and higher.

 -fssa-backprop

 Propagate information about uses of a value up the definition chain in order to

 simplify the definitions. For example, this pass strips sign operations if the

 sign of a value never matters. The flag is enabled by default at -O and

 higher.

 -fssa-phiopt

 Perform pattern matching on SSA PHI nodes to optimize conditional code. This

 pass is enabled by default at -O and higher.

 -ftree-switch-conversion

 Perform conversion of simple initializations in a switch to initializations

 from a scalar array. This flag is enabled by default at -O2 and higher.

 -ftree-tail-merge

 Look for identical code sequences. When found, replace one with a jump to the

 other. This optimization is known as tail merging or cross jumping. This flag

 is enabled by default at -O2 and higher. The compilation time in this pass can

 be limited using max-tail-merge-comparisons parameter and max-tail-merge-

 iterations parameter.

 -ftree-dce

 Perform dead code elimination (DCE) on trees. This flag is enabled by default Page 147/493

 at -O and higher.

 -ftree-builtin-call-dce

 Perform conditional dead code elimination (DCE) for calls to built-in functions

 that may set "errno" but are otherwise side-effect free. This flag is enabled

 by default at -O2 and higher if -Os is not also specified.

 -ftree-dominator-opts

 Perform a variety of simple scalar cleanups (constant/copy propagation,

 redundancy elimination, range propagation and expression simplification) based

 on a dominator tree traversal. This also performs jump threading (to reduce

 jumps to jumps). This flag is enabled by default at -O and higher.

 -ftree-dse

 Perform dead store elimination (DSE) on trees. A dead store is a store into a

 memory location that is later overwritten by another store without any

 intervening loads. In this case the earlier store can be deleted. This flag

 is enabled by default at -O and higher.

 -ftree-ch

 Perform loop header copying on trees. This is beneficial since it increases

 effectiveness of code motion optimizations. It also saves one jump. This flag

 is enabled by default at -O and higher. It is not enabled for -Os, since it

 usually increases code size.

 -ftree-loop-optimize

 Perform loop optimizations on trees. This flag is enabled by default at -O and

 higher.

 -ftree-loop-linear

 -floop-interchange

 -floop-strip-mine

 -floop-block

 -floop-unroll-and-jam

 Perform loop nest optimizations. Same as -floop-nest-optimize. To use this

 code transformation, GCC has to be configured with --with-isl to enable the

 Graphite loop transformation infrastructure.

 -fgraphite-identity

 Enable the identity transformation for graphite. For every SCoP we generate Page 148/493

 the polyhedral representation and transform it back to gimple. Using

 -fgraphite-identity we can check the costs or benefits of the GIMPLE ->

 GRAPHITE -> GIMPLE transformation. Some minimal optimizations are also

 performed by the code generator isl, like index splitting and dead code

 elimination in loops.

 -floop-nest-optimize

 Enable the isl based loop nest optimizer. This is a generic loop nest

 optimizer based on the Pluto optimization algorithms. It calculates a loop

 structure optimized for data-locality and parallelism. This option is

 experimental.

 -floop-parallelize-all

 Use the Graphite data dependence analysis to identify loops that can be

 parallelized. Parallelize all the loops that can be analyzed to not contain

 loop carried dependences without checking that it is profitable to parallelize

 the loops.

 -ftree-coalesce-vars

 While transforming the program out of the SSA representation, attempt to reduce

 copying by coalescing versions of different user-defined variables, instead of

 just compiler temporaries. This may severely limit the ability to debug an

 optimized program compiled with -fno-var-tracking-assignments. In the negated

 form, this flag prevents SSA coalescing of user variables. This option is

 enabled by default if optimization is enabled, and it does very little

 otherwise.

 -ftree-loop-if-convert

 Attempt to transform conditional jumps in the innermost loops to branch-less

 equivalents. The intent is to remove control-flow from the innermost loops in

 order to improve the ability of the vectorization pass to handle these loops.

 This is enabled by default if vectorization is enabled.

 -ftree-loop-distribution

 Perform loop distribution. This flag can improve cache performance on big loop

 bodies and allow further loop optimizations, like parallelization or

 vectorization, to take place. For example, the loop

 DO I = 1, N Page 149/493

 A(I) = B(I) + C

 D(I) = E(I) * F

 ENDDO

 is transformed to

 DO I = 1, N

 A(I) = B(I) + C

 ENDDO

 DO I = 1, N

 D(I) = E(I) * F

 ENDDO

 -ftree-loop-distribute-patterns

 Perform loop distribution of patterns that can be code generated with calls to

 a library. This flag is enabled by default at -O3.

 This pass distributes the initialization loops and generates a call to memset

 zero. For example, the loop

 DO I = 1, N

 A(I) = 0

 B(I) = A(I) + I

 ENDDO

 is transformed to

 DO I = 1, N

 A(I) = 0

 ENDDO

 DO I = 1, N

 B(I) = A(I) + I

 ENDDO

 and the initialization loop is transformed into a call to memset zero.

 -ftree-loop-im

 Perform loop invariant motion on trees. This pass moves only invariants that

 are hard to handle at RTL level (function calls, operations that expand to

 nontrivial sequences of insns). With -funswitch-loops it also moves operands

 of conditions that are invariant out of the loop, so that we can use just

 trivial invariantness analysis in loop unswitching. The pass also includes Page 150/493

 store motion.

 -ftree-loop-ivcanon

 Create a canonical counter for number of iterations in loops for which

 determining number of iterations requires complicated analysis. Later

 optimizations then may determine the number easily. Useful especially in

 connection with unrolling.

 -fivopts

 Perform induction variable optimizations (strength reduction, induction

 variable merging and induction variable elimination) on trees.

 -ftree-parallelize-loops=n

 Parallelize loops, i.e., split their iteration space to run in n threads. This

 is only possible for loops whose iterations are independent and can be

 arbitrarily reordered. The optimization is only profitable on multiprocessor

 machines, for loops that are CPU-intensive, rather than constrained e.g. by

 memory bandwidth. This option implies -pthread, and thus is only supported on

 targets that have support for -pthread.

 -ftree-pta

 Perform function-local points-to analysis on trees. This flag is enabled by

 default at -O and higher.

 -ftree-sra

 Perform scalar replacement of aggregates. This pass replaces structure

 references with scalars to prevent committing structures to memory too early.

 This flag is enabled by default at -O and higher.

 -fstore-merging

 Perform merging of narrow stores to consecutive memory addresses. This pass

 merges contiguous stores of immediate values narrower than a word into fewer

 wider stores to reduce the number of instructions. This is enabled by default

 at -O2 and higher as well as -Os.

 -ftree-ter

 Perform temporary expression replacement during the SSA->normal phase. Single

 use/single def temporaries are replaced at their use location with their

 defining expression. This results in non-GIMPLE code, but gives the expanders

 much more complex trees to work on resulting in better RTL generation. This is Page 151/493

 enabled by default at -O and higher.

 -ftree-slsr

 Perform straight-line strength reduction on trees. This recognizes related

 expressions involving multiplications and replaces them by less expensive

 calculations when possible. This is enabled by default at -O and higher.

 -ftree-vectorize

 Perform vectorization on trees. This flag enables -ftree-loop-vectorize and

 -ftree-slp-vectorize if not explicitly specified.

 -ftree-loop-vectorize

 Perform loop vectorization on trees. This flag is enabled by default at -O3 and

 when -ftree-vectorize is enabled.

 -ftree-slp-vectorize

 Perform basic block vectorization on trees. This flag is enabled by default at

 -O3 and when -ftree-vectorize is enabled.

 -fvect-cost-model=model

 Alter the cost model used for vectorization. The model argument should be one

 of unlimited, dynamic or cheap. With the unlimited model the vectorized code-

 path is assumed to be profitable while with the dynamic model a runtime check

 guards the vectorized code-path to enable it only for iteration counts that

 will likely execute faster than when executing the original scalar loop. The

 cheap model disables vectorization of loops where doing so would be cost

 prohibitive for example due to required runtime checks for data dependence or

 alignment but otherwise is equal to the dynamic model. The default cost model

 depends on other optimization flags and is either dynamic or cheap.

 -fsimd-cost-model=model

 Alter the cost model used for vectorization of loops marked with the OpenMP or

 Cilk Plus simd directive. The model argument should be one of unlimited,

 dynamic, cheap. All values of model have the same meaning as described in

 -fvect-cost-model and by default a cost model defined with -fvect-cost-model is

 used.

 -ftree-vrp

 Perform Value Range Propagation on trees. This is similar to the constant

 propagation pass, but instead of values, ranges of values are propagated. This Page 152/493

 allows the optimizers to remove unnecessary range checks like array bound

 checks and null pointer checks. This is enabled by default at -O2 and higher.

 Null pointer check elimination is only done if -fdelete-null-pointer-checks is

 enabled.

 -fsplit-paths

 Split paths leading to loop backedges. This can improve dead code elimination

 and common subexpression elimination. This is enabled by default at -O2 and

 above.

 -fsplit-ivs-in-unroller

 Enables expression of values of induction variables in later iterations of the

 unrolled loop using the value in the first iteration. This breaks long

 dependency chains, thus improving efficiency of the scheduling passes.

 A combination of -fweb and CSE is often sufficient to obtain the same effect.

 However, that is not reliable in cases where the loop body is more complicated

 than a single basic block. It also does not work at all on some architectures

 due to restrictions in the CSE pass.

 This optimization is enabled by default.

 -fvariable-expansion-in-unroller

 With this option, the compiler creates multiple copies of some local variables

 when unrolling a loop, which can result in superior code.

 -fpartial-inlining

 Inline parts of functions. This option has any effect only when inlining

 itself is turned on by the -finline-functions or -finline-small-functions

 options.

 Enabled at level -O2.

 -fpredictive-commoning

 Perform predictive commoning optimization, i.e., reusing computations

 (especially memory loads and stores) performed in previous iterations of loops.

 This option is enabled at level -O3.

 -fprefetch-loop-arrays

 If supported by the target machine, generate instructions to prefetch memory to

 improve the performance of loops that access large arrays.

 This option may generate better or worse code; results are highly dependent on Page 153/493

 the structure of loops within the source code.

 Disabled at level -Os.

 -fno-printf-return-value

 Do not substitute constants for known return value of formatted output

 functions such as "sprintf", "snprintf", "vsprintf", and "vsnprintf" (but not

 "printf" of "fprintf"). This transformation allows GCC to optimize or even

 eliminate branches based on the known return value of these functions called

 with arguments that are either constant, or whose values are known to be in a

 range that makes determining the exact return value possible. For example,

 when -fprintf-return-value is in effect, both the branch and the body of the

 "if" statement (but not the call to "snprint") can be optimized away when "i"

 is a 32-bit or smaller integer because the return value is guaranteed to be at

 most 8.

 char buf[9];

 if (snprintf (buf, "%08x", i) >= sizeof buf)

 ...

 The -fprintf-return-value option relies on other optimizations and yields best

 results with -O2. It works in tandem with the -Wformat-overflow and

 -Wformat-truncation options. The -fprintf-return-value option is enabled by

 default.

 -fno-peephole

 -fno-peephole2

 Disable any machine-specific peephole optimizations. The difference between

 -fno-peephole and -fno-peephole2 is in how they are implemented in the

 compiler; some targets use one, some use the other, a few use both.

 -fpeephole is enabled by default. -fpeephole2 enabled at levels -O2, -O3, -Os.

 -fno-guess-branch-probability

 Do not guess branch probabilities using heuristics.

 GCC uses heuristics to guess branch probabilities if they are not provided by

 profiling feedback (-fprofile-arcs). These heuristics are based on the control

 flow graph. If some branch probabilities are specified by "__builtin_expect",

 then the heuristics are used to guess branch probabilities for the rest of the

 control flow graph, taking the "__builtin_expect" info into account. The Page 154/493

 interactions between the heuristics and "__builtin_expect" can be complex, and

 in some cases, it may be useful to disable the heuristics so that the effects

 of "__builtin_expect" are easier to understand.

 The default is -fguess-branch-probability at levels -O, -O2, -O3, -Os.

 -freorder-blocks

 Reorder basic blocks in the compiled function in order to reduce number of

 taken branches and improve code locality.

 Enabled at levels -O, -O2, -O3, -Os.

 -freorder-blocks-algorithm=algorithm

 Use the specified algorithm for basic block reordering. The algorithm argument

 can be simple, which does not increase code size (except sometimes due to

 secondary effects like alignment), or stc, the "software trace cache"

 algorithm, which tries to put all often executed code together, minimizing the

 number of branches executed by making extra copies of code.

 The default is simple at levels -O, -Os, and stc at levels -O2, -O3.

 -freorder-blocks-and-partition

 In addition to reordering basic blocks in the compiled function, in order to

 reduce number of taken branches, partitions hot and cold basic blocks into

 separate sections of the assembly and .o files, to improve paging and cache

 locality performance.

 This optimization is automatically turned off in the presence of exception

 handling, for linkonce sections, for functions with a user-defined section

 attribute and on any architecture that does not support named sections.

 Enabled for x86 at levels -O2, -O3.

 -freorder-functions

 Reorder functions in the object file in order to improve code locality. This

 is implemented by using special subsections ".text.hot" for most frequently

 executed functions and ".text.unlikely" for unlikely executed functions.

 Reordering is done by the linker so object file format must support named

 sections and linker must place them in a reasonable way.

 Also profile feedback must be available to make this option effective. See

 -fprofile-arcs for details.

 Enabled at levels -O2, -O3, -Os. Page 155/493

 -fstrict-aliasing

 Allow the compiler to assume the strictest aliasing rules applicable to the

 language being compiled. For C (and C++), this activates optimizations based

 on the type of expressions. In particular, an object of one type is assumed

 never to reside at the same address as an object of a different type, unless

 the types are almost the same. For example, an "unsigned int" can alias an

 "int", but not a "void*" or a "double". A character type may alias any other

 type.

 Pay special attention to code like this:

 union a_union {

 int i;

 double d;

 };

 int f() {

 union a_union t;

 t.d = 3.0;

 return t.i;

 }

 The practice of reading from a different union member than the one most

 recently written to (called "type-punning") is common. Even with

 -fstrict-aliasing, type-punning is allowed, provided the memory is accessed

 through the union type. So, the code above works as expected. However, this

 code might not:

 int f() {

 union a_union t;

 int* ip;

 t.d = 3.0;

 ip = &t.i;

 return *ip;

 }

 Similarly, access by taking the address, casting the resulting pointer and

 dereferencing the result has undefined behavior, even if the cast uses a union

 type, e.g.: Page 156/493

 int f() {

 double d = 3.0;

 return ((union a_union *) &d)->i;

 }

 The -fstrict-aliasing option is enabled at levels -O2, -O3, -Os.

 -fstrict-overflow

 Allow the compiler to assume strict signed overflow rules, depending on the

 language being compiled. For C (and C++) this means that overflow when doing

 arithmetic with signed numbers is undefined, which means that the compiler may

 assume that it does not happen. This permits various optimizations. For

 example, the compiler assumes that an expression like "i + 10 > i" is always

 true for signed "i". This assumption is only valid if signed overflow is

 undefined, as the expression is false if "i + 10" overflows when using twos

 complement arithmetic. When this option is in effect any attempt to determine

 whether an operation on signed numbers overflows must be written carefully to

 not actually involve overflow.

 This option also allows the compiler to assume strict pointer semantics: given

 a pointer to an object, if adding an offset to that pointer does not produce a

 pointer to the same object, the addition is undefined. This permits the

 compiler to conclude that "p + u > p" is always true for a pointer "p" and

 unsigned integer "u". This assumption is only valid because pointer wraparound

 is undefined, as the expression is false if "p + u" overflows using twos

 complement arithmetic.

 See also the -fwrapv option. Using -fwrapv means that integer signed overflow

 is fully defined: it wraps. When -fwrapv is used, there is no difference

 between -fstrict-overflow and -fno-strict-overflow for integers. With -fwrapv

 certain types of overflow are permitted. For example, if the compiler gets an

 overflow when doing arithmetic on constants, the overflowed value can still be

 used with -fwrapv, but not otherwise.

 The -fstrict-overflow option is enabled at levels -O2, -O3, -Os.

 -falign-functions

 -falign-functions=n

 Align the start of functions to the next power-of-two greater than n, skipping Page 157/493

 up to n bytes. For instance, -falign-functions=32 aligns functions to the next

 32-byte boundary, but -falign-functions=24 aligns to the next 32-byte boundary

 only if this can be done by skipping 23 bytes or less.

 -fno-align-functions and -falign-functions=1 are equivalent and mean that

 functions are not aligned.

 Some assemblers only support this flag when n is a power of two; in that case,

 it is rounded up.

 If n is not specified or is zero, use a machine-dependent default. The maximum

 allowed n option value is 65536.

 Enabled at levels -O2, -O3.

 -flimit-function-alignment

 If this option is enabled, the compiler tries to avoid unnecessarily

 overaligning functions. It attempts to instruct the assembler to align by the

 amount specified by -falign-functions, but not to skip more bytes than the size

 of the function.

 -falign-labels

 -falign-labels=n

 Align all branch targets to a power-of-two boundary, skipping up to n bytes

 like -falign-functions. This option can easily make code slower, because it

 must insert dummy operations for when the branch target is reached in the usual

 flow of the code.

 -fno-align-labels and -falign-labels=1 are equivalent and mean that labels are

 not aligned.

 If -falign-loops or -falign-jumps are applicable and are greater than this

 value, then their values are used instead.

 If n is not specified or is zero, use a machine-dependent default which is very

 likely to be 1, meaning no alignment. The maximum allowed n option value is

 65536.

 Enabled at levels -O2, -O3.

 -falign-loops

 -falign-loops=n

 Align loops to a power-of-two boundary, skipping up to n bytes like

 -falign-functions. If the loops are executed many times, this makes up for any Page 158/493

 execution of the dummy operations.

 -fno-align-loops and -falign-loops=1 are equivalent and mean that loops are not

 aligned. The maximum allowed n option value is 65536.

 If n is not specified or is zero, use a machine-dependent default.

 Enabled at levels -O2, -O3.

 -falign-jumps

 -falign-jumps=n

 Align branch targets to a power-of-two boundary, for branch targets where the

 targets can only be reached by jumping, skipping up to n bytes like

 -falign-functions. In this case, no dummy operations need be executed.

 -fno-align-jumps and -falign-jumps=1 are equivalent and mean that loops are not

 aligned.

 If n is not specified or is zero, use a machine-dependent default. The maximum

 allowed n option value is 65536.

 Enabled at levels -O2, -O3.

 -funit-at-a-time

 This option is left for compatibility reasons. -funit-at-a-time has no effect,

 while -fno-unit-at-a-time implies -fno-toplevel-reorder and

 -fno-section-anchors.

 Enabled by default.

 -fno-toplevel-reorder

 Do not reorder top-level functions, variables, and "asm" statements. Output

 them in the same order that they appear in the input file. When this option is

 used, unreferenced static variables are not removed. This option is intended

 to support existing code that relies on a particular ordering. For new code,

 it is better to use attributes when possible.

 Enabled at level -O0. When disabled explicitly, it also implies

 -fno-section-anchors, which is otherwise enabled at -O0 on some targets.

 -fweb

 Constructs webs as commonly used for register allocation purposes and assign

 each web individual pseudo register. This allows the register allocation pass

 to operate on pseudos directly, but also strengthens several other optimization

 passes, such as CSE, loop optimizer and trivial dead code remover. It can, Page 159/493

 however, make debugging impossible, since variables no longer stay in a "home

 register".

 Enabled by default with -funroll-loops.

 -fwhole-program

 Assume that the current compilation unit represents the whole program being

 compiled. All public functions and variables with the exception of "main" and

 those merged by attribute "externally_visible" become static functions and in

 effect are optimized more aggressively by interprocedural optimizers.

 This option should not be used in combination with -flto. Instead relying on a

 linker plugin should provide safer and more precise information.

 -flto[=n]

 This option runs the standard link-time optimizer. When invoked with source

 code, it generates GIMPLE (one of GCC's internal representations) and writes it

 to special ELF sections in the object file. When the object files are linked

 together, all the function bodies are read from these ELF sections and

 instantiated as if they had been part of the same translation unit.

 To use the link-time optimizer, -flto and optimization options should be

 specified at compile time and during the final link. It is recommended that

 you compile all the files participating in the same link with the same options

 and also specify those options at link time. For example:

 gcc -c -O2 -flto foo.c

 gcc -c -O2 -flto bar.c

 gcc -o myprog -flto -O2 foo.o bar.o

 The first two invocations to GCC save a bytecode representation of GIMPLE into

 special ELF sections inside foo.o and bar.o. The final invocation reads the

 GIMPLE bytecode from foo.o and bar.o, merges the two files into a single

 internal image, and compiles the result as usual. Since both foo.o and bar.o

 are merged into a single image, this causes all the interprocedural analyses

 and optimizations in GCC to work across the two files as if they were a single

 one. This means, for example, that the inliner is able to inline functions in

 bar.o into functions in foo.o and vice-versa.

 Another (simpler) way to enable link-time optimization is:

 gcc -o myprog -flto -O2 foo.c bar.c Page 160/493

 The above generates bytecode for foo.c and bar.c, merges them together into a

 single GIMPLE representation and optimizes them as usual to produce myprog.

 The only important thing to keep in mind is that to enable link-time

 optimizations you need to use the GCC driver to perform the link step. GCC

 then automatically performs link-time optimization if any of the objects

 involved were compiled with the -flto command-line option. You generally

 should specify the optimization options to be used for link-time optimization

 though GCC tries to be clever at guessing an optimization level to use from the

 options used at compile time if you fail to specify one at link time. You can

 always override the automatic decision to do link-time optimization by passing

 -fno-lto to the link command.

 To make whole program optimization effective, it is necessary to make certain

 whole program assumptions. The compiler needs to know what functions and

 variables can be accessed by libraries and runtime outside of the link-time

 optimized unit. When supported by the linker, the linker plugin (see

 -fuse-linker-plugin) passes information to the compiler about used and

 externally visible symbols. When the linker plugin is not available,

 -fwhole-program should be used to allow the compiler to make these assumptions,

 which leads to more aggressive optimization decisions.

 When -fuse-linker-plugin is not enabled, when a file is compiled with -flto,

 the generated object file is larger than a regular object file because it

 contains GIMPLE bytecodes and the usual final code (see -ffat-lto-objects.

 This means that object files with LTO information can be linked as normal

 object files; if -fno-lto is passed to the linker, no interprocedural

 optimizations are applied. Note that when -fno-fat-lto-objects is enabled the

 compile stage is faster but you cannot perform a regular, non-LTO link on them.

 Additionally, the optimization flags used to compile individual files are not

 necessarily related to those used at link time. For instance,

 gcc -c -O0 -ffat-lto-objects -flto foo.c

 gcc -c -O0 -ffat-lto-objects -flto bar.c

 gcc -o myprog -O3 foo.o bar.o

 This produces individual object files with unoptimized assembler code, but the

 resulting binary myprog is optimized at -O3. If, instead, the final binary is Page 161/493

 generated with -fno-lto, then myprog is not optimized.

 When producing the final binary, GCC only applies link-time optimizations to

 those files that contain bytecode. Therefore, you can mix and match object

 files and libraries with GIMPLE bytecodes and final object code. GCC

 automatically selects which files to optimize in LTO mode and which files to

 link without further processing.

 There are some code generation flags preserved by GCC when generating

 bytecodes, as they need to be used during the final link stage. Generally

 options specified at link time override those specified at compile time.

 If you do not specify an optimization level option -O at link time, then GCC

 uses the highest optimization level used when compiling the object files.

 Currently, the following options and their settings are taken from the first

 object file that explicitly specifies them: -fPIC, -fpic, -fpie, -fcommon,

 -fexceptions, -fnon-call-exceptions, -fgnu-tm and all the -m target flags.

 Certain ABI-changing flags are required to match in all compilation units, and

 trying to override this at link time with a conflicting value is ignored. This

 includes options such as -freg-struct-return and -fpcc-struct-return.

 Other options such as -ffp-contract, -fno-strict-overflow, -fwrapv, -fno-trapv

 or -fno-strict-aliasing are passed through to the link stage and merged

 conservatively for conflicting translation units. Specifically

 -fno-strict-overflow, -fwrapv and -fno-trapv take precedence; and for example

 -ffp-contract=off takes precedence over -ffp-contract=fast. You can override

 them at link time.

 If LTO encounters objects with C linkage declared with incompatible types in

 separate translation units to be linked together (undefined behavior according

 to ISO C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still

 undefined at run time. Similar diagnostics may be raised for other languages.

 Another feature of LTO is that it is possible to apply interprocedural

 optimizations on files written in different languages:

 gcc -c -flto foo.c

 g++ -c -flto bar.cc

 gfortran -c -flto baz.f90

 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran Page 162/493

 Notice that the final link is done with g++ to get the C++ runtime libraries

 and -lgfortran is added to get the Fortran runtime libraries. In general, when

 mixing languages in LTO mode, you should use the same link command options as

 when mixing languages in a regular (non-LTO) compilation.

 If object files containing GIMPLE bytecode are stored in a library archive, say

 libfoo.a, it is possible to extract and use them in an LTO link if you are

 using a linker with plugin support. To create static libraries suitable for

 LTO, use gcc-ar and gcc-ranlib instead of ar and ranlib; to show the symbols of

 object files with GIMPLE bytecode, use gcc-nm. Those commands require that ar,

 ranlib and nm have been compiled with plugin support. At link time, use the

 the flag -fuse-linker-plugin to ensure that the library participates in the LTO

 optimization process:

 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo

 With the linker plugin enabled, the linker extracts the needed GIMPLE files

 from libfoo.a and passes them on to the running GCC to make them part of the

 aggregated GIMPLE image to be optimized.

 If you are not using a linker with plugin support and/or do not enable the

 linker plugin, then the objects inside libfoo.a are extracted and linked as

 usual, but they do not participate in the LTO optimization process. In order

 to make a static library suitable for both LTO optimization and usual linkage,

 compile its object files with -flto -ffat-lto-objects.

 Link-time optimizations do not require the presence of the whole program to

 operate. If the program does not require any symbols to be exported, it is

 possible to combine -flto and -fwhole-program to allow the interprocedural

 optimizers to use more aggressive assumptions which may lead to improved

 optimization opportunities. Use of -fwhole-program is not needed when linker

 plugin is active (see -fuse-linker-plugin).

 The current implementation of LTO makes no attempt to generate bytecode that is

 portable between different types of hosts. The bytecode files are versioned

 and there is a strict version check, so bytecode files generated in one version

 of GCC do not work with an older or newer version of GCC.

 Link-time optimization does not work well with generation of debugging

 information. Combining -flto with -g is currently experimental and expected to Page 163/493

 produce unexpected results.

 If you specify the optional n, the optimization and code generation done at

 link time is executed in parallel using n parallel jobs by utilizing an

 installed make program. The environment variable MAKE may be used to override

 the program used. The default value for n is 1.

 You can also specify -flto=jobserver to use GNU make's job server mode to

 determine the number of parallel jobs. This is useful when the Makefile calling

 GCC is already executing in parallel. You must prepend a + to the command

 recipe in the parent Makefile for this to work. This option likely only works

 if MAKE is GNU make.

 -flto-partition=alg

 Specify the partitioning algorithm used by the link-time optimizer. The value

 is either 1to1 to specify a partitioning mirroring the original source files or

 balanced to specify partitioning into equally sized chunks (whenever possible)

 or max to create new partition for every symbol where possible. Specifying

 none as an algorithm disables partitioning and streaming completely. The

 default value is balanced. While 1to1 can be used as an workaround for various

 code ordering issues, the max partitioning is intended for internal testing

 only. The value one specifies that exactly one partition should be used while

 the value none bypasses partitioning and executes the link-time optimization

 step directly from the WPA phase.

 -flto-odr-type-merging

 Enable streaming of mangled types names of C++ types and their unification at

 link time. This increases size of LTO object files, but enables diagnostics

 about One Definition Rule violations.

 -flto-compression-level=n

 This option specifies the level of compression used for intermediate language

 written to LTO object files, and is only meaningful in conjunction with LTO

 mode (-flto). Valid values are 0 (no compression) to 9 (maximum compression).

 Values outside this range are clamped to either 0 or 9. If the option is not

 given, a default balanced compression setting is used.

 -fuse-linker-plugin

 Enables the use of a linker plugin during link-time optimization. This option Page 164/493

 relies on plugin support in the linker, which is available in gold or in GNU ld

 2.21 or newer.

 This option enables the extraction of object files with GIMPLE bytecode out of

 library archives. This improves the quality of optimization by exposing more

 code to the link-time optimizer. This information specifies what symbols can

 be accessed externally (by non-LTO object or during dynamic linking).

 Resulting code quality improvements on binaries (and shared libraries that use

 hidden visibility) are similar to -fwhole-program. See -flto for a description

 of the effect of this flag and how to use it.

 This option is enabled by default when LTO support in GCC is enabled and GCC

 was configured for use with a linker supporting plugins (GNU ld 2.21 or newer

 or gold).

 -ffat-lto-objects

 Fat LTO objects are object files that contain both the intermediate language

 and the object code. This makes them usable for both LTO linking and normal

 linking. This option is effective only when compiling with -flto and is ignored

 at link time.

 -fno-fat-lto-objects improves compilation time over plain LTO, but requires the

 complete toolchain to be aware of LTO. It requires a linker with linker plugin

 support for basic functionality. Additionally, nm, ar and ranlib need to

 support linker plugins to allow a full-featured build environment (capable of

 building static libraries etc). GCC provides the gcc-ar, gcc-nm, gcc-ranlib

 wrappers to pass the right options to these tools. With non fat LTO makefiles

 need to be modified to use them.

 The default is -fno-fat-lto-objects on targets with linker plugin support.

 -fcompare-elim

 After register allocation and post-register allocation instruction splitting,

 identify arithmetic instructions that compute processor flags similar to a

 comparison operation based on that arithmetic. If possible, eliminate the

 explicit comparison operation.

 This pass only applies to certain targets that cannot explicitly represent the

 comparison operation before register allocation is complete.

 Enabled at levels -O, -O2, -O3, -Os. Page 165/493

 -fcprop-registers

 After register allocation and post-register allocation instruction splitting,

 perform a copy-propagation pass to try to reduce scheduling dependencies and

 occasionally eliminate the copy.

 Enabled at levels -O, -O2, -O3, -Os.

 -fprofile-correction

 Profiles collected using an instrumented binary for multi-threaded programs may

 be inconsistent due to missed counter updates. When this option is specified,

 GCC uses heuristics to correct or smooth out such inconsistencies. By default,

 GCC emits an error message when an inconsistent profile is detected.

 -fprofile-use

 -fprofile-use=path

 Enable profile feedback-directed optimizations, and the following optimizations

 which are generally profitable only with profile feedback available:

 -fbranch-probabilities, -fvpt, -funroll-loops, -fpeel-loops, -ftracer,

 -ftree-vectorize, and ftree-loop-distribute-patterns.

 Before you can use this option, you must first generate profiling information.

 By default, GCC emits an error message if the feedback profiles do not match

 the source code. This error can be turned into a warning by using

 -Wcoverage-mismatch. Note this may result in poorly optimized code.

 If path is specified, GCC looks at the path to find the profile feedback data

 files. See -fprofile-dir.

 -fauto-profile

 -fauto-profile=path

 Enable sampling-based feedback-directed optimizations, and the following

 optimizations which are generally profitable only with profile feedback

 available: -fbranch-probabilities, -fvpt, -funroll-loops, -fpeel-loops,

 -ftracer, -ftree-vectorize, -finline-functions, -fipa-cp, -fipa-cp-clone,

 -fpredictive-commoning, -funswitch-loops, -fgcse-after-reload, and

 -ftree-loop-distribute-patterns.

 path is the name of a file containing AutoFDO profile information. If omitted,

 it defaults to fbdata.afdo in the current directory.

 Producing an AutoFDO profile data file requires running your program with the Page 166/493

 perf utility on a supported GNU/Linux target system. For more information, see

 <https://perf.wiki.kernel.org/>.

 E.g.

 perf record -e br_inst_retired:near_taken -b -o perf.data \

 -- your_program

 Then use the create_gcov tool to convert the raw profile data to a format that

 can be used by GCC. You must also supply the unstripped binary for your

 program to this tool. See <https://github.com/google/autofdo>.

 E.g.

 create_gcov --binary=your_program.unstripped --profile=perf.data \

 --gcov=profile.afdo

 The following options control compiler behavior regarding floating-point

 arithmetic. These options trade off between speed and correctness. All must be

 specifically enabled.

 -ffloat-store

 Do not store floating-point variables in registers, and inhibit other options

 that might change whether a floating-point value is taken from a register or

 memory.

 This option prevents undesirable excess precision on machines such as the 68000

 where the floating registers (of the 68881) keep more precision than a "double"

 is supposed to have. Similarly for the x86 architecture. For most programs,

 the excess precision does only good, but a few programs rely on the precise

 definition of IEEE floating point. Use -ffloat-store for such programs, after

 modifying them to store all pertinent intermediate computations into variables.

 -fexcess-precision=style

 This option allows further control over excess precision on machines where

 floating-point operations occur in a format with more precision or range than

 the IEEE standard and interchange floating-point types. By default,

 -fexcess-precision=fast is in effect; this means that operations may be carried

 out in a wider precision than the types specified in the source if that would

 result in faster code, and it is unpredictable when rounding to the types

 specified in the source code takes place. When compiling C, if

 -fexcess-precision=standard is specified then excess precision follows the Page 167/493

 rules specified in ISO C99; in particular, both casts and assignments cause

 values to be rounded to their semantic types (whereas -ffloat-store only

 affects assignments). This option is enabled by default for C if a strict

 conformance option such as -std=c99 is used. -ffast-math enables

 -fexcess-precision=fast by default regardless of whether a strict conformance

 option is used.

 -fexcess-precision=standard is not implemented for languages other than C. On

 the x86, it has no effect if -mfpmath=sse or -mfpmath=sse+387 is specified; in

 the former case, IEEE semantics apply without excess precision, and in the

 latter, rounding is unpredictable.

 -ffast-math

 Sets the options -fno-math-errno, -funsafe-math-optimizations,

 -ffinite-math-only, -fno-rounding-math, -fno-signaling-nans, -fcx-limited-range

 and -fexcess-precision=fast.

 This option causes the preprocessor macro "__FAST_MATH__" to be defined.

 This option is not turned on by any -O option besides -Ofast since it can

 result in incorrect output for programs that depend on an exact implementation

 of IEEE or ISO rules/specifications for math functions. It may, however, yield

 faster code for programs that do not require the guarantees of these

 specifications.

 -fno-math-errno

 Do not set "errno" after calling math functions that are executed with a single

 instruction, e.g., "sqrt". A program that relies on IEEE exceptions for math

 error handling may want to use this flag for speed while maintaining IEEE

 arithmetic compatibility.

 This option is not turned on by any -O option since it can result in incorrect

 output for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions. It may, however, yield faster code for

 programs that do not require the guarantees of these specifications.

 The default is -fmath-errno.

 On Darwin systems, the math library never sets "errno". There is therefore no

 reason for the compiler to consider the possibility that it might, and

 -fno-math-errno is the default. Page 168/493

 -funsafe-math-optimizations

 Allow optimizations for floating-point arithmetic that (a) assume that

 arguments and results are valid and (b) may violate IEEE or ANSI standards.

 When used at link time, it may include libraries or startup files that change

 the default FPU control word or other similar optimizations.

 This option is not turned on by any -O option since it can result in incorrect

 output for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions. It may, however, yield faster code for

 programs that do not require the guarantees of these specifications. Enables

 -fno-signed-zeros, -fno-trapping-math, -fassociative-math and

 -freciprocal-math.

 The default is -fno-unsafe-math-optimizations.

 -fassociative-math

 Allow re-association of operands in series of floating-point operations. This

 violates the ISO C and C++ language standard by possibly changing computation

 result. NOTE: re-ordering may change the sign of zero as well as ignore NaNs

 and inhibit or create underflow or overflow (and thus cannot be used on code

 that relies on rounding behavior like "(x + 2**52) - 2**52". May also reorder

 floating-point comparisons and thus may not be used when ordered comparisons

 are required. This option requires that both -fno-signed-zeros and

 -fno-trapping-math be in effect. Moreover, it doesn't make much sense with

 -frounding-math. For Fortran the option is automatically enabled when both

 -fno-signed-zeros and -fno-trapping-math are in effect.

 The default is -fno-associative-math.

 -freciprocal-math

 Allow the reciprocal of a value to be used instead of dividing by the value if

 this enables optimizations. For example "x / y" can be replaced with "x *

 (1/y)", which is useful if "(1/y)" is subject to common subexpression

 elimination. Note that this loses precision and increases the number of flops

 operating on the value.

 The default is -fno-reciprocal-math.

 -ffinite-math-only

 Allow optimizations for floating-point arithmetic that assume that arguments Page 169/493

 and results are not NaNs or +-Infs.

 This option is not turned on by any -O option since it can result in incorrect

 output for programs that depend on an exact implementation of IEEE or ISO

 rules/specifications for math functions. It may, however, yield faster code for

 programs that do not require the guarantees of these specifications.

 The default is -fno-finite-math-only.

 -fno-signed-zeros

 Allow optimizations for floating-point arithmetic that ignore the signedness of

 zero. IEEE arithmetic specifies the behavior of distinct +0.0 and -0.0 values,

 which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even

 with -ffinite-math-only). This option implies that the sign of a zero result

 isn't significant.

 The default is -fsigned-zeros.

 -fno-trapping-math

 Compile code assuming that floating-point operations cannot generate user-

 visible traps. These traps include division by zero, overflow, underflow,

 inexact result and invalid operation. This option requires that

 -fno-signaling-nans be in effect. Setting this option may allow faster code if

 one relies on "non-stop" IEEE arithmetic, for example.

 This option should never be turned on by any -O option since it can result in

 incorrect output for programs that depend on an exact implementation of IEEE or

 ISO rules/specifications for math functions.

 The default is -ftrapping-math.

 -frounding-math

 Disable transformations and optimizations that assume default floating-point

 rounding behavior. This is round-to-zero for all floating point to integer

 conversions, and round-to-nearest for all other arithmetic truncations. This

 option should be specified for programs that change the FP rounding mode

 dynamically, or that may be executed with a non-default rounding mode. This

 option disables constant folding of floating-point expressions at compile time

 (which may be affected by rounding mode) and arithmetic transformations that

 are unsafe in the presence of sign-dependent rounding modes.

 The default is -fno-rounding-math. Page 170/493

 This option is experimental and does not currently guarantee to disable all GCC

 optimizations that are affected by rounding mode. Future versions of GCC may

 provide finer control of this setting using C99's "FENV_ACCESS" pragma. This

 command-line option will be used to specify the default state for

 "FENV_ACCESS".

 -fsignaling-nans

 Compile code assuming that IEEE signaling NaNs may generate user-visible traps

 during floating-point operations. Setting this option disables optimizations

 that may change the number of exceptions visible with signaling NaNs. This

 option implies -ftrapping-math.

 This option causes the preprocessor macro "__SUPPORT_SNAN__" to be defined.

 The default is -fno-signaling-nans.

 This option is experimental and does not currently guarantee to disable all GCC

 optimizations that affect signaling NaN behavior.

 -fno-fp-int-builtin-inexact

 Do not allow the built-in functions "ceil", "floor", "round" and "trunc", and

 their "float" and "long double" variants, to generate code that raises the

 "inexact" floating-point exception for noninteger arguments. ISO C99 and C11

 allow these functions to raise the "inexact" exception, but ISO/IEC TS

 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these functions

 to do so.

 The default is -ffp-int-builtin-inexact, allowing the exception to be raised.

 This option does nothing unless -ftrapping-math is in effect.

 Even if -fno-fp-int-builtin-inexact is used, if the functions generate a call

 to a library function then the "inexact" exception may be raised if the library

 implementation does not follow TS 18661.

 -fsingle-precision-constant

 Treat floating-point constants as single precision instead of implicitly

 converting them to double-precision constants.

 -fcx-limited-range

 When enabled, this option states that a range reduction step is not needed when

 performing complex division. Also, there is no checking whether the result of

 a complex multiplication or division is "NaN + I*NaN", with an attempt to Page 171/493

 rescue the situation in that case. The default is -fno-cx-limited-range, but

 is enabled by -ffast-math.

 This option controls the default setting of the ISO C99 "CX_LIMITED_RANGE"

 pragma. Nevertheless, the option applies to all languages.

 -fcx-fortran-rules

 Complex multiplication and division follow Fortran rules. Range reduction is

 done as part of complex division, but there is no checking whether the result

 of a complex multiplication or division is "NaN + I*NaN", with an attempt to

 rescue the situation in that case.

 The default is -fno-cx-fortran-rules.

 The following options control optimizations that may improve performance, but are

 not enabled by any -O options. This section includes experimental options that may

 produce broken code.

 -fbranch-probabilities

 After running a program compiled with -fprofile-arcs, you can compile it a

 second time using -fbranch-probabilities, to improve optimizations based on the

 number of times each branch was taken. When a program compiled with

 -fprofile-arcs exits, it saves arc execution counts to a file called

 sourcename.gcda for each source file. The information in this data file is

 very dependent on the structure of the generated code, so you must use the same

 source code and the same optimization options for both compilations.

 With -fbranch-probabilities, GCC puts a REG_BR_PROB note on each JUMP_INSN and

 CALL_INSN. These can be used to improve optimization. Currently, they are

 only used in one place: in reorg.c, instead of guessing which path a branch is

 most likely to take, the REG_BR_PROB values are used to exactly determine which

 path is taken more often.

 -fprofile-values

 If combined with -fprofile-arcs, it adds code so that some data about values of

 expressions in the program is gathered.

 With -fbranch-probabilities, it reads back the data gathered from profiling

 values of expressions for usage in optimizations.

 Enabled with -fprofile-generate and -fprofile-use.

 -fprofile-reorder-functions Page 172/493

 Function reordering based on profile instrumentation collects first time of

 execution of a function and orders these functions in ascending order.

 Enabled with -fprofile-use.

 -fvpt

 If combined with -fprofile-arcs, this option instructs the compiler to add code

 to gather information about values of expressions.

 With -fbranch-probabilities, it reads back the data gathered and actually

 performs the optimizations based on them. Currently the optimizations include

 specialization of division operations using the knowledge about the value of

 the denominator.

 -frename-registers

 Attempt to avoid false dependencies in scheduled code by making use of

 registers left over after register allocation. This optimization most benefits

 processors with lots of registers. Depending on the debug information format

 adopted by the target, however, it can make debugging impossible, since

 variables no longer stay in a "home register".

 Enabled by default with -funroll-loops.

 -fschedule-fusion

 Performs a target dependent pass over the instruction stream to schedule

 instructions of same type together because target machine can execute them more

 efficiently if they are adjacent to each other in the instruction flow.

 Enabled at levels -O2, -O3, -Os.

 -ftracer

 Perform tail duplication to enlarge superblock size. This transformation

 simplifies the control flow of the function allowing other optimizations to do

 a better job.

 Enabled with -fprofile-use.

 -funroll-loops

 Unroll loops whose number of iterations can be determined at compile time or

 upon entry to the loop. -funroll-loops implies -frerun-cse-after-loop, -fweb

 and -frename-registers. It also turns on complete loop peeling (i.e. complete

 removal of loops with a small constant number of iterations). This option

 makes code larger, and may or may not make it run faster. Page 173/493

 Enabled with -fprofile-use.

 -funroll-all-loops

 Unroll all loops, even if their number of iterations is uncertain when the loop

 is entered. This usually makes programs run more slowly. -funroll-all-loops

 implies the same options as -funroll-loops.

 -fpeel-loops

 Peels loops for which there is enough information that they do not roll much

 (from profile feedback or static analysis). It also turns on complete loop

 peeling (i.e. complete removal of loops with small constant number of

 iterations).

 Enabled with -O3 and/or -fprofile-use.

 -fmove-loop-invariants

 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at

 level -O1

 -fsplit-loops

 Split a loop into two if it contains a condition that's always true for one

 side of the iteration space and false for the other.

 -funswitch-loops

 Move branches with loop invariant conditions out of the loop, with duplicates

 of the loop on both branches (modified according to result of the condition).

 -ffunction-sections

 -fdata-sections

 Place each function or data item into its own section in the output file if the

 target supports arbitrary sections. The name of the function or the name of

 the data item determines the section's name in the output file.

 Use these options on systems where the linker can perform optimizations to

 improve locality of reference in the instruction space. Most systems using the

 ELF object format and SPARC processors running Solaris 2 have linkers with such

 optimizations. AIX may have these optimizations in the future.

 Only use these options when there are significant benefits from doing so. When

 you specify these options, the assembler and linker create larger object and

 executable files and are also slower. You cannot use gprof on all systems if

 you specify this option, and you may have problems with debugging if you Page 174/493

 specify both this option and -g.

 -fbranch-target-load-optimize

 Perform branch target register load optimization before prologue / epilogue

 threading. The use of target registers can typically be exposed only during

 reload, thus hoisting loads out of loops and doing inter-block scheduling needs

 a separate optimization pass.

 -fbranch-target-load-optimize2

 Perform branch target register load optimization after prologue / epilogue

 threading.

 -fbtr-bb-exclusive

 When performing branch target register load optimization, don't reuse branch

 target registers within any basic block.

 -fstdarg-opt

 Optimize the prologue of variadic argument functions with respect to usage of

 those arguments.

 NOTE: In Ubuntu 14.10 and later versions, -fstack-protector-strong is enabled

 by default for C, C++, ObjC, ObjC++, if none of -fno-stack-protector,

 -nostdlib, nor -ffreestanding are found.

 -fsection-anchors

 Try to reduce the number of symbolic address calculations by using shared

 "anchor" symbols to address nearby objects. This transformation can help to

 reduce the number of GOT entries and GOT accesses on some targets.

 For example, the implementation of the following function "foo":

 static int a, b, c;

 int foo (void) { return a + b + c; }

 usually calculates the addresses of all three variables, but if you compile it

 with -fsection-anchors, it accesses the variables from a common anchor point

 instead. The effect is similar to the following pseudocode (which isn't valid

 C):

 int foo (void)

 {

 register int *xr = &x;

 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x]; Page 175/493

 }

 Not all targets support this option.

 --param name=value

 In some places, GCC uses various constants to control the amount of

 optimization that is done. For example, GCC does not inline functions that

 contain more than a certain number of instructions. You can control some of

 these constants on the command line using the --param option.

 The names of specific parameters, and the meaning of the values, are tied to

 the internals of the compiler, and are subject to change without notice in

 future releases.

 In each case, the value is an integer. The allowable choices for name are:

 predictable-branch-outcome

 When branch is predicted to be taken with probability lower than this

 threshold (in percent), then it is considered well predictable. The default

 is 10.

 max-rtl-if-conversion-insns

 RTL if-conversion tries to remove conditional branches around a block and

 replace them with conditionally executed instructions. This parameter

 gives the maximum number of instructions in a block which should be

 considered for if-conversion. The default is 10, though the compiler will

 also use other heuristics to decide whether if-conversion is likely to be

 profitable.

 max-rtl-if-conversion-predictable-cost

 max-rtl-if-conversion-unpredictable-cost

 RTL if-conversion will try to remove conditional branches around a block

 and replace them with conditionally executed instructions. These

 parameters give the maximum permissible cost for the sequence that would be

 generated by if-conversion depending on whether the branch is statically

 determined to be predictable or not. The units for this parameter are the

 same as those for the GCC internal seq_cost metric. The compiler will try

 to provide a reasonable default for this parameter using the BRANCH_COST

 target macro.

 max-crossjump-edges Page 176/493

 The maximum number of incoming edges to consider for cross-jumping. The

 algorithm used by -fcrossjumping is O(N^2) in the number of edges incoming

 to each block. Increasing values mean more aggressive optimization, making

 the compilation time increase with probably small improvement in executable

 size.

 min-crossjump-insns

 The minimum number of instructions that must be matched at the end of two

 blocks before cross-jumping is performed on them. This value is ignored in

 the case where all instructions in the block being cross-jumped from are

 matched. The default value is 5.

 max-grow-copy-bb-insns

 The maximum code size expansion factor when copying basic blocks instead of

 jumping. The expansion is relative to a jump instruction. The default

 value is 8.

 max-goto-duplication-insns

 The maximum number of instructions to duplicate to a block that jumps to a

 computed goto. To avoid O(N^2) behavior in a number of passes, GCC factors

 computed gotos early in the compilation process, and unfactors them as late

 as possible. Only computed jumps at the end of a basic blocks with no more

 than max-goto-duplication-insns are unfactored. The default value is 8.

 max-delay-slot-insn-search

 The maximum number of instructions to consider when looking for an

 instruction to fill a delay slot. If more than this arbitrary number of

 instructions are searched, the time savings from filling the delay slot are

 minimal, so stop searching. Increasing values mean more aggressive

 optimization, making the compilation time increase with probably small

 improvement in execution time.

 max-delay-slot-live-search

 When trying to fill delay slots, the maximum number of instructions to

 consider when searching for a block with valid live register information.

 Increasing this arbitrarily chosen value means more aggressive

 optimization, increasing the compilation time. This parameter should be

 removed when the delay slot code is rewritten to maintain the control-flow Page 177/493

 graph.

 max-gcse-memory

 The approximate maximum amount of memory that can be allocated in order to

 perform the global common subexpression elimination optimization. If more

 memory than specified is required, the optimization is not done.

 max-gcse-insertion-ratio

 If the ratio of expression insertions to deletions is larger than this

 value for any expression, then RTL PRE inserts or removes the expression

 and thus leaves partially redundant computations in the instruction stream.

 The default value is 20.

 max-pending-list-length

 The maximum number of pending dependencies scheduling allows before

 flushing the current state and starting over. Large functions with few

 branches or calls can create excessively large lists which needlessly

 consume memory and resources.

 max-modulo-backtrack-attempts

 The maximum number of backtrack attempts the scheduler should make when

 modulo scheduling a loop. Larger values can exponentially increase

 compilation time.

 max-inline-insns-single

 Several parameters control the tree inliner used in GCC. This number sets

 the maximum number of instructions (counted in GCC's internal

 representation) in a single function that the tree inliner considers for

 inlining. This only affects functions declared inline and methods

 implemented in a class declaration (C++). The default value is 400.

 max-inline-insns-auto

 When you use -finline-functions (included in -O3), a lot of functions that

 would otherwise not be considered for inlining by the compiler are

 investigated. To those functions, a different (more restrictive) limit

 compared to functions declared inline can be applied. The default value is

 40.

 inline-min-speedup

 When estimated performance improvement of caller + callee runtime exceeds Page 178/493

 this threshold (in percent), the function can be inlined regardless of the

 limit on --param max-inline-insns-single and --param max-inline-insns-auto.

 large-function-insns

 The limit specifying really large functions. For functions larger than

 this limit after inlining, inlining is constrained by --param large-

 function-growth. This parameter is useful primarily to avoid extreme

 compilation time caused by non-linear algorithms used by the back end. The

 default value is 2700.

 large-function-growth

 Specifies maximal growth of large function caused by inlining in percents.

 The default value is 100 which limits large function growth to 2.0 times

 the original size.

 large-unit-insns

 The limit specifying large translation unit. Growth caused by inlining of

 units larger than this limit is limited by --param inline-unit-growth. For

 small units this might be too tight. For example, consider a unit

 consisting of function A that is inline and B that just calls A three

 times. If B is small relative to A, the growth of unit is 300\% and yet

 such inlining is very sane. For very large units consisting of small

 inlineable functions, however, the overall unit growth limit is needed to

 avoid exponential explosion of code size. Thus for smaller units, the size

 is increased to --param large-unit-insns before applying --param inline-

 unit-growth. The default is 10000.

 inline-unit-growth

 Specifies maximal overall growth of the compilation unit caused by

 inlining. The default value is 20 which limits unit growth to 1.2 times

 the original size. Cold functions (either marked cold via an attribute or

 by profile feedback) are not accounted into the unit size.

 ipcp-unit-growth

 Specifies maximal overall growth of the compilation unit caused by

 interprocedural constant propagation. The default value is 10 which limits

 unit growth to 1.1 times the original size.

 large-stack-frame Page 179/493

 The limit specifying large stack frames. While inlining the algorithm is

 trying to not grow past this limit too much. The default value is 256

 bytes.

 large-stack-frame-growth

 Specifies maximal growth of large stack frames caused by inlining in

 percents. The default value is 1000 which limits large stack frame growth

 to 11 times the original size.

 max-inline-insns-recursive

 max-inline-insns-recursive-auto

 Specifies the maximum number of instructions an out-of-line copy of a self-

 recursive inline function can grow into by performing recursive inlining.

 --param max-inline-insns-recursive applies to functions declared inline.

 For functions not declared inline, recursive inlining happens only when

 -finline-functions (included in -O3) is enabled; --param max-inline-insns-

 recursive-auto applies instead. The default value is 450.

 max-inline-recursive-depth

 max-inline-recursive-depth-auto

 Specifies the maximum recursion depth used for recursive inlining.

 --param max-inline-recursive-depth applies to functions declared inline.

 For functions not declared inline, recursive inlining happens only when

 -finline-functions (included in -O3) is enabled; --param max-inline-

 recursive-depth-auto applies instead. The default value is 8.

 min-inline-recursive-probability

 Recursive inlining is profitable only for function having deep recursion in

 average and can hurt for function having little recursion depth by

 increasing the prologue size or complexity of function body to other

 optimizers.

 When profile feedback is available (see -fprofile-generate) the actual

 recursion depth can be guessed from the probability that function recurses

 via a given call expression. This parameter limits inlining only to call

 expressions whose probability exceeds the given threshold (in percents).

 The default value is 10.

 early-inlining-insns Page 180/493

 Specify growth that the early inliner can make. In effect it increases the

 amount of inlining for code having a large abstraction penalty. The

 default value is 14.

 max-early-inliner-iterations

 Limit of iterations of the early inliner. This basically bounds the number

 of nested indirect calls the early inliner can resolve. Deeper chains are

 still handled by late inlining.

 comdat-sharing-probability

 Probability (in percent) that C++ inline function with comdat visibility

 are shared across multiple compilation units. The default value is 20.

 profile-func-internal-id

 A parameter to control whether to use function internal id in profile

 database lookup. If the value is 0, the compiler uses an id that is based

 on function assembler name and filename, which makes old profile data more

 tolerant to source changes such as function reordering etc. The default

 value is 0.

 min-vect-loop-bound

 The minimum number of iterations under which loops are not vectorized when

 -ftree-vectorize is used. The number of iterations after vectorization

 needs to be greater than the value specified by this option to allow

 vectorization. The default value is 0.

 gcse-cost-distance-ratio

 Scaling factor in calculation of maximum distance an expression can be

 moved by GCSE optimizations. This is currently supported only in the code

 hoisting pass. The bigger the ratio, the more aggressive code hoisting is

 with simple expressions, i.e., the expressions that have cost less than

 gcse-unrestricted-cost. Specifying 0 disables hoisting of simple

 expressions. The default value is 10.

 gcse-unrestricted-cost

 Cost, roughly measured as the cost of a single typical machine instruction,

 at which GCSE optimizations do not constrain the distance an expression can

 travel. This is currently supported only in the code hoisting pass. The

 lesser the cost, the more aggressive code hoisting is. Specifying 0 allows Page 181/493

 all expressions to travel unrestricted distances. The default value is 3.

 max-hoist-depth

 The depth of search in the dominator tree for expressions to hoist. This

 is used to avoid quadratic behavior in hoisting algorithm. The value of 0

 does not limit on the search, but may slow down compilation of huge

 functions. The default value is 30.

 max-tail-merge-comparisons

 The maximum amount of similar bbs to compare a bb with. This is used to

 avoid quadratic behavior in tree tail merging. The default value is 10.

 max-tail-merge-iterations

 The maximum amount of iterations of the pass over the function. This is

 used to limit compilation time in tree tail merging. The default value is

 2.

 store-merging-allow-unaligned

 Allow the store merging pass to introduce unaligned stores if it is legal

 to do so. The default value is 1.

 max-stores-to-merge

 The maximum number of stores to attempt to merge into wider stores in the

 store merging pass. The minimum value is 2 and the default is 64.

 max-unrolled-insns

 The maximum number of instructions that a loop may have to be unrolled. If

 a loop is unrolled, this parameter also determines how many times the loop

 code is unrolled.

 max-average-unrolled-insns

 The maximum number of instructions biased by probabilities of their

 execution that a loop may have to be unrolled. If a loop is unrolled, this

 parameter also determines how many times the loop code is unrolled.

 max-unroll-times

 The maximum number of unrollings of a single loop.

 max-peeled-insns

 The maximum number of instructions that a loop may have to be peeled. If a

 loop is peeled, this parameter also determines how many times the loop code

 is peeled. Page 182/493

 max-peel-times

 The maximum number of peelings of a single loop.

 max-peel-branches

 The maximum number of branches on the hot path through the peeled sequence.

 max-completely-peeled-insns

 The maximum number of insns of a completely peeled loop.

 max-completely-peel-times

 The maximum number of iterations of a loop to be suitable for complete

 peeling.

 max-completely-peel-loop-nest-depth

 The maximum depth of a loop nest suitable for complete peeling.

 max-unswitch-insns

 The maximum number of insns of an unswitched loop.

 max-unswitch-level

 The maximum number of branches unswitched in a single loop.

 max-loop-headers-insns

 The maximum number of insns in loop header duplicated by the copy loop

 headers pass.

 lim-expensive

 The minimum cost of an expensive expression in the loop invariant motion.

 iv-consider-all-candidates-bound

 Bound on number of candidates for induction variables, below which all

 candidates are considered for each use in induction variable optimizations.

 If there are more candidates than this, only the most relevant ones are

 considered to avoid quadratic time complexity.

 iv-max-considered-uses

 The induction variable optimizations give up on loops that contain more

 induction variable uses.

 iv-always-prune-cand-set-bound

 If the number of candidates in the set is smaller than this value, always

 try to remove unnecessary ivs from the set when adding a new one.

 avg-loop-niter

 Average number of iterations of a loop. Page 183/493

 dse-max-object-size

 Maximum size (in bytes) of objects tracked bytewise by dead store

 elimination. Larger values may result in larger compilation times.

 scev-max-expr-size

 Bound on size of expressions used in the scalar evolutions analyzer. Large

 expressions slow the analyzer.

 scev-max-expr-complexity

 Bound on the complexity of the expressions in the scalar evolutions

 analyzer. Complex expressions slow the analyzer.

 max-tree-if-conversion-phi-args

 Maximum number of arguments in a PHI supported by TREE if conversion unless

 the loop is marked with simd pragma.

 vect-max-version-for-alignment-checks

 The maximum number of run-time checks that can be performed when doing loop

 versioning for alignment in the vectorizer.

 vect-max-version-for-alias-checks

 The maximum number of run-time checks that can be performed when doing loop

 versioning for alias in the vectorizer.

 vect-max-peeling-for-alignment

 The maximum number of loop peels to enhance access alignment for

 vectorizer. Value -1 means no limit.

 max-iterations-to-track

 The maximum number of iterations of a loop the brute-force algorithm for

 analysis of the number of iterations of the loop tries to evaluate.

 hot-bb-count-ws-permille

 A basic block profile count is considered hot if it contributes to the

 given permillage (i.e. 0...1000) of the entire profiled execution.

 hot-bb-frequency-fraction

 Select fraction of the entry block frequency of executions of basic block

 in function given basic block needs to have to be considered hot.

 max-predicted-iterations

 The maximum number of loop iterations we predict statically. This is

 useful in cases where a function contains a single loop with known bound Page 184/493

 and another loop with unknown bound. The known number of iterations is

 predicted correctly, while the unknown number of iterations average to

 roughly 10. This means that the loop without bounds appears artificially

 cold relative to the other one.

 builtin-expect-probability

 Control the probability of the expression having the specified value. This

 parameter takes a percentage (i.e. 0 ... 100) as input. The default

 probability of 90 is obtained empirically.

 align-threshold

 Select fraction of the maximal frequency of executions of a basic block in

 a function to align the basic block.

 align-loop-iterations

 A loop expected to iterate at least the selected number of iterations is

 aligned.

 tracer-dynamic-coverage

 tracer-dynamic-coverage-feedback

 This value is used to limit superblock formation once the given percentage

 of executed instructions is covered. This limits unnecessary code size

 expansion.

 The tracer-dynamic-coverage-feedback parameter is used only when profile

 feedback is available. The real profiles (as opposed to statically

 estimated ones) are much less balanced allowing the threshold to be larger

 value.

 tracer-max-code-growth

 Stop tail duplication once code growth has reached given percentage. This

 is a rather artificial limit, as most of the duplicates are eliminated

 later in cross jumping, so it may be set to much higher values than is the

 desired code growth.

 tracer-min-branch-ratio

 Stop reverse growth when the reverse probability of best edge is less than

 this threshold (in percent).

 tracer-min-branch-probability

 tracer-min-branch-probability-feedback Page 185/493

 Stop forward growth if the best edge has probability lower than this

 threshold.

 Similarly to tracer-dynamic-coverage two parameters are provided. tracer-

 min-branch-probability-feedback is used for compilation with profile

 feedback and tracer-min-branch-probability compilation without. The value

 for compilation with profile feedback needs to be more conservative

 (higher) in order to make tracer effective.

 max-cse-path-length

 The maximum number of basic blocks on path that CSE considers. The default

 is 10.

 max-cse-insns

 The maximum number of instructions CSE processes before flushing. The

 default is 1000.

 ggc-min-expand

 GCC uses a garbage collector to manage its own memory allocation. This

 parameter specifies the minimum percentage by which the garbage collector's

 heap should be allowed to expand between collections. Tuning this may

 improve compilation speed; it has no effect on code generation.

 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when RAM

 >= 1GB. If "getrlimit" is available, the notion of "RAM" is the smallest

 of actual RAM and "RLIMIT_DATA" or "RLIMIT_AS". If GCC is not able to

 calculate RAM on a particular platform, the lower bound of 30% is used.

 Setting this parameter and ggc-min-heapsize to zero causes a full

 collection to occur at every opportunity. This is extremely slow, but can

 be useful for debugging.

 ggc-min-heapsize

 Minimum size of the garbage collector's heap before it begins bothering to

 collect garbage. The first collection occurs after the heap expands by

 ggc-min-expand% beyond ggc-min-heapsize. Again, tuning this may improve

 compilation speed, and has no effect on code generation.

 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that tries to

 ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but with a lower

 bound of 4096 (four megabytes) and an upper bound of 131072 (128 Page 186/493

 megabytes). If GCC is not able to calculate RAM on a particular platform,

 the lower bound is used. Setting this parameter very large effectively

 disables garbage collection. Setting this parameter and ggc-min-expand to

 zero causes a full collection to occur at every opportunity.

 max-reload-search-insns

 The maximum number of instruction reload should look backward for

 equivalent register. Increasing values mean more aggressive optimization,

 making the compilation time increase with probably slightly better

 performance. The default value is 100.

 max-cselib-memory-locations

 The maximum number of memory locations cselib should take into account.

 Increasing values mean more aggressive optimization, making the compilation

 time increase with probably slightly better performance. The default value

 is 500.

 max-sched-ready-insns

 The maximum number of instructions ready to be issued the scheduler should

 consider at any given time during the first scheduling pass. Increasing

 values mean more thorough searches, making the compilation time increase

 with probably little benefit. The default value is 100.

 max-sched-region-blocks

 The maximum number of blocks in a region to be considered for interblock

 scheduling. The default value is 10.

 max-pipeline-region-blocks

 The maximum number of blocks in a region to be considered for pipelining in

 the selective scheduler. The default value is 15.

 max-sched-region-insns

 The maximum number of insns in a region to be considered for interblock

 scheduling. The default value is 100.

 max-pipeline-region-insns

 The maximum number of insns in a region to be considered for pipelining in

 the selective scheduler. The default value is 200.

 min-spec-prob

 The minimum probability (in percents) of reaching a source block for Page 187/493

 interblock speculative scheduling. The default value is 40.

 max-sched-extend-regions-iters

 The maximum number of iterations through CFG to extend regions. A value of

 0 (the default) disables region extensions.

 max-sched-insn-conflict-delay

 The maximum conflict delay for an insn to be considered for speculative

 motion. The default value is 3.

 sched-spec-prob-cutoff

 The minimal probability of speculation success (in percents), so that

 speculative insns are scheduled. The default value is 40.

 sched-state-edge-prob-cutoff

 The minimum probability an edge must have for the scheduler to save its

 state across it. The default value is 10.

 sched-mem-true-dep-cost

 Minimal distance (in CPU cycles) between store and load targeting same

 memory locations. The default value is 1.

 selsched-max-lookahead

 The maximum size of the lookahead window of selective scheduling. It is a

 depth of search for available instructions. The default value is 50.

 selsched-max-sched-times

 The maximum number of times that an instruction is scheduled during

 selective scheduling. This is the limit on the number of iterations

 through which the instruction may be pipelined. The default value is 2.

 selsched-insns-to-rename

 The maximum number of best instructions in the ready list that are

 considered for renaming in the selective scheduler. The default value is

 2.

 sms-min-sc

 The minimum value of stage count that swing modulo scheduler generates.

 The default value is 2.

 max-last-value-rtl

 The maximum size measured as number of RTLs that can be recorded in an

 expression in combiner for a pseudo register as last known value of that Page 188/493

 register. The default is 10000.

 max-combine-insns

 The maximum number of instructions the RTL combiner tries to combine. The

 default value is 2 at -Og and 4 otherwise.

 integer-share-limit

 Small integer constants can use a shared data structure, reducing the

 compiler's memory usage and increasing its speed. This sets the maximum

 value of a shared integer constant. The default value is 256.

 ssp-buffer-size

 The minimum size of buffers (i.e. arrays) that receive stack smashing

 protection when -fstack-protection is used.

 This default before Ubuntu 10.10 was "8". Currently it is "4", to increase

 the number of functions protected by the stack protector.

 min-size-for-stack-sharing

 The minimum size of variables taking part in stack slot sharing when not

 optimizing. The default value is 32.

 max-jump-thread-duplication-stmts

 Maximum number of statements allowed in a block that needs to be duplicated

 when threading jumps.

 max-fields-for-field-sensitive

 Maximum number of fields in a structure treated in a field sensitive manner

 during pointer analysis. The default is zero for -O0 and -O1, and 100 for

 -Os, -O2, and -O3.

 prefetch-latency

 Estimate on average number of instructions that are executed before

 prefetch finishes. The distance prefetched ahead is proportional to this

 constant. Increasing this number may also lead to less streams being

 prefetched (see simultaneous-prefetches).

 simultaneous-prefetches

 Maximum number of prefetches that can run at the same time.

 l1-cache-line-size

 The size of cache line in L1 cache, in bytes.

 l1-cache-size Page 189/493

 The size of L1 cache, in kilobytes.

 l2-cache-size

 The size of L2 cache, in kilobytes.

 min-insn-to-prefetch-ratio

 The minimum ratio between the number of instructions and the number of

 prefetches to enable prefetching in a loop.

 prefetch-min-insn-to-mem-ratio

 The minimum ratio between the number of instructions and the number of

 memory references to enable prefetching in a loop.

 use-canonical-types

 Whether the compiler should use the "canonical" type system. By default,

 this should always be 1, which uses a more efficient internal mechanism for

 comparing types in C++ and Objective-C++. However, if bugs in the

 canonical type system are causing compilation failures, set this value to 0

 to disable canonical types.

 switch-conversion-max-branch-ratio

 Switch initialization conversion refuses to create arrays that are bigger

 than switch-conversion-max-branch-ratio times the number of branches in the

 switch.

 max-partial-antic-length

 Maximum length of the partial antic set computed during the tree partial

 redundancy elimination optimization (-ftree-pre) when optimizing at -O3 and

 above. For some sorts of source code the enhanced partial redundancy

 elimination optimization can run away, consuming all of the memory

 available on the host machine. This parameter sets a limit on the length

 of the sets that are computed, which prevents the runaway behavior.

 Setting a value of 0 for this parameter allows an unlimited set length.

 sccvn-max-scc-size

 Maximum size of a strongly connected component (SCC) during SCCVN

 processing. If this limit is hit, SCCVN processing for the whole function

 is not done and optimizations depending on it are disabled. The default

 maximum SCC size is 10000.

 sccvn-max-alias-queries-per-access Page 190/493

 Maximum number of alias-oracle queries we perform when looking for

 redundancies for loads and stores. If this limit is hit the search is

 aborted and the load or store is not considered redundant. The number of

 queries is algorithmically limited to the number of stores on all paths

 from the load to the function entry. The default maximum number of queries

 is 1000.

 ira-max-loops-num

 IRA uses regional register allocation by default. If a function contains

 more loops than the number given by this parameter, only at most the given

 number of the most frequently-executed loops form regions for regional

 register allocation. The default value of the parameter is 100.

 ira-max-conflict-table-size

 Although IRA uses a sophisticated algorithm to compress the conflict table,

 the table can still require excessive amounts of memory for huge functions.

 If the conflict table for a function could be more than the size in MB

 given by this parameter, the register allocator instead uses a faster,

 simpler, and lower-quality algorithm that does not require building a

 pseudo-register conflict table. The default value of the parameter is

 2000.

 ira-loop-reserved-regs

 IRA can be used to evaluate more accurate register pressure in loops for

 decisions to move loop invariants (see -O3). The number of available

 registers reserved for some other purposes is given by this parameter. The

 default value of the parameter is 2, which is the minimal number of

 registers needed by typical instructions. This value is the best found

 from numerous experiments.

 lra-inheritance-ebb-probability-cutoff

 LRA tries to reuse values reloaded in registers in subsequent insns. This

 optimization is called inheritance. EBB is used as a region to do this

 optimization. The parameter defines a minimal fall-through edge

 probability in percentage used to add BB to inheritance EBB in LRA. The

 default value of the parameter is 40. The value was chosen from numerous

 runs of SPEC2000 on x86-64. Page 191/493

 loop-invariant-max-bbs-in-loop

 Loop invariant motion can be very expensive, both in compilation time and

 in amount of needed compile-time memory, with very large loops. Loops with

 more basic blocks than this parameter won't have loop invariant motion

 optimization performed on them. The default value of the parameter is 1000

 for -O1 and 10000 for -O2 and above.

 loop-max-datarefs-for-datadeps

 Building data dependencies is expensive for very large loops. This

 parameter limits the number of data references in loops that are considered

 for data dependence analysis. These large loops are no handled by the

 optimizations using loop data dependencies. The default value is 1000.

 max-vartrack-size

 Sets a maximum number of hash table slots to use during variable tracking

 dataflow analysis of any function. If this limit is exceeded with variable

 tracking at assignments enabled, analysis for that function is retried

 without it, after removing all debug insns from the function. If the limit

 is exceeded even without debug insns, var tracking analysis is completely

 disabled for the function. Setting the parameter to zero makes it

 unlimited.

 max-vartrack-expr-depth

 Sets a maximum number of recursion levels when attempting to map variable

 names or debug temporaries to value expressions. This trades compilation

 time for more complete debug information. If this is set too low, value

 expressions that are available and could be represented in debug

 information may end up not being used; setting this higher may enable the

 compiler to find more complex debug expressions, but compile time and

 memory use may grow. The default is 12.

 min-nondebug-insn-uid

 Use uids starting at this parameter for nondebug insns. The range below

 the parameter is reserved exclusively for debug insns created by

 -fvar-tracking-assignments, but debug insns may get (non-overlapping) uids

 above it if the reserved range is exhausted.

 ipa-sra-ptr-growth-factor Page 192/493

 IPA-SRA replaces a pointer to an aggregate with one or more new parameters

 only when their cumulative size is less or equal to ipa-sra-ptr-growth-

 factor times the size of the original pointer parameter.

 sra-max-scalarization-size-Ospeed

 sra-max-scalarization-size-Osize

 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to

 replace scalar parts of aggregates with uses of independent scalar

 variables. These parameters control the maximum size, in storage units, of

 aggregate which is considered for replacement when compiling for speed

 (sra-max-scalarization-size-Ospeed) or size (sra-max-scalarization-size-

 Osize) respectively.

 tm-max-aggregate-size

 When making copies of thread-local variables in a transaction, this

 parameter specifies the size in bytes after which variables are saved with

 the logging functions as opposed to save/restore code sequence pairs. This

 option only applies when using -fgnu-tm.

 graphite-max-nb-scop-params

 To avoid exponential effects in the Graphite loop transforms, the number of

 parameters in a Static Control Part (SCoP) is bounded. The default value

 is 10 parameters. A variable whose value is unknown at compilation time

 and defined outside a SCoP is a parameter of the SCoP.

 graphite-max-bbs-per-function

 To avoid exponential effects in the detection of SCoPs, the size of the

 functions analyzed by Graphite is bounded. The default value is 100 basic

 blocks.

 loop-block-tile-size

 Loop blocking or strip mining transforms, enabled with -floop-block or

 -floop-strip-mine, strip mine each loop in the loop nest by a given number

 of iterations. The strip length can be changed using the loop-block-tile-

 size parameter. The default value is 51 iterations.

 loop-unroll-jam-size

 Specify the unroll factor for the -floop-unroll-and-jam option. The

 default value is 4. Page 193/493

 loop-unroll-jam-depth

 Specify the dimension to be unrolled (counting from the most inner loop)

 for the -floop-unroll-and-jam. The default value is 2.

 ipa-cp-value-list-size

 IPA-CP attempts to track all possible values and types passed to a

 function's parameter in order to propagate them and perform

 devirtualization. ipa-cp-value-list-size is the maximum number of values

 and types it stores per one formal parameter of a function.

 ipa-cp-eval-threshold

 IPA-CP calculates its own score of cloning profitability heuristics and

 performs those cloning opportunities with scores that exceed ipa-cp-eval-

 threshold.

 ipa-cp-recursion-penalty

 Percentage penalty the recursive functions will receive when they are

 evaluated for cloning.

 ipa-cp-single-call-penalty

 Percentage penalty functions containing a single call to another function

 will receive when they are evaluated for cloning.

 ipa-max-agg-items

 IPA-CP is also capable to propagate a number of scalar values passed in an

 aggregate. ipa-max-agg-items controls the maximum number of such values per

 one parameter.

 ipa-cp-loop-hint-bonus

 When IPA-CP determines that a cloning candidate would make the number of

 iterations of a loop known, it adds a bonus of ipa-cp-loop-hint-bonus to

 the profitability score of the candidate.

 ipa-cp-array-index-hint-bonus

 When IPA-CP determines that a cloning candidate would make the index of an

 array access known, it adds a bonus of ipa-cp-array-index-hint-bonus to the

 profitability score of the candidate.

 ipa-max-aa-steps

 During its analysis of function bodies, IPA-CP employs alias analysis in

 order to track values pointed to by function parameters. In order not Page 194/493

 spend too much time analyzing huge functions, it gives up and consider all

 memory clobbered after examining ipa-max-aa-steps statements modifying

 memory.

 lto-partitions

 Specify desired number of partitions produced during WHOPR compilation.

 The number of partitions should exceed the number of CPUs used for

 compilation. The default value is 32.

 lto-min-partition

 Size of minimal partition for WHOPR (in estimated instructions). This

 prevents expenses of splitting very small programs into too many

 partitions.

 lto-max-partition

 Size of max partition for WHOPR (in estimated instructions). to provide an

 upper bound for individual size of partition. Meant to be used only with

 balanced partitioning.

 cxx-max-namespaces-for-diagnostic-help

 The maximum number of namespaces to consult for suggestions when C++ name

 lookup fails for an identifier. The default is 1000.

 sink-frequency-threshold

 The maximum relative execution frequency (in percents) of the target block

 relative to a statement's original block to allow statement sinking of a

 statement. Larger numbers result in more aggressive statement sinking.

 The default value is 75. A small positive adjustment is applied for

 statements with memory operands as those are even more profitable so sink.

 max-stores-to-sink

 The maximum number of conditional store pairs that can be sunk. Set to 0

 if either vectorization (-ftree-vectorize) or if-conversion

 (-ftree-loop-if-convert) is disabled. The default is 2.

 allow-store-data-races

 Allow optimizers to introduce new data races on stores. Set to 1 to allow,

 otherwise to 0. This option is enabled by default at optimization level

 -Ofast.

 case-values-threshold Page 195/493

 The smallest number of different values for which it is best to use a jump-

 table instead of a tree of conditional branches. If the value is 0, use

 the default for the machine. The default is 0.

 tree-reassoc-width

 Set the maximum number of instructions executed in parallel in reassociated

 tree. This parameter overrides target dependent heuristics used by default

 if has non zero value.

 sched-pressure-algorithm

 Choose between the two available implementations of -fsched-pressure.

 Algorithm 1 is the original implementation and is the more likely to

 prevent instructions from being reordered. Algorithm 2 was designed to be

 a compromise between the relatively conservative approach taken by

 algorithm 1 and the rather aggressive approach taken by the default

 scheduler. It relies more heavily on having a regular register file and

 accurate register pressure classes. See haifa-sched.c in the GCC sources

 for more details.

 The default choice depends on the target.

 max-slsr-cand-scan

 Set the maximum number of existing candidates that are considered when

 seeking a basis for a new straight-line strength reduction candidate.

 asan-globals

 Enable buffer overflow detection for global objects. This kind of

 protection is enabled by default if you are using -fsanitize=address

 option. To disable global objects protection use --param asan-globals=0.

 asan-stack

 Enable buffer overflow detection for stack objects. This kind of

 protection is enabled by default when using -fsanitize=address. To disable

 stack protection use --param asan-stack=0 option.

 asan-instrument-reads

 Enable buffer overflow detection for memory reads. This kind of protection

 is enabled by default when using -fsanitize=address. To disable memory

 reads protection use --param asan-instrument-reads=0.

 asan-instrument-writes Page 196/493

 Enable buffer overflow detection for memory writes. This kind of

 protection is enabled by default when using -fsanitize=address. To disable

 memory writes protection use --param asan-instrument-writes=0 option.

 asan-memintrin

 Enable detection for built-in functions. This kind of protection is

 enabled by default when using -fsanitize=address. To disable built-in

 functions protection use --param asan-memintrin=0.

 asan-use-after-return

 Enable detection of use-after-return. This kind of protection is enabled

 by default when using the -fsanitize=address option. To disable it use

 --param asan-use-after-return=0.

 Note: By default the check is disabled at run time. To enable it, add

 "detect_stack_use_after_return=1" to the environment variable ASAN_OPTIONS.

 asan-instrumentation-with-call-threshold

 If number of memory accesses in function being instrumented is greater or

 equal to this number, use callbacks instead of inline checks. E.g. to

 disable inline code use --param asan-instrumentation-with-call-threshold=0.

 use-after-scope-direct-emission-threshold

 If the size of a local variable in bytes is smaller or equal to this

 number, directly poison (or unpoison) shadow memory instead of using run-

 time callbacks. The default value is 256.

 chkp-max-ctor-size

 Static constructors generated by Pointer Bounds Checker may become very

 large and significantly increase compile time at optimization level -O1 and

 higher. This parameter is a maximum number of statements in a single

 generated constructor. Default value is 5000.

 max-fsm-thread-path-insns

 Maximum number of instructions to copy when duplicating blocks on a finite

 state automaton jump thread path. The default is 100.

 max-fsm-thread-length

 Maximum number of basic blocks on a finite state automaton jump thread

 path. The default is 10.

 max-fsm-thread-paths Page 197/493

 Maximum number of new jump thread paths to create for a finite state

 automaton. The default is 50.

 parloops-chunk-size

 Chunk size of omp schedule for loops parallelized by parloops. The default

 is 0.

 parloops-schedule

 Schedule type of omp schedule for loops parallelized by parloops (static,

 dynamic, guided, auto, runtime). The default is static.

 max-ssa-name-query-depth

 Maximum depth of recursion when querying properties of SSA names in things

 like fold routines. One level of recursion corresponds to following a use-

 def chain.

 hsa-gen-debug-stores

 Enable emission of special debug stores within HSA kernels which are then

 read and reported by libgomp plugin. Generation of these stores is

 disabled by default, use --param hsa-gen-debug-stores=1 to enable it.

 max-speculative-devirt-maydefs

 The maximum number of may-defs we analyze when looking for a must-def

 specifying the dynamic type of an object that invokes a virtual call we may

 be able to devirtualize speculatively.

 max-vrp-switch-assertions

 The maximum number of assertions to add along the default edge of a switch

 statement during VRP. The default is 10.

 Program Instrumentation Options

 GCC supports a number of command-line options that control adding run-time

 instrumentation to the code it normally generates. For example, one purpose of

 instrumentation is collect profiling statistics for use in finding program hot

 spots, code coverage analysis, or profile-guided optimizations. Another class of

 program instrumentation is adding run-time checking to detect programming errors

 like invalid pointer dereferences or out-of-bounds array accesses, as well as

 deliberately hostile attacks such as stack smashing or C++ vtable hijacking. There

 is also a general hook which can be used to implement other forms of tracing or

 function-level instrumentation for debug or program analysis purposes. Page 198/493

 -p Generate extra code to write profile information suitable for the analysis

 program prof. You must use this option when compiling the source files you

 want data about, and you must also use it when linking.

 -pg Generate extra code to write profile information suitable for the analysis

 program gprof. You must use this option when compiling the source files you

 want data about, and you must also use it when linking.

 -fprofile-arcs

 Add code so that program flow arcs are instrumented. During execution the

 program records how many times each branch and call is executed and how many

 times it is taken or returns. On targets that support constructors with

 priority support, profiling properly handles constructors, destructors and C++

 constructors (and destructors) of classes which are used as a type of a global

 variable.

 When the compiled program exits it saves this data to a file called

 auxname.gcda for each source file. The data may be used for profile-directed

 optimizations (-fbranch-probabilities), or for test coverage analysis

 (-ftest-coverage). Each object file's auxname is generated from the name of

 the output file, if explicitly specified and it is not the final executable,

 otherwise it is the basename of the source file. In both cases any suffix is

 removed (e.g. foo.gcda for input file dir/foo.c, or dir/foo.gcda for output

 file specified as -o dir/foo.o).

 --coverage

 This option is used to compile and link code instrumented for coverage

 analysis. The option is a synonym for -fprofile-arcs -ftest-coverage (when

 compiling) and -lgcov (when linking). See the documentation for those options

 for more details.

 * Compile the source files with -fprofile-arcs plus optimization and code

 generation options. For test coverage analysis, use the additional

 -ftest-coverage option. You do not need to profile every source file in a

 program.

 * Link your object files with -lgcov or -fprofile-arcs (the latter implies

 the former).

 * Run the program on a representative workload to generate the arc profile Page 199/493

 information. This may be repeated any number of times. You can run

 concurrent instances of your program, and provided that the file system

 supports locking, the data files will be correctly updated. Unless a

 strict ISO C dialect option is in effect, "fork" calls are detected and

 correctly handled without double counting.

 * For profile-directed optimizations, compile the source files again with the

 same optimization and code generation options plus -fbranch-probabilities.

 * For test coverage analysis, use gcov to produce human readable information

 from the .gcno and .gcda files. Refer to the gcov documentation for

 further information.

 With -fprofile-arcs, for each function of your program GCC creates a program

 flow graph, then finds a spanning tree for the graph. Only arcs that are not

 on the spanning tree have to be instrumented: the compiler adds code to count

 the number of times that these arcs are executed. When an arc is the only exit

 or only entrance to a block, the instrumentation code can be added to the

 block; otherwise, a new basic block must be created to hold the instrumentation

 code.

 -ftest-coverage

 Produce a notes file that the gcov code-coverage utility can use to show

 program coverage. Each source file's note file is called auxname.gcno. Refer

 to the -fprofile-arcs option above for a description of auxname and

 instructions on how to generate test coverage data. Coverage data matches the

 source files more closely if you do not optimize.

 -fprofile-dir=path

 Set the directory to search for the profile data files in to path. This option

 affects only the profile data generated by -fprofile-generate, -ftest-coverage,

 -fprofile-arcs and used by -fprofile-use and -fbranch-probabilities and its

 related options. Both absolute and relative paths can be used. By default,

 GCC uses the current directory as path, thus the profile data file appears in

 the same directory as the object file.

 -fprofile-generate

 -fprofile-generate=path

 Enable options usually used for instrumenting application to produce profile Page 200/493

 useful for later recompilation with profile feedback based optimization. You

 must use -fprofile-generate both when compiling and when linking your program.

 The following options are enabled: -fprofile-arcs, -fprofile-values, -fvpt.

 If path is specified, GCC looks at the path to find the profile feedback data

 files. See -fprofile-dir.

 To optimize the program based on the collected profile information, use

 -fprofile-use.

 -fprofile-update=method

 Alter the update method for an application instrumented for profile feedback

 based optimization. The method argument should be one of single, atomic or

 prefer-atomic. The first one is useful for single-threaded applications, while

 the second one prevents profile corruption by emitting thread-safe code.

 Warning: When an application does not properly join all threads (or creates an

 detached thread), a profile file can be still corrupted.

 Using prefer-atomic would be transformed either to atomic, when supported by a

 target, or to single otherwise. The GCC driver automatically selects prefer-

 atomic when -pthread is present in the command line.

 -fsanitize=address

 Enable AddressSanitizer, a fast memory error detector. Memory access

 instructions are instrumented to detect out-of-bounds and use-after-free bugs.

 The option enables -fsanitize-address-use-after-scope. See

 <https://github.com/google/sanitizers/wiki/AddressSanitizer> for more details.

 The run-time behavior can be influenced using the ASAN_OPTIONS environment

 variable. When set to "help=1", the available options are shown at startup of

 the instrumented program. See

 <https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags>

 for a list of supported options. The option cannot be combined with

 -fsanitize=thread and/or -fcheck-pointer-bounds.

 -fsanitize=kernel-address

 Enable AddressSanitizer for Linux kernel. See

 <https://github.com/google/kasan/wiki> for more details. The option cannot be

 combined with -fcheck-pointer-bounds.

 -fsanitize=thread Page 201/493

 Enable ThreadSanitizer, a fast data race detector. Memory access instructions

 are instrumented to detect data race bugs. See

 <https://github.com/google/sanitizers/wiki#threadsanitizer> for more details.

 The run-time behavior can be influenced using the TSAN_OPTIONS environment

 variable; see <https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags>

 for a list of supported options. The option cannot be combined with

 -fsanitize=address, -fsanitize=leak and/or -fcheck-pointer-bounds.

 Note that sanitized atomic builtins cannot throw exceptions when operating on

 invalid memory addresses with non-call exceptions (-fnon-call-exceptions).

 -fsanitize=leak

 Enable LeakSanitizer, a memory leak detector. This option only matters for

 linking of executables and the executable is linked against a library that

 overrides "malloc" and other allocator functions. See

 <https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer> for

 more details. The run-time behavior can be influenced using the LSAN_OPTIONS

 environment variable. The option cannot be combined with -fsanitize=thread.

 -fsanitize=undefined

 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Various

 computations are instrumented to detect undefined behavior at runtime. Current

 suboptions are:

 -fsanitize=shift

 This option enables checking that the result of a shift operation is not

 undefined. Note that what exactly is considered undefined differs slightly

 between C and C++, as well as between ISO C90 and C99, etc. This option

 has two suboptions, -fsanitize=shift-base and -fsanitize=shift-exponent.

 -fsanitize=shift-exponent

 This option enables checking that the second argument of a shift operation

 is not negative and is smaller than the precision of the promoted first

 argument.

 -fsanitize=shift-base

 If the second argument of a shift operation is within range, check that the

 result of a shift operation is not undefined. Note that what exactly is

 considered undefined differs slightly between C and C++, as well as between Page 202/493

 ISO C90 and C99, etc.

 -fsanitize=integer-divide-by-zero

 Detect integer division by zero as well as "INT_MIN / -1" division.

 -fsanitize=unreachable

 With this option, the compiler turns the "__builtin_unreachable" call into

 a diagnostics message call instead. When reaching the

 "__builtin_unreachable" call, the behavior is undefined.

 -fsanitize=vla-bound

 This option instructs the compiler to check that the size of a variable

 length array is positive.

 -fsanitize=null

 This option enables pointer checking. Particularly, the application built

 with this option turned on will issue an error message when it tries to

 dereference a NULL pointer, or if a reference (possibly an rvalue

 reference) is bound to a NULL pointer, or if a method is invoked on an

 object pointed by a NULL pointer.

 -fsanitize=return

 This option enables return statement checking. Programs built with this

 option turned on will issue an error message when the end of a non-void

 function is reached without actually returning a value. This option works

 in C++ only.

 -fsanitize=signed-integer-overflow

 This option enables signed integer overflow checking. We check that the

 result of "+", "*", and both unary and binary "-" does not overflow in the

 signed arithmetics. Note, integer promotion rules must be taken into

 account. That is, the following is not an overflow:

 signed char a = SCHAR_MAX;

 a++;

 -fsanitize=bounds

 This option enables instrumentation of array bounds. Various out of bounds

 accesses are detected. Flexible array members, flexible array member-like

 arrays, and initializers of variables with static storage are not

 instrumented. The option cannot be combined with -fcheck-pointer-bounds. Page 203/493

 -fsanitize=bounds-strict

 This option enables strict instrumentation of array bounds. Most out of

 bounds accesses are detected, including flexible array members and flexible

 array member-like arrays. Initializers of variables with static storage

 are not instrumented. The option cannot be combined with

 -fcheck-pointer-bounds.

 -fsanitize=alignment

 This option enables checking of alignment of pointers when they are

 dereferenced, or when a reference is bound to insufficiently aligned

 target, or when a method or constructor is invoked on insufficiently

 aligned object.

 -fsanitize=object-size

 This option enables instrumentation of memory references using the

 "__builtin_object_size" function. Various out of bounds pointer accesses

 are detected.

 -fsanitize=float-divide-by-zero

 Detect floating-point division by zero. Unlike other similar options,

 -fsanitize=float-divide-by-zero is not enabled by -fsanitize=undefined,

 since floating-point division by zero can be a legitimate way of obtaining

 infinities and NaNs.

 -fsanitize=float-cast-overflow

 This option enables floating-point type to integer conversion checking. We

 check that the result of the conversion does not overflow. Unlike other

 similar options, -fsanitize=float-cast-overflow is not enabled by

 -fsanitize=undefined. This option does not work well with "FE_INVALID"

 exceptions enabled.

 -fsanitize=nonnull-attribute

 This option enables instrumentation of calls, checking whether null values

 are not passed to arguments marked as requiring a non-null value by the

 "nonnull" function attribute.

 -fsanitize=returns-nonnull-attribute

 This option enables instrumentation of return statements in functions

 marked with "returns_nonnull" function attribute, to detect returning of Page 204/493

 null values from such functions.

 -fsanitize=bool

 This option enables instrumentation of loads from bool. If a value other

 than 0/1 is loaded, a run-time error is issued.

 -fsanitize=enum

 This option enables instrumentation of loads from an enum type. If a value

 outside the range of values for the enum type is loaded, a run-time error

 is issued.

 -fsanitize=vptr

 This option enables instrumentation of C++ member function calls, member

 accesses and some conversions between pointers to base and derived classes,

 to verify the referenced object has the correct dynamic type.

 While -ftrapv causes traps for signed overflows to be emitted,

 -fsanitize=undefined gives a diagnostic message. This currently works only for

 the C family of languages.

 -fno-sanitize=all

 This option disables all previously enabled sanitizers. -fsanitize=all is not

 allowed, as some sanitizers cannot be used together.

 -fasan-shadow-offset=number

 This option forces GCC to use custom shadow offset in AddressSanitizer checks.

 It is useful for experimenting with different shadow memory layouts in Kernel

 AddressSanitizer.

 -fsanitize-sections=s1,s2,...

 Sanitize global variables in selected user-defined sections. si may contain

 wildcards.

 -fsanitize-recover[=opts]

 -fsanitize-recover= controls error recovery mode for sanitizers mentioned in

 comma-separated list of opts. Enabling this option for a sanitizer component

 causes it to attempt to continue running the program as if no error happened.

 This means multiple runtime errors can be reported in a single program run, and

 the exit code of the program may indicate success even when errors have been

 reported. The -fno-sanitize-recover= option can be used to alter this

 behavior: only the first detected error is reported and program then exits with Page 205/493

 a non-zero exit code.

 Currently this feature only works for -fsanitize=undefined (and its suboptions

 except for -fsanitize=unreachable and -fsanitize=return),

 -fsanitize=float-cast-overflow, -fsanitize=float-divide-by-zero,

 -fsanitize=bounds-strict, -fsanitize=kernel-address and -fsanitize=address.

 For these sanitizers error recovery is turned on by default, except

 -fsanitize=address, for which this feature is experimental.

 -fsanitize-recover=all and -fno-sanitize-recover=all is also accepted, the

 former enables recovery for all sanitizers that support it, the latter disables

 recovery for all sanitizers that support it.

 Even if a recovery mode is turned on the compiler side, it needs to be also

 enabled on the runtime library side, otherwise the failures are still fatal.

 The runtime library defaults to "halt_on_error=0" for ThreadSanitizer and

 UndefinedBehaviorSanitizer, while default value for AddressSanitizer is

 "halt_on_error=1". This can be overridden through setting the "halt_on_error"

 flag in the corresponding environment variable.

 Syntax without an explicit opts parameter is deprecated. It is equivalent to

 specifying an opts list of:

 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict

 -fsanitize-address-use-after-scope

 Enable sanitization of local variables to detect use-after-scope bugs. The

 option sets -fstack-reuse to none.

 -fsanitize-undefined-trap-on-error

 The -fsanitize-undefined-trap-on-error option instructs the compiler to report

 undefined behavior using "__builtin_trap" rather than a "libubsan" library

 routine. The advantage of this is that the "libubsan" library is not needed

 and is not linked in, so this is usable even in freestanding environments.

 -fsanitize-coverage=trace-pc

 Enable coverage-guided fuzzing code instrumentation. Inserts a call to

 "__sanitizer_cov_trace_pc" into every basic block.

 -fbounds-check

 For front ends that support it, generate additional code to check that indices

 used to access arrays are within the declared range. This is currently only Page 206/493

 supported by the Fortran front end, where this option defaults to false.

 -fcheck-pointer-bounds

 Enable Pointer Bounds Checker instrumentation. Each memory reference is

 instrumented with checks of the pointer used for memory access against bounds

 associated with that pointer.

 Currently there is only an implementation for Intel MPX available, thus x86

 GNU/Linux target and -mmpx are required to enable this feature. MPX-based

 instrumentation requires a runtime library to enable MPX in hardware and handle

 bounds violation signals. By default when -fcheck-pointer-bounds and -mmpx

 options are used to link a program, the GCC driver links against the libmpx and

 libmpxwrappers libraries. Bounds checking on calls to dynamic libraries

 requires a linker with -z bndplt support; if GCC was configured with a linker

 without support for this option (including the Gold linker and older versions

 of ld), a warning is given if you link with -mmpx without also specifying

 -static, since the overall effectiveness of the bounds checking protection is

 reduced. See also -static-libmpxwrappers.

 MPX-based instrumentation may be used for debugging and also may be included in

 production code to increase program security. Depending on usage, you may have

 different requirements for the runtime library. The current version of the MPX

 runtime library is more oriented for use as a debugging tool. MPX runtime

 library usage implies -lpthread. See also -static-libmpx. The runtime library

 behavior can be influenced using various CHKP_RT_* environment variables. See

 <https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler>

 for more details.

 Generated instrumentation may be controlled by various -fchkp-* options and by

 the "bnd_variable_size" structure field attribute and "bnd_legacy", and

 "bnd_instrument" function attributes. GCC also provides a number of built-in

 functions for controlling the Pointer Bounds Checker.

 -fchkp-check-incomplete-type

 Generate pointer bounds checks for variables with incomplete type. Enabled by

 default.

 -fchkp-narrow-bounds

 Controls bounds used by Pointer Bounds Checker for pointers to object fields. Page 207/493

 If narrowing is enabled then field bounds are used. Otherwise object bounds

 are used. See also -fchkp-narrow-to-innermost-array and

 -fchkp-first-field-has-own-bounds. Enabled by default.

 -fchkp-first-field-has-own-bounds

 Forces Pointer Bounds Checker to use narrowed bounds for the address of the

 first field in the structure. By default a pointer to the first field has the

 same bounds as a pointer to the whole structure.

 -fchkp-flexible-struct-trailing-arrays

 Forces Pointer Bounds Checker to treat all trailing arrays in structures as

 possibly flexible. By default only array fields with zero length or that are

 marked with attribute bnd_variable_size are treated as flexible.

 -fchkp-narrow-to-innermost-array

 Forces Pointer Bounds Checker to use bounds of the innermost arrays in case of

 nested static array access. By default this option is disabled and bounds of

 the outermost array are used.

 -fchkp-optimize

 Enables Pointer Bounds Checker optimizations. Enabled by default at

 optimization levels -O, -O2, -O3.

 -fchkp-use-fast-string-functions

 Enables use of *_nobnd versions of string functions (not copying bounds) by

 Pointer Bounds Checker. Disabled by default.

 -fchkp-use-nochk-string-functions

 Enables use of *_nochk versions of string functions (not checking bounds) by

 Pointer Bounds Checker. Disabled by default.

 -fchkp-use-static-bounds

 Allow Pointer Bounds Checker to generate static bounds holding bounds of static

 variables. Enabled by default.

 -fchkp-use-static-const-bounds

 Use statically-initialized bounds for constant bounds instead of generating

 them each time they are required. By default enabled when

 -fchkp-use-static-bounds is enabled.

 -fchkp-treat-zero-dynamic-size-as-infinite

 With this option, objects with incomplete type whose dynamically-obtained size Page 208/493

 is zero are treated as having infinite size instead by Pointer Bounds Checker.

 This option may be helpful if a program is linked with a library missing size

 information for some symbols. Disabled by default.

 -fchkp-check-read

 Instructs Pointer Bounds Checker to generate checks for all read accesses to

 memory. Enabled by default.

 -fchkp-check-write

 Instructs Pointer Bounds Checker to generate checks for all write accesses to

 memory. Enabled by default.

 -fchkp-store-bounds

 Instructs Pointer Bounds Checker to generate bounds stores for pointer writes.

 Enabled by default.

 -fchkp-instrument-calls

 Instructs Pointer Bounds Checker to pass pointer bounds to calls. Enabled by

 default.

 -fchkp-instrument-marked-only

 Instructs Pointer Bounds Checker to instrument only functions marked with the

 "bnd_instrument" attribute. Disabled by default.

 -fchkp-use-wrappers

 Allows Pointer Bounds Checker to replace calls to built-in functions with calls

 to wrapper functions. When -fchkp-use-wrappers is used to link a program, the

 GCC driver automatically links against libmpxwrappers. See also

 -static-libmpxwrappers. Enabled by default.

 -fstack-protector

 Emit extra code to check for buffer overflows, such as stack smashing attacks.

 This is done by adding a guard variable to functions with vulnerable objects.

 This includes functions that call "alloca", and functions with buffers larger

 than 8 bytes. The guards are initialized when a function is entered and then

 checked when the function exits. If a guard check fails, an error message is

 printed and the program exits.

 -fstack-protector-all

 Like -fstack-protector except that all functions are protected.

 -fstack-protector-strong Page 209/493

 Like -fstack-protector but includes additional functions to be protected ---

 those that have local array definitions, or have references to local frame

 addresses.

 -fstack-protector-explicit

 Like -fstack-protector but only protects those functions which have the

 "stack_protect" attribute.

 -fstack-check

 Generate code to verify that you do not go beyond the boundary of the stack.

 You should specify this flag if you are running in an environment with multiple

 threads, but you only rarely need to specify it in a single-threaded

 environment since stack overflow is automatically detected on nearly all

 systems if there is only one stack.

 Note that this switch does not actually cause checking to be done; the

 operating system or the language runtime must do that. The switch causes

 generation of code to ensure that they see the stack being extended.

 You can additionally specify a string parameter: no means no checking, generic

 means force the use of old-style checking, specific means use the best checking

 method and is equivalent to bare -fstack-check.

 Old-style checking is a generic mechanism that requires no specific target

 support in the compiler but comes with the following drawbacks:

 1. Modified allocation strategy for large objects: they are always allocated

 dynamically if their size exceeds a fixed threshold.

 2. Fixed limit on the size of the static frame of functions: when it is topped

 by a particular function, stack checking is not reliable and a warning is

 issued by the compiler.

 3. Inefficiency: because of both the modified allocation strategy and the

 generic implementation, code performance is hampered.

 Note that old-style stack checking is also the fallback method for specific if

 no target support has been added in the compiler.

 -fstack-limit-register=reg

 -fstack-limit-symbol=sym

 -fno-stack-limit

 Generate code to ensure that the stack does not grow beyond a certain value, Page 210/493

 either the value of a register or the address of a symbol. If a larger stack

 is required, a signal is raised at run time. For most targets, the signal is

 raised before the stack overruns the boundary, so it is possible to catch the

 signal without taking special precautions.

 For instance, if the stack starts at absolute address 0x80000000 and grows

 downwards, you can use the flags -fstack-limit-symbol=__stack_limit and

 -Wl,--defsym,__stack_limit=0x7ffe0000 to enforce a stack limit of 128KB. Note

 that this may only work with the GNU linker.

 You can locally override stack limit checking by using the "no_stack_limit"

 function attribute.

 -fsplit-stack

 Generate code to automatically split the stack before it overflows. The

 resulting program has a discontiguous stack which can only overflow if the

 program is unable to allocate any more memory. This is most useful when

 running threaded programs, as it is no longer necessary to calculate a good

 stack size to use for each thread. This is currently only implemented for the

 x86 targets running GNU/Linux.

 When code compiled with -fsplit-stack calls code compiled without

 -fsplit-stack, there may not be much stack space available for the latter code

 to run. If compiling all code, including library code, with -fsplit-stack is

 not an option, then the linker can fix up these calls so that the code compiled

 without -fsplit-stack always has a large stack. Support for this is

 implemented in the gold linker in GNU binutils release 2.21 and later.

 -fvtable-verify=[std|preinit|none]

 This option is only available when compiling C++ code. It turns on (or off, if

 using -fvtable-verify=none) the security feature that verifies at run time, for

 every virtual call, that the vtable pointer through which the call is made is

 valid for the type of the object, and has not been corrupted or overwritten.

 If an invalid vtable pointer is detected at run time, an error is reported and

 execution of the program is immediately halted.

 This option causes run-time data structures to be built at program startup,

 which are used for verifying the vtable pointers. The options std and preinit

 control the timing of when these data structures are built. In both cases the Page 211/493

 data structures are built before execution reaches "main". Using

 -fvtable-verify=std causes the data structures to be built after shared

 libraries have been loaded and initialized. -fvtable-verify=preinit causes

 them to be built before shared libraries have been loaded and initialized.

 If this option appears multiple times in the command line with different values

 specified, none takes highest priority over both std and preinit; preinit takes

 priority over std.

 -fvtv-debug

 When used in conjunction with -fvtable-verify=std or -fvtable-verify=preinit,

 causes debug versions of the runtime functions for the vtable verification

 feature to be called. This flag also causes the compiler to log information

 about which vtable pointers it finds for each class. This information is

 written to a file named vtv_set_ptr_data.log in the directory named by the

 environment variable VTV_LOGS_DIR if that is defined or the current working

 directory otherwise.

 Note: This feature appends data to the log file. If you want a fresh log file,

 be sure to delete any existing one.

 -fvtv-counts

 This is a debugging flag. When used in conjunction with -fvtable-verify=std or

 -fvtable-verify=preinit, this causes the compiler to keep track of the total

 number of virtual calls it encounters and the number of verifications it

 inserts. It also counts the number of calls to certain run-time library

 functions that it inserts and logs this information for each compilation unit.

 The compiler writes this information to a file named vtv_count_data.log in the

 directory named by the environment variable VTV_LOGS_DIR if that is defined or

 the current working directory otherwise. It also counts the size of the vtable

 pointer sets for each class, and writes this information to

 vtv_class_set_sizes.log in the same directory.

 Note: This feature appends data to the log files. To get fresh log files, be

 sure to delete any existing ones.

 -finstrument-functions

 Generate instrumentation calls for entry and exit to functions. Just after

 function entry and just before function exit, the following profiling functions Page 212/493

 are called with the address of the current function and its call site. (On

 some platforms, "__builtin_return_address" does not work beyond the current

 function, so the call site information may not be available to the profiling

 functions otherwise.)

 void __cyg_profile_func_enter (void *this_fn,

 void *call_site);

 void __cyg_profile_func_exit (void *this_fn,

 void *call_site);

 The first argument is the address of the start of the current function, which

 may be looked up exactly in the symbol table.

 This instrumentation is also done for functions expanded inline in other

 functions. The profiling calls indicate where, conceptually, the inline

 function is entered and exited. This means that addressable versions of such

 functions must be available. If all your uses of a function are expanded

 inline, this may mean an additional expansion of code size. If you use "extern

 inline" in your C code, an addressable version of such functions must be

 provided. (This is normally the case anyway, but if you get lucky and the

 optimizer always expands the functions inline, you might have gotten away

 without providing static copies.)

 A function may be given the attribute "no_instrument_function", in which case

 this instrumentation is not done. This can be used, for example, for the

 profiling functions listed above, high-priority interrupt routines, and any

 functions from which the profiling functions cannot safely be called (perhaps

 signal handlers, if the profiling routines generate output or allocate memory).

 -finstrument-functions-exclude-file-list=file,file,...

 Set the list of functions that are excluded from instrumentation (see the

 description of -finstrument-functions). If the file that contains a function

 definition matches with one of file, then that function is not instrumented.

 The match is done on substrings: if the file parameter is a substring of the

 file name, it is considered to be a match.

 For example:

 -finstrument-functions-exclude-file-list=/bits/stl,include/sys

 excludes any inline function defined in files whose pathnames contain /bits/stl Page 213/493

 or include/sys.

 If, for some reason, you want to include letter , in one of sym, write ,. For

 example, -finstrument-functions-exclude-file-list=',,tmp' (note the single

 quote surrounding the option).

 -finstrument-functions-exclude-function-list=sym,sym,...

 This is similar to -finstrument-functions-exclude-file-list, but this option

 sets the list of function names to be excluded from instrumentation. The

 function name to be matched is its user-visible name, such as "vector<int>

 blah(const vector<int> &)", not the internal mangled name (e.g.,

 "_Z4blahRSt6vectorIiSaIiEE"). The match is done on substrings: if the sym

 parameter is a substring of the function name, it is considered to be a match.

 For C99 and C++ extended identifiers, the function name must be given in UTF-8,

 not using universal character names.

 Options Controlling the Preprocessor

 These options control the C preprocessor, which is run on each C source file before

 actual compilation.

 If you use the -E option, nothing is done except preprocessing. Some of these

 options make sense only together with -E because they cause the preprocessor output

 to be unsuitable for actual compilation.

 In addition to the options listed here, there are a number of options to control

 search paths for include files documented in Directory Options. Options to control

 preprocessor diagnostics are listed in Warning Options.

 -D name

 Predefine name as a macro, with definition 1.

 -D name=definition

 The contents of definition are tokenized and processed as if they appeared

 during translation phase three in a #define directive. In particular, the

 definition is truncated by embedded newline characters.

 If you are invoking the preprocessor from a shell or shell-like program you may

 need to use the shell's quoting syntax to protect characters such as spaces

 that have a meaning in the shell syntax.

 If you wish to define a function-like macro on the command line, write its

 argument list with surrounding parentheses before the equals sign (if any). Page 214/493

 Parentheses are meaningful to most shells, so you should quote the option.

 With sh and csh, -D'name(args...)=definition' works.

 -D and -U options are processed in the order they are given on the command

 line. All -imacros file and -include file options are processed after all -D

 and -U options.

 -U name

 Cancel any previous definition of name, either built in or provided with a -D

 option.

 -include file

 Process file as if "#include "file"" appeared as the first line of the primary

 source file. However, the first directory searched for file is the

 preprocessor's working directory instead of the directory containing the main

 source file. If not found there, it is searched for in the remainder of the

 "#include "..."" search chain as normal.

 If multiple -include options are given, the files are included in the order

 they appear on the command line.

 -imacros file

 Exactly like -include, except that any output produced by scanning file is

 thrown away. Macros it defines remain defined. This allows you to acquire all

 the macros from a header without also processing its declarations.

 All files specified by -imacros are processed before all files specified by

 -include.

 -undef

 Do not predefine any system-specific or GCC-specific macros. The standard

 predefined macros remain defined.

 -pthread

 Define additional macros required for using the POSIX threads library. You

 should use this option consistently for both compilation and linking. This

 option is supported on GNU/Linux targets, most other Unix derivatives, and also

 on x86 Cygwin and MinGW targets.

 -M Instead of outputting the result of preprocessing, output a rule suitable for

 make describing the dependencies of the main source file. The preprocessor

 outputs one make rule containing the object file name for that source file, a Page 215/493

 colon, and the names of all the included files, including those coming from

 -include or -imacros command-line options.

 Unless specified explicitly (with -MT or -MQ), the object file name consists of

 the name of the source file with any suffix replaced with object file suffix

 and with any leading directory parts removed. If there are many included files

 then the rule is split into several lines using \-newline. The rule has no

 commands.

 This option does not suppress the preprocessor's debug output, such as -dM. To

 avoid mixing such debug output with the dependency rules you should explicitly

 specify the dependency output file with -MF, or use an environment variable

 like DEPENDENCIES_OUTPUT. Debug output is still sent to the regular output

 stream as normal.

 Passing -M to the driver implies -E, and suppresses warnings with an implicit

 -w.

 -MM Like -M but do not mention header files that are found in system header

 directories, nor header files that are included, directly or indirectly, from

 such a header.

 This implies that the choice of angle brackets or double quotes in an #include

 directive does not in itself determine whether that header appears in -MM

 dependency output.

 -MF file

 When used with -M or -MM, specifies a file to write the dependencies to. If no

 -MF switch is given the preprocessor sends the rules to the same place it would

 send preprocessed output.

 When used with the driver options -MD or -MMD, -MF overrides the default

 dependency output file.

 -MG In conjunction with an option such as -M requesting dependency generation, -MG

 assumes missing header files are generated files and adds them to the

 dependency list without raising an error. The dependency filename is taken

 directly from the "#include" directive without prepending any path. -MG also

 suppresses preprocessed output, as a missing header file renders this useless.

 This feature is used in automatic updating of makefiles.

 -MP This option instructs CPP to add a phony target for each dependency other than Page 216/493

 the main file, causing each to depend on nothing. These dummy rules work

 around errors make gives if you remove header files without updating the

 Makefile to match.

 This is typical output:

 test.o: test.c test.h

 test.h:

 -MT target

 Change the target of the rule emitted by dependency generation. By default CPP

 takes the name of the main input file, deletes any directory components and any

 file suffix such as .c, and appends the platform's usual object suffix. The

 result is the target.

 An -MT option sets the target to be exactly the string you specify. If you

 want multiple targets, you can specify them as a single argument to -MT, or use

 multiple -MT options.

 For example, -MT '$(objpfx)foo.o' might give

 $(objpfx)foo.o: foo.c

 -MQ target

 Same as -MT, but it quotes any characters which are special to Make.

 -MQ '$(objpfx)foo.o' gives

 $$(objpfx)foo.o: foo.c

 The default target is automatically quoted, as if it were given with -MQ.

 -MD -MD is equivalent to -M -MF file, except that -E is not implied. The driver

 determines file based on whether an -o option is given. If it is, the driver

 uses its argument but with a suffix of .d, otherwise it takes the name of the

 input file, removes any directory components and suffix, and applies a .d

 suffix.

 If -MD is used in conjunction with -E, any -o switch is understood to specify

 the dependency output file, but if used without -E, each -o is understood to

 specify a target object file.

 Since -E is not implied, -MD can be used to generate a dependency output file

 as a side-effect of the compilation process.

 -MMD

 Like -MD except mention only user header files, not system header files. Page 217/493

 -fpreprocessed

 Indicate to the preprocessor that the input file has already been preprocessed.

 This suppresses things like macro expansion, trigraph conversion, escaped

 newline splicing, and processing of most directives. The preprocessor still

 recognizes and removes comments, so that you can pass a file preprocessed with

 -C to the compiler without problems. In this mode the integrated preprocessor

 is little more than a tokenizer for the front ends.

 -fpreprocessed is implicit if the input file has one of the extensions .i, .ii

 or .mi. These are the extensions that GCC uses for preprocessed files created

 by -save-temps.

 -fdirectives-only

 When preprocessing, handle directives, but do not expand macros.

 The option's behavior depends on the -E and -fpreprocessed options.

 With -E, preprocessing is limited to the handling of directives such as

 "#define", "#ifdef", and "#error". Other preprocessor operations, such as

 macro expansion and trigraph conversion are not performed. In addition, the

 -dD option is implicitly enabled.

 With -fpreprocessed, predefinition of command line and most builtin macros is

 disabled. Macros such as "__LINE__", which are contextually dependent, are

 handled normally. This enables compilation of files previously preprocessed

 with "-E -fdirectives-only".

 With both -E and -fpreprocessed, the rules for -fpreprocessed take precedence.

 This enables full preprocessing of files previously preprocessed with "-E

 -fdirectives-only".

 -fdollars-in-identifiers

 Accept $ in identifiers.

 -fextended-identifiers

 Accept universal character names in identifiers. This option is enabled by

 default for C99 (and later C standard versions) and C++.

 -fno-canonical-system-headers

 When preprocessing, do not shorten system header paths with canonicalization.

 -ftabstop=width

 Set the distance between tab stops. This helps the preprocessor report correct Page 218/493

 column numbers in warnings or errors, even if tabs appear on the line. If the

 value is less than 1 or greater than 100, the option is ignored. The default

 is 8.

 -ftrack-macro-expansion[=level]

 Track locations of tokens across macro expansions. This allows the compiler to

 emit diagnostic about the current macro expansion stack when a compilation

 error occurs in a macro expansion. Using this option makes the preprocessor and

 the compiler consume more memory. The level parameter can be used to choose the

 level of precision of token location tracking thus decreasing the memory

 consumption if necessary. Value 0 of level de-activates this option. Value 1

 tracks tokens locations in a degraded mode for the sake of minimal memory

 overhead. In this mode all tokens resulting from the expansion of an argument

 of a function-like macro have the same location. Value 2 tracks tokens

 locations completely. This value is the most memory hungry. When this option

 is given no argument, the default parameter value is 2.

 Note that "-ftrack-macro-expansion=2" is activated by default.

 -fexec-charset=charset

 Set the execution character set, used for string and character constants. The

 default is UTF-8. charset can be any encoding supported by the system's

 "iconv" library routine.

 -fwide-exec-charset=charset

 Set the wide execution character set, used for wide string and character

 constants. The default is UTF-32 or UTF-16, whichever corresponds to the width

 of "wchar_t". As with -fexec-charset, charset can be any encoding supported by

 the system's "iconv" library routine; however, you will have problems with

 encodings that do not fit exactly in "wchar_t".

 -finput-charset=charset

 Set the input character set, used for translation from the character set of the

 input file to the source character set used by GCC. If the locale does not

 specify, or GCC cannot get this information from the locale, the default is

 UTF-8. This can be overridden by either the locale or this command-line

 option. Currently the command-line option takes precedence if there's a

 conflict. charset can be any encoding supported by the system's "iconv" Page 219/493

 library routine.

 -fpch-deps

 When using precompiled headers, this flag causes the dependency-output flags to

 also list the files from the precompiled header's dependencies. If not

 specified, only the precompiled header are listed and not the files that were

 used to create it, because those files are not consulted when a precompiled

 header is used.

 -fpch-preprocess

 This option allows use of a precompiled header together with -E. It inserts a

 special "#pragma", "#pragma GCC pch_preprocess "filename"" in the output to

 mark the place where the precompiled header was found, and its filename. When

 -fpreprocessed is in use, GCC recognizes this "#pragma" and loads the PCH.

 This option is off by default, because the resulting preprocessed output is

 only really suitable as input to GCC. It is switched on by -save-temps.

 You should not write this "#pragma" in your own code, but it is safe to edit

 the filename if the PCH file is available in a different location. The

 filename may be absolute or it may be relative to GCC's current directory.

 -fworking-directory

 Enable generation of linemarkers in the preprocessor output that let the

 compiler know the current working directory at the time of preprocessing. When

 this option is enabled, the preprocessor emits, after the initial linemarker, a

 second linemarker with the current working directory followed by two slashes.

 GCC uses this directory, when it's present in the preprocessed input, as the

 directory emitted as the current working directory in some debugging

 information formats. This option is implicitly enabled if debugging

 information is enabled, but this can be inhibited with the negated form

 -fno-working-directory. If the -P flag is present in the command line, this

 option has no effect, since no "#line" directives are emitted whatsoever.

 -A predicate=answer

 Make an assertion with the predicate predicate and answer answer. This form is

 preferred to the older form -A predicate(answer), which is still supported,

 because it does not use shell special characters.

 -A -predicate=answer Page 220/493

 Cancel an assertion with the predicate predicate and answer answer.

 -C Do not discard comments. All comments are passed through to the output file,

 except for comments in processed directives, which are deleted along with the

 directive.

 You should be prepared for side effects when using -C; it causes the

 preprocessor to treat comments as tokens in their own right. For example,

 comments appearing at the start of what would be a directive line have the

 effect of turning that line into an ordinary source line, since the first token

 on the line is no longer a #.

 -CC Do not discard comments, including during macro expansion. This is like -C,

 except that comments contained within macros are also passed through to the

 output file where the macro is expanded.

 In addition to the side-effects of the -C option, the -CC option causes all

 C++-style comments inside a macro to be converted to C-style comments. This is

 to prevent later use of that macro from inadvertently commenting out the

 remainder of the source line.

 The -CC option is generally used to support lint comments.

 -P Inhibit generation of linemarkers in the output from the preprocessor. This

 might be useful when running the preprocessor on something that is not C code,

 and will be sent to a program which might be confused by the linemarkers.

 -traditional

 -traditional-cpp

 Try to imitate the behavior of pre-standard C preprocessors, as opposed to ISO

 C preprocessors. See the GNU CPP manual for details.

 Note that GCC does not otherwise attempt to emulate a pre-standard C compiler,

 and these options are only supported with the -E switch, or when invoking CPP

 explicitly.

 -trigraphs

 Support ISO C trigraphs. These are three-character sequences, all starting

 with ??, that are defined by ISO C to stand for single characters. For

 example, ??/ stands for \, so '??/n' is a character constant for a newline.

 The nine trigraphs and their replacements are

 Trigraph: ??(??) ??< ??> ??= ??/ ??' ??! ??- Page 221/493

 Replacement: [] { } # \ ^ | ~

 By default, GCC ignores trigraphs, but in standard-conforming modes it converts

 them. See the -std and -ansi options.

 -remap

 Enable special code to work around file systems which only permit very short

 file names, such as MS-DOS.

 -H Print the name of each header file used, in addition to other normal

 activities. Each name is indented to show how deep in the #include stack it

 is. Precompiled header files are also printed, even if they are found to be

 invalid; an invalid precompiled header file is printed with ...x and a valid

 one with ...! .

 -dletters

 Says to make debugging dumps during compilation as specified by letters. The

 flags documented here are those relevant to the preprocessor. Other letters

 are interpreted by the compiler proper, or reserved for future versions of GCC,

 and so are silently ignored. If you specify letters whose behavior conflicts,

 the result is undefined.

 -dM Instead of the normal output, generate a list of #define directives for all

 the macros defined during the execution of the preprocessor, including

 predefined macros. This gives you a way of finding out what is predefined

 in your version of the preprocessor. Assuming you have no file foo.h, the

 command

 touch foo.h; cpp -dM foo.h

 shows all the predefined macros.

 If you use -dM without the -E option, -dM is interpreted as a synonym for

 -fdump-rtl-mach.

 -dD Like -dM except in two respects: it does not include the predefined macros,

 and it outputs both the #define directives and the result of preprocessing.

 Both kinds of output go to the standard output file.

 -dN Like -dD, but emit only the macro names, not their expansions.

 -dI Output #include directives in addition to the result of preprocessing.

 -dU Like -dD except that only macros that are expanded, or whose definedness is

 tested in preprocessor directives, are output; the output is delayed until Page 222/493

 the use or test of the macro; and #undef directives are also output for

 macros tested but undefined at the time.

 -fdebug-cpp

 This option is only useful for debugging GCC. When used from CPP or with -E,

 it dumps debugging information about location maps. Every token in the output

 is preceded by the dump of the map its location belongs to.

 When used from GCC without -E, this option has no effect.

 -Wp,option

 You can use -Wp,option to bypass the compiler driver and pass option directly

 through to the preprocessor. If option contains commas, it is split into

 multiple options at the commas. However, many options are modified, translated

 or interpreted by the compiler driver before being passed to the preprocessor,

 and -Wp forcibly bypasses this phase. The preprocessor's direct interface is

 undocumented and subject to change, so whenever possible you should avoid using

 -Wp and let the driver handle the options instead.

 -Xpreprocessor option

 Pass option as an option to the preprocessor. You can use this to supply

 system-specific preprocessor options that GCC does not recognize.

 If you want to pass an option that takes an argument, you must use

 -Xpreprocessor twice, once for the option and once for the argument.

 -no-integrated-cpp

 Perform preprocessing as a separate pass before compilation. By default, GCC

 performs preprocessing as an integrated part of input tokenization and parsing.

 If this option is provided, the appropriate language front end (cc1, cc1plus,

 or cc1obj for C, C++, and Objective-C, respectively) is instead invoked twice,

 once for preprocessing only and once for actual compilation of the preprocessed

 input. This option may be useful in conjunction with the -B or -wrapper

 options to specify an alternate preprocessor or perform additional processing

 of the program source between normal preprocessing and compilation.

 Passing Options to the Assembler

 You can pass options to the assembler.

 -Wa,option

 Pass option as an option to the assembler. If option contains commas, it is Page 223/493

 split into multiple options at the commas.

 -Xassembler option

 Pass option as an option to the assembler. You can use this to supply system-

 specific assembler options that GCC does not recognize.

 If you want to pass an option that takes an argument, you must use -Xassembler

 twice, once for the option and once for the argument.

 Options for Linking

 These options come into play when the compiler links object files into an

 executable output file. They are meaningless if the compiler is not doing a link

 step.

 object-file-name

 A file name that does not end in a special recognized suffix is considered to

 name an object file or library. (Object files are distinguished from libraries

 by the linker according to the file contents.) If linking is done, these

 object files are used as input to the linker.

 -c

 -S

 -E If any of these options is used, then the linker is not run, and object file

 names should not be used as arguments.

 -fuse-ld=bfd

 Use the bfd linker instead of the default linker.

 -fuse-ld=gold

 Use the gold linker instead of the default linker.

 -fuse-ld=lld

 Use the LLVM lld linker instead of the default linker.

 -llibrary

 -l library

 Search the library named library when linking. (The second alternative with

 the library as a separate argument is only for POSIX compliance and is not

 recommended.)

 It makes a difference where in the command you write this option; the linker

 searches and processes libraries and object files in the order they are

 specified. Thus, foo.o -lz bar.o searches library z after file foo.o but Page 224/493

 before bar.o. If bar.o refers to functions in z, those functions may not be

 loaded.

 The linker searches a standard list of directories for the library, which is

 actually a file named liblibrary.a. The linker then uses this file as if it

 had been specified precisely by name.

 The directories searched include several standard system directories plus any

 that you specify with -L.

 Normally the files found this way are library files---archive files whose

 members are object files. The linker handles an archive file by scanning

 through it for members which define symbols that have so far been referenced

 but not defined. But if the file that is found is an ordinary object file, it

 is linked in the usual fashion. The only difference between using an -l option

 and specifying a file name is that -l surrounds library with lib and .a and

 searches several directories.

 -lobjc

 You need this special case of the -l option in order to link an Objective-C or

 Objective-C++ program.

 -nostartfiles

 Do not use the standard system startup files when linking. The standard system

 libraries are used normally, unless -nostdlib or -nodefaultlibs is used.

 -nodefaultlibs

 Do not use the standard system libraries when linking. Only the libraries you

 specify are passed to the linker, and options specifying linkage of the system

 libraries, such as -static-libgcc or -shared-libgcc, are ignored. The standard

 startup files are used normally, unless -nostartfiles is used.

 The compiler may generate calls to "memcmp", "memset", "memcpy" and "memmove".

 These entries are usually resolved by entries in libc. These entry points

 should be supplied through some other mechanism when this option is specified.

 -nostdlib

 Do not use the standard system startup files or libraries when linking. No

 startup files and only the libraries you specify are passed to the linker, and

 options specifying linkage of the system libraries, such as -static-libgcc or

 -shared-libgcc, are ignored. Page 225/493

 The compiler may generate calls to "memcmp", "memset", "memcpy" and "memmove".

 These entries are usually resolved by entries in libc. These entry points

 should be supplied through some other mechanism when this option is specified.

 One of the standard libraries bypassed by -nostdlib and -nodefaultlibs is

 libgcc.a, a library of internal subroutines which GCC uses to overcome

 shortcomings of particular machines, or special needs for some languages.

 In most cases, you need libgcc.a even when you want to avoid other standard

 libraries. In other words, when you specify -nostdlib or -nodefaultlibs you

 should usually specify -lgcc as well. This ensures that you have no unresolved

 references to internal GCC library subroutines. (An example of such an

 internal subroutine is "__main", used to ensure C++ constructors are called.)

 -pie

 Produce a position independent executable on targets that support it. For

 predictable results, you must also specify the same set of options used for

 compilation (-fpie, -fPIE, or model suboptions) when you specify this linker

 option.

 -no-pie

 Don't produce a position independent executable.

 -pthread

 Link with the POSIX threads library. This option is supported on GNU/Linux

 targets, most other Unix derivatives, and also on x86 Cygwin and MinGW targets.

 On some targets this option also sets flags for the preprocessor, so it should

 be used consistently for both compilation and linking.

 -rdynamic

 Pass the flag -export-dynamic to the ELF linker, on targets that support it.

 This instructs the linker to add all symbols, not only used ones, to the

 dynamic symbol table. This option is needed for some uses of "dlopen" or to

 allow obtaining backtraces from within a program.

 -s Remove all symbol table and relocation information from the executable.

 -static

 On systems that support dynamic linking, this prevents linking with the shared

 libraries. On other systems, this option has no effect.

 -shared Page 226/493

 Produce a shared object which can then be linked with other objects to form an

 executable. Not all systems support this option. For predictable results, you

 must also specify the same set of options used for compilation (-fpic, -fPIC,

 or model suboptions) when you specify this linker option.[1]

 -shared-libgcc

 -static-libgcc

 On systems that provide libgcc as a shared library, these options force the use

 of either the shared or static version, respectively. If no shared version of

 libgcc was built when the compiler was configured, these options have no

 effect.

 There are several situations in which an application should use the shared

 libgcc instead of the static version. The most common of these is when the

 application wishes to throw and catch exceptions across different shared

 libraries. In that case, each of the libraries as well as the application

 itself should use the shared libgcc.

 Therefore, the G++ driver automatically adds -shared-libgcc whenever you build

 a shared library or a main executable, because C++ programs typically use

 exceptions, so this is the right thing to do.

 If, instead, you use the GCC driver to create shared libraries, you may find

 that they are not always linked with the shared libgcc. If GCC finds, at its

 configuration time, that you have a non-GNU linker or a GNU linker that does

 not support option --eh-frame-hdr, it links the shared version of libgcc into

 shared libraries by default. Otherwise, it takes advantage of the linker and

 optimizes away the linking with the shared version of libgcc, linking with the

 static version of libgcc by default. This allows exceptions to propagate

 through such shared libraries, without incurring relocation costs at library

 load time.

 However, if a library or main executable is supposed to throw or catch

 exceptions, you must link it using the G++ driver, or using the option

 -shared-libgcc, such that it is linked with the shared libgcc.

 -static-libasan

 When the -fsanitize=address option is used to link a program, the GCC driver

 automatically links against libasan. If libasan is available as a shared Page 227/493

 library, and the -static option is not used, then this links against the shared

 version of libasan. The -static-libasan option directs the GCC driver to link

 libasan statically, without necessarily linking other libraries statically.

 -static-libtsan

 When the -fsanitize=thread option is used to link a program, the GCC driver

 automatically links against libtsan. If libtsan is available as a shared

 library, and the -static option is not used, then this links against the shared

 version of libtsan. The -static-libtsan option directs the GCC driver to link

 libtsan statically, without necessarily linking other libraries statically.

 -static-liblsan

 When the -fsanitize=leak option is used to link a program, the GCC driver

 automatically links against liblsan. If liblsan is available as a shared

 library, and the -static option is not used, then this links against the shared

 version of liblsan. The -static-liblsan option directs the GCC driver to link

 liblsan statically, without necessarily linking other libraries statically.

 -static-libubsan

 When the -fsanitize=undefined option is used to link a program, the GCC driver

 automatically links against libubsan. If libubsan is available as a shared

 library, and the -static option is not used, then this links against the shared

 version of libubsan. The -static-libubsan option directs the GCC driver to

 link libubsan statically, without necessarily linking other libraries

 statically.

 -static-libmpx

 When the -fcheck-pointer bounds and -mmpx options are used to link a program,

 the GCC driver automatically links against libmpx. If libmpx is available as a

 shared library, and the -static option is not used, then this links against the

 shared version of libmpx. The -static-libmpx option directs the GCC driver to

 link libmpx statically, without necessarily linking other libraries statically.

 -static-libmpxwrappers

 When the -fcheck-pointer bounds and -mmpx options are used to link a program

 without also using -fno-chkp-use-wrappers, the GCC driver automatically links

 against libmpxwrappers. If libmpxwrappers is available as a shared library,

 and the -static option is not used, then this links against the shared version Page 228/493

 of libmpxwrappers. The -static-libmpxwrappers option directs the GCC driver to

 link libmpxwrappers statically, without necessarily linking other libraries

 statically.

 -static-libstdc++

 When the g++ program is used to link a C++ program, it normally automatically

 links against libstdc++. If libstdc++ is available as a shared library, and

 the -static option is not used, then this links against the shared version of

 libstdc++. That is normally fine. However, it is sometimes useful to freeze

 the version of libstdc++ used by the program without going all the way to a

 fully static link. The -static-libstdc++ option directs the g++ driver to link

 libstdc++ statically, without necessarily linking other libraries statically.

 -symbolic

 Bind references to global symbols when building a shared object. Warn about

 any unresolved references (unless overridden by the link editor option -Xlinker

 -z -Xlinker defs). Only a few systems support this option.

 -T script

 Use script as the linker script. This option is supported by most systems

 using the GNU linker. On some targets, such as bare-board targets without an

 operating system, the -T option may be required when linking to avoid

 references to undefined symbols.

 -Xlinker option

 Pass option as an option to the linker. You can use this to supply system-

 specific linker options that GCC does not recognize.

 If you want to pass an option that takes a separate argument, you must use

 -Xlinker twice, once for the option and once for the argument. For example, to

 pass -assert definitions, you must write -Xlinker -assert -Xlinker definitions.

 It does not work to write -Xlinker "-assert definitions", because this passes

 the entire string as a single argument, which is not what the linker expects.

 When using the GNU linker, it is usually more convenient to pass arguments to

 linker options using the option=value syntax than as separate arguments. For

 example, you can specify -Xlinker -Map=output.map rather than -Xlinker -Map

 -Xlinker output.map. Other linkers may not support this syntax for command-

 line options. Page 229/493

 -Wl,option

 Pass option as an option to the linker. If option contains commas, it is split

 into multiple options at the commas. You can use this syntax to pass an

 argument to the option. For example, -Wl,-Map,output.map passes -Map

 output.map to the linker. When using the GNU linker, you can also get the same

 effect with -Wl,-Map=output.map.

 NOTE: In Ubuntu 8.10 and later versions, for LDFLAGS, the option -Wl,-z,relro

 is used. To disable, use -Wl,-z,norelro.

 -u symbol

 Pretend the symbol symbol is undefined, to force linking of library modules to

 define it. You can use -u multiple times with different symbols to force

 loading of additional library modules.

 -z keyword

 -z is passed directly on to the linker along with the keyword keyword. See the

 section in the documentation of your linker for permitted values and their

 meanings.

 Options for Directory Search

 These options specify directories to search for header files, for libraries and for

 parts of the compiler:

 -I dir

 -iquote dir

 -isystem dir

 -idirafter dir

 Add the directory dir to the list of directories to be searched for header

 files during preprocessing. If dir begins with =, then the = is replaced by

 the sysroot prefix; see --sysroot and -isysroot.

 Directories specified with -iquote apply only to the quote form of the

 directive, "#include "file"". Directories specified with -I, -isystem, or

 -idirafter apply to lookup for both the "#include "file"" and "#include <file>"

 directives.

 You can specify any number or combination of these options on the command line

 to search for header files in several directories. The lookup order is as

 follows: Page 230/493

 1. For the quote form of the include directive, the directory of the current

 file is searched first.

 2. For the quote form of the include directive, the directories specified by

 -iquote options are searched in left-to-right order, as they appear on the

 command line.

 3. Directories specified with -I options are scanned in left-to-right order.

 4. Directories specified with -isystem options are scanned in left-to-right

 order.

 5. Standard system directories are scanned.

 6. Directories specified with -idirafter options are scanned in left-to-right

 order.

 You can use -I to override a system header file, substituting your own version,

 since these directories are searched before the standard system header file

 directories. However, you should not use this option to add directories that

 contain vendor-supplied system header files; use -isystem for that.

 The -isystem and -idirafter options also mark the directory as a system

 directory, so that it gets the same special treatment that is applied to the

 standard system directories.

 If a standard system include directory, or a directory specified with -isystem,

 is also specified with -I, the -I option is ignored. The directory is still

 searched but as a system directory at its normal position in the system include

 chain. This is to ensure that GCC's procedure to fix buggy system headers and

 the ordering for the "#include_next" directive are not inadvertently changed.

 If you really need to change the search order for system directories, use the

 -nostdinc and/or -isystem options.

 -I- Split the include path. This option has been deprecated. Please use -iquote

 instead for -I directories before the -I- and remove the -I- option.

 Any directories specified with -I options before -I- are searched only for

 headers requested with "#include "file""; they are not searched for

 "#include <file>". If additional directories are specified with -I options

 after the -I-, those directories are searched for all #include directives.

 In addition, -I- inhibits the use of the directory of the current file

 directory as the first search directory for "#include "file"". There is no way Page 231/493

 to override this effect of -I-.

 -iprefix prefix

 Specify prefix as the prefix for subsequent -iwithprefix options. If the

 prefix represents a directory, you should include the final /.

 -iwithprefix dir

 -iwithprefixbefore dir

 Append dir to the prefix specified previously with -iprefix, and add the

 resulting directory to the include search path. -iwithprefixbefore puts it in

 the same place -I would; -iwithprefix puts it where -idirafter would.

 -isysroot dir

 This option is like the --sysroot option, but applies only to header files

 (except for Darwin targets, where it applies to both header files and

 libraries). See the --sysroot option for more information.

 -imultilib dir

 Use dir as a subdirectory of the directory containing target-specific C++

 headers.

 -nostdinc

 Do not search the standard system directories for header files. Only the

 directories explicitly specified with -I, -iquote, -isystem, and/or -idirafter

 options (and the directory of the current file, if appropriate) are searched.

 -nostdinc++

 Do not search for header files in the C++-specific standard directories, but do

 still search the other standard directories. (This option is used when

 building the C++ library.)

 -iplugindir=dir

 Set the directory to search for plugins that are passed by -fplugin=name

 instead of -fplugin=path/name.so. This option is not meant to be used by the

 user, but only passed by the driver.

 -Ldir

 Add directory dir to the list of directories to be searched for -l.

 -Bprefix

 This option specifies where to find the executables, libraries, include files,

 and data files of the compiler itself. Page 232/493

 The compiler driver program runs one or more of the subprograms cpp, cc1, as

 and ld. It tries prefix as a prefix for each program it tries to run, both

 with and without machine/version/ for the corresponding target machine and

 compiler version.

 For each subprogram to be run, the compiler driver first tries the -B prefix,

 if any. If that name is not found, or if -B is not specified, the driver tries

 two standard prefixes, /usr/lib/gcc/ and /usr/local/lib/gcc/. If neither of

 those results in a file name that is found, the unmodified program name is

 searched for using the directories specified in your PATH environment variable.

 The compiler checks to see if the path provided by -B refers to a directory,

 and if necessary it adds a directory separator character at the end of the

 path.

 -B prefixes that effectively specify directory names also apply to libraries in

 the linker, because the compiler translates these options into -L options for

 the linker. They also apply to include files in the preprocessor, because the

 compiler translates these options into -isystem options for the preprocessor.

 In this case, the compiler appends include to the prefix.

 The runtime support file libgcc.a can also be searched for using the -B prefix,

 if needed. If it is not found there, the two standard prefixes above are

 tried, and that is all. The file is left out of the link if it is not found by

 those means.

 Another way to specify a prefix much like the -B prefix is to use the

 environment variable GCC_EXEC_PREFIX.

 As a special kludge, if the path provided by -B is [dir/]stageN/, where N is a

 number in the range 0 to 9, then it is replaced by [dir/]include. This is to

 help with boot-strapping the compiler.

 -no-canonical-prefixes

 Do not expand any symbolic links, resolve references to /../ or /./, or make

 the path absolute when generating a relative prefix.

 --sysroot=dir

 Use dir as the logical root directory for headers and libraries. For example,

 if the compiler normally searches for headers in /usr/include and libraries in

 /usr/lib, it instead searches dir/usr/include and dir/usr/lib. Page 233/493

 If you use both this option and the -isysroot option, then the --sysroot option

 applies to libraries, but the -isysroot option applies to header files.

 The GNU linker (beginning with version 2.16) has the necessary support for this

 option. If your linker does not support this option, the header file aspect of

 --sysroot still works, but the library aspect does not.

 --no-sysroot-suffix

 For some targets, a suffix is added to the root directory specified with

 --sysroot, depending on the other options used, so that headers may for example

 be found in dir/suffix/usr/include instead of dir/usr/include. This option

 disables the addition of such a suffix.

 Options for Code Generation Conventions

 These machine-independent options control the interface conventions used in code

 generation.

 Most of them have both positive and negative forms; the negative form of -ffoo is

 -fno-foo. In the table below, only one of the forms is listed---the one that is

 not the default. You can figure out the other form by either removing no- or

 adding it.

 -fstack-reuse=reuse-level

 This option controls stack space reuse for user declared local/auto variables

 and compiler generated temporaries. reuse_level can be all, named_vars, or

 none. all enables stack reuse for all local variables and temporaries,

 named_vars enables the reuse only for user defined local variables with names,

 and none disables stack reuse completely. The default value is all. The option

 is needed when the program extends the lifetime of a scoped local variable or a

 compiler generated temporary beyond the end point defined by the language.

 When a lifetime of a variable ends, and if the variable lives in memory, the

 optimizing compiler has the freedom to reuse its stack space with other

 temporaries or scoped local variables whose live range does not overlap with

 it. Legacy code extending local lifetime is likely to break with the stack

 reuse optimization.

 For example,

 int *p;

 { Page 234/493

 int local1;

 p = &local1;

 local1 = 10;

 }

 {

 int local2;

 local2 = 20;

 ...

 }

 if (*p == 10) // out of scope use of local1

 {

 }

 Another example:

 struct A

 {

 A(int k) : i(k), j(k) { }

 int i;

 int j;

 };

 A *ap;

 void foo(const A& ar)

 {

 ap = &ar;

 }

 void bar()

 {

 foo(A(10)); // temp object's lifetime ends when foo returns

 {

 A a(20);

 }

 ap->i+= 10; // ap references out of scope temp whose space Page 235/493

 // is reused with a. What is the value of ap->i?

 }

 The lifetime of a compiler generated temporary is well defined by the C++

 standard. When a lifetime of a temporary ends, and if the temporary lives in

 memory, the optimizing compiler has the freedom to reuse its stack space with

 other temporaries or scoped local variables whose live range does not overlap

 with it. However some of the legacy code relies on the behavior of older

 compilers in which temporaries' stack space is not reused, the aggressive stack

 reuse can lead to runtime errors. This option is used to control the temporary

 stack reuse optimization.

 -ftrapv

 This option generates traps for signed overflow on addition, subtraction,

 multiplication operations. The options -ftrapv and -fwrapv override each

 other, so using -ftrapv -fwrapv on the command-line results in -fwrapv being

 effective. Note that only active options override, so using -ftrapv -fwrapv

 -fno-wrapv on the command-line results in -ftrapv being effective.

 -fwrapv

 This option instructs the compiler to assume that signed arithmetic overflow of

 addition, subtraction and multiplication wraps around using twos-complement

 representation. This flag enables some optimizations and disables others. The

 options -ftrapv and -fwrapv override each other, so using -ftrapv -fwrapv on

 the command-line results in -fwrapv being effective. Note that only active

 options override, so using -ftrapv -fwrapv -fno-wrapv on the command-line

 results in -ftrapv being effective.

 -fexceptions

 Enable exception handling. Generates extra code needed to propagate

 exceptions. For some targets, this implies GCC generates frame unwind

 information for all functions, which can produce significant data size

 overhead, although it does not affect execution. If you do not specify this

 option, GCC enables it by default for languages like C++ that normally require

 exception handling, and disables it for languages like C that do not normally

 require it. However, you may need to enable this option when compiling C code

 that needs to interoperate properly with exception handlers written in C++. Page 236/493

 You may also wish to disable this option if you are compiling older C++

 programs that don't use exception handling.

 -fnon-call-exceptions

 Generate code that allows trapping instructions to throw exceptions. Note that

 this requires platform-specific runtime support that does not exist everywhere.

 Moreover, it only allows trapping instructions to throw exceptions, i.e. memory

 references or floating-point instructions. It does not allow exceptions to be

 thrown from arbitrary signal handlers such as "SIGALRM".

 -fdelete-dead-exceptions

 Consider that instructions that may throw exceptions but don't otherwise

 contribute to the execution of the program can be optimized away. This option

 is enabled by default for the Ada front end, as permitted by the Ada language

 specification. Optimization passes that cause dead exceptions to be removed

 are enabled independently at different optimization levels.

 -funwind-tables

 Similar to -fexceptions, except that it just generates any needed static data,

 but does not affect the generated code in any other way. You normally do not

 need to enable this option; instead, a language processor that needs this

 handling enables it on your behalf.

 -fasynchronous-unwind-tables

 Generate unwind table in DWARF format, if supported by target machine. The

 table is exact at each instruction boundary, so it can be used for stack

 unwinding from asynchronous events (such as debugger or garbage collector).

 -fno-gnu-unique

 On systems with recent GNU assembler and C library, the C++ compiler uses the

 "STB_GNU_UNIQUE" binding to make sure that definitions of template static data

 members and static local variables in inline functions are unique even in the

 presence of "RTLD_LOCAL"; this is necessary to avoid problems with a library

 used by two different "RTLD_LOCAL" plugins depending on a definition in one of

 them and therefore disagreeing with the other one about the binding of the

 symbol. But this causes "dlclose" to be ignored for affected DSOs; if your

 program relies on reinitialization of a DSO via "dlclose" and "dlopen", you can

 use -fno-gnu-unique. Page 237/493

 -fpcc-struct-return

 Return "short" "struct" and "union" values in memory like longer ones, rather

 than in registers. This convention is less efficient, but it has the advantage

 of allowing intercallability between GCC-compiled files and files compiled with

 other compilers, particularly the Portable C Compiler (pcc).

 The precise convention for returning structures in memory depends on the target

 configuration macros.

 Short structures and unions are those whose size and alignment match that of

 some integer type.

 Warning: code compiled with the -fpcc-struct-return switch is not binary

 compatible with code compiled with the -freg-struct-return switch. Use it to

 conform to a non-default application binary interface.

 -freg-struct-return

 Return "struct" and "union" values in registers when possible. This is more

 efficient for small structures than -fpcc-struct-return.

 If you specify neither -fpcc-struct-return nor -freg-struct-return, GCC

 defaults to whichever convention is standard for the target. If there is no

 standard convention, GCC defaults to -fpcc-struct-return, except on targets

 where GCC is the principal compiler. In those cases, we can choose the

 standard, and we chose the more efficient register return alternative.

 Warning: code compiled with the -freg-struct-return switch is not binary

 compatible with code compiled with the -fpcc-struct-return switch. Use it to

 conform to a non-default application binary interface.

 -fshort-enums

 Allocate to an "enum" type only as many bytes as it needs for the declared

 range of possible values. Specifically, the "enum" type is equivalent to the

 smallest integer type that has enough room.

 Warning: the -fshort-enums switch causes GCC to generate code that is not

 binary compatible with code generated without that switch. Use it to conform

 to a non-default application binary interface.

 -fshort-wchar

 Override the underlying type for "wchar_t" to be "short unsigned int" instead

 of the default for the target. This option is useful for building programs to Page 238/493

 run under WINE.

 Warning: the -fshort-wchar switch causes GCC to generate code that is not

 binary compatible with code generated without that switch. Use it to conform

 to a non-default application binary interface.

 -fno-common

 In C code, this option controls the placement of global variables defined

 without an initializer, known as tentative definitions in the C standard.

 Tentative definitions are distinct from declarations of a variable with the

 "extern" keyword, which do not allocate storage.

 Unix C compilers have traditionally allocated storage for uninitialized global

 variables in a common block. This allows the linker to resolve all tentative

 definitions of the same variable in different compilation units to the same

 object, or to a non-tentative definition. This is the behavior specified by

 -fcommon, and is the default for GCC on most targets. On the other hand, this

 behavior is not required by ISO C, and on some targets may carry a speed or

 code size penalty on variable references.

 The -fno-common option specifies that the compiler should instead place

 uninitialized global variables in the data section of the object file. This

 inhibits the merging of tentative definitions by the linker so you get a

 multiple-definition error if the same variable is defined in more than one

 compilation unit. Compiling with -fno-common is useful on targets for which it

 provides better performance, or if you wish to verify that the program will

 work on other systems that always treat uninitialized variable definitions this

 way.

 -fno-ident

 Ignore the "#ident" directive.

 -finhibit-size-directive

 Don't output a ".size" assembler directive, or anything else that would cause

 trouble if the function is split in the middle, and the two halves are placed

 at locations far apart in memory. This option is used when compiling

 crtstuff.c; you should not need to use it for anything else.

 -fverbose-asm

 Put extra commentary information in the generated assembly code to make it more Page 239/493

 readable. This option is generally only of use to those who actually need to

 read the generated assembly code (perhaps while debugging the compiler itself).

 -fno-verbose-asm, the default, causes the extra information to be omitted and

 is useful when comparing two assembler files.

 The added comments include:

 * information on the compiler version and command-line options,

 * the source code lines associated with the assembly instructions, in the

 form FILENAME:LINENUMBER:CONTENT OF LINE,

 * hints on which high-level expressions correspond to the various assembly

 instruction operands.

 For example, given this C source file:

 int test (int n)

 {

 int i;

 int total = 0;

 for (i = 0; i < n; i++)

 total += i * i;

 return total;

 }

 compiling to (x86_64) assembly via -S and emitting the result direct to stdout

 via -o -

 gcc -S test.c -fverbose-asm -Os -o -

 gives output similar to this:

 .file "test.c"

 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)

 [...snip...]

 # options passed:

 [...snip...]

 .text

 .globl test

 .type test, @function

 test:

 .LFB0: Page 240/493

 .cfi_startproc

 # test.c:4: int total = 0;

 xorl %eax, %eax # <retval>

 # test.c:6: for (i = 0; i < n; i++)

 xorl %edx, %edx # i

 .L2:

 # test.c:6: for (i = 0; i < n; i++)

 cmpl %edi, %edx # n, i

 jge .L5 #,

 # test.c:7: total += i * i;

 movl %edx, %ecx # i, tmp92

 imull %edx, %ecx # i, tmp92

 # test.c:6: for (i = 0; i < n; i++)

 incl %edx # i

 # test.c:7: total += i * i;

 addl %ecx, %eax # tmp92, <retval>

 jmp .L2 #

 .L5:

 # test.c:10: }

 ret

 .cfi_endproc

 .LFE0:

 .size test, .-test

 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"

 .section .note.GNU-stack,"",@progbits

 The comments are intended for humans rather than machines and hence the precise

 format of the comments is subject to change.

 -frecord-gcc-switches

 This switch causes the command line used to invoke the compiler to be recorded

 into the object file that is being created. This switch is only implemented on

 some targets and the exact format of the recording is target and binary file

 format dependent, but it usually takes the form of a section containing ASCII

 text. This switch is related to the -fverbose-asm switch, but that switch only Page 241/493

 records information in the assembler output file as comments, so it never

 reaches the object file. See also -grecord-gcc-switches for another way of

 storing compiler options into the object file.

 -fpic

 Generate position-independent code (PIC) suitable for use in a shared library,

 if supported for the target machine. Such code accesses all constant addresses

 through a global offset table (GOT). The dynamic loader resolves the GOT

 entries when the program starts (the dynamic loader is not part of GCC; it is

 part of the operating system). If the GOT size for the linked executable

 exceeds a machine-specific maximum size, you get an error message from the

 linker indicating that -fpic does not work; in that case, recompile with -fPIC

 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k on the

 m68k and RS/6000. The x86 has no such limit.)

 Position-independent code requires special support, and therefore works only on

 certain machines. For the x86, GCC supports PIC for System V but not for the

 Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

 When this flag is set, the macros "__pic__" and "__PIC__" are defined to 1.

 -fPIC

 If supported for the target machine, emit position-independent code, suitable

 for dynamic linking and avoiding any limit on the size of the global offset

 table. This option makes a difference on AArch64, m68k, PowerPC and SPARC.

 Position-independent code requires special support, and therefore works only on

 certain machines.

 When this flag is set, the macros "__pic__" and "__PIC__" are defined to 2.

 -fpie

 -fPIE

 These options are similar to -fpic and -fPIC, but generated position

 independent code can be only linked into executables. Usually these options

 are used when -pie GCC option is used during linking.

 -fpie and -fPIE both define the macros "__pie__" and "__PIE__". The macros

 have the value 1 for -fpie and 2 for -fPIE.

 -fno-plt

 Do not use the PLT for external function calls in position-independent code. Page 242/493

 Instead, load the callee address at call sites from the GOT and branch to it.

 This leads to more efficient code by eliminating PLT stubs and exposing GOT

 loads to optimizations. On architectures such as 32-bit x86 where PLT stubs

 expect the GOT pointer in a specific register, this gives more register

 allocation freedom to the compiler. Lazy binding requires use of the PLT; with

 -fno-plt all external symbols are resolved at load time.

 Alternatively, the function attribute "noplt" can be used to avoid calls

 through the PLT for specific external functions.

 In position-dependent code, a few targets also convert calls to functions that

 are marked to not use the PLT to use the GOT instead.

 -fno-jump-tables

 Do not use jump tables for switch statements even where it would be more

 efficient than other code generation strategies. This option is of use in

 conjunction with -fpic or -fPIC for building code that forms part of a dynamic

 linker and cannot reference the address of a jump table. On some targets, jump

 tables do not require a GOT and this option is not needed.

 -ffixed-reg

 Treat the register named reg as a fixed register; generated code should never

 refer to it (except perhaps as a stack pointer, frame pointer or in some other

 fixed role).

 reg must be the name of a register. The register names accepted are machine-

 specific and are defined in the "REGISTER_NAMES" macro in the machine

 description macro file.

 This flag does not have a negative form, because it specifies a three-way

 choice.

 -fcall-used-reg

 Treat the register named reg as an allocable register that is clobbered by

 function calls. It may be allocated for temporaries or variables that do not

 live across a call. Functions compiled this way do not save and restore the

 register reg.

 It is an error to use this flag with the frame pointer or stack pointer. Use

 of this flag for other registers that have fixed pervasive roles in the

 machine's execution model produces disastrous results. Page 243/493

 This flag does not have a negative form, because it specifies a three-way

 choice.

 -fcall-saved-reg

 Treat the register named reg as an allocable register saved by functions. It

 may be allocated even for temporaries or variables that live across a call.

 Functions compiled this way save and restore the register reg if they use it.

 It is an error to use this flag with the frame pointer or stack pointer. Use

 of this flag for other registers that have fixed pervasive roles in the

 machine's execution model produces disastrous results.

 A different sort of disaster results from the use of this flag for a register

 in which function values may be returned.

 This flag does not have a negative form, because it specifies a three-way

 choice.

 -fpack-struct[=n]

 Without a value specified, pack all structure members together without holes.

 When a value is specified (which must be a small power of two), pack structure

 members according to this value, representing the maximum alignment (that is,

 objects with default alignment requirements larger than this are output

 potentially unaligned at the next fitting location.

 Warning: the -fpack-struct switch causes GCC to generate code that is not

 binary compatible with code generated without that switch. Additionally, it

 makes the code suboptimal. Use it to conform to a non-default application

 binary interface.

 -fleading-underscore

 This option and its counterpart, -fno-leading-underscore, forcibly change the

 way C symbols are represented in the object file. One use is to help link with

 legacy assembly code.

 Warning: the -fleading-underscore switch causes GCC to generate code that is

 not binary compatible with code generated without that switch. Use it to

 conform to a non-default application binary interface. Not all targets provide

 complete support for this switch.

 -ftls-model=model

 Alter the thread-local storage model to be used. The model argument should be Page 244/493

 one of global-dynamic, local-dynamic, initial-exec or local-exec. Note that

 the choice is subject to optimization: the compiler may use a more efficient

 model for symbols not visible outside of the translation unit, or if -fpic is

 not given on the command line.

 The default without -fpic is initial-exec; with -fpic the default is global-

 dynamic.

 -ftrampolines

 For targets that normally need trampolines for nested functions, always

 generate them instead of using descriptors. Otherwise, for targets that do not

 need them, like for example HP-PA or IA-64, do nothing.

 A trampoline is a small piece of code that is created at run time on the stack

 when the address of a nested function is taken, and is used to call the nested

 function indirectly. Therefore, it requires the stack to be made executable in

 order for the program to work properly.

 -fno-trampolines is enabled by default on a language by language basis to let

 the compiler avoid generating them, if it computes that this is safe, and

 replace them with descriptors. Descriptors are made up of data only, but the

 generated code must be prepared to deal with them. As of this writing,

 -fno-trampolines is enabled by default only for Ada.

 Moreover, code compiled with -ftrampolines and code compiled with

 -fno-trampolines are not binary compatible if nested functions are present.

 This option must therefore be used on a program-wide basis and be manipulated

 with extreme care.

 -fvisibility=[default|internal|hidden|protected]

 Set the default ELF image symbol visibility to the specified option---all

 symbols are marked with this unless overridden within the code. Using this

 feature can very substantially improve linking and load times of shared object

 libraries, produce more optimized code, provide near-perfect API export and

 prevent symbol clashes. It is strongly recommended that you use this in any

 shared objects you distribute.

 Despite the nomenclature, default always means public; i.e., available to be

 linked against from outside the shared object. protected and internal are

 pretty useless in real-world usage so the only other commonly used option is Page 245/493

 hidden. The default if -fvisibility isn't specified is default, i.e., make

 every symbol public.

 A good explanation of the benefits offered by ensuring ELF symbols have the

 correct visibility is given by "How To Write Shared Libraries" by Ulrich

 Drepper (which can be found at <https://www.akkadia.org/drepper/>)---however a

 superior solution made possible by this option to marking things hidden when

 the default is public is to make the default hidden and mark things public.

 This is the norm with DLLs on Windows and with -fvisibility=hidden and

 "__attribute__ ((visibility("default")))" instead of "__declspec(dllexport)"

 you get almost identical semantics with identical syntax. This is a great boon

 to those working with cross-platform projects.

 For those adding visibility support to existing code, you may find "#pragma GCC

 visibility" of use. This works by you enclosing the declarations you wish to

 set visibility for with (for example) "#pragma GCC visibility push(hidden)" and

 "#pragma GCC visibility pop". Bear in mind that symbol visibility should be

 viewed as part of the API interface contract and thus all new code should

 always specify visibility when it is not the default; i.e., declarations only

 for use within the local DSO should always be marked explicitly as hidden as so

 to avoid PLT indirection overheads---making this abundantly clear also aids

 readability and self-documentation of the code. Note that due to ISO C++

 specification requirements, "operator new" and "operator delete" must always be

 of default visibility.

 Be aware that headers from outside your project, in particular system headers

 and headers from any other library you use, may not be expecting to be compiled

 with visibility other than the default. You may need to explicitly say

 "#pragma GCC visibility push(default)" before including any such headers.

 "extern" declarations are not affected by -fvisibility, so a lot of code can be

 recompiled with -fvisibility=hidden with no modifications. However, this means

 that calls to "extern" functions with no explicit visibility use the PLT, so it

 is more effective to use "__attribute ((visibility))" and/or "#pragma GCC

 visibility" to tell the compiler which "extern" declarations should be treated

 as hidden.

 Note that -fvisibility does affect C++ vague linkage entities. This means that, Page 246/493

 for instance, an exception class that is be thrown between DSOs must be

 explicitly marked with default visibility so that the type_info nodes are

 unified between the DSOs.

 An overview of these techniques, their benefits and how to use them is at

 <http://gcc.gnu.org/wiki/Visibility>.

 -fstrict-volatile-bitfields

 This option should be used if accesses to volatile bit-fields (or other

 structure fields, although the compiler usually honors those types anyway)

 should use a single access of the width of the field's type, aligned to a

 natural alignment if possible. For example, targets with memory-mapped

 peripheral registers might require all such accesses to be 16 bits wide; with

 this flag you can declare all peripheral bit-fields as "unsigned short"

 (assuming short is 16 bits on these targets) to force GCC to use 16-bit

 accesses instead of, perhaps, a more efficient 32-bit access.

 If this option is disabled, the compiler uses the most efficient instruction.

 In the previous example, that might be a 32-bit load instruction, even though

 that accesses bytes that do not contain any portion of the bit-field, or

 memory-mapped registers unrelated to the one being updated.

 In some cases, such as when the "packed" attribute is applied to a structure

 field, it may not be possible to access the field with a single read or write

 that is correctly aligned for the target machine. In this case GCC falls back

 to generating multiple accesses rather than code that will fault or truncate

 the result at run time.

 Note: Due to restrictions of the C/C++11 memory model, write accesses are not

 allowed to touch non bit-field members. It is therefore recommended to define

 all bits of the field's type as bit-field members.

 The default value of this option is determined by the application binary

 interface for the target processor.

 -fsync-libcalls

 This option controls whether any out-of-line instance of the "__sync" family of

 functions may be used to implement the C++11 "__atomic" family of functions.

 The default value of this option is enabled, thus the only useful form of the

 option is -fno-sync-libcalls. This option is used in the implementation of the Page 247/493

 libatomic runtime library.

 GCC Developer Options

 This section describes command-line options that are primarily of interest to GCC

 developers, including options to support compiler testing and investigation of

 compiler bugs and compile-time performance problems. This includes options that

 produce debug dumps at various points in the compilation; that print statistics

 such as memory use and execution time; and that print information about GCC's

 configuration, such as where it searches for libraries. You should rarely need to

 use any of these options for ordinary compilation and linking tasks.

 -dletters

 -fdump-rtl-pass

 -fdump-rtl-pass=filename

 Says to make debugging dumps during compilation at times specified by letters.

 This is used for debugging the RTL-based passes of the compiler. The file

 names for most of the dumps are made by appending a pass number and a word to

 the dumpname, and the files are created in the directory of the output file.

 In case of =filename option, the dump is output on the given file instead of

 the pass numbered dump files. Note that the pass number is assigned as passes

 are registered into the pass manager. Most passes are registered in the order

 that they will execute and for these passes the number corresponds to the pass

 execution order. However, passes registered by plugins, passes specific to

 compilation targets, or passes that are otherwise registered after all the

 other passes are numbered higher than a pass named "final", even if they are

 executed earlier. dumpname is generated from the name of the output file if

 explicitly specified and not an executable, otherwise it is the basename of the

 source file.

 Some -dletters switches have different meaning when -E is used for

 preprocessing.

 Debug dumps can be enabled with a -fdump-rtl switch or some -d option letters.

 Here are the possible letters for use in pass and letters, and their meanings:

 -fdump-rtl-alignments

 Dump after branch alignments have been computed.

 -fdump-rtl-asmcons Page 248/493

 Dump after fixing rtl statements that have unsatisfied in/out constraints.

 -fdump-rtl-auto_inc_dec

 Dump after auto-inc-dec discovery. This pass is only run on architectures

 that have auto inc or auto dec instructions.

 -fdump-rtl-barriers

 Dump after cleaning up the barrier instructions.

 -fdump-rtl-bbpart

 Dump after partitioning hot and cold basic blocks.

 -fdump-rtl-bbro

 Dump after block reordering.

 -fdump-rtl-btl1

 -fdump-rtl-btl2

 -fdump-rtl-btl1 and -fdump-rtl-btl2 enable dumping after the two branch

 target load optimization passes.

 -fdump-rtl-bypass

 Dump after jump bypassing and control flow optimizations.

 -fdump-rtl-combine

 Dump after the RTL instruction combination pass.

 -fdump-rtl-compgotos

 Dump after duplicating the computed gotos.

 -fdump-rtl-ce1

 -fdump-rtl-ce2

 -fdump-rtl-ce3

 -fdump-rtl-ce1, -fdump-rtl-ce2, and -fdump-rtl-ce3 enable dumping after the

 three if conversion passes.

 -fdump-rtl-cprop_hardreg

 Dump after hard register copy propagation.

 -fdump-rtl-csa

 Dump after combining stack adjustments.

 -fdump-rtl-cse1

 -fdump-rtl-cse2

 -fdump-rtl-cse1 and -fdump-rtl-cse2 enable dumping after the two common

 subexpression elimination passes. Page 249/493

 -fdump-rtl-dce

 Dump after the standalone dead code elimination passes.

 -fdump-rtl-dbr

 Dump after delayed branch scheduling.

 -fdump-rtl-dce1

 -fdump-rtl-dce2

 -fdump-rtl-dce1 and -fdump-rtl-dce2 enable dumping after the two dead store

 elimination passes.

 -fdump-rtl-eh

 Dump after finalization of EH handling code.

 -fdump-rtl-eh_ranges

 Dump after conversion of EH handling range regions.

 -fdump-rtl-expand

 Dump after RTL generation.

 -fdump-rtl-fwprop1

 -fdump-rtl-fwprop2

 -fdump-rtl-fwprop1 and -fdump-rtl-fwprop2 enable dumping after the two

 forward propagation passes.

 -fdump-rtl-gcse1

 -fdump-rtl-gcse2

 -fdump-rtl-gcse1 and -fdump-rtl-gcse2 enable dumping after global common

 subexpression elimination.

 -fdump-rtl-init-regs

 Dump after the initialization of the registers.

 -fdump-rtl-initvals

 Dump after the computation of the initial value sets.

 -fdump-rtl-into_cfglayout

 Dump after converting to cfglayout mode.

 -fdump-rtl-ira

 Dump after iterated register allocation.

 -fdump-rtl-jump

 Dump after the second jump optimization.

 -fdump-rtl-loop2 Page 250/493

 -fdump-rtl-loop2 enables dumping after the rtl loop optimization passes.

 -fdump-rtl-mach

 Dump after performing the machine dependent reorganization pass, if that

 pass exists.

 -fdump-rtl-mode_sw

 Dump after removing redundant mode switches.

 -fdump-rtl-rnreg

 Dump after register renumbering.

 -fdump-rtl-outof_cfglayout

 Dump after converting from cfglayout mode.

 -fdump-rtl-peephole2

 Dump after the peephole pass.

 -fdump-rtl-postreload

 Dump after post-reload optimizations.

 -fdump-rtl-pro_and_epilogue

 Dump after generating the function prologues and epilogues.

 -fdump-rtl-sched1

 -fdump-rtl-sched2

 -fdump-rtl-sched1 and -fdump-rtl-sched2 enable dumping after the basic

 block scheduling passes.

 -fdump-rtl-ree

 Dump after sign/zero extension elimination.

 -fdump-rtl-seqabstr

 Dump after common sequence discovery.

 -fdump-rtl-shorten

 Dump after shortening branches.

 -fdump-rtl-sibling

 Dump after sibling call optimizations.

 -fdump-rtl-split1

 -fdump-rtl-split2

 -fdump-rtl-split3

 -fdump-rtl-split4

 -fdump-rtl-split5 Page 251/493

 These options enable dumping after five rounds of instruction splitting.

 -fdump-rtl-sms

 Dump after modulo scheduling. This pass is only run on some architectures.

 -fdump-rtl-stack

 Dump after conversion from GCC's "flat register file" registers to the

 x87's stack-like registers. This pass is only run on x86 variants.

 -fdump-rtl-subreg1

 -fdump-rtl-subreg2

 -fdump-rtl-subreg1 and -fdump-rtl-subreg2 enable dumping after the two

 subreg expansion passes.

 -fdump-rtl-unshare

 Dump after all rtl has been unshared.

 -fdump-rtl-vartrack

 Dump after variable tracking.

 -fdump-rtl-vregs

 Dump after converting virtual registers to hard registers.

 -fdump-rtl-web

 Dump after live range splitting.

 -fdump-rtl-regclass

 -fdump-rtl-subregs_of_mode_init

 -fdump-rtl-subregs_of_mode_finish

 -fdump-rtl-dfinit

 -fdump-rtl-dfinish

 These dumps are defined but always produce empty files.

 -da

 -fdump-rtl-all

 Produce all the dumps listed above.

 -dA Annotate the assembler output with miscellaneous debugging information.

 -dD Dump all macro definitions, at the end of preprocessing, in addition to

 normal output.

 -dH Produce a core dump whenever an error occurs.

 -dp Annotate the assembler output with a comment indicating which pattern and

 alternative is used. The length of each instruction is also printed. Page 252/493

 -dP Dump the RTL in the assembler output as a comment before each instruction.

 Also turns on -dp annotation.

 -dx Just generate RTL for a function instead of compiling it. Usually used

 with -fdump-rtl-expand.

 -fdump-noaddr

 When doing debugging dumps, suppress address output. This makes it more

 feasible to use diff on debugging dumps for compiler invocations with different

 compiler binaries and/or different text / bss / data / heap / stack / dso start

 locations.

 -freport-bug

 Collect and dump debug information into a temporary file if an internal

 compiler error (ICE) occurs.

 -fdump-unnumbered

 When doing debugging dumps, suppress instruction numbers and address output.

 This makes it more feasible to use diff on debugging dumps for compiler

 invocations with different options, in particular with and without -g.

 -fdump-unnumbered-links

 When doing debugging dumps (see -d option above), suppress instruction numbers

 for the links to the previous and next instructions in a sequence.

 -fdump-translation-unit (C++ only)

 -fdump-translation-unit-options (C++ only)

 Dump a representation of the tree structure for the entire translation unit to

 a file. The file name is made by appending .tu to the source file name, and

 the file is created in the same directory as the output file. If the -options

 form is used, options controls the details of the dump as described for the

 -fdump-tree options.

 -fdump-class-hierarchy (C++ only)

 -fdump-class-hierarchy-options (C++ only)

 Dump a representation of each class's hierarchy and virtual function table

 layout to a file. The file name is made by appending .class to the source file

 name, and the file is created in the same directory as the output file. If the

 -options form is used, options controls the details of the dump as described

 for the -fdump-tree options. Page 253/493

 -fdump-ipa-switch

 Control the dumping at various stages of inter-procedural analysis language

 tree to a file. The file name is generated by appending a switch specific

 suffix to the source file name, and the file is created in the same directory

 as the output file. The following dumps are possible:

 all Enables all inter-procedural analysis dumps.

 cgraph

 Dumps information about call-graph optimization, unused function removal,

 and inlining decisions.

 inline

 Dump after function inlining.

 -fdump-passes

 Print on stderr the list of optimization passes that are turned on and off by

 the current command-line options.

 -fdump-statistics-option

 Enable and control dumping of pass statistics in a separate file. The file

 name is generated by appending a suffix ending in .statistics to the source

 file name, and the file is created in the same directory as the output file.

 If the -option form is used, -stats causes counters to be summed over the whole

 compilation unit while -details dumps every event as the passes generate them.

 The default with no option is to sum counters for each function compiled.

 -fdump-tree-all

 -fdump-tree-switch

 -fdump-tree-switch-options

 -fdump-tree-switch-options=filename

 Control the dumping at various stages of processing the intermediate language

 tree to a file. The file name is generated by appending a switch-specific

 suffix to the source file name, and the file is created in the same directory

 as the output file. In case of =filename option, the dump is output on the

 given file instead of the auto named dump files. If the -options form is used,

 options is a list of - separated options which control the details of the dump.

 Not all options are applicable to all dumps; those that are not meaningful are

 ignored. The following options are available Page 254/493

 address

 Print the address of each node. Usually this is not meaningful as it

 changes according to the environment and source file. Its primary use is

 for tying up a dump file with a debug environment.

 asmname

 If "DECL_ASSEMBLER_NAME" has been set for a given decl, use that in the

 dump instead of "DECL_NAME". Its primary use is ease of use working

 backward from mangled names in the assembly file.

 slim

 When dumping front-end intermediate representations, inhibit dumping of

 members of a scope or body of a function merely because that scope has been

 reached. Only dump such items when they are directly reachable by some

 other path.

 When dumping pretty-printed trees, this option inhibits dumping the bodies

 of control structures.

 When dumping RTL, print the RTL in slim (condensed) form instead of the

 default LISP-like representation.

 raw Print a raw representation of the tree. By default, trees are pretty-

 printed into a C-like representation.

 details

 Enable more detailed dumps (not honored by every dump option). Also include

 information from the optimization passes.

 stats

 Enable dumping various statistics about the pass (not honored by every dump

 option).

 blocks

 Enable showing basic block boundaries (disabled in raw dumps).

 graph

 For each of the other indicated dump files (-fdump-rtl-pass), dump a

 representation of the control flow graph suitable for viewing with GraphViz

 to file.passid.pass.dot. Each function in the file is pretty-printed as a

 subgraph, so that GraphViz can render them all in a single plot.

 This option currently only works for RTL dumps, and the RTL is always Page 255/493

 dumped in slim form.

 vops

 Enable showing virtual operands for every statement.

 lineno

 Enable showing line numbers for statements.

 uid Enable showing the unique ID ("DECL_UID") for each variable.

 verbose

 Enable showing the tree dump for each statement.

 eh Enable showing the EH region number holding each statement.

 scev

 Enable showing scalar evolution analysis details.

 optimized

 Enable showing optimization information (only available in certain passes).

 missed

 Enable showing missed optimization information (only available in certain

 passes).

 note

 Enable other detailed optimization information (only available in certain

 passes).

 =filename

 Instead of an auto named dump file, output into the given file name. The

 file names stdout and stderr are treated specially and are considered

 already open standard streams. For example,

 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump

 -fdump-tree-pre=/dev/stderr file.c

 outputs vectorizer dump into foo.dump, while the PRE dump is output on to

 stderr. If two conflicting dump filenames are given for the same pass, then

 the latter option overrides the earlier one.

 all Turn on all options, except raw, slim, verbose and lineno.

 optall

 Turn on all optimization options, i.e., optimized, missed, and note.

 To determine what tree dumps are available or find the dump for a pass of

 interest follow the steps below. Page 256/493

 1. Invoke GCC with -fdump-passes and in the stderr output look for a code that

 corresponds to the pass you are interested in. For example, the codes

 "tree-evrp", "tree-vrp1", and "tree-vrp2" correspond to the three Value

 Range Propagation passes. The number at the end distinguishes distinct

 invocations of the same pass.

 2. To enable the creation of the dump file, append the pass code to the

 -fdump- option prefix and invoke GCC with it. For example, to enable the

 dump from the Early Value Range Propagation pass, invoke GCC with the

 -fdump-tree-evrp option. Optionally, you may specify the name of the dump

 file. If you don't specify one, GCC creates as described below.

 3. Find the pass dump in a file whose name is composed of three components

 separated by a period: the name of the source file GCC was invoked to

 compile, a numeric suffix indicating the pass number followed by the letter

 t for tree passes (and the letter r for RTL passes), and finally the pass

 code. For example, the Early VRP pass dump might be in a file named

 myfile.c.038t.evrp in the current working directory. Note that the numeric

 codes are not stable and may change from one version of GCC to another.

 -fopt-info

 -fopt-info-options

 -fopt-info-options=filename

 Controls optimization dumps from various optimization passes. If the -options

 form is used, options is a list of - separated option keywords to select the

 dump details and optimizations.

 The options can be divided into two groups: options describing the verbosity of

 the dump, and options describing which optimizations should be included. The

 options from both the groups can be freely mixed as they are non-overlapping.

 However, in case of any conflicts, the later options override the earlier

 options on the command line.

 The following options control the dump verbosity:

 optimized

 Print information when an optimization is successfully applied. It is up to

 a pass to decide which information is relevant. For example, the vectorizer

 passes print the source location of loops which are successfully Page 257/493

 vectorized.

 missed

 Print information about missed optimizations. Individual passes control

 which information to include in the output.

 note

 Print verbose information about optimizations, such as certain

 transformations, more detailed messages about decisions etc.

 all Print detailed optimization information. This includes optimized, missed,

 and note.

 One or more of the following option keywords can be used to describe a group of

 optimizations:

 ipa Enable dumps from all interprocedural optimizations.

 loop

 Enable dumps from all loop optimizations.

 inline

 Enable dumps from all inlining optimizations.

 omp Enable dumps from all OMP (Offloading and Multi Processing) optimizations.

 vec Enable dumps from all vectorization optimizations.

 optall

 Enable dumps from all optimizations. This is a superset of the optimization

 groups listed above.

 If options is omitted, it defaults to optimized-optall, which means to dump all

 info about successful optimizations from all the passes.

 If the filename is provided, then the dumps from all the applicable

 optimizations are concatenated into the filename. Otherwise the dump is output

 onto stderr. Though multiple -fopt-info options are accepted, only one of them

 can include a filename. If other filenames are provided then all but the first

 such option are ignored.

 Note that the output filename is overwritten in case of multiple translation

 units. If a combined output from multiple translation units is desired, stderr

 should be used instead.

 In the following example, the optimization info is output to stderr:

 gcc -O3 -fopt-info Page 258/493

 This example:

 gcc -O3 -fopt-info-missed=missed.all

 outputs missed optimization report from all the passes into missed.all, and

 this one:

 gcc -O2 -ftree-vectorize -fopt-info-vec-missed

 prints information about missed optimization opportunities from vectorization

 passes on stderr. Note that -fopt-info-vec-missed is equivalent to

 -fopt-info-missed-vec.

 As another example,

 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt

 outputs information about missed optimizations as well as optimized locations

 from all the inlining passes into inline.txt.

 Finally, consider:

 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt

 Here the two output filenames vec.miss and loop.opt are in conflict since only

 one output file is allowed. In this case, only the first option takes effect

 and the subsequent options are ignored. Thus only vec.miss is produced which

 contains dumps from the vectorizer about missed opportunities.

 -fsched-verbose=n

 On targets that use instruction scheduling, this option controls the amount of

 debugging output the scheduler prints to the dump files.

 For n greater than zero, -fsched-verbose outputs the same information as

 -fdump-rtl-sched1 and -fdump-rtl-sched2. For n greater than one, it also

 output basic block probabilities, detailed ready list information and unit/insn

 info. For n greater than two, it includes RTL at abort point, control-flow and

 regions info. And for n over four, -fsched-verbose also includes dependence

 info.

 -fenable-kind-pass

 -fdisable-kind-pass=range-list

 This is a set of options that are used to explicitly disable/enable

 optimization passes. These options are intended for use for debugging GCC.

 Compiler users should use regular options for enabling/disabling passes

 instead. Page 259/493

 -fdisable-ipa-pass

 Disable IPA pass pass. pass is the pass name. If the same pass is

 statically invoked in the compiler multiple times, the pass name should be

 appended with a sequential number starting from 1.

 -fdisable-rtl-pass

 -fdisable-rtl-pass=range-list

 Disable RTL pass pass. pass is the pass name. If the same pass is

 statically invoked in the compiler multiple times, the pass name should be

 appended with a sequential number starting from 1. range-list is a comma-

 separated list of function ranges or assembler names. Each range is a

 number pair separated by a colon. The range is inclusive in both ends. If

 the range is trivial, the number pair can be simplified as a single number.

 If the function's call graph node's uid falls within one of the specified

 ranges, the pass is disabled for that function. The uid is shown in the

 function header of a dump file, and the pass names can be dumped by using

 option -fdump-passes.

 -fdisable-tree-pass

 -fdisable-tree-pass=range-list

 Disable tree pass pass. See -fdisable-rtl for the description of option

 arguments.

 -fenable-ipa-pass

 Enable IPA pass pass. pass is the pass name. If the same pass is

 statically invoked in the compiler multiple times, the pass name should be

 appended with a sequential number starting from 1.

 -fenable-rtl-pass

 -fenable-rtl-pass=range-list

 Enable RTL pass pass. See -fdisable-rtl for option argument description

 and examples.

 -fenable-tree-pass

 -fenable-tree-pass=range-list

 Enable tree pass pass. See -fdisable-rtl for the description of option

 arguments.

 Here are some examples showing uses of these options. Page 260/493

 # disable ccp1 for all functions

 -fdisable-tree-ccp1

 # disable complete unroll for function whose cgraph node uid is 1

 -fenable-tree-cunroll=1

 # disable gcse2 for functions at the following ranges [1,1],

 # [300,400], and [400,1000]

 # disable gcse2 for functions foo and foo2

 -fdisable-rtl-gcse2=foo,foo2

 # disable early inlining

 -fdisable-tree-einline

 # disable ipa inlining

 -fdisable-ipa-inline

 # enable tree full unroll

 -fenable-tree-unroll

 -fchecking

 -fchecking=n

 Enable internal consistency checking. The default depends on the compiler

 configuration. -fchecking=2 enables further internal consistency checking that

 might affect code generation.

 -frandom-seed=string

 This option provides a seed that GCC uses in place of random numbers in

 generating certain symbol names that have to be different in every compiled

 file. It is also used to place unique stamps in coverage data files and the

 object files that produce them. You can use the -frandom-seed option to

 produce reproducibly identical object files.

 The string can either be a number (decimal, octal or hex) or an arbitrary

 string (in which case it's converted to a number by computing CRC32).

 The string should be different for every file you compile.

 -save-temps

 -save-temps=cwd

 Store the usual "temporary" intermediate files permanently; place them in the

 current directory and name them based on the source file. Thus, compiling

 foo.c with -c -save-temps produces files foo.i and foo.s, as well as foo.o. Page 261/493

 This creates a preprocessed foo.i output file even though the compiler now

 normally uses an integrated preprocessor.

 When used in combination with the -x command-line option, -save-temps is

 sensible enough to avoid over writing an input source file with the same

 extension as an intermediate file. The corresponding intermediate file may be

 obtained by renaming the source file before using -save-temps.

 If you invoke GCC in parallel, compiling several different source files that

 share a common base name in different subdirectories or the same source file

 compiled for multiple output destinations, it is likely that the different

 parallel compilers will interfere with each other, and overwrite the temporary

 files. For instance:

 gcc -save-temps -o outdir1/foo.o indir1/foo.c&

 gcc -save-temps -o outdir2/foo.o indir2/foo.c&

 may result in foo.i and foo.o being written to simultaneously by both

 compilers.

 -save-temps=obj

 Store the usual "temporary" intermediate files permanently. If the -o option

 is used, the temporary files are based on the object file. If the -o option is

 not used, the -save-temps=obj switch behaves like -save-temps.

 For example:

 gcc -save-temps=obj -c foo.c

 gcc -save-temps=obj -c bar.c -o dir/xbar.o

 gcc -save-temps=obj foobar.c -o dir2/yfoobar

 creates foo.i, foo.s, dir/xbar.i, dir/xbar.s, dir2/yfoobar.i, dir2/yfoobar.s,

 and dir2/yfoobar.o.

 -time[=file]

 Report the CPU time taken by each subprocess in the compilation sequence. For

 C source files, this is the compiler proper and assembler (plus the linker if

 linking is done).

 Without the specification of an output file, the output looks like this:

 # cc1 0.12 0.01

 # as 0.00 0.01

 The first number on each line is the "user time", that is time spent executing Page 262/493

 the program itself. The second number is "system time", time spent executing

 operating system routines on behalf of the program. Both numbers are in

 seconds.

 With the specification of an output file, the output is appended to the named

 file, and it looks like this:

 0.12 0.01 cc1 <options>

 0.00 0.01 as <options>

 The "user time" and the "system time" are moved before the program name, and

 the options passed to the program are displayed, so that one can later tell

 what file was being compiled, and with which options.

 -fdump-final-insns[=file]

 Dump the final internal representation (RTL) to file. If the optional argument

 is omitted (or if file is "."), the name of the dump file is determined by

 appending ".gkd" to the compilation output file name.

 -fcompare-debug[=opts]

 If no error occurs during compilation, run the compiler a second time, adding

 opts and -fcompare-debug-second to the arguments passed to the second

 compilation. Dump the final internal representation in both compilations, and

 print an error if they differ.

 If the equal sign is omitted, the default -gtoggle is used.

 The environment variable GCC_COMPARE_DEBUG, if defined, non-empty and nonzero,

 implicitly enables -fcompare-debug. If GCC_COMPARE_DEBUG is defined to a

 string starting with a dash, then it is used for opts, otherwise the default

 -gtoggle is used.

 -fcompare-debug=, with the equal sign but without opts, is equivalent to

 -fno-compare-debug, which disables the dumping of the final representation and

 the second compilation, preventing even GCC_COMPARE_DEBUG from taking effect.

 To verify full coverage during -fcompare-debug testing, set GCC_COMPARE_DEBUG

 to say -fcompare-debug-not-overridden, which GCC rejects as an invalid option

 in any actual compilation (rather than preprocessing, assembly or linking). To

 get just a warning, setting GCC_COMPARE_DEBUG to -w%n-fcompare-debug not

 overridden will do.

 -fcompare-debug-second Page 263/493

 This option is implicitly passed to the compiler for the second compilation

 requested by -fcompare-debug, along with options to silence warnings, and

 omitting other options that would cause side-effect compiler outputs to files

 or to the standard output. Dump files and preserved temporary files are

 renamed so as to contain the ".gk" additional extension during the second

 compilation, to avoid overwriting those generated by the first.

 When this option is passed to the compiler driver, it causes the first

 compilation to be skipped, which makes it useful for little other than

 debugging the compiler proper.

 -gtoggle

 Turn off generation of debug info, if leaving out this option generates it, or

 turn it on at level 2 otherwise. The position of this argument in the command

 line does not matter; it takes effect after all other options are processed,

 and it does so only once, no matter how many times it is given. This is mainly

 intended to be used with -fcompare-debug.

 -fvar-tracking-assignments-toggle

 Toggle -fvar-tracking-assignments, in the same way that -gtoggle toggles -g.

 -Q Makes the compiler print out each function name as it is compiled, and print

 some statistics about each pass when it finishes.

 -ftime-report

 Makes the compiler print some statistics about the time consumed by each pass

 when it finishes.

 -ftime-report-details

 Record the time consumed by infrastructure parts separately for each pass.

 -fira-verbose=n

 Control the verbosity of the dump file for the integrated register allocator.

 The default value is 5. If the value n is greater or equal to 10, the dump

 output is sent to stderr using the same format as n minus 10.

 -flto-report

 Prints a report with internal details on the workings of the link-time

 optimizer. The contents of this report vary from version to version. It is

 meant to be useful to GCC developers when processing object files in LTO mode

 (via -flto). Page 264/493

 Disabled by default.

 -flto-report-wpa

 Like -flto-report, but only print for the WPA phase of Link Time Optimization.

 -fmem-report

 Makes the compiler print some statistics about permanent memory allocation when

 it finishes.

 -fmem-report-wpa

 Makes the compiler print some statistics about permanent memory allocation for

 the WPA phase only.

 -fpre-ipa-mem-report

 -fpost-ipa-mem-report

 Makes the compiler print some statistics about permanent memory allocation

 before or after interprocedural optimization.

 -fprofile-report

 Makes the compiler print some statistics about consistency of the (estimated)

 profile and effect of individual passes.

 -fstack-usage

 Makes the compiler output stack usage information for the program, on a per-

 function basis. The filename for the dump is made by appending .su to the

 auxname. auxname is generated from the name of the output file, if explicitly

 specified and it is not an executable, otherwise it is the basename of the

 source file. An entry is made up of three fields:

 * The name of the function.

 * A number of bytes.

 * One or more qualifiers: "static", "dynamic", "bounded".

 The qualifier "static" means that the function manipulates the stack

 statically: a fixed number of bytes are allocated for the frame on function

 entry and released on function exit; no stack adjustments are otherwise made in

 the function. The second field is this fixed number of bytes.

 The qualifier "dynamic" means that the function manipulates the stack

 dynamically: in addition to the static allocation described above, stack

 adjustments are made in the body of the function, for example to push/pop

 arguments around function calls. If the qualifier "bounded" is also present, Page 265/493

 the amount of these adjustments is bounded at compile time and the second field

 is an upper bound of the total amount of stack used by the function. If it is

 not present, the amount of these adjustments is not bounded at compile time and

 the second field only represents the bounded part.

 -fstats

 Emit statistics about front-end processing at the end of the compilation. This

 option is supported only by the C++ front end, and the information is generally

 only useful to the G++ development team.

 -fdbg-cnt-list

 Print the name and the counter upper bound for all debug counters.

 -fdbg-cnt=counter-value-list

 Set the internal debug counter upper bound. counter-value-list is a comma-

 separated list of name:value pairs which sets the upper bound of each debug

 counter name to value. All debug counters have the initial upper bound of

 "UINT_MAX"; thus "dbg_cnt" returns true always unless the upper bound is set by

 this option. For example, with -fdbg-cnt=dce:10,tail_call:0, "dbg_cnt(dce)"

 returns true only for first 10 invocations.

 -print-file-name=library

 Print the full absolute name of the library file library that would be used

 when linking---and don't do anything else. With this option, GCC does not

 compile or link anything; it just prints the file name.

 -print-multi-directory

 Print the directory name corresponding to the multilib selected by any other

 switches present in the command line. This directory is supposed to exist in

 GCC_EXEC_PREFIX.

 -print-multi-lib

 Print the mapping from multilib directory names to compiler switches that

 enable them. The directory name is separated from the switches by ;, and each

 switch starts with an @ instead of the -, without spaces between multiple

 switches. This is supposed to ease shell processing.

 -print-multi-os-directory

 Print the path to OS libraries for the selected multilib, relative to some lib

 subdirectory. If OS libraries are present in the lib subdirectory and no Page 266/493

 multilibs are used, this is usually just ., if OS libraries are present in

 libsuffix sibling directories this prints e.g. ../lib64, ../lib or ../lib32, or

 if OS libraries are present in lib/subdir subdirectories it prints e.g. amd64,

 sparcv9 or ev6.

 -print-multiarch

 Print the path to OS libraries for the selected multiarch, relative to some lib

 subdirectory.

 -print-prog-name=program

 Like -print-file-name, but searches for a program such as cpp.

 -print-libgcc-file-name

 Same as -print-file-name=libgcc.a.

 This is useful when you use -nostdlib or -nodefaultlibs but you do want to link

 with libgcc.a. You can do:

 gcc -nostdlib <files>... `gcc -print-libgcc-file-name`

 -print-search-dirs

 Print the name of the configured installation directory and a list of program

 and library directories gcc searches---and don't do anything else.

 This is useful when gcc prints the error message installation problem, cannot

 exec cpp0: No such file or directory. To resolve this you either need to put

 cpp0 and the other compiler components where gcc expects to find them, or you

 can set the environment variable GCC_EXEC_PREFIX to the directory where you

 installed them. Don't forget the trailing /.

 -print-sysroot

 Print the target sysroot directory that is used during compilation. This is

 the target sysroot specified either at configure time or using the --sysroot

 option, possibly with an extra suffix that depends on compilation options. If

 no target sysroot is specified, the option prints nothing.

 -print-sysroot-headers-suffix

 Print the suffix added to the target sysroot when searching for headers, or

 give an error if the compiler is not configured with such a suffix---and don't

 do anything else.

 -dumpmachine

 Print the compiler's target machine (for example, i686-pc-linux-gnu)---and Page 267/493

 don't do anything else.

 -dumpversion

 Print the compiler version (for example, 3.0, 6.3.0 or 7)---and don't do

 anything else. This is the compiler version used in filesystem paths, specs,

 can be depending on how the compiler has been configured just a single number

 (major version), two numbers separated by dot (major and minor version) or

 three numbers separated by dots (major, minor and patchlevel version).

 -dumpfullversion

 Print the full compiler version, always 3 numbers separated by dots, major,

 minor and patchlevel version.

 -dumpspecs

 Print the compiler's built-in specs---and don't do anything else. (This is

 used when GCC itself is being built.)

 Machine-Dependent Options

 Each target machine supported by GCC can have its own options---for example, to

 allow you to compile for a particular processor variant or ABI, or to control

 optimizations specific to that machine. By convention, the names of machine-

 specific options start with -m.

 Some configurations of the compiler also support additional target-specific

 options, usually for compatibility with other compilers on the same platform.

 AArch64 Options

 These options are defined for AArch64 implementations:

 -mabi=name

 Generate code for the specified data model. Permissible values are ilp32 for

 SysV-like data model where int, long int and pointers are 32 bits, and lp64 for

 SysV-like data model where int is 32 bits, but long int and pointers are 64

 bits.

 The default depends on the specific target configuration. Note that the LP64

 and ILP32 ABIs are not link-compatible; you must compile your entire program

 with the same ABI, and link with a compatible set of libraries.

 -mbig-endian

 Generate big-endian code. This is the default when GCC is configured for an

 aarch64_be-*-* target. Page 268/493

 -mgeneral-regs-only

 Generate code which uses only the general-purpose registers. This will prevent

 the compiler from using floating-point and Advanced SIMD registers but will not

 impose any restrictions on the assembler.

 -mlittle-endian

 Generate little-endian code. This is the default when GCC is configured for an

 aarch64-*-* but not an aarch64_be-*-* target.

 -mcmodel=tiny

 Generate code for the tiny code model. The program and its statically defined

 symbols must be within 1MB of each other. Programs can be statically or

 dynamically linked.

 -mcmodel=small

 Generate code for the small code model. The program and its statically defined

 symbols must be within 4GB of each other. Programs can be statically or

 dynamically linked. This is the default code model.

 -mcmodel=large

 Generate code for the large code model. This makes no assumptions about

 addresses and sizes of sections. Programs can be statically linked only.

 -mstrict-align

 Avoid generating memory accesses that may not be aligned on a natural object

 boundary as described in the architecture specification.

 -momit-leaf-frame-pointer

 -mno-omit-leaf-frame-pointer

 Omit or keep the frame pointer in leaf functions. The former behavior is the

 default.

 -mtls-dialect=desc

 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses

 of TLS variables. This is the default.

 -mtls-dialect=traditional

 Use traditional TLS as the thread-local storage mechanism for dynamic accesses

 of TLS variables.

 -mtls-size=size

 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48. Page 269/493

 This option requires binutils 2.26 or newer.

 -mfix-cortex-a53-835769

 -mno-fix-cortex-a53-835769

 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.

 This involves inserting a NOP instruction between memory instructions and

 64-bit integer multiply-accumulate instructions.

 -mfix-cortex-a53-843419

 -mno-fix-cortex-a53-843419

 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.

 This erratum workaround is made at link time and this will only pass the

 corresponding flag to the linker.

 -mlow-precision-recip-sqrt

 -mno-low-precision-recip-sqrt

 Enable or disable the reciprocal square root approximation. This option only

 has an effect if -ffast-math or -funsafe-math-optimizations is used as well.

 Enabling this reduces precision of reciprocal square root results to about 16

 bits for single precision and to 32 bits for double precision.

 -mlow-precision-sqrt

 -mno-low-precision-sqrt

 Enable or disable the square root approximation. This option only has an

 effect if -ffast-math or -funsafe-math-optimizations is used as well. Enabling

 this reduces precision of square root results to about 16 bits for single

 precision and to 32 bits for double precision. If enabled, it implies

 -mlow-precision-recip-sqrt.

 -mlow-precision-div

 -mno-low-precision-div

 Enable or disable the division approximation. This option only has an effect

 if -ffast-math or -funsafe-math-optimizations is used as well. Enabling this

 reduces precision of division results to about 16 bits for single precision and

 to 32 bits for double precision.

 -march=name

 Specify the name of the target architecture and, optionally, one or more

 feature modifiers. This option has the form -march=arch{+[no]feature}*. Page 270/493

 The permissible values for arch are armv8-a, armv8.1-a, armv8.2-a, armv8.3-a or

 native.

 The value armv8.3-a implies armv8.2-a and enables compiler support for the

 ARMv8.3-A architecture extensions.

 The value armv8.2-a implies armv8.1-a and enables compiler support for the

 ARMv8.2-A architecture extensions.

 The value armv8.1-a implies armv8-a and enables compiler support for the

 ARMv8.1-A architecture extension. In particular, it enables the +crc and +lse

 features.

 The value native is available on native AArch64 GNU/Linux and causes the

 compiler to pick the architecture of the host system. This option has no

 effect if the compiler is unable to recognize the architecture of the host

 system,

 The permissible values for feature are listed in the sub-section on

 aarch64-feature-modifiers,,-march and -mcpu Feature Modifiers. Where

 conflicting feature modifiers are specified, the right-most feature is used.

 GCC uses name to determine what kind of instructions it can emit when

 generating assembly code. If -march is specified without either of -mtune or

 -mcpu also being specified, the code is tuned to perform well across a range of

 target processors implementing the target architecture.

 -mtune=name

 Specify the name of the target processor for which GCC should tune the

 performance of the code. Permissible values for this option are: generic,

 cortex-a35, cortex-a53, cortex-a57, cortex-a72, cortex-a73, exynos-m1, falkor,

 qdf24xx, xgene1, vulcan, thunderx, thunderxt88, thunderxt88p1, thunderxt81,

 thunderxt83, thunderx2t99, cortex-a57.cortex-a53, cortex-a72.cortex-a53,

 cortex-a73.cortex-a35, cortex-a73.cortex-a53, native.

 The values cortex-a57.cortex-a53, cortex-a72.cortex-a53, cortex-a73.cortex-a35,

 cortex-a73.cortex-a53 specify that GCC should tune for a big.LITTLE system.

 Additionally on native AArch64 GNU/Linux systems the value native tunes

 performance to the host system. This option has no effect if the compiler is

 unable to recognize the processor of the host system.

 Where none of -mtune=, -mcpu= or -march= are specified, the code is tuned to Page 271/493

 perform well across a range of target processors.

 This option cannot be suffixed by feature modifiers.

 -mcpu=name

 Specify the name of the target processor, optionally suffixed by one or more

 feature modifiers. This option has the form -mcpu=cpu{+[no]feature}*, where

 the permissible values for cpu are the same as those available for -mtune. The

 permissible values for feature are documented in the sub-section on

 aarch64-feature-modifiers,,-march and -mcpu Feature Modifiers. Where

 conflicting feature modifiers are specified, the right-most feature is used.

 GCC uses name to determine what kind of instructions it can emit when

 generating assembly code (as if by -march) and to determine the target

 processor for which to tune for performance (as if by -mtune). Where this

 option is used in conjunction with -march or -mtune, those options take

 precedence over the appropriate part of this option.

 -moverride=string

 Override tuning decisions made by the back-end in response to a -mtune= switch.

 The syntax, semantics, and accepted values for string in this option are not

 guaranteed to be consistent across releases.

 This option is only intended to be useful when developing GCC.

 -mpc-relative-literal-loads

 Enable PC-relative literal loads. With this option literal pools are accessed

 using a single instruction and emitted after each function. This limits the

 maximum size of functions to 1MB. This is enabled by default for

 -mcmodel=tiny.

 -msign-return-address=scope

 Select the function scope on which return address signing will be applied.

 Permissible values are none, which disables return address signing, non-leaf,

 which enables pointer signing for functions which are not leaf functions, and

 all, which enables pointer signing for all functions. The default value is

 none.

 -march and -mcpu Feature Modifiers

 Feature modifiers used with -march and -mcpu can be any of the following and their

 inverses nofeature: Page 272/493

 crc Enable CRC extension. This is on by default for -march=armv8.1-a.

 crypto

 Enable Crypto extension. This also enables Advanced SIMD and floating-point

 instructions.

 fp Enable floating-point instructions. This is on by default for all possible

 values for options -march and -mcpu.

 simd

 Enable Advanced SIMD instructions. This also enables floating-point

 instructions. This is on by default for all possible values for options -march

 and -mcpu.

 lse Enable Large System Extension instructions. This is on by default for

 -march=armv8.1-a.

 fp16

 Enable FP16 extension. This also enables floating-point instructions.

 Feature crypto implies simd, which implies fp. Conversely, nofp implies nosimd,

 which implies nocrypto.

 Adapteva Epiphany Options

 These -m options are defined for Adapteva Epiphany:

 -mhalf-reg-file

 Don't allocate any register in the range "r32"..."r63". That allows code to

 run on hardware variants that lack these registers.

 -mprefer-short-insn-regs

 Preferentially allocate registers that allow short instruction generation.

 This can result in increased instruction count, so this may either reduce or

 increase overall code size.

 -mbranch-cost=num

 Set the cost of branches to roughly num "simple" instructions. This cost is

 only a heuristic and is not guaranteed to produce consistent results across

 releases.

 -mcmove

 Enable the generation of conditional moves.

 -mnops=num

 Emit num NOPs before every other generated instruction. Page 273/493

 -mno-soft-cmpsf

 For single-precision floating-point comparisons, emit an "fsub" instruction and

 test the flags. This is faster than a software comparison, but can get

 incorrect results in the presence of NaNs, or when two different small numbers

 are compared such that their difference is calculated as zero. The default is

 -msoft-cmpsf, which uses slower, but IEEE-compliant, software comparisons.

 -mstack-offset=num

 Set the offset between the top of the stack and the stack pointer. E.g., a

 value of 8 means that the eight bytes in the range "sp+0...sp+7" can be used by

 leaf functions without stack allocation. Values other than 8 or 16 are

 untested and unlikely to work. Note also that this option changes the ABI;

 compiling a program with a different stack offset than the libraries have been

 compiled with generally does not work. This option can be useful if you want

 to evaluate if a different stack offset would give you better code, but to

 actually use a different stack offset to build working programs, it is

 recommended to configure the toolchain with the appropriate

 --with-stack-offset=num option.

 -mno-round-nearest

 Make the scheduler assume that the rounding mode has been set to truncating.

 The default is -mround-nearest.

 -mlong-calls

 If not otherwise specified by an attribute, assume all calls might be beyond

 the offset range of the "b" / "bl" instructions, and therefore load the

 function address into a register before performing a (otherwise direct) call.

 This is the default.

 -mshort-calls

 If not otherwise specified by an attribute, assume all direct calls are in the

 range of the "b" / "bl" instructions, so use these instructions for direct

 calls. The default is -mlong-calls.

 -msmall16

 Assume addresses can be loaded as 16-bit unsigned values. This does not apply

 to function addresses for which -mlong-calls semantics are in effect.

 -mfp-mode=mode Page 274/493

 Set the prevailing mode of the floating-point unit. This determines the

 floating-point mode that is provided and expected at function call and return

 time. Making this mode match the mode you predominantly need at function start

 can make your programs smaller and faster by avoiding unnecessary mode

 switches.

 mode can be set to one the following values:

 caller

 Any mode at function entry is valid, and retained or restored when the

 function returns, and when it calls other functions. This mode is useful

 for compiling libraries or other compilation units you might want to

 incorporate into different programs with different prevailing FPU modes,

 and the convenience of being able to use a single object file outweighs the

 size and speed overhead for any extra mode switching that might be needed,

 compared with what would be needed with a more specific choice of

 prevailing FPU mode.

 truncate

 This is the mode used for floating-point calculations with truncating (i.e.

 round towards zero) rounding mode. That includes conversion from floating

 point to integer.

 round-nearest

 This is the mode used for floating-point calculations with round-to-

 nearest-or-even rounding mode.

 int This is the mode used to perform integer calculations in the FPU, e.g.

 integer multiply, or integer multiply-and-accumulate.

 The default is -mfp-mode=caller

 -mnosplit-lohi

 -mno-postinc

 -mno-postmodify

 Code generation tweaks that disable, respectively, splitting of 32-bit loads,

 generation of post-increment addresses, and generation of post-modify

 addresses. The defaults are msplit-lohi, -mpost-inc, and -mpost-modify.

 -mnovect-double

 Change the preferred SIMD mode to SImode. The default is -mvect-double, which Page 275/493

 uses DImode as preferred SIMD mode.

 -max-vect-align=num

 The maximum alignment for SIMD vector mode types. num may be 4 or 8. The

 default is 8. Note that this is an ABI change, even though many library

 function interfaces are unaffected if they don't use SIMD vector modes in

 places that affect size and/or alignment of relevant types.

 -msplit-vecmove-early

 Split vector moves into single word moves before reload. In theory this can

 give better register allocation, but so far the reverse seems to be generally

 the case.

 -m1reg-reg

 Specify a register to hold the constant -1, which makes loading small negative

 constants and certain bitmasks faster. Allowable values for reg are r43 and

 r63, which specify use of that register as a fixed register, and none, which

 means that no register is used for this purpose. The default is -m1reg-none.

 ARC Options

 The following options control the architecture variant for which code is being

 compiled:

 -mbarrel-shifter

 Generate instructions supported by barrel shifter. This is the default unless

 -mcpu=ARC601 or -mcpu=ARCEM is in effect.

 -mcpu=cpu

 Set architecture type, register usage, and instruction scheduling parameters

 for cpu. There are also shortcut alias options available for backward

 compatibility and convenience. Supported values for cpu are

 arc600

 Compile for ARC600. Aliases: -mA6, -mARC600.

 arc601

 Compile for ARC601. Alias: -mARC601.

 arc700

 Compile for ARC700. Aliases: -mA7, -mARC700. This is the default when

 configured with --with-cpu=arc700.

 arcem Page 276/493

 Compile for ARC EM.

 archs

 Compile for ARC HS.

 em Compile for ARC EM CPU with no hardware extensions.

 em4 Compile for ARC EM4 CPU.

 em4_dmips

 Compile for ARC EM4 DMIPS CPU.

 em4_fpus

 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point

 extension.

 em4_fpuda

 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and

 double assist instructions.

 hs Compile for ARC HS CPU with no hardware extensions except the atomic

 instructions.

 hs34

 Compile for ARC HS34 CPU.

 hs38

 Compile for ARC HS38 CPU.

 hs38_linux

 Compile for ARC HS38 CPU with all hardware extensions on.

 arc600_norm

 Compile for ARC 600 CPU with "norm" instructions enabled.

 arc600_mul32x16

 Compile for ARC 600 CPU with "norm" and 32x16-bit multiply instructions

 enabled.

 arc600_mul64

 Compile for ARC 600 CPU with "norm" and "mul64"-family instructions

 enabled.

 arc601_norm

 Compile for ARC 601 CPU with "norm" instructions enabled.

 arc601_mul32x16

 Compile for ARC 601 CPU with "norm" and 32x16-bit multiply instructions Page 277/493

 enabled.

 arc601_mul64

 Compile for ARC 601 CPU with "norm" and "mul64"-family instructions

 enabled.

 nps400

 Compile for ARC 700 on NPS400 chip.

 -mdpfp

 -mdpfp-compact

 Generate double-precision FPX instructions, tuned for the compact

 implementation.

 -mdpfp-fast

 Generate double-precision FPX instructions, tuned for the fast implementation.

 -mno-dpfp-lrsr

 Disable "lr" and "sr" instructions from using FPX extension aux registers.

 -mea

 Generate extended arithmetic instructions. Currently only "divaw", "adds",

 "subs", and "sat16" are supported. This is always enabled for -mcpu=ARC700.

 -mno-mpy

 Do not generate "mpy"-family instructions for ARC700. This option is

 deprecated.

 -mmul32x16

 Generate 32x16-bit multiply and multiply-accumulate instructions.

 -mmul64

 Generate "mul64" and "mulu64" instructions. Only valid for -mcpu=ARC600.

 -mnorm

 Generate "norm" instructions. This is the default if -mcpu=ARC700 is in

 effect.

 -mspfp

 -mspfp-compact

 Generate single-precision FPX instructions, tuned for the compact

 implementation.

 -mspfp-fast

 Generate single-precision FPX instructions, tuned for the fast implementation. Page 278/493

 -msimd

 Enable generation of ARC SIMD instructions via target-specific builtins. Only

 valid for -mcpu=ARC700.

 -msoft-float

 This option ignored; it is provided for compatibility purposes only. Software

 floating-point code is emitted by default, and this default can overridden by

 FPX options; -mspfp, -mspfp-compact, or -mspfp-fast for single precision, and

 -mdpfp, -mdpfp-compact, or -mdpfp-fast for double precision.

 -mswap

 Generate "swap" instructions.

 -matomic

 This enables use of the locked load/store conditional extension to implement

 atomic memory built-in functions. Not available for ARC 6xx or ARC EM cores.

 -mdiv-rem

 Enable "div" and "rem" instructions for ARCv2 cores.

 -mcode-density

 Enable code density instructions for ARC EM. This option is on by default for

 ARC HS.

 -mll64

 Enable double load/store operations for ARC HS cores.

 -mtp-regno=regno

 Specify thread pointer register number.

 -mmpy-option=multo

 Compile ARCv2 code with a multiplier design option. You can specify the option

 using either a string or numeric value for multo. wlh1 is the default value.

 The recognized values are:

 0

 none

 No multiplier available.

 1

 w 16x16 multiplier, fully pipelined. The following instructions are enabled:

 "mpyw" and "mpyuw".

 2 Page 279/493

 wlh1

 32x32 multiplier, fully pipelined (1 stage). The following instructions

 are additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 3

 wlh2

 32x32 multiplier, fully pipelined (2 stages). The following instructions

 are additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 4

 wlh3

 Two 16x16 multipliers, blocking, sequential. The following instructions

 are additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 5

 wlh4

 One 16x16 multiplier, blocking, sequential. The following instructions are

 additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 6

 wlh5

 One 32x4 multiplier, blocking, sequential. The following instructions are

 additionally enabled: "mpy", "mpyu", "mpym", "mpymu", and "mpy_s".

 7

 plus_dmpy

 ARC HS SIMD support.

 8

 plus_macd

 ARC HS SIMD support.

 9

 plus_qmacw

 ARC HS SIMD support.

 This option is only available for ARCv2 cores.

 -mfpu=fpu

 Enables support for specific floating-point hardware extensions for ARCv2

 cores. Supported values for fpu are:

 fpus Page 280/493

 Enables support for single-precision floating-point hardware extensions.

 fpud

 Enables support for double-precision floating-point hardware extensions.

 The single-precision floating-point extension is also enabled. Not

 available for ARC EM.

 fpuda

 Enables support for double-precision floating-point hardware extensions

 using double-precision assist instructions. The single-precision floating-

 point extension is also enabled. This option is only available for ARC EM.

 fpuda_div

 Enables support for double-precision floating-point hardware extensions

 using double-precision assist instructions. The single-precision floating-

 point, square-root, and divide extensions are also enabled. This option is

 only available for ARC EM.

 fpuda_fma

 Enables support for double-precision floating-point hardware extensions

 using double-precision assist instructions. The single-precision floating-

 point and fused multiply and add hardware extensions are also enabled.

 This option is only available for ARC EM.

 fpuda_all

 Enables support for double-precision floating-point hardware extensions

 using double-precision assist instructions. All single-precision floating-

 point hardware extensions are also enabled. This option is only available

 for ARC EM.

 fpus_div

 Enables support for single-precision floating-point, square-root and divide

 hardware extensions.

 fpud_div

 Enables support for double-precision floating-point, square-root and divide

 hardware extensions. This option includes option fpus_div. Not available

 for ARC EM.

 fpus_fma

 Enables support for single-precision floating-point and fused multiply and Page 281/493

 add hardware extensions.

 fpud_fma

 Enables support for double-precision floating-point and fused multiply and

 add hardware extensions. This option includes option fpus_fma. Not

 available for ARC EM.

 fpus_all

 Enables support for all single-precision floating-point hardware

 extensions.

 fpud_all

 Enables support for all single- and double-precision floating-point

 hardware extensions. Not available for ARC EM.

 The following options are passed through to the assembler, and also define

 preprocessor macro symbols.

 -mdsp-packa

 Passed down to the assembler to enable the DSP Pack A extensions. Also sets

 the preprocessor symbol "__Xdsp_packa". This option is deprecated.

 -mdvbf

 Passed down to the assembler to enable the dual Viterbi butterfly extension.

 Also sets the preprocessor symbol "__Xdvbf". This option is deprecated.

 -mlock

 Passed down to the assembler to enable the locked load/store conditional

 extension. Also sets the preprocessor symbol "__Xlock".

 -mmac-d16

 Passed down to the assembler. Also sets the preprocessor symbol "__Xxmac_d16".

 This option is deprecated.

 -mmac-24

 Passed down to the assembler. Also sets the preprocessor symbol "__Xxmac_24".

 This option is deprecated.

 -mrtsc

 Passed down to the assembler to enable the 64-bit time-stamp counter extension

 instruction. Also sets the preprocessor symbol "__Xrtsc". This option is

 deprecated.

 -mswape Page 282/493

 Passed down to the assembler to enable the swap byte ordering extension

 instruction. Also sets the preprocessor symbol "__Xswape".

 -mtelephony

 Passed down to the assembler to enable dual- and single-operand instructions

 for telephony. Also sets the preprocessor symbol "__Xtelephony". This option

 is deprecated.

 -mxy

 Passed down to the assembler to enable the XY memory extension. Also sets the

 preprocessor symbol "__Xxy".

 The following options control how the assembly code is annotated:

 -misize

 Annotate assembler instructions with estimated addresses.

 -mannotate-align

 Explain what alignment considerations lead to the decision to make an

 instruction short or long.

 The following options are passed through to the linker:

 -marclinux

 Passed through to the linker, to specify use of the "arclinux" emulation. This

 option is enabled by default in tool chains built for "arc-linux-uclibc" and

 "arceb-linux-uclibc" targets when profiling is not requested.

 -marclinux_prof

 Passed through to the linker, to specify use of the "arclinux_prof" emulation.

 This option is enabled by default in tool chains built for "arc-linux-uclibc"

 and "arceb-linux-uclibc" targets when profiling is requested.

 The following options control the semantics of generated code:

 -mlong-calls

 Generate calls as register indirect calls, thus providing access to the full

 32-bit address range.

 -mmedium-calls

 Don't use less than 25-bit addressing range for calls, which is the offset

 available for an unconditional branch-and-link instruction. Conditional

 execution of function calls is suppressed, to allow use of the 25-bit range,

 rather than the 21-bit range with conditional branch-and-link. This is the Page 283/493

 default for tool chains built for "arc-linux-uclibc" and "arceb-linux-uclibc"

 targets.

 -mno-sdata

 Do not generate sdata references. This is the default for tool chains built

 for "arc-linux-uclibc" and "arceb-linux-uclibc" targets.

 -mvolatile-cache

 Use ordinarily cached memory accesses for volatile references. This is the

 default.

 -mno-volatile-cache

 Enable cache bypass for volatile references.

 The following options fine tune code generation:

 -malign-call

 Do alignment optimizations for call instructions.

 -mauto-modify-reg

 Enable the use of pre/post modify with register displacement.

 -mbbit-peephole

 Enable bbit peephole2.

 -mno-brcc

 This option disables a target-specific pass in arc_reorg to generate compare-

 and-branch ("brcc") instructions. It has no effect on generation of these

 instructions driven by the combiner pass.

 -mcase-vector-pcrel

 Use PC-relative switch case tables to enable case table shortening. This is

 the default for -Os.

 -mcompact-casesi

 Enable compact "casesi" pattern. This is the default for -Os, and only

 available for ARCv1 cores.

 -mno-cond-exec

 Disable the ARCompact-specific pass to generate conditional execution

 instructions.

 Due to delay slot scheduling and interactions between operand numbers, literal

 sizes, instruction lengths, and the support for conditional execution, the

 target-independent pass to generate conditional execution is often lacking, so Page 284/493

 the ARC port has kept a special pass around that tries to find more conditional

 execution generation opportunities after register allocation, branch

 shortening, and delay slot scheduling have been done. This pass generally, but

 not always, improves performance and code size, at the cost of extra

 compilation time, which is why there is an option to switch it off. If you

 have a problem with call instructions exceeding their allowable offset range

 because they are conditionalized, you should consider using -mmedium-calls

 instead.

 -mearly-cbranchsi

 Enable pre-reload use of the "cbranchsi" pattern.

 -mexpand-adddi

 Expand "adddi3" and "subdi3" at RTL generation time into "add.f", "adc" etc.

 -mindexed-loads

 Enable the use of indexed loads. This can be problematic because some

 optimizers then assume that indexed stores exist, which is not the case.

 Enable Local Register Allocation. This is still experimental for ARC, so by

 default the compiler uses standard reload (i.e. -mno-lra).

 -mlra-priority-none

 Don't indicate any priority for target registers.

 -mlra-priority-compact

 Indicate target register priority for r0..r3 / r12..r15.

 -mlra-priority-noncompact

 Reduce target register priority for r0..r3 / r12..r15.

 -mno-millicode

 When optimizing for size (using -Os), prologues and epilogues that have to save

 or restore a large number of registers are often shortened by using call to a

 special function in libgcc; this is referred to as a millicode call. As these

 calls can pose performance issues, and/or cause linking issues when linking in

 a nonstandard way, this option is provided to turn off millicode call

 generation.

 -mmixed-code

 Tweak register allocation to help 16-bit instruction generation. This

 generally has the effect of decreasing the average instruction size while Page 285/493

 increasing the instruction count.

 -mq-class

 Enable q instruction alternatives. This is the default for -Os.

 -mRcq

 Enable Rcq constraint handling. Most short code generation depends on this.

 This is the default.

 -mRcw

 Enable Rcw constraint handling. Most ccfsm condexec mostly depends on this.

 This is the default.

 -msize-level=level

 Fine-tune size optimization with regards to instruction lengths and alignment.

 The recognized values for level are:

 0 No size optimization. This level is deprecated and treated like 1.

 1 Short instructions are used opportunistically.

 2 In addition, alignment of loops and of code after barriers are dropped.

 3 In addition, optional data alignment is dropped, and the option Os is

 enabled.

 This defaults to 3 when -Os is in effect. Otherwise, the behavior when this is

 not set is equivalent to level 1.

 -mtune=cpu

 Set instruction scheduling parameters for cpu, overriding any implied by

 -mcpu=.

 Supported values for cpu are

 ARC600

 Tune for ARC600 CPU.

 ARC601

 Tune for ARC601 CPU.

 ARC700

 Tune for ARC700 CPU with standard multiplier block.

 ARC700-xmac

 Tune for ARC700 CPU with XMAC block.

 ARC725D

 Tune for ARC725D CPU. Page 286/493

 ARC750D

 Tune for ARC750D CPU.

 -mmultcost=num

 Cost to assume for a multiply instruction, with 4 being equal to a normal

 instruction.

 -munalign-prob-threshold=probability

 Set probability threshold for unaligning branches. When tuning for ARC700 and

 optimizing for speed, branches without filled delay slot are preferably emitted

 unaligned and long, unless profiling indicates that the probability for the

 branch to be taken is below probability. The default is (REG_BR_PROB_BASE/2),

 i.e. 5000.

 The following options are maintained for backward compatibility, but are now

 deprecated and will be removed in a future release:

 -margonaut

 Obsolete FPX.

 -mbig-endian

 -EB Compile code for big-endian targets. Use of these options is now deprecated.

 Big-endian code is supported by configuring GCC to build "arceb-elf32" and

 "arceb-linux-uclibc" targets, for which big endian is the default.

 -mlittle-endian

 -EL Compile code for little-endian targets. Use of these options is now

 deprecated. Little-endian code is supported by configuring GCC to build

 "arc-elf32" and "arc-linux-uclibc" targets, for which little endian is the

 default.

 -mbarrel_shifter

 Replaced by -mbarrel-shifter.

 -mdpfp_compact

 Replaced by -mdpfp-compact.

 -mdpfp_fast

 Replaced by -mdpfp-fast.

 -mdsp_packa

 Replaced by -mdsp-packa.

 -mEA Page 287/493

 Replaced by -mea.

 -mmac_24

 Replaced by -mmac-24.

 -mmac_d16

 Replaced by -mmac-d16.

 -mspfp_compact

 Replaced by -mspfp-compact.

 -mspfp_fast

 Replaced by -mspfp-fast.

 -mtune=cpu

 Values arc600, arc601, arc700 and arc700-xmac for cpu are replaced by ARC600,

 ARC601, ARC700 and ARC700-xmac respectively.

 -multcost=num

 Replaced by -mmultcost.

 ARM Options

 These -m options are defined for the ARM port:

 -mabi=name

 Generate code for the specified ABI. Permissible values are: apcs-gnu, atpcs,

 aapcs, aapcs-linux and iwmmxt.

 -mapcs-frame

 Generate a stack frame that is compliant with the ARM Procedure Call Standard

 for all functions, even if this is not strictly necessary for correct execution

 of the code. Specifying -fomit-frame-pointer with this option causes the stack

 frames not to be generated for leaf functions. The default is -mno-apcs-frame.

 This option is deprecated.

 -mapcs

 This is a synonym for -mapcs-frame and is deprecated.

 -mthumb-interwork

 Generate code that supports calling between the ARM and Thumb instruction sets.

 Without this option, on pre-v5 architectures, the two instruction sets cannot

 be reliably used inside one program. The default is -mno-thumb-interwork,

 since slightly larger code is generated when -mthumb-interwork is specified.

 In AAPCS configurations this option is meaningless. Page 288/493

 -mno-sched-prolog

 Prevent the reordering of instructions in the function prologue, or the merging

 of those instruction with the instructions in the function's body. This means

 that all functions start with a recognizable set of instructions (or in fact

 one of a choice from a small set of different function prologues), and this

 information can be used to locate the start of functions inside an executable

 piece of code. The default is -msched-prolog.

 -mfloat-abi=name

 Specifies which floating-point ABI to use. Permissible values are: soft,

 softfp and hard.

 Specifying soft causes GCC to generate output containing library calls for

 floating-point operations. softfp allows the generation of code using hardware

 floating-point instructions, but still uses the soft-float calling conventions.

 hard allows generation of floating-point instructions and uses FPU-specific

 calling conventions.

 The default depends on the specific target configuration. Note that the hard-

 float and soft-float ABIs are not link-compatible; you must compile your entire

 program with the same ABI, and link with a compatible set of libraries.

 -mlittle-endian

 Generate code for a processor running in little-endian mode. This is the

 default for all standard configurations.

 -mbig-endian

 Generate code for a processor running in big-endian mode; the default is to

 compile code for a little-endian processor.

 -march=name

 This specifies the name of the target ARM architecture. GCC uses this name to

 determine what kind of instructions it can emit when generating assembly code.

 This option can be used in conjunction with or instead of the -mcpu= option.

 Permissible names are: armv2, armv2a, armv3, armv3m, armv4, armv4t, armv5,

 armv5e, armv5t, armv5te, armv6, armv6-m, armv6j, armv6k, armv6kz, armv6s-m,

 armv6t2, armv6z, armv6zk, armv7, armv7-a, armv7-m, armv7-r, armv7e-m, armv7ve,

 armv8-a, armv8-a+crc, armv8.1-a, armv8.1-a+crc, armv8-m.base, armv8-m.main,

 armv8-m.main+dsp, iwmmxt, iwmmxt2. Page 289/493

 Architecture revisions older than armv4t are deprecated.

 -march=armv6s-m is the armv6-m architecture with support for the (now

 mandatory) SVC instruction.

 -march=armv6zk is an alias for armv6kz, existing for backwards compatibility.

 -march=armv7ve is the armv7-a architecture with virtualization extensions.

 -march=armv8-a+crc enables code generation for the ARMv8-A architecture

 together with the optional CRC32 extensions.

 -march=armv8.1-a enables compiler support for the ARMv8.1-A architecture. This

 also enables the features provided by -march=armv8-a+crc.

 -march=armv8.2-a enables compiler support for the ARMv8.2-A architecture. This

 also enables the features provided by -march=armv8.1-a.

 -march=armv8.2-a+fp16 enables compiler support for the ARMv8.2-A architecture

 with the optional FP16 instructions extension. This also enables the features

 provided by -march=armv8.1-a and implies -mfp16-format=ieee.

 -march=native causes the compiler to auto-detect the architecture of the build

 computer. At present, this feature is only supported on GNU/Linux, and not all

 architectures are recognized. If the auto-detect is unsuccessful the option

 has no effect.

 -mtune=name

 This option specifies the name of the target ARM processor for which GCC should

 tune the performance of the code. For some ARM implementations better

 performance can be obtained by using this option. Permissible names are: arm2,

 arm250, arm3, arm6, arm60, arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm,

 arm7di, arm7dmi, arm70, arm700, arm700i, arm710, arm710c, arm7100, arm720,

 arm7500, arm7500fe, arm7tdmi, arm7tdmi-s, arm710t, arm720t, arm740t, strongarm,

 strongarm110, strongarm1100, strongarm1110, arm8, arm810, arm9, arm9e, arm920,

 arm920t, arm922t, arm946e-s, arm966e-s, arm968e-s, arm926ej-s, arm940t,

 arm9tdmi, arm10tdmi, arm1020t, arm1026ej-s, arm10e, arm1020e, arm1022e,

 arm1136j-s, arm1136jf-s, mpcore, mpcorenovfp, arm1156t2-s, arm1156t2f-s,

 arm1176jz-s, arm1176jzf-s, generic-armv7-a, cortex-a5, cortex-a7, cortex-a8,

 cortex-a9, cortex-a12, cortex-a15, cortex-a17, cortex-a32, cortex-a35,

 cortex-a53, cortex-a57, cortex-a72, cortex-a73, cortex-r4, cortex-r4f,

 cortex-r5, cortex-r7, cortex-r8, cortex-m33, cortex-m23, cortex-m7, cortex-m4, Page 290/493

 cortex-m3, cortex-m1, cortex-m0, cortex-m0plus, cortex-m1.small-multiply,

 cortex-m0.small-multiply, cortex-m0plus.small-multiply, exynos-m1, marvell-pj4,

 xscale, iwmmxt, iwmmxt2, ep9312, fa526, fa626, fa606te, fa626te, fmp626,

 fa726te, xgene1.

 Additionally, this option can specify that GCC should tune the performance of

 the code for a big.LITTLE system. Permissible names are: cortex-a15.cortex-a7,

 cortex-a17.cortex-a7, cortex-a57.cortex-a53, cortex-a72.cortex-a53,

 cortex-a72.cortex-a35, cortex-a73.cortex-a53.

 -mtune=generic-arch specifies that GCC should tune the performance for a blend

 of processors within architecture arch. The aim is to generate code that run

 well on the current most popular processors, balancing between optimizations

 that benefit some CPUs in the range, and avoiding performance pitfalls of other

 CPUs. The effects of this option may change in future GCC versions as CPU

 models come and go.

 -mtune=native causes the compiler to auto-detect the CPU of the build computer.

 At present, this feature is only supported on GNU/Linux, and not all

 architectures are recognized. If the auto-detect is unsuccessful the option

 has no effect.

 -mcpu=name

 This specifies the name of the target ARM processor. GCC uses this name to

 derive the name of the target ARM architecture (as if specified by -march) and

 the ARM processor type for which to tune for performance (as if specified by

 -mtune). Where this option is used in conjunction with -march or -mtune, those

 options take precedence over the appropriate part of this option.

 Permissible names for this option are the same as those for -mtune.

 -mcpu=generic-arch is also permissible, and is equivalent to -march=arch

 -mtune=generic-arch. See -mtune for more information.

 -mcpu=native causes the compiler to auto-detect the CPU of the build computer.

 At present, this feature is only supported on GNU/Linux, and not all

 architectures are recognized. If the auto-detect is unsuccessful the option

 has no effect.

 -mfpu=name

 This specifies what floating-point hardware (or hardware emulation) is Page 291/493

 available on the target. Permissible names are: vfpv2, vfpv3, vfpv3-fp16,

 vfpv3-d16, vfpv3-d16-fp16, vfpv3xd, vfpv3xd-fp16, neon-vfpv3, neon-fp16, vfpv4,

 vfpv4-d16, fpv4-sp-d16, neon-vfpv4, fpv5-d16, fpv5-sp-d16, fp-armv8,

 neon-fp-armv8 and crypto-neon-fp-armv8. Note that neon is an alias for

 neon-vfpv3 and vfp is an alias for vfpv2.

 If -msoft-float is specified this specifies the format of floating-point

 values.

 If the selected floating-point hardware includes the NEON extension (e.g.

 -mfpu=neon), note that floating-point operations are not generated by GCC's

 auto-vectorization pass unless -funsafe-math-optimizations is also specified.

 This is because NEON hardware does not fully implement the IEEE 754 standard

 for floating-point arithmetic (in particular denormal values are treated as

 zero), so the use of NEON instructions may lead to a loss of precision.

 You can also set the fpu name at function level by using the "target("fpu=")"

 function attributes or pragmas.

 -mfp16-format=name

 Specify the format of the "__fp16" half-precision floating-point type.

 Permissible names are none, ieee, and alternative; the default is none, in

 which case the "__fp16" type is not defined.

 -mstructure-size-boundary=n

 The sizes of all structures and unions are rounded up to a multiple of the

 number of bits set by this option. Permissible values are 8, 32 and 64. The

 default value varies for different toolchains. For the COFF targeted toolchain

 the default value is 8. A value of 64 is only allowed if the underlying ABI

 supports it.

 Specifying a larger number can produce faster, more efficient code, but can

 also increase the size of the program. Different values are potentially

 incompatible. Code compiled with one value cannot necessarily expect to work

 with code or libraries compiled with another value, if they exchange

 information using structures or unions.

 -mabort-on-noreturn

 Generate a call to the function "abort" at the end of a "noreturn" function.

 It is executed if the function tries to return. Page 292/493

 -mlong-calls

 -mno-long-calls

 Tells the compiler to perform function calls by first loading the address of

 the function into a register and then performing a subroutine call on this

 register. This switch is needed if the target function lies outside of the

 64-megabyte addressing range of the offset-based version of subroutine call

 instruction.

 Even if this switch is enabled, not all function calls are turned into long

 calls. The heuristic is that static functions, functions that have the

 "short_call" attribute, functions that are inside the scope of a "#pragma

 no_long_calls" directive, and functions whose definitions have already been

 compiled within the current compilation unit are not turned into long calls.

 The exceptions to this rule are that weak function definitions, functions with

 the "long_call" attribute or the "section" attribute, and functions that are

 within the scope of a "#pragma long_calls" directive are always turned into

 long calls.

 This feature is not enabled by default. Specifying -mno-long-calls restores

 the default behavior, as does placing the function calls within the scope of a

 "#pragma long_calls_off" directive. Note these switches have no effect on how

 the compiler generates code to handle function calls via function pointers.

 -msingle-pic-base

 Treat the register used for PIC addressing as read-only, rather than loading it

 in the prologue for each function. The runtime system is responsible for

 initializing this register with an appropriate value before execution begins.

 -mpic-register=reg

 Specify the register to be used for PIC addressing. For standard PIC base

 case, the default is any suitable register determined by compiler. For single

 PIC base case, the default is R9 if target is EABI based or stack-checking is

 enabled, otherwise the default is R10.

 -mpic-data-is-text-relative

 Assume that the displacement between the text and data segments is fixed at

 static link time. This permits using PC-relative addressing operations to

 access data known to be in the data segment. For non-VxWorks RTP targets, this Page 293/493

 option is enabled by default. When disabled on such targets, it will enable

 -msingle-pic-base by default.

 -mpoke-function-name

 Write the name of each function into the text section, directly preceding the

 function prologue. The generated code is similar to this:

 t0

 .ascii "arm_poke_function_name", 0

 .align

 t1

 .word 0xff000000 + (t1 - t0)

 arm_poke_function_name

 mov ip, sp

 stmfd sp!, {fp, ip, lr, pc}

 sub fp, ip, #4

 When performing a stack backtrace, code can inspect the value of "pc" stored at

 "fp + 0". If the trace function then looks at location "pc - 12" and the top 8

 bits are set, then we know that there is a function name embedded immediately

 preceding this location and has length "((pc[-3]) & 0xff000000)".

 -mthumb

 -marm

 Select between generating code that executes in ARM and Thumb states. The

 default for most configurations is to generate code that executes in ARM state,

 but the default can be changed by configuring GCC with the --with-mode=state

 configure option.

 You can also override the ARM and Thumb mode for each function by using the

 "target("thumb")" and "target("arm")" function attributes or pragmas.

 -mtpcs-frame

 Generate a stack frame that is compliant with the Thumb Procedure Call Standard

 for all non-leaf functions. (A leaf function is one that does not call any

 other functions.) The default is -mno-tpcs-frame.

 -mtpcs-leaf-frame

 Generate a stack frame that is compliant with the Thumb Procedure Call Standard

 for all leaf functions. (A leaf function is one that does not call any other Page 294/493

 functions.) The default is -mno-apcs-leaf-frame.

 -mcallee-super-interworking

 Gives all externally visible functions in the file being compiled an ARM

 instruction set header which switches to Thumb mode before executing the rest

 of the function. This allows these functions to be called from non-

 interworking code. This option is not valid in AAPCS configurations because

 interworking is enabled by default.

 -mcaller-super-interworking

 Allows calls via function pointers (including virtual functions) to execute

 correctly regardless of whether the target code has been compiled for

 interworking or not. There is a small overhead in the cost of executing a

 function pointer if this option is enabled. This option is not valid in AAPCS

 configurations because interworking is enabled by default.

 -mtp=name

 Specify the access model for the thread local storage pointer. The valid

 models are soft, which generates calls to "__aeabi_read_tp", cp15, which

 fetches the thread pointer from "cp15" directly (supported in the arm6k

 architecture), and auto, which uses the best available method for the selected

 processor. The default setting is auto.

 -mtls-dialect=dialect

 Specify the dialect to use for accessing thread local storage. Two dialects

 are supported---gnu and gnu2. The gnu dialect selects the original GNU scheme

 for supporting local and global dynamic TLS models. The gnu2 dialect selects

 the GNU descriptor scheme, which provides better performance for shared

 libraries. The GNU descriptor scheme is compatible with the original scheme,

 but does require new assembler, linker and library support. Initial and local

 exec TLS models are unaffected by this option and always use the original

 scheme.

 -mword-relocations

 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).

 This is enabled by default on targets (uClinux, SymbianOS) where the runtime

 loader imposes this restriction, and when -fpic or -fPIC is specified.

 -mfix-cortex-m3-ldrd Page 295/493

 Some Cortex-M3 cores can cause data corruption when "ldrd" instructions with

 overlapping destination and base registers are used. This option avoids

 generating these instructions. This option is enabled by default when

 -mcpu=cortex-m3 is specified.

 -munaligned-access

 -mno-unaligned-access

 Enables (or disables) reading and writing of 16- and 32- bit values from

 addresses that are not 16- or 32- bit aligned. By default unaligned access is

 disabled for all pre-ARMv6, all ARMv6-M and for ARMv8-M Baseline architectures,

 and enabled for all other architectures. If unaligned access is not enabled

 then words in packed data structures are accessed a byte at a time.

 The ARM attribute "Tag_CPU_unaligned_access" is set in the generated object

 file to either true or false, depending upon the setting of this option. If

 unaligned access is enabled then the preprocessor symbol

 "__ARM_FEATURE_UNALIGNED" is also defined.

 -mneon-for-64bits

 Enables using Neon to handle scalar 64-bits operations. This is disabled by

 default since the cost of moving data from core registers to Neon is high.

 -mslow-flash-data

 Assume loading data from flash is slower than fetching instruction. Therefore

 literal load is minimized for better performance. This option is only

 supported when compiling for ARMv7 M-profile and off by default.

 -masm-syntax-unified

 Assume inline assembler is using unified asm syntax. The default is currently

 off which implies divided syntax. This option has no impact on Thumb2.

 However, this may change in future releases of GCC. Divided syntax should be

 considered deprecated.

 -mrestrict-it

 Restricts generation of IT blocks to conform to the rules of ARMv8. IT blocks

 can only contain a single 16-bit instruction from a select set of instructions.

 This option is on by default for ARMv8 Thumb mode.

 -mprint-tune-info

 Print CPU tuning information as comment in assembler file. This is an option Page 296/493

 used only for regression testing of the compiler and not intended for ordinary

 use in compiling code. This option is disabled by default.

 -mpure-code

 Do not allow constant data to be placed in code sections. Additionally, when

 compiling for ELF object format give all text sections the ELF processor-

 specific section attribute "SHF_ARM_PURECODE". This option is only available

 when generating non-pic code for ARMv7-M targets.

 -mcmse

 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on

 Development Tools Engineering Specification", which can be found on

<http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev

_tools_1_0.pdf>.

 AVR Options

 These options are defined for AVR implementations:

 -mmcu=mcu

 Specify Atmel AVR instruction set architectures (ISA) or MCU type.

 The default for this option is@tie{}avr2.

 GCC supports the following AVR devices and ISAs:

 "avr2"

 "Classic" devices with up to 8@tie{}KiB of program memory. mcu@tie{}=

 "attiny22", "attiny26", "at90c8534", "at90s2313", "at90s2323", "at90s2333",

 "at90s2343", "at90s4414", "at90s4433", "at90s4434", "at90s8515",

 "at90s8535".

 "avr25"

 "Classic" devices with up to 8@tie{}KiB of program memory and with the

 "MOVW" instruction. mcu@tie{}= "ata5272", "ata6616c", "attiny13",

 "attiny13a", "attiny2313", "attiny2313a", "attiny24", "attiny24a",

 "attiny25", "attiny261", "attiny261a", "attiny43u", "attiny4313",

 "attiny44", "attiny44a", "attiny441", "attiny45", "attiny461",

 "attiny461a", "attiny48", "attiny828", "attiny84", "attiny84a",

 "attiny841", "attiny85", "attiny861", "attiny861a", "attiny87", "attiny88",

 "at86rf401". Page 297/493

 "avr3"

 "Classic" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory.

 mcu@tie{}= "at43usb355", "at76c711".

 "avr31"

 "Classic" devices with 128@tie{}KiB of program memory. mcu@tie{}=

 "atmega103", "at43usb320".

 "avr35"

 "Classic" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory and

 with the "MOVW" instruction. mcu@tie{}= "ata5505", "ata6617c",

 "ata664251", "atmega16u2", "atmega32u2", "atmega8u2", "attiny1634",

 "attiny167", "at90usb162", "at90usb82".

 "avr4"

 "Enhanced" devices with up to 8@tie{}KiB of program memory. mcu@tie{}=

 "ata6285", "ata6286", "ata6289", "ata6612c", "atmega48", "atmega48a",

 "atmega48p", "atmega48pa", "atmega48pb", "atmega8", "atmega8a",

 "atmega8hva", "atmega8515", "atmega8535", "atmega88", "atmega88a",

 "atmega88p", "atmega88pa", "atmega88pb", "at90pwm1", "at90pwm2",

 "at90pwm2b", "at90pwm3", "at90pwm3b", "at90pwm81".

 "avr5"

 "Enhanced" devices with 16@tie{}KiB up to 64@tie{}KiB of program memory.

 mcu@tie{}= "ata5702m322", "ata5782", "ata5790", "ata5790n", "ata5791",

 "ata5795", "ata5831", "ata6613c", "ata6614q", "ata8210", "ata8510",

 "atmega16", "atmega16a", "atmega16hva", "atmega16hva2", "atmega16hvb",

 "atmega16hvbrevb", "atmega16m1", "atmega16u4", "atmega161", "atmega162",

 "atmega163", "atmega164a", "atmega164p", "atmega164pa", "atmega165",

 "atmega165a", "atmega165p", "atmega165pa", "atmega168", "atmega168a",

 "atmega168p", "atmega168pa", "atmega168pb", "atmega169", "atmega169a",

 "atmega169p", "atmega169pa", "atmega32", "atmega32a", "atmega32c1",

 "atmega32hvb", "atmega32hvbrevb", "atmega32m1", "atmega32u4", "atmega32u6",

 "atmega323", "atmega324a", "atmega324p", "atmega324pa", "atmega325",

 "atmega325a", "atmega325p", "atmega325pa", "atmega3250", "atmega3250a",

 "atmega3250p", "atmega3250pa", "atmega328", "atmega328p", "atmega328pb",

 "atmega329", "atmega329a", "atmega329p", "atmega329pa", "atmega3290", Page 298/493

 "atmega3290a", "atmega3290p", "atmega3290pa", "atmega406", "atmega64",

 "atmega64a", "atmega64c1", "atmega64hve", "atmega64hve2", "atmega64m1",

 "atmega64rfr2", "atmega640", "atmega644", "atmega644a", "atmega644p",

 "atmega644pa", "atmega644rfr2", "atmega645", "atmega645a", "atmega645p",

 "atmega6450", "atmega6450a", "atmega6450p", "atmega649", "atmega649a",

 "atmega649p", "atmega6490", "atmega6490a", "atmega6490p", "at90can32",

 "at90can64", "at90pwm161", "at90pwm216", "at90pwm316", "at90scr100",

 "at90usb646", "at90usb647", "at94k", "m3000".

 "avr51"

 "Enhanced" devices with 128@tie{}KiB of program memory. mcu@tie{}=

 "atmega128", "atmega128a", "atmega128rfa1", "atmega128rfr2", "atmega1280",

 "atmega1281", "atmega1284", "atmega1284p", "atmega1284rfr2", "at90can128",

 "at90usb1286", "at90usb1287".

 "avr6"

 "Enhanced" devices with 3-byte PC, i.e. with more than 128@tie{}KiB of

 program memory. mcu@tie{}= "atmega256rfr2", "atmega2560", "atmega2561",

 "atmega2564rfr2".

 "avrxmega2"

 "XMEGA" devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program

 memory. mcu@tie{}= "atxmega16a4", "atxmega16a4u", "atxmega16c4",

 "atxmega16d4", "atxmega16e5", "atxmega32a4", "atxmega32a4u", "atxmega32c3",

 "atxmega32c4", "atxmega32d3", "atxmega32d4", "atxmega32e5", "atxmega8e5".

 "avrxmega4"

 "XMEGA" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of

 program memory. mcu@tie{}= "atxmega64a3", "atxmega64a3u", "atxmega64a4u",

 "atxmega64b1", "atxmega64b3", "atxmega64c3", "atxmega64d3", "atxmega64d4".

 "avrxmega5"

 "XMEGA" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of

 program memory and more than 64@tie{}KiB of RAM. mcu@tie{}= "atxmega64a1",

 "atxmega64a1u".

 "avrxmega6"

 "XMEGA" devices with more than 128@tie{}KiB of program memory. mcu@tie{}=

 "atxmega128a3", "atxmega128a3u", "atxmega128b1", "atxmega128b3", Page 299/493

 "atxmega128c3", "atxmega128d3", "atxmega128d4", "atxmega192a3",

 "atxmega192a3u", "atxmega192c3", "atxmega192d3", "atxmega256a3",

 "atxmega256a3b", "atxmega256a3bu", "atxmega256a3u", "atxmega256c3",

 "atxmega256d3", "atxmega384c3", "atxmega384d3".

 "avrxmega7"

 "XMEGA" devices with more than 128@tie{}KiB of program memory and more than

 64@tie{}KiB of RAM. mcu@tie{}= "atxmega128a1", "atxmega128a1u",

 "atxmega128a4u".

 "avrtiny"

 "TINY" Tiny core devices with 512@tie{}B up to 4@tie{}KiB of program

 memory. mcu@tie{}= "attiny10", "attiny20", "attiny4", "attiny40",

 "attiny5", "attiny9".

 "avr1"

 This ISA is implemented by the minimal AVR core and supported for assembler

 only. mcu@tie{}= "attiny11", "attiny12", "attiny15", "attiny28",

 "at90s1200".

 -mabsdata

 Assume that all data in static storage can be accessed by LDS / STS

 instructions. This option has only an effect on reduced Tiny devices like

 ATtiny40. See also the "absdata" AVR Variable Attributes,variable attribute.

 -maccumulate-args

 Accumulate outgoing function arguments and acquire/release the needed stack

 space for outgoing function arguments once in function prologue/epilogue.

 Without this option, outgoing arguments are pushed before calling a function

 and popped afterwards.

 Popping the arguments after the function call can be expensive on AVR so that

 accumulating the stack space might lead to smaller executables because

 arguments need not be removed from the stack after such a function call.

 This option can lead to reduced code size for functions that perform several

 calls to functions that get their arguments on the stack like calls to printf-

 like functions.

 -mbranch-cost=cost

 Set the branch costs for conditional branch instructions to cost. Reasonable Page 300/493

 values for cost are small, non-negative integers. The default branch cost is 0.

 -mcall-prologues

 Functions prologues/epilogues are expanded as calls to appropriate subroutines.

 Code size is smaller.

 -mint8

 Assume "int" to be 8-bit integer. This affects the sizes of all types: a

 "char" is 1 byte, an "int" is 1 byte, a "long" is 2 bytes, and "long long" is 4

 bytes. Please note that this option does not conform to the C standards, but

 it results in smaller code size.

 -mn-flash=num

 Assume that the flash memory has a size of num times 64@tie{}KiB.

 -mno-interrupts

 Generated code is not compatible with hardware interrupts. Code size is

 smaller.

 -mrelax

 Try to replace "CALL" resp. "JMP" instruction by the shorter "RCALL" resp.

 "RJMP" instruction if applicable. Setting -mrelax just adds the --mlink-relax

 option to the assembler's command line and the --relax option to the linker's

 command line.

 Jump relaxing is performed by the linker because jump offsets are not known

 before code is located. Therefore, the assembler code generated by the compiler

 is the same, but the instructions in the executable may differ from

 instructions in the assembler code.

 Relaxing must be turned on if linker stubs are needed, see the section on

 "EIND" and linker stubs below.

 -mrmw

 Assume that the device supports the Read-Modify-Write instructions "XCH",

 "LAC", "LAS" and "LAT".

 -msp8

 Treat the stack pointer register as an 8-bit register, i.e. assume the high

 byte of the stack pointer is zero. In general, you don't need to set this

 option by hand.

 This option is used internally by the compiler to select and build multilibs Page 301/493

 for architectures "avr2" and "avr25". These architectures mix devices with and

 without "SPH". For any setting other than -mmcu=avr2 or -mmcu=avr25 the

 compiler driver adds or removes this option from the compiler proper's command

 line, because the compiler then knows if the device or architecture has an

 8-bit stack pointer and thus no "SPH" register or not.

 -mstrict-X

 Use address register "X" in a way proposed by the hardware. This means that

 "X" is only used in indirect, post-increment or pre-decrement addressing.

 Without this option, the "X" register may be used in the same way as "Y" or "Z"

 which then is emulated by additional instructions. For example, loading a

 value with "X+const" addressing with a small non-negative "const < 64" to a

 register Rn is performed as

 adiw r26, const ; X += const

 ld <Rn>, X ; <Rn> = *X

 sbiw r26, const ; X -= const

 -mtiny-stack

 Only change the lower 8@tie{}bits of the stack pointer.

 -mfract-convert-truncate

 Allow to use truncation instead of rounding towards zero for fractional fixed-

 point types.

 -nodevicelib

 Don't link against AVR-LibC's device specific library "lib<mcu>.a".

 -Waddr-space-convert

 Warn about conversions between address spaces in the case where the resulting

 address space is not contained in the incoming address space.

 -Wmisspelled-isr

 Warn if the ISR is misspelled, i.e. without __vector prefix. Enabled by

 default.

 "EIND" and Devices with More Than 128 Ki Bytes of Flash

 Pointers in the implementation are 16@tie{}bits wide. The address of a function or

 label is represented as word address so that indirect jumps and calls can target

 any code address in the range of 64@tie{}Ki words.

 In order to facilitate indirect jump on devices with more than 128@tie{}Ki bytes of Page 302/493

 program memory space, there is a special function register called "EIND" that

 serves as most significant part of the target address when "EICALL" or "EIJMP"

 instructions are used.

 Indirect jumps and calls on these devices are handled as follows by the compiler

 and are subject to some limitations:

 * The compiler never sets "EIND".

 * The compiler uses "EIND" implicitly in "EICALL"/"EIJMP" instructions or might

 read "EIND" directly in order to emulate an indirect call/jump by means of a

 "RET" instruction.

 * The compiler assumes that "EIND" never changes during the startup code or

 during the application. In particular, "EIND" is not saved/restored in function

 or interrupt service routine prologue/epilogue.

 * For indirect calls to functions and computed goto, the linker generates stubs.

 Stubs are jump pads sometimes also called trampolines. Thus, the indirect

 call/jump jumps to such a stub. The stub contains a direct jump to the desired

 address.

 * Linker relaxation must be turned on so that the linker generates the stubs

 correctly in all situations. See the compiler option -mrelax and the linker

 option --relax. There are corner cases where the linker is supposed to

 generate stubs but aborts without relaxation and without a helpful error

 message.

 * The default linker script is arranged for code with "EIND = 0". If code is

 supposed to work for a setup with "EIND != 0", a custom linker script has to be

 used in order to place the sections whose name start with ".trampolines" into

 the segment where "EIND" points to.

 * The startup code from libgcc never sets "EIND". Notice that startup code is a

 blend of code from libgcc and AVR-LibC. For the impact of AVR-LibC on "EIND",

 see the AVR-LibC user manual ("http://nongnu.org/avr-libc/user-manual/").

 * It is legitimate for user-specific startup code to set up "EIND" early, for

 example by means of initialization code located in section ".init3". Such code

 runs prior to general startup code that initializes RAM and calls constructors,

 but after the bit of startup code from AVR-LibC that sets "EIND" to the segment

 where the vector table is located. Page 303/493

 #include <avr/io.h>

 static void

 __attribute__((section(".init3"),naked,used,no_instrument_function))

 init3_set_eind (void)

 {

 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"

 "out %i0,r24" :: "n" (&EIND) : "r24","memory");

 }

 The "__trampolines_start" symbol is defined in the linker script.

 * Stubs are generated automatically by the linker if the following two conditions

 are met:

 -<The address of a label is taken by means of the "gs" modifier>

 (short for generate stubs) like so:

 LDI r24, lo8(gs(<func>))

 LDI r25, hi8(gs(<func>))

 -<The final location of that label is in a code segment>

 outside the segment where the stubs are located.

 * The compiler emits such "gs" modifiers for code labels in the following

 situations:

 -<Taking address of a function or code label.>

 -<Computed goto.>

 -<If prologue-save function is used, see -mcall-prologues>

 command-line option.

 -<Switch/case dispatch tables. If you do not want such dispatch>

 tables you can specify the -fno-jump-tables command-line option.

 -<C and C++ constructors/destructors called during startup/shutdown.>

 -<If the tools hit a "gs()" modifier explained above.>

 * Jumping to non-symbolic addresses like so is not supported:

 int main (void)

 {

 /* Call function at word address 0x2 */

 return ((int(*)(void)) 0x2)();

 } Page 304/493

 Instead, a stub has to be set up, i.e. the function has to be called through a

 symbol ("func_4" in the example):

 int main (void)

 {

 extern int func_4 (void);

 /* Call function at byte address 0x4 */

 return func_4();

 }

 and the application be linked with -Wl,--defsym,func_4=0x4. Alternatively,

 "func_4" can be defined in the linker script.

 Handling of the "RAMPD", "RAMPX", "RAMPY" and "RAMPZ" Special Function Registers

 Some AVR devices support memories larger than the 64@tie{}KiB range that can be

 accessed with 16-bit pointers. To access memory locations outside this 64@tie{}KiB

 range, the content of a "RAMP" register is used as high part of the address: The

 "X", "Y", "Z" address register is concatenated with the "RAMPX", "RAMPY", "RAMPZ"

 special function register, respectively, to get a wide address. Similarly, "RAMPD"

 is used together with direct addressing.

 * The startup code initializes the "RAMP" special function registers with zero.

 * If a AVR Named Address Spaces,named address space other than generic or

 "__flash" is used, then "RAMPZ" is set as needed before the operation.

 * If the device supports RAM larger than 64@tie{}KiB and the compiler needs to

 change "RAMPZ" to accomplish an operation, "RAMPZ" is reset to zero after the

 operation.

 * If the device comes with a specific "RAMP" register, the ISR prologue/epilogue

 saves/restores that SFR and initializes it with zero in case the ISR code might

 (implicitly) use it.

 * RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets. If you

 use inline assembler to read from locations outside the 16-bit address range

 and change one of the "RAMP" registers, you must reset it to zero after the

 access.

 AVR Built-in Macros

 GCC defines several built-in macros so that the user code can test for the presence

 or absence of features. Almost any of the following built-in macros are deduced Page 305/493

 from device capabilities and thus triggered by the -mmcu= command-line option.

 For even more AVR-specific built-in macros see AVR Named Address Spaces and AVR

 Built-in Functions.

 "__AVR_ARCH__"

 Build-in macro that resolves to a decimal number that identifies the

 architecture and depends on the -mmcu=mcu option. Possible values are:

 2, 25, 3, 31, 35, 4, 5, 51, 6

 for mcu="avr2", "avr25", "avr3", "avr31", "avr35", "avr4", "avr5", "avr51",

 "avr6",

 respectively and

 100, 102, 104, 105, 106, 107

 for mcu="avrtiny", "avrxmega2", "avrxmega4", "avrxmega5", "avrxmega6",

 "avrxmega7", respectively. If mcu specifies a device, this built-in macro is

 set accordingly. For example, with -mmcu=atmega8 the macro is defined to 4.

 "__AVR_Device__"

 Setting -mmcu=device defines this built-in macro which reflects the device's

 name. For example, -mmcu=atmega8 defines the built-in macro "__AVR_ATmega8__",

 -mmcu=attiny261a defines "__AVR_ATtiny261A__", etc.

 The built-in macros' names follow the scheme "__AVR_Device__" where Device is

 the device name as from the AVR user manual. The difference between Device in

 the built-in macro and device in -mmcu=device is that the latter is always

 lowercase.

 If device is not a device but only a core architecture like avr51, this macro

 is not defined.

 "__AVR_DEVICE_NAME__"

 Setting -mmcu=device defines this built-in macro to the device's name. For

 example, with -mmcu=atmega8 the macro is defined to "atmega8".

 If device is not a device but only a core architecture like avr51, this macro

 is not defined.

 "__AVR_XMEGA__"

 The device / architecture belongs to the XMEGA family of devices.

 "__AVR_HAVE_ELPM__"

 The device has the "ELPM" instruction. Page 306/493

 "__AVR_HAVE_ELPMX__"

 The device has the "ELPM Rn,Z" and "ELPM Rn,Z+" instructions.

 "__AVR_HAVE_MOVW__"

 The device has the "MOVW" instruction to perform 16-bit register-register

 moves.

 "__AVR_HAVE_LPMX__"

 The device has the "LPM Rn,Z" and "LPM Rn,Z+" instructions.

 "__AVR_HAVE_MUL__"

 The device has a hardware multiplier.

 "__AVR_HAVE_JMP_CALL__"

 The device has the "JMP" and "CALL" instructions. This is the case for devices

 with at least 16@tie{}KiB of program memory.

 "__AVR_HAVE_EIJMP_EICALL__"

 "__AVR_3_BYTE_PC__"

 The device has the "EIJMP" and "EICALL" instructions. This is the case for

 devices with more than 128@tie{}KiB of program memory. This also means that

 the program counter (PC) is 3@tie{}bytes wide.

 "__AVR_2_BYTE_PC__"

 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices

 with up to 128@tie{}KiB of program memory.

 "__AVR_HAVE_8BIT_SP__"

 "__AVR_HAVE_16BIT_SP__"

 The stack pointer (SP) register is treated as 8-bit respectively 16-bit

 register by the compiler. The definition of these macros is affected by

 -mtiny-stack.

 "__AVR_HAVE_SPH__"

 "__AVR_SP8__"

 The device has the SPH (high part of stack pointer) special function register

 or has an 8-bit stack pointer, respectively. The definition of these macros is

 affected by -mmcu= and in the cases of -mmcu=avr2 and -mmcu=avr25 also by

 -msp8.

 "__AVR_HAVE_RAMPD__"

 "__AVR_HAVE_RAMPX__" Page 307/493

 "__AVR_HAVE_RAMPY__"

 "__AVR_HAVE_RAMPZ__"

 The device has the "RAMPD", "RAMPX", "RAMPY", "RAMPZ" special function

 register, respectively.

 "__NO_INTERRUPTS__"

 This macro reflects the -mno-interrupts command-line option.

 "__AVR_ERRATA_SKIP__"

 "__AVR_ERRATA_SKIP_JMP_CALL__"

 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions

 because of a hardware erratum. Skip instructions are "SBRS", "SBRC", "SBIS",

 "SBIC" and "CPSE". The second macro is only defined if "__AVR_HAVE_JMP_CALL__"

 is also set.

 "__AVR_ISA_RMW__"

 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).

 "__AVR_SFR_OFFSET__=offset"

 Instructions that can address I/O special function registers directly like

 "IN", "OUT", "SBI", etc. may use a different address as if addressed by an

 instruction to access RAM like "LD" or "STS". This offset depends on the device

 architecture and has to be subtracted from the RAM address in order to get the

 respective I/O@tie{}address.

 "__WITH_AVRLIBC__"

 The compiler is configured to be used together with AVR-Libc. See the

 --with-avrlibc configure option.

 Blackfin Options

 -mcpu=cpu[-sirevision]

 Specifies the name of the target Blackfin processor. Currently, cpu can be one

 of bf512, bf514, bf516, bf518, bf522, bf523, bf524, bf525, bf526, bf527, bf531,

 bf532, bf533, bf534, bf536, bf537, bf538, bf539, bf542, bf544, bf547, bf548,

 bf549, bf542m, bf544m, bf547m, bf548m, bf549m, bf561, bf592.

 The optional sirevision specifies the silicon revision of the target Blackfin

 processor. Any workarounds available for the targeted silicon revision are

 enabled. If sirevision is none, no workarounds are enabled. If sirevision is

 any, all workarounds for the targeted processor are enabled. The Page 308/493

 "__SILICON_REVISION__" macro is defined to two hexadecimal digits representing

 the major and minor numbers in the silicon revision. If sirevision is none,

 the "__SILICON_REVISION__" is not defined. If sirevision is any, the

 "__SILICON_REVISION__" is defined to be 0xffff. If this optional sirevision is

 not used, GCC assumes the latest known silicon revision of the targeted

 Blackfin processor.

 GCC defines a preprocessor macro for the specified cpu. For the bfin-elf

 toolchain, this option causes the hardware BSP provided by libgloss to be

 linked in if -msim is not given.

 Without this option, bf532 is used as the processor by default.

 Note that support for bf561 is incomplete. For bf561, only the preprocessor

 macro is defined.

 -msim

 Specifies that the program will be run on the simulator. This causes the

 simulator BSP provided by libgloss to be linked in. This option has effect

 only for bfin-elf toolchain. Certain other options, such as

 -mid-shared-library and -mfdpic, imply -msim.

 -momit-leaf-frame-pointer

 Don't keep the frame pointer in a register for leaf functions. This avoids the

 instructions to save, set up and restore frame pointers and makes an extra

 register available in leaf functions. The option -fomit-frame-pointer removes

 the frame pointer for all functions, which might make debugging harder.

 -mspecld-anomaly

 When enabled, the compiler ensures that the generated code does not contain

 speculative loads after jump instructions. If this option is used,

 "__WORKAROUND_SPECULATIVE_LOADS" is defined.

 -mno-specld-anomaly

 Don't generate extra code to prevent speculative loads from occurring.

 -mcsync-anomaly

 When enabled, the compiler ensures that the generated code does not contain

 CSYNC or SSYNC instructions too soon after conditional branches. If this

 option is used, "__WORKAROUND_SPECULATIVE_SYNCS" is defined.

 -mno-csync-anomaly Page 309/493

 Don't generate extra code to prevent CSYNC or SSYNC instructions from occurring

 too soon after a conditional branch.

 -mlow-64k

 When enabled, the compiler is free to take advantage of the knowledge that the

 entire program fits into the low 64k of memory.

 -mno-low-64k

 Assume that the program is arbitrarily large. This is the default.

 -mstack-check-l1

 Do stack checking using information placed into L1 scratchpad memory by the

 uClinux kernel.

 -mid-shared-library

 Generate code that supports shared libraries via the library ID method. This

 allows for execute in place and shared libraries in an environment without

 virtual memory management. This option implies -fPIC. With a bfin-elf target,

 this option implies -msim.

 -mno-id-shared-library

 Generate code that doesn't assume ID-based shared libraries are being used.

 This is the default.

 -mleaf-id-shared-library

 Generate code that supports shared libraries via the library ID method, but

 assumes that this library or executable won't link against any other ID shared

 libraries. That allows the compiler to use faster code for jumps and calls.

 -mno-leaf-id-shared-library

 Do not assume that the code being compiled won't link against any ID shared

 libraries. Slower code is generated for jump and call insns.

 -mshared-library-id=n

 Specifies the identification number of the ID-based shared library being

 compiled. Specifying a value of 0 generates more compact code; specifying

 other values forces the allocation of that number to the current library but is

 no more space- or time-efficient than omitting this option.

 -msep-data

 Generate code that allows the data segment to be located in a different area of

 memory from the text segment. This allows for execute in place in an Page 310/493

 environment without virtual memory management by eliminating relocations

 against the text section.

 -mno-sep-data

 Generate code that assumes that the data segment follows the text segment.

 This is the default.

 -mlong-calls

 -mno-long-calls

 Tells the compiler to perform function calls by first loading the address of

 the function into a register and then performing a subroutine call on this

 register. This switch is needed if the target function lies outside of the

 24-bit addressing range of the offset-based version of subroutine call

 instruction.

 This feature is not enabled by default. Specifying -mno-long-calls restores

 the default behavior. Note these switches have no effect on how the compiler

 generates code to handle function calls via function pointers.

 -mfast-fp

 Link with the fast floating-point library. This library relaxes some of the

 IEEE floating-point standard's rules for checking inputs against Not-a-Number

 (NAN), in the interest of performance.

 -minline-plt

 Enable inlining of PLT entries in function calls to functions that are not

 known to bind locally. It has no effect without -mfdpic.

 -mmulticore

 Build a standalone application for multicore Blackfin processors. This option

 causes proper start files and link scripts supporting multicore to be used, and

 defines the macro "__BFIN_MULTICORE". It can only be used with

 -mcpu=bf561[-sirevision].

 This option can be used with -mcorea or -mcoreb, which selects the one-

 application-per-core programming model. Without -mcorea or -mcoreb, the

 single-application/dual-core programming model is used. In this model, the main

 function of Core B should be named as "coreb_main".

 If this option is not used, the single-core application programming model is

 used. Page 311/493

 -mcorea

 Build a standalone application for Core A of BF561 when using the one-

 application-per-core programming model. Proper start files and link scripts are

 used to support Core A, and the macro "__BFIN_COREA" is defined. This option

 can only be used in conjunction with -mmulticore.

 -mcoreb

 Build a standalone application for Core B of BF561 when using the one-

 application-per-core programming model. Proper start files and link scripts are

 used to support Core B, and the macro "__BFIN_COREB" is defined. When this

 option is used, "coreb_main" should be used instead of "main". This option can

 only be used in conjunction with -mmulticore.

 -msdram

 Build a standalone application for SDRAM. Proper start files and link scripts

 are used to put the application into SDRAM, and the macro "__BFIN_SDRAM" is

 defined. The loader should initialize SDRAM before loading the application.

 -micplb

 Assume that ICPLBs are enabled at run time. This has an effect on certain

 anomaly workarounds. For Linux targets, the default is to assume ICPLBs are

 enabled; for standalone applications the default is off.

 C6X Options

 -march=name

 This specifies the name of the target architecture. GCC uses this name to

 determine what kind of instructions it can emit when generating assembly code.

 Permissible names are: c62x, c64x, c64x+, c67x, c67x+, c674x.

 -mbig-endian

 Generate code for a big-endian target.

 -mlittle-endian

 Generate code for a little-endian target. This is the default.

 -msim

 Choose startup files and linker script suitable for the simulator.

 -msdata=default

 Put small global and static data in the ".neardata" section, which is pointed

 to by register "B14". Put small uninitialized global and static data in the Page 312/493

 ".bss" section, which is adjacent to the ".neardata" section. Put small read-

 only data into the ".rodata" section. The corresponding sections used for

 large pieces of data are ".fardata", ".far" and ".const".

 -msdata=all

 Put all data, not just small objects, into the sections reserved for small

 data, and use addressing relative to the "B14" register to access them.

 -msdata=none

 Make no use of the sections reserved for small data, and use absolute addresses

 to access all data. Put all initialized global and static data in the

 ".fardata" section, and all uninitialized data in the ".far" section. Put all

 constant data into the ".const" section.

 CRIS Options

 These options are defined specifically for the CRIS ports.

 -march=architecture-type

 -mcpu=architecture-type

 Generate code for the specified architecture. The choices for architecture-

 type are v3, v8 and v10 for respectively ETRAX 4, ETRAX 100, and ETRAX 100 LX.

 Default is v0 except for cris-axis-linux-gnu, where the default is v10.

 -mtune=architecture-type

 Tune to architecture-type everything applicable about the generated code,

 except for the ABI and the set of available instructions. The choices for

 architecture-type are the same as for -march=architecture-type.

 -mmax-stack-frame=n

 Warn when the stack frame of a function exceeds n bytes.

 -metrax4

 -metrax100

 The options -metrax4 and -metrax100 are synonyms for -march=v3 and -march=v8

 respectively.

 -mmul-bug-workaround

 -mno-mul-bug-workaround

 Work around a bug in the "muls" and "mulu" instructions for CPU models where it

 applies. This option is active by default.

 -mpdebug Page 313/493

 Enable CRIS-specific verbose debug-related information in the assembly code.

 This option also has the effect of turning off the #NO_APP formatted-code

 indicator to the assembler at the beginning of the assembly file.

 -mcc-init

 Do not use condition-code results from previous instruction; always emit

 compare and test instructions before use of condition codes.

 -mno-side-effects

 Do not emit instructions with side effects in addressing modes other than post-

 increment.

 -mstack-align

 -mno-stack-align

 -mdata-align

 -mno-data-align

 -mconst-align

 -mno-const-align

 These options (no- options) arrange (eliminate arrangements) for the stack

 frame, individual data and constants to be aligned for the maximum single data

 access size for the chosen CPU model. The default is to arrange for 32-bit

 alignment. ABI details such as structure layout are not affected by these

 options.

 -m32-bit

 -m16-bit

 -m8-bit

 Similar to the stack- data- and const-align options above, these options

 arrange for stack frame, writable data and constants to all be 32-bit, 16-bit

 or 8-bit aligned. The default is 32-bit alignment.

 -mno-prologue-epilogue

 -mprologue-epilogue

 With -mno-prologue-epilogue, the normal function prologue and epilogue which

 set up the stack frame are omitted and no return instructions or return

 sequences are generated in the code. Use this option only together with visual

 inspection of the compiled code: no warnings or errors are generated when call-

 saved registers must be saved, or storage for local variables needs to be Page 314/493

 allocated.

 -mno-gotplt

 -mgotplt

 With -fpic and -fPIC, don't generate (do generate) instruction sequences that

 load addresses for functions from the PLT part of the GOT rather than

 (traditional on other architectures) calls to the PLT. The default is

 -mgotplt.

 -melf

 Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-

 gnu targets.

 -mlinux

 Legacy no-op option only recognized with the cris-axis-linux-gnu target.

 -sim

 This option, recognized for the cris-axis-elf, arranges to link with input-

 output functions from a simulator library. Code, initialized data and zero-

 initialized data are allocated consecutively.

 -sim2

 Like -sim, but pass linker options to locate initialized data at 0x40000000 and

 zero-initialized data at 0x80000000.

 CR16 Options

 These options are defined specifically for the CR16 ports.

 -mmac

 Enable the use of multiply-accumulate instructions. Disabled by default.

 -mcr16cplus

 -mcr16c

 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture is default.

 -msim

 Links the library libsim.a which is in compatible with simulator. Applicable to

 ELF compiler only.

 -mint32

 Choose integer type as 32-bit wide.

 -mbit-ops

 Generates "sbit"/"cbit" instructions for bit manipulations. Page 315/493

 -mdata-model=model

 Choose a data model. The choices for model are near, far or medium. medium is

 default. However, far is not valid with -mcr16c, as the CR16C architecture

 does not support the far data model.

 Darwin Options

 These options are defined for all architectures running the Darwin operating

 system.

 FSF GCC on Darwin does not create "fat" object files; it creates an object file for

 the single architecture that GCC was built to target. Apple's GCC on Darwin does

 create "fat" files if multiple -arch options are used; it does so by running the

 compiler or linker multiple times and joining the results together with lipo.

 The subtype of the file created (like ppc7400 or ppc970 or i686) is determined by

 the flags that specify the ISA that GCC is targeting, like -mcpu or -march. The

 -force_cpusubtype_ALL option can be used to override this.

 The Darwin tools vary in their behavior when presented with an ISA mismatch. The

 assembler, as, only permits instructions to be used that are valid for the subtype

 of the file it is generating, so you cannot put 64-bit instructions in a ppc750

 object file. The linker for shared libraries, /usr/bin/libtool, fails and prints

 an error if asked to create a shared library with a less restrictive subtype than

 its input files (for instance, trying to put a ppc970 object file in a ppc7400

 library). The linker for executables, ld, quietly gives the executable the most

 restrictive subtype of any of its input files.

 -Fdir

 Add the framework directory dir to the head of the list of directories to be

 searched for header files. These directories are interleaved with those

 specified by -I options and are scanned in a left-to-right order.

 A framework directory is a directory with frameworks in it. A framework is a

 directory with a Headers and/or PrivateHeaders directory contained directly in

 it that ends in .framework. The name of a framework is the name of this

 directory excluding the .framework. Headers associated with the framework are

 found in one of those two directories, with Headers being searched first. A

 subframework is a framework directory that is in a framework's Frameworks

 directory. Includes of subframework headers can only appear in a header of a Page 316/493

 framework that contains the subframework, or in a sibling subframework header.

 Two subframeworks are siblings if they occur in the same framework. A

 subframework should not have the same name as a framework; a warning is issued

 if this is violated. Currently a subframework cannot have subframeworks; in

 the future, the mechanism may be extended to support this. The standard

 frameworks can be found in /System/Library/Frameworks and /Library/Frameworks.

 An example include looks like "#include <Framework/header.h>", where Framework

 denotes the name of the framework and header.h is found in the PrivateHeaders

 or Headers directory.

 -iframeworkdir

 Like -F except the directory is a treated as a system directory. The main

 difference between this -iframework and -F is that with -iframework the

 compiler does not warn about constructs contained within header files found via

 dir. This option is valid only for the C family of languages.

 -gused

 Emit debugging information for symbols that are used. For stabs debugging

 format, this enables -feliminate-unused-debug-symbols. This is by default ON.

 -gfull

 Emit debugging information for all symbols and types.

 -mmacosx-version-min=version

 The earliest version of MacOS X that this executable will run on is version.

 Typical values of version include 10.1, 10.2, and 10.3.9.

 If the compiler was built to use the system's headers by default, then the

 default for this option is the system version on which the compiler is running,

 otherwise the default is to make choices that are compatible with as many

 systems and code bases as possible.

 -mkernel

 Enable kernel development mode. The -mkernel option sets -static, -fno-common,

 -fno-use-cxa-atexit, -fno-exceptions, -fno-non-call-exceptions, -fapple-kext,

 -fno-weak and -fno-rtti where applicable. This mode also sets -mno-altivec,

 -msoft-float, -fno-builtin and -mlong-branch for PowerPC targets.

 -mone-byte-bool

 Override the defaults for "bool" so that "sizeof(bool)==1". By default Page 317/493

 "sizeof(bool)" is 4 when compiling for Darwin/PowerPC and 1 when compiling for

 Darwin/x86, so this option has no effect on x86.

 Warning: The -mone-byte-bool switch causes GCC to generate code that is not

 binary compatible with code generated without that switch. Using this switch

 may require recompiling all other modules in a program, including system

 libraries. Use this switch to conform to a non-default data model.

 -mfix-and-continue

 -ffix-and-continue

 -findirect-data

 Generate code suitable for fast turnaround development, such as to allow GDB to

 dynamically load .o files into already-running programs. -findirect-data and

 -ffix-and-continue are provided for backwards compatibility.

 -all_load

 Loads all members of static archive libraries. See man ld(1) for more

 information.

 -arch_errors_fatal

 Cause the errors having to do with files that have the wrong architecture to be

 fatal.

 -bind_at_load

 Causes the output file to be marked such that the dynamic linker will bind all

 undefined references when the file is loaded or launched.

 -bundle

 Produce a Mach-o bundle format file. See man ld(1) for more information.

 -bundle_loader executable

 This option specifies the executable that will load the build output file being

 linked. See man ld(1) for more information.

 -dynamiclib

 When passed this option, GCC produces a dynamic library instead of an

 executable when linking, using the Darwin libtool command.

 -force_cpusubtype_ALL

 This causes GCC's output file to have the ALL subtype, instead of one

 controlled by the -mcpu or -march option.

 -allowable_client client_name Page 318/493

 -client_name

 -compatibility_version

 -current_version

 -dead_strip

 -dependency-file

 -dylib_file

 -dylinker_install_name

 -dynamic

 -exported_symbols_list

 -filelist

 -flat_namespace

 -force_flat_namespace

 -headerpad_max_install_names

 -image_base

 -init

 -install_name

 -keep_private_externs

 -multi_module

 -multiply_defined

 -multiply_defined_unused

 -noall_load

 -no_dead_strip_inits_and_terms

 -nofixprebinding

 -nomultidefs

 -noprebind

 -noseglinkedit

 -pagezero_size

 -prebind

 -prebind_all_twolevel_modules

 -private_bundle

 -read_only_relocs

 -sectalign

 -sectobjectsymbols Page 319/493

 -whyload

 -seg1addr

 -sectcreate

 -sectobjectsymbols

 -sectorder

 -segaddr

 -segs_read_only_addr

 -segs_read_write_addr

 -seg_addr_table

 -seg_addr_table_filename

 -seglinkedit

 -segprot

 -segs_read_only_addr

 -segs_read_write_addr

 -single_module

 -static

 -sub_library

 -sub_umbrella

 -twolevel_namespace

 -umbrella

 -undefined

 -unexported_symbols_list

 -weak_reference_mismatches

 -whatsloaded

 These options are passed to the Darwin linker. The Darwin linker man page

 describes them in detail.

 DEC Alpha Options

 These -m options are defined for the DEC Alpha implementations:

 -mno-soft-float

 -msoft-float

 Use (do not use) the hardware floating-point instructions for floating-point

 operations. When -msoft-float is specified, functions in libgcc.a are used to

 perform floating-point operations. Unless they are replaced by routines that Page 320/493

 emulate the floating-point operations, or compiled in such a way as to call

 such emulations routines, these routines issue floating-point operations. If

 you are compiling for an Alpha without floating-point operations, you must

 ensure that the library is built so as not to call them.

 Note that Alpha implementations without floating-point operations are required

 to have floating-point registers.

 -mfp-reg

 -mno-fp-regs

 Generate code that uses (does not use) the floating-point register set.

 -mno-fp-regs implies -msoft-float. If the floating-point register set is not

 used, floating-point operands are passed in integer registers as if they were

 integers and floating-point results are passed in $0 instead of $f0. This is a

 non-standard calling sequence, so any function with a floating-point argument

 or return value called by code compiled with -mno-fp-regs must also be compiled

 with that option.

 A typical use of this option is building a kernel that does not use, and hence

 need not save and restore, any floating-point registers.

 -mieee

 The Alpha architecture implements floating-point hardware optimized for maximum

 performance. It is mostly compliant with the IEEE floating-point standard.

 However, for full compliance, software assistance is required. This option

 generates code fully IEEE-compliant code except that the inexact-flag is not

 maintained (see below). If this option is turned on, the preprocessor macro

 "_IEEE_FP" is defined during compilation. The resulting code is less efficient

 but is able to correctly support denormalized numbers and exceptional IEEE

 values such as not-a-number and plus/minus infinity. Other Alpha compilers

 call this option -ieee_with_no_inexact.

 -mieee-with-inexact

 This is like -mieee except the generated code also maintains the IEEE inexact-

 flag. Turning on this option causes the generated code to implement fully-

 compliant IEEE math. In addition to "_IEEE_FP", "_IEEE_FP_EXACT" is defined as

 a preprocessor macro. On some Alpha implementations the resulting code may

 execute significantly slower than the code generated by default. Since there Page 321/493

 is very little code that depends on the inexact-flag, you should normally not

 specify this option. Other Alpha compilers call this option

 -ieee_with_inexact.

 -mfp-trap-mode=trap-mode

 This option controls what floating-point related traps are enabled. Other

 Alpha compilers call this option -fptm trap-mode. The trap mode can be set to

 one of four values:

 n This is the default (normal) setting. The only traps that are enabled are

 the ones that cannot be disabled in software (e.g., division by zero trap).

 u In addition to the traps enabled by n, underflow traps are enabled as well.

 su Like u, but the instructions are marked to be safe for software completion

 (see Alpha architecture manual for details).

 sui Like su, but inexact traps are enabled as well.

 -mfp-rounding-mode=rounding-mode

 Selects the IEEE rounding mode. Other Alpha compilers call this option -fprm

 rounding-mode. The rounding-mode can be one of:

 n Normal IEEE rounding mode. Floating-point numbers are rounded towards the

 nearest machine number or towards the even machine number in case of a tie.

 m Round towards minus infinity.

 c Chopped rounding mode. Floating-point numbers are rounded towards zero.

 d Dynamic rounding mode. A field in the floating-point control register

 (fpcr, see Alpha architecture reference manual) controls the rounding mode

 in effect. The C library initializes this register for rounding towards

 plus infinity. Thus, unless your program modifies the fpcr, d corresponds

 to round towards plus infinity.

 -mtrap-precision=trap-precision

 In the Alpha architecture, floating-point traps are imprecise. This means

 without software assistance it is impossible to recover from a floating trap

 and program execution normally needs to be terminated. GCC can generate code

 that can assist operating system trap handlers in determining the exact

 location that caused a floating-point trap. Depending on the requirements of

 an application, different levels of precisions can be selected:

 p Program precision. This option is the default and means a trap handler can Page 322/493

 only identify which program caused a floating-point exception.

 f Function precision. The trap handler can determine the function that

 caused a floating-point exception.

 i Instruction precision. The trap handler can determine the exact

 instruction that caused a floating-point exception.

 Other Alpha compilers provide the equivalent options called -scope_safe and

 -resumption_safe.

 -mieee-conformant

 This option marks the generated code as IEEE conformant. You must not use this

 option unless you also specify -mtrap-precision=i and either -mfp-trap-mode=su

 or -mfp-trap-mode=sui. Its only effect is to emit the line .eflag 48 in the

 function prologue of the generated assembly file.

 -mbuild-constants

 Normally GCC examines a 32- or 64-bit integer constant to see if it can

 construct it from smaller constants in two or three instructions. If it

 cannot, it outputs the constant as a literal and generates code to load it from

 the data segment at run time.

 Use this option to require GCC to construct all integer constants using code,

 even if it takes more instructions (the maximum is six).

 You typically use this option to build a shared library dynamic loader. Itself

 a shared library, it must relocate itself in memory before it can find the

 variables and constants in its own data segment.

 -mbwx

 -mno-bwx

 -mcix

 -mno-cix

 -mfix

 -mno-fix

 -mmax

 -mno-max

 Indicate whether GCC should generate code to use the optional BWX, CIX, FIX and

 MAX instruction sets. The default is to use the instruction sets supported by

 the CPU type specified via -mcpu= option or that of the CPU on which GCC was Page 323/493

 built if none is specified.

 -mfloat-vax

 -mfloat-ieee

 Generate code that uses (does not use) VAX F and G floating-point arithmetic

 instead of IEEE single and double precision.

 -mexplicit-relocs

 -mno-explicit-relocs

 Older Alpha assemblers provided no way to generate symbol relocations except

 via assembler macros. Use of these macros does not allow optimal instruction

 scheduling. GNU binutils as of version 2.12 supports a new syntax that allows

 the compiler to explicitly mark which relocations should apply to which

 instructions. This option is mostly useful for debugging, as GCC detects the

 capabilities of the assembler when it is built and sets the default

 accordingly.

 -msmall-data

 -mlarge-data

 When -mexplicit-relocs is in effect, static data is accessed via gp-relative

 relocations. When -msmall-data is used, objects 8 bytes long or smaller are

 placed in a small data area (the ".sdata" and ".sbss" sections) and are

 accessed via 16-bit relocations off of the $gp register. This limits the size

 of the small data area to 64KB, but allows the variables to be directly

 accessed via a single instruction.

 The default is -mlarge-data. With this option the data area is limited to just

 below 2GB. Programs that require more than 2GB of data must use "malloc" or

 "mmap" to allocate the data in the heap instead of in the program's data

 segment.

 When generating code for shared libraries, -fpic implies -msmall-data and -fPIC

 implies -mlarge-data.

 -msmall-text

 -mlarge-text

 When -msmall-text is used, the compiler assumes that the code of the entire

 program (or shared library) fits in 4MB, and is thus reachable with a branch

 instruction. When -msmall-data is used, the compiler can assume that all local Page 324/493

 symbols share the same $gp value, and thus reduce the number of instructions

 required for a function call from 4 to 1.

 The default is -mlarge-text.

 -mcpu=cpu_type

 Set the instruction set and instruction scheduling parameters for machine type

 cpu_type. You can specify either the EV style name or the corresponding chip

 number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family of

 processors and chooses the default values for the instruction set from the

 processor you specify. If you do not specify a processor type, GCC defaults to

 the processor on which the compiler was built.

 Supported values for cpu_type are

 ev4

 ev45

 21064

 Schedules as an EV4 and has no instruction set extensions.

 ev5

 21164

 Schedules as an EV5 and has no instruction set extensions.

 ev56

 21164a

 Schedules as an EV5 and supports the BWX extension.

 pca56

 21164pc

 21164PC

 Schedules as an EV5 and supports the BWX and MAX extensions.

 ev6

 21264

 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.

 ev67

 21264a

 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.

 Native toolchains also support the value native, which selects the best

 architecture option for the host processor. -mcpu=native has no effect if GCC Page 325/493

 does not recognize the processor.

 -mtune=cpu_type

 Set only the instruction scheduling parameters for machine type cpu_type. The

 instruction set is not changed.

 Native toolchains also support the value native, which selects the best

 architecture option for the host processor. -mtune=native has no effect if GCC

 does not recognize the processor.

 -mmemory-latency=time

 Sets the latency the scheduler should assume for typical memory references as

 seen by the application. This number is highly dependent on the memory access

 patterns used by the application and the size of the external cache on the

 machine.

 Valid options for time are

 number

 A decimal number representing clock cycles.

 L1

 L2

 L3

 main

 The compiler contains estimates of the number of clock cycles for "typical"

 EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called Dcache,

 Scache, and Bcache), as well as to main memory. Note that L3 is only valid

 for EV5.

 FR30 Options

 These options are defined specifically for the FR30 port.

 -msmall-model

 Use the small address space model. This can produce smaller code, but it does

 assume that all symbolic values and addresses fit into a 20-bit range.

 -mno-lsim

 Assume that runtime support has been provided and so there is no need to

 include the simulator library (libsim.a) on the linker command line.

 FT32 Options

 These options are defined specifically for the FT32 port. Page 326/493

 -msim

 Specifies that the program will be run on the simulator. This causes an

 alternate runtime startup and library to be linked. You must not use this

 option when generating programs that will run on real hardware; you must

 provide your own runtime library for whatever I/O functions are needed.

 -mlra

 Enable Local Register Allocation. This is still experimental for FT32, so by

 default the compiler uses standard reload.

 -mnodiv

 Do not use div and mod instructions.

 FRV Options

 -mgpr-32

 Only use the first 32 general-purpose registers.

 -mgpr-64

 Use all 64 general-purpose registers.

 -mfpr-32

 Use only the first 32 floating-point registers.

 -mfpr-64

 Use all 64 floating-point registers.

 -mhard-float

 Use hardware instructions for floating-point operations.

 -msoft-float

 Use library routines for floating-point operations.

 -malloc-cc

 Dynamically allocate condition code registers.

 -mfixed-cc

 Do not try to dynamically allocate condition code registers, only use "icc0"

 and "fcc0".

 -mdword

 Change ABI to use double word insns.

 -mno-dword

 Do not use double word instructions.

 -mdouble Page 327/493

 Use floating-point double instructions.

 -mno-double

 Do not use floating-point double instructions.

 -mmedia

 Use media instructions.

 -mno-media

 Do not use media instructions.

 -mmuladd

 Use multiply and add/subtract instructions.

 -mno-muladd

 Do not use multiply and add/subtract instructions.

 -mfdpic

 Select the FDPIC ABI, which uses function descriptors to represent pointers to

 functions. Without any PIC/PIE-related options, it implies -fPIE. With -fpic

 or -fpie, it assumes GOT entries and small data are within a 12-bit range from

 the GOT base address; with -fPIC or -fPIE, GOT offsets are computed with 32

 bits. With a bfin-elf target, this option implies -msim.

 -minline-plt

 Enable inlining of PLT entries in function calls to functions that are not

 known to bind locally. It has no effect without -mfdpic. It's enabled by

 default if optimizing for speed and compiling for shared libraries (i.e., -fPIC

 or -fpic), or when an optimization option such as -O3 or above is present in

 the command line.

 -mTLS

 Assume a large TLS segment when generating thread-local code.

 -mtls

 Do not assume a large TLS segment when generating thread-local code.

 -mgprel-ro

 Enable the use of "GPREL" relocations in the FDPIC ABI for data that is known

 to be in read-only sections. It's enabled by default, except for -fpic or

 -fpie: even though it may help make the global offset table smaller, it trades

 1 instruction for 4. With -fPIC or -fPIE, it trades 3 instructions for 4, one

 of which may be shared by multiple symbols, and it avoids the need for a GOT Page 328/493

 entry for the referenced symbol, so it's more likely to be a win. If it is

 not, -mno-gprel-ro can be used to disable it.

 -multilib-library-pic

 Link with the (library, not FD) pic libraries. It's implied by -mlibrary-pic,

 as well as by -fPIC and -fpic without -mfdpic. You should never have to use it

 explicitly.

 -mlinked-fp

 Follow the EABI requirement of always creating a frame pointer whenever a stack

 frame is allocated. This option is enabled by default and can be disabled with

 -mno-linked-fp.

 -mlong-calls

 Use indirect addressing to call functions outside the current compilation unit.

 This allows the functions to be placed anywhere within the 32-bit address

 space.

 -malign-labels

 Try to align labels to an 8-byte boundary by inserting NOPs into the previous

 packet. This option only has an effect when VLIW packing is enabled. It

 doesn't create new packets; it merely adds NOPs to existing ones.

 -mlibrary-pic

 Generate position-independent EABI code.

 -macc-4

 Use only the first four media accumulator registers.

 -macc-8

 Use all eight media accumulator registers.

 -mpack

 Pack VLIW instructions.

 -mno-pack

 Do not pack VLIW instructions.

 -mno-eflags

 Do not mark ABI switches in e_flags.

 -mcond-move

 Enable the use of conditional-move instructions (default).

 This switch is mainly for debugging the compiler and will likely be removed in Page 329/493

 a future version.

 -mno-cond-move

 Disable the use of conditional-move instructions.

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mscc

 Enable the use of conditional set instructions (default).

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mno-scc

 Disable the use of conditional set instructions.

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mcond-exec

 Enable the use of conditional execution (default).

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mno-cond-exec

 Disable the use of conditional execution.

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mvliw-branch

 Run a pass to pack branches into VLIW instructions (default).

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mno-vliw-branch

 Do not run a pass to pack branches into VLIW instructions.

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mmulti-cond-exec

 Enable optimization of "&&" and "||" in conditional execution (default).

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version. Page 330/493

 -mno-multi-cond-exec

 Disable optimization of "&&" and "||" in conditional execution.

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mnested-cond-exec

 Enable nested conditional execution optimizations (default).

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -mno-nested-cond-exec

 Disable nested conditional execution optimizations.

 This switch is mainly for debugging the compiler and will likely be removed in

 a future version.

 -moptimize-membar

 This switch removes redundant "membar" instructions from the compiler-generated

 code. It is enabled by default.

 -mno-optimize-membar

 This switch disables the automatic removal of redundant "membar" instructions

 from the generated code.

 -mtomcat-stats

 Cause gas to print out tomcat statistics.

 -mcpu=cpu

 Select the processor type for which to generate code. Possible values are frv,

 fr550, tomcat, fr500, fr450, fr405, fr400, fr300 and simple.

 GNU/Linux Options

 These -m options are defined for GNU/Linux targets:

 -mglibc

 Use the GNU C library. This is the default except on *-*-linux-*uclibc*,

 --linux-*musl* and *-*-linux-*android* targets.

 -muclibc

 Use uClibc C library. This is the default on *-*-linux-*uclibc* targets.

 -mmusl

 Use the musl C library. This is the default on *-*-linux-*musl* targets.

 -mbionic Page 331/493

 Use Bionic C library. This is the default on *-*-linux-*android* targets.

 -mandroid

 Compile code compatible with Android platform. This is the default on

 --linux-*android* targets.

 When compiling, this option enables -mbionic, -fPIC, -fno-exceptions and

 -fno-rtti by default. When linking, this option makes the GCC driver pass

 Android-specific options to the linker. Finally, this option causes the

 preprocessor macro "__ANDROID__" to be defined.

 -tno-android-cc

 Disable compilation effects of -mandroid, i.e., do not enable -mbionic, -fPIC,

 -fno-exceptions and -fno-rtti by default.

 -tno-android-ld

 Disable linking effects of -mandroid, i.e., pass standard Linux linking options

 to the linker.

 H8/300 Options

 These -m options are defined for the H8/300 implementations:

 -mrelax

 Shorten some address references at link time, when possible; uses the linker

 option -relax.

 -mh Generate code for the H8/300H.

 -ms Generate code for the H8S.

 -mn Generate code for the H8S and H8/300H in the normal mode. This switch must be

 used either with -mh or -ms.

 -ms2600

 Generate code for the H8S/2600. This switch must be used with -ms.

 -mexr

 Extended registers are stored on stack before execution of function with

 monitor attribute. Default option is -mexr. This option is valid only for H8S

 targets.

 -mno-exr

 Extended registers are not stored on stack before execution of function with

 monitor attribute. Default option is -mno-exr. This option is valid only for

 H8S targets. Page 332/493

 -mint32

 Make "int" data 32 bits by default.

 -malign-300

 On the H8/300H and H8S, use the same alignment rules as for the H8/300. The

 default for the H8/300H and H8S is to align longs and floats on 4-byte

 boundaries. -malign-300 causes them to be aligned on 2-byte boundaries. This

 option has no effect on the H8/300.

 HPPA Options

 These -m options are defined for the HPPA family of computers:

 -march=architecture-type

 Generate code for the specified architecture. The choices for architecture-

 type are 1.0 for PA 1.0, 1.1 for PA 1.1, and 2.0 for PA 2.0 processors. Refer

 to /usr/lib/sched.models on an HP-UX system to determine the proper

 architecture option for your machine. Code compiled for lower numbered

 architectures runs on higher numbered architectures, but not the other way

 around.

 -mpa-risc-1-0

 -mpa-risc-1-1

 -mpa-risc-2-0

 Synonyms for -march=1.0, -march=1.1, and -march=2.0 respectively.

 -mcaller-copies

 The caller copies function arguments passed by hidden reference. This option

 should be used with care as it is not compatible with the default 32-bit

 runtime. However, only aggregates larger than eight bytes are passed by hidden

 reference and the option provides better compatibility with OpenMP.

 -mjump-in-delay

 This option is ignored and provided for compatibility purposes only.

 -mdisable-fpregs

 Prevent floating-point registers from being used in any manner. This is

 necessary for compiling kernels that perform lazy context switching of

 floating-point registers. If you use this option and attempt to perform

 floating-point operations, the compiler aborts.

 -mdisable-indexing Page 333/493

 Prevent the compiler from using indexing address modes. This avoids some

 rather obscure problems when compiling MIG generated code under MACH.

 -mno-space-regs

 Generate code that assumes the target has no space registers. This allows GCC

 to generate faster indirect calls and use unscaled index address modes.

 Such code is suitable for level 0 PA systems and kernels.

 -mfast-indirect-calls

 Generate code that assumes calls never cross space boundaries. This allows GCC

 to emit code that performs faster indirect calls.

 This option does not work in the presence of shared libraries or nested

 functions.

 -mfixed-range=register-range

 Generate code treating the given register range as fixed registers. A fixed

 register is one that the register allocator cannot use. This is useful when

 compiling kernel code. A register range is specified as two registers

 separated by a dash. Multiple register ranges can be specified separated by a

 comma.

 -mlong-load-store

 Generate 3-instruction load and store sequences as sometimes required by the

 HP-UX 10 linker. This is equivalent to the +k option to the HP compilers.

 -mportable-runtime

 Use the portable calling conventions proposed by HP for ELF systems.

 -mgas

 Enable the use of assembler directives only GAS understands.

 -mschedule=cpu-type

 Schedule code according to the constraints for the machine type cpu-type. The

 choices for cpu-type are 700 7100, 7100LC, 7200, 7300 and 8000. Refer to

 /usr/lib/sched.models on an HP-UX system to determine the proper scheduling

 option for your machine. The default scheduling is 8000.

 -mlinker-opt

 Enable the optimization pass in the HP-UX linker. Note this makes symbolic

 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9

 linkers in which they give bogus error messages when linking some programs. Page 334/493

 -msoft-float

 Generate output containing library calls for floating point. Warning: the

 requisite libraries are not available for all HPPA targets. Normally the

 facilities of the machine's usual C compiler are used, but this cannot be done

 directly in cross-compilation. You must make your own arrangements to provide

 suitable library functions for cross-compilation.

 -msoft-float changes the calling convention in the output file; therefore, it

 is only useful if you compile all of a program with this option. In

 particular, you need to compile libgcc.a, the library that comes with GCC, with

 -msoft-float in order for this to work.

 -msio

 Generate the predefine, "_SIO", for server IO. The default is -mwsio. This

 generates the predefines, "__hp9000s700", "__hp9000s700__" and "_WSIO", for

 workstation IO. These options are available under HP-UX and HI-UX.

 -mgnu-ld

 Use options specific to GNU ld. This passes -shared to ld when building a

 shared library. It is the default when GCC is configured, explicitly or

 implicitly, with the GNU linker. This option does not affect which ld is

 called; it only changes what parameters are passed to that ld. The ld that is

 called is determined by the --with-ld configure option, GCC's program search

 path, and finally by the user's PATH. The linker used by GCC can be printed

 using which `gcc -print-prog-name=ld`. This option is only available on the

 64-bit HP-UX GCC, i.e. configured with hppa*64*-*-hpux*.

 -mhp-ld

 Use options specific to HP ld. This passes -b to ld when building a shared

 library and passes +Accept TypeMismatch to ld on all links. It is the default

 when GCC is configured, explicitly or implicitly, with the HP linker. This

 option does not affect which ld is called; it only changes what parameters are

 passed to that ld. The ld that is called is determined by the --with-ld

 configure option, GCC's program search path, and finally by the user's PATH.

 The linker used by GCC can be printed using which `gcc -print-prog-name=ld`.

 This option is only available on the 64-bit HP-UX GCC, i.e. configured with

 hppa*64*-*-hpux*. Page 335/493

 -mlong-calls

 Generate code that uses long call sequences. This ensures that a call is

 always able to reach linker generated stubs. The default is to generate long

 calls only when the distance from the call site to the beginning of the

 function or translation unit, as the case may be, exceeds a predefined limit

 set by the branch type being used. The limits for normal calls are 7,600,000

 and 240,000 bytes, respectively for the PA 2.0 and PA 1.X architectures.

 Sibcalls are always limited at 240,000 bytes.

 Distances are measured from the beginning of functions when using the

 -ffunction-sections option, or when using the -mgas and -mno-portable-runtime

 options together under HP-UX with the SOM linker.

 It is normally not desirable to use this option as it degrades performance.

 However, it may be useful in large applications, particularly when partial

 linking is used to build the application.

 The types of long calls used depends on the capabilities of the assembler and

 linker, and the type of code being generated. The impact on systems that

 support long absolute calls, and long pic symbol-difference or pc-relative

 calls should be relatively small. However, an indirect call is used on 32-bit

 ELF systems in pic code and it is quite long.

 -munix=unix-std

 Generate compiler predefines and select a startfile for the specified UNIX

 standard. The choices for unix-std are 93, 95 and 98. 93 is supported on all

 HP-UX versions. 95 is available on HP-UX 10.10 and later. 98 is available on

 HP-UX 11.11 and later. The default values are 93 for HP-UX 10.00, 95 for HP-UX

 10.10 though to 11.00, and 98 for HP-UX 11.11 and later.

 -munix=93 provides the same predefines as GCC 3.3 and 3.4. -munix=95 provides

 additional predefines for "XOPEN_UNIX" and "_XOPEN_SOURCE_EXTENDED", and the

 startfile unix95.o. -munix=98 provides additional predefines for

 "_XOPEN_UNIX", "_XOPEN_SOURCE_EXTENDED", "_INCLUDE__STDC_A1_SOURCE" and

 "_INCLUDE_XOPEN_SOURCE_500", and the startfile unix98.o.

 It is important to note that this option changes the interfaces for various

 library routines. It also affects the operational behavior of the C library.

 Thus, extreme care is needed in using this option. Page 336/493

 Library code that is intended to operate with more than one UNIX standard must

 test, set and restore the variable "__xpg4_extended_mask" as appropriate. Most

 GNU software doesn't provide this capability.

 -nolibdld

 Suppress the generation of link options to search libdld.sl when the -static

 option is specified on HP-UX 10 and later.

 -static

 The HP-UX implementation of setlocale in libc has a dependency on libdld.sl.

 There isn't an archive version of libdld.sl. Thus, when the -static option is

 specified, special link options are needed to resolve this dependency.

 On HP-UX 10 and later, the GCC driver adds the necessary options to link with

 libdld.sl when the -static option is specified. This causes the resulting

 binary to be dynamic. On the 64-bit port, the linkers generate dynamic

 binaries by default in any case. The -nolibdld option can be used to prevent

 the GCC driver from adding these link options.

 -threads

 Add support for multithreading with the dce thread library under HP-UX. This

 option sets flags for both the preprocessor and linker.

 IA-64 Options

 These are the -m options defined for the Intel IA-64 architecture.

 -mbig-endian

 Generate code for a big-endian target. This is the default for HP-UX.

 -mlittle-endian

 Generate code for a little-endian target. This is the default for AIX5 and

 GNU/Linux.

 -mgnu-as

 -mno-gnu-as

 Generate (or don't) code for the GNU assembler. This is the default.

 -mgnu-ld

 -mno-gnu-ld

 Generate (or don't) code for the GNU linker. This is the default.

 -mno-pic

 Generate code that does not use a global pointer register. The result is not Page 337/493

 position independent code, and violates the IA-64 ABI.

 -mvolatile-asm-stop

 -mno-volatile-asm-stop

 Generate (or don't) a stop bit immediately before and after volatile asm

 statements.

 -mregister-names

 -mno-register-names

 Generate (or don't) in, loc, and out register names for the stacked registers.

 This may make assembler output more readable.

 -mno-sdata

 -msdata

 Disable (or enable) optimizations that use the small data section. This may be

 useful for working around optimizer bugs.

 -mconstant-gp

 Generate code that uses a single constant global pointer value. This is useful

 when compiling kernel code.

 -mauto-pic

 Generate code that is self-relocatable. This implies -mconstant-gp. This is

 useful when compiling firmware code.

 -minline-float-divide-min-latency

 Generate code for inline divides of floating-point values using the minimum

 latency algorithm.

 -minline-float-divide-max-throughput

 Generate code for inline divides of floating-point values using the maximum

 throughput algorithm.

 -mno-inline-float-divide

 Do not generate inline code for divides of floating-point values.

 -minline-int-divide-min-latency

 Generate code for inline divides of integer values using the minimum latency

 algorithm.

 -minline-int-divide-max-throughput

 Generate code for inline divides of integer values using the maximum throughput

 algorithm. Page 338/493

 -mno-inline-int-divide

 Do not generate inline code for divides of integer values.

 -minline-sqrt-min-latency

 Generate code for inline square roots using the minimum latency algorithm.

 -minline-sqrt-max-throughput

 Generate code for inline square roots using the maximum throughput algorithm.

 -mno-inline-sqrt

 Do not generate inline code for "sqrt".

 -mfused-madd

 -mno-fused-madd

 Do (don't) generate code that uses the fused multiply/add or multiply/subtract

 instructions. The default is to use these instructions.

 -mno-dwarf2-asm

 -mdwarf2-asm

 Don't (or do) generate assembler code for the DWARF line number debugging info.

 This may be useful when not using the GNU assembler.

 -mearly-stop-bits

 -mno-early-stop-bits

 Allow stop bits to be placed earlier than immediately preceding the instruction

 that triggered the stop bit. This can improve instruction scheduling, but does

 not always do so.

 -mfixed-range=register-range

 Generate code treating the given register range as fixed registers. A fixed

 register is one that the register allocator cannot use. This is useful when

 compiling kernel code. A register range is specified as two registers

 separated by a dash. Multiple register ranges can be specified separated by a

 comma.

 -mtls-size=tls-size

 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

 -mtune=cpu-type

 Tune the instruction scheduling for a particular CPU, Valid values are itanium,

 itanium1, merced, itanium2, and mckinley.

 -milp32 Page 339/493

 -mlp64

 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

 int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits

 and long and pointer to 64 bits. These are HP-UX specific flags.

 -mno-sched-br-data-spec

 -msched-br-data-spec

 (Dis/En)able data speculative scheduling before reload. This results in

 generation of "ld.a" instructions and the corresponding check instructions

 ("ld.c" / "chk.a"). The default setting is disabled.

 -msched-ar-data-spec

 -mno-sched-ar-data-spec

 (En/Dis)able data speculative scheduling after reload. This results in

 generation of "ld.a" instructions and the corresponding check instructions

 ("ld.c" / "chk.a"). The default setting is enabled.

 -mno-sched-control-spec

 -msched-control-spec

 (Dis/En)able control speculative scheduling. This feature is available only

 during region scheduling (i.e. before reload). This results in generation of

 the "ld.s" instructions and the corresponding check instructions "chk.s". The

 default setting is disabled.

 -msched-br-in-data-spec

 -mno-sched-br-in-data-spec

 (En/Dis)able speculative scheduling of the instructions that are dependent on

 the data speculative loads before reload. This is effective only with

 -msched-br-data-spec enabled. The default setting is enabled.

 -msched-ar-in-data-spec

 -mno-sched-ar-in-data-spec

 (En/Dis)able speculative scheduling of the instructions that are dependent on

 the data speculative loads after reload. This is effective only with

 -msched-ar-data-spec enabled. The default setting is enabled.

 -msched-in-control-spec

 -mno-sched-in-control-spec

 (En/Dis)able speculative scheduling of the instructions that are dependent on Page 340/493

 the control speculative loads. This is effective only with

 -msched-control-spec enabled. The default setting is enabled.

 -mno-sched-prefer-non-data-spec-insns

 -msched-prefer-non-data-spec-insns

 If enabled, data-speculative instructions are chosen for schedule only if there

 are no other choices at the moment. This makes the use of the data speculation

 much more conservative. The default setting is disabled.

 -mno-sched-prefer-non-control-spec-insns

 -msched-prefer-non-control-spec-insns

 If enabled, control-speculative instructions are chosen for schedule only if

 there are no other choices at the moment. This makes the use of the control

 speculation much more conservative. The default setting is disabled.

 -mno-sched-count-spec-in-critical-path

 -msched-count-spec-in-critical-path

 If enabled, speculative dependencies are considered during computation of the

 instructions priorities. This makes the use of the speculation a bit more

 conservative. The default setting is disabled.

 -msched-spec-ldc

 Use a simple data speculation check. This option is on by default.

 -msched-control-spec-ldc

 Use a simple check for control speculation. This option is on by default.

 -msched-stop-bits-after-every-cycle

 Place a stop bit after every cycle when scheduling. This option is on by

 default.

 -msched-fp-mem-deps-zero-cost

 Assume that floating-point stores and loads are not likely to cause a conflict

 when placed into the same instruction group. This option is disabled by

 default.

 -msel-sched-dont-check-control-spec

 Generate checks for control speculation in selective scheduling. This flag is

 disabled by default.

 -msched-max-memory-insns=max-insns

 Limit on the number of memory insns per instruction group, giving lower Page 341/493

 priority to subsequent memory insns attempting to schedule in the same

 instruction group. Frequently useful to prevent cache bank conflicts. The

 default value is 1.

 -msched-max-memory-insns-hard-limit

 Makes the limit specified by msched-max-memory-insns a hard limit, disallowing

 more than that number in an instruction group. Otherwise, the limit is "soft",

 meaning that non-memory operations are preferred when the limit is reached, but

 memory operations may still be scheduled.

 LM32 Options

 These -m options are defined for the LatticeMico32 architecture:

 -mbarrel-shift-enabled

 Enable barrel-shift instructions.

 -mdivide-enabled

 Enable divide and modulus instructions.

 -mmultiply-enabled

 Enable multiply instructions.

 -msign-extend-enabled

 Enable sign extend instructions.

 -muser-enabled

 Enable user-defined instructions.

 M32C Options

 -mcpu=name

 Select the CPU for which code is generated. name may be one of r8c for the

 R8C/Tiny series, m16c for the M16C (up to /60) series, m32cm for the M16C/80

 series, or m32c for the M32C/80 series.

 -msim

 Specifies that the program will be run on the simulator. This causes an

 alternate runtime library to be linked in which supports, for example, file

 I/O. You must not use this option when generating programs that will run on

 real hardware; you must provide your own runtime library for whatever I/O

 functions are needed.

 -memregs=number

 Specifies the number of memory-based pseudo-registers GCC uses during code Page 342/493

 generation. These pseudo-registers are used like real registers, so there is a

 tradeoff between GCC's ability to fit the code into available registers, and

 the performance penalty of using memory instead of registers. Note that all

 modules in a program must be compiled with the same value for this option.

 Because of that, you must not use this option with GCC's default runtime

 libraries.

 M32R/D Options

 These -m options are defined for Renesas M32R/D architectures:

 -m32r2

 Generate code for the M32R/2.

 -m32rx

 Generate code for the M32R/X.

 -m32r

 Generate code for the M32R. This is the default.

 -mmodel=small

 Assume all objects live in the lower 16MB of memory (so that their addresses

 can be loaded with the "ld24" instruction), and assume all subroutines are

 reachable with the "bl" instruction. This is the default.

 The addressability of a particular object can be set with the "model"

 attribute.

 -mmodel=medium

 Assume objects may be anywhere in the 32-bit address space (the compiler

 generates "seth/add3" instructions to load their addresses), and assume all

 subroutines are reachable with the "bl" instruction.

 -mmodel=large

 Assume objects may be anywhere in the 32-bit address space (the compiler

 generates "seth/add3" instructions to load their addresses), and assume

 subroutines may not be reachable with the "bl" instruction (the compiler

 generates the much slower "seth/add3/jl" instruction sequence).

 -msdata=none

 Disable use of the small data area. Variables are put into one of ".data",

 ".bss", or ".rodata" (unless the "section" attribute has been specified). This

 is the default. Page 343/493

 The small data area consists of sections ".sdata" and ".sbss". Objects may be

 explicitly put in the small data area with the "section" attribute using one of

 these sections.

 -msdata=sdata

 Put small global and static data in the small data area, but do not generate

 special code to reference them.

 -msdata=use

 Put small global and static data in the small data area, and generate special

 instructions to reference them.

 -G num

 Put global and static objects less than or equal to num bytes into the small

 data or BSS sections instead of the normal data or BSS sections. The default

 value of num is 8. The -msdata option must be set to one of sdata or use for

 this option to have any effect.

 All modules should be compiled with the same -G num value. Compiling with

 different values of num may or may not work; if it doesn't the linker gives an

 error message---incorrect code is not generated.

 -mdebug

 Makes the M32R-specific code in the compiler display some statistics that might

 help in debugging programs.

 -malign-loops

 Align all loops to a 32-byte boundary.

 -mno-align-loops

 Do not enforce a 32-byte alignment for loops. This is the default.

 -missue-rate=number

 Issue number instructions per cycle. number can only be 1 or 2.

 -mbranch-cost=number

 number can only be 1 or 2. If it is 1 then branches are preferred over

 conditional code, if it is 2, then the opposite applies.

 -mflush-trap=number

 Specifies the trap number to use to flush the cache. The default is 12. Valid

 numbers are between 0 and 15 inclusive.

 -mno-flush-trap Page 344/493

 Specifies that the cache cannot be flushed by using a trap.

 -mflush-func=name

 Specifies the name of the operating system function to call to flush the cache.

 The default is _flush_cache, but a function call is only used if a trap is not

 available.

 -mno-flush-func

 Indicates that there is no OS function for flushing the cache.

 M680x0 Options

 These are the -m options defined for M680x0 and ColdFire processors. The default

 settings depend on which architecture was selected when the compiler was

 configured; the defaults for the most common choices are given below.

 -march=arch

 Generate code for a specific M680x0 or ColdFire instruction set architecture.

 Permissible values of arch for M680x0 architectures are: 68000, 68010, 68020,

 68030, 68040, 68060 and cpu32. ColdFire architectures are selected according

 to Freescale's ISA classification and the permissible values are: isaa,

 isaaplus, isab and isac.

 GCC defines a macro "__mcfarch__" whenever it is generating code for a ColdFire

 target. The arch in this macro is one of the -march arguments given above.

 When used together, -march and -mtune select code that runs on a family of

 similar processors but that is optimized for a particular microarchitecture.

 -mcpu=cpu

 Generate code for a specific M680x0 or ColdFire processor. The M680x0 cpus

 are: 68000, 68010, 68020, 68030, 68040, 68060, 68302, 68332 and cpu32. The

 ColdFire cpus are given by the table below, which also classifies the CPUs into

 families:

 Family : -mcpu arguments

 51 : 51 51ac 51ag 51cn 51em 51je 51jf 51jg 51jm 51mm 51qe 51qm

 5206 : 5202 5204 5206

 5206e : 5206e

 5208 : 5207 5208

 5211a : 5210a 5211a

 5213 : 5211 5212 5213 Page 345/493

 5216 : 5214 5216

 52235 : 52230 52231 52232 52233 52234 52235

 5225 : 5224 5225

 52259 : 52252 52254 52255 52256 52258 52259

 5235 : 5232 5233 5234 5235 523x

 5249 : 5249

 5250 : 5250

 5271 : 5270 5271

 5272 : 5272

 5275 : 5274 5275

 5282 : 5280 5281 5282 528x

 53017 : 53011 53012 53013 53014 53015 53016 53017

 5307 : 5307

 5329 : 5327 5328 5329 532x

 5373 : 5372 5373 537x

 5407 : 5407

 5475 : 5470 5471 5472 5473 5474 5475 547x 5480 5481 5482 5483 5484 5485

 -mcpu=cpu overrides -march=arch if arch is compatible with cpu. Other

 combinations of -mcpu and -march are rejected.

 GCC defines the macro "__mcf_cpu_cpu" when ColdFire target cpu is selected. It

 also defines "__mcf_family_family", where the value of family is given by the

 table above.

 -mtune=tune

 Tune the code for a particular microarchitecture within the constraints set by

 -march and -mcpu. The M680x0 microarchitectures are: 68000, 68010, 68020,

 68030, 68040, 68060 and cpu32. The ColdFire microarchitectures are: cfv1,

 cfv2, cfv3, cfv4 and cfv4e.

 You can also use -mtune=68020-40 for code that needs to run relatively well on

 68020, 68030 and 68040 targets. -mtune=68020-60 is similar but includes 68060

 targets as well. These two options select the same tuning decisions as

 -m68020-40 and -m68020-60 respectively.

 GCC defines the macros "__mcarch" and "__mcarch__" when tuning for 680x0

 architecture arch. It also defines "mcarch" unless either -ansi or a non-GNU Page 346/493

 -std option is used. If GCC is tuning for a range of architectures, as

 selected by -mtune=68020-40 or -mtune=68020-60, it defines the macros for every

 architecture in the range.

 GCC also defines the macro "__muarch__" when tuning for ColdFire

 microarchitecture uarch, where uarch is one of the arguments given above.

 -m68000

 -mc68000

 Generate output for a 68000. This is the default when the compiler is

 configured for 68000-based systems. It is equivalent to -march=68000.

 Use this option for microcontrollers with a 68000 or EC000 core, including the

 68008, 68302, 68306, 68307, 68322, 68328 and 68356.

 -m68010

 Generate output for a 68010. This is the default when the compiler is

 configured for 68010-based systems. It is equivalent to -march=68010.

 -m68020

 -mc68020

 Generate output for a 68020. This is the default when the compiler is

 configured for 68020-based systems. It is equivalent to -march=68020.

 -m68030

 Generate output for a 68030. This is the default when the compiler is

 configured for 68030-based systems. It is equivalent to -march=68030.

 -m68040

 Generate output for a 68040. This is the default when the compiler is

 configured for 68040-based systems. It is equivalent to -march=68040.

 This option inhibits the use of 68881/68882 instructions that have to be

 emulated by software on the 68040. Use this option if your 68040 does not have

 code to emulate those instructions.

 -m68060

 Generate output for a 68060. This is the default when the compiler is

 configured for 68060-based systems. It is equivalent to -march=68060.

 This option inhibits the use of 68020 and 68881/68882 instructions that have to

 be emulated by software on the 68060. Use this option if your 68060 does not

 have code to emulate those instructions. Page 347/493

 -mcpu32

 Generate output for a CPU32. This is the default when the compiler is

 configured for CPU32-based systems. It is equivalent to -march=cpu32.

 Use this option for microcontrollers with a CPU32 or CPU32+ core, including the

 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

 -m5200

 Generate output for a 520X ColdFire CPU. This is the default when the compiler

 is configured for 520X-based systems. It is equivalent to -mcpu=5206, and is

 now deprecated in favor of that option.

 Use this option for microcontroller with a 5200 core, including the MCF5202,

 MCF5203, MCF5204 and MCF5206.

 -m5206e

 Generate output for a 5206e ColdFire CPU. The option is now deprecated in

 favor of the equivalent -mcpu=5206e.

 -m528x

 Generate output for a member of the ColdFire 528X family. The option is now

 deprecated in favor of the equivalent -mcpu=528x.

 -m5307

 Generate output for a ColdFire 5307 CPU. The option is now deprecated in favor

 of the equivalent -mcpu=5307.

 -m5407

 Generate output for a ColdFire 5407 CPU. The option is now deprecated in favor

 of the equivalent -mcpu=5407.

 -mcfv4e

 Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This includes

 use of hardware floating-point instructions. The option is equivalent to

 -mcpu=547x, and is now deprecated in favor of that option.

 -m68020-40

 Generate output for a 68040, without using any of the new instructions. This

 results in code that can run relatively efficiently on either a 68020/68881 or

 a 68030 or a 68040. The generated code does use the 68881 instructions that

 are emulated on the 68040.

 The option is equivalent to -march=68020 -mtune=68020-40. Page 348/493

 -m68020-60

 Generate output for a 68060, without using any of the new instructions. This

 results in code that can run relatively efficiently on either a 68020/68881 or

 a 68030 or a 68040. The generated code does use the 68881 instructions that

 are emulated on the 68060.

 The option is equivalent to -march=68020 -mtune=68020-60.

 -mhard-float

 -m68881

 Generate floating-point instructions. This is the default for 68020 and above,

 and for ColdFire devices that have an FPU. It defines the macro

 "__HAVE_68881__" on M680x0 targets and "__mcffpu__" on ColdFire targets.

 -msoft-float

 Do not generate floating-point instructions; use library calls instead. This

 is the default for 68000, 68010, and 68832 targets. It is also the default for

 ColdFire devices that have no FPU.

 -mdiv

 -mno-div

 Generate (do not generate) ColdFire hardware divide and remainder instructions.

 If -march is used without -mcpu, the default is "on" for ColdFire architectures

 and "off" for M680x0 architectures. Otherwise, the default is taken from the

 target CPU (either the default CPU, or the one specified by -mcpu). For

 example, the default is "off" for -mcpu=5206 and "on" for -mcpu=5206e.

 GCC defines the macro "__mcfhwdiv__" when this option is enabled.

 -mshort

 Consider type "int" to be 16 bits wide, like "short int". Additionally,

 parameters passed on the stack are also aligned to a 16-bit boundary even on

 targets whose API mandates promotion to 32-bit.

 -mno-short

 Do not consider type "int" to be 16 bits wide. This is the default.

 -mnobitfield

 -mno-bitfield

 Do not use the bit-field instructions. The -m68000, -mcpu32 and -m5200 options

 imply -mnobitfield. Page 349/493

 -mbitfield

 Do use the bit-field instructions. The -m68020 option implies -mbitfield.

 This is the default if you use a configuration designed for a 68020.

 -mrtd

 Use a different function-calling convention, in which functions that take a

 fixed number of arguments return with the "rtd" instruction, which pops their

 arguments while returning. This saves one instruction in the caller since

 there is no need to pop the arguments there.

 This calling convention is incompatible with the one normally used on Unix, so

 you cannot use it if you need to call libraries compiled with the Unix

 compiler.

 Also, you must provide function prototypes for all functions that take variable

 numbers of arguments (including "printf"); otherwise incorrect code is

 generated for calls to those functions.

 In addition, seriously incorrect code results if you call a function with too

 many arguments. (Normally, extra arguments are harmlessly ignored.)

 The "rtd" instruction is supported by the 68010, 68020, 68030, 68040, 68060 and

 CPU32 processors, but not by the 68000 or 5200.

 -mno-rtd

 Do not use the calling conventions selected by -mrtd. This is the default.

 -malign-int

 -mno-align-int

 Control whether GCC aligns "int", "long", "long long", "float", "double", and

 "long double" variables on a 32-bit boundary (-malign-int) or a 16-bit boundary

 (-mno-align-int). Aligning variables on 32-bit boundaries produces code that

 runs somewhat faster on processors with 32-bit busses at the expense of more

 memory.

 Warning: if you use the -malign-int switch, GCC aligns structures containing

 the above types differently than most published application binary interface

 specifications for the m68k.

 -mpcrel

 Use the pc-relative addressing mode of the 68000 directly, instead of using a

 global offset table. At present, this option implies -fpic, allowing at most a Page 350/493

 16-bit offset for pc-relative addressing. -fPIC is not presently supported

 with -mpcrel, though this could be supported for 68020 and higher processors.

 -mno-strict-align

 -mstrict-align

 Do not (do) assume that unaligned memory references are handled by the system.

 -msep-data

 Generate code that allows the data segment to be located in a different area of

 memory from the text segment. This allows for execute-in-place in an

 environment without virtual memory management. This option implies -fPIC.

 -mno-sep-data

 Generate code that assumes that the data segment follows the text segment.

 This is the default.

 -mid-shared-library

 Generate code that supports shared libraries via the library ID method. This

 allows for execute-in-place and shared libraries in an environment without

 virtual memory management. This option implies -fPIC.

 -mno-id-shared-library

 Generate code that doesn't assume ID-based shared libraries are being used.

 This is the default.

 -mshared-library-id=n

 Specifies the identification number of the ID-based shared library being

 compiled. Specifying a value of 0 generates more compact code; specifying

 other values forces the allocation of that number to the current library, but

 is no more space- or time-efficient than omitting this option.

 -mxgot

 -mno-xgot

 When generating position-independent code for ColdFire, generate code that

 works if the GOT has more than 8192 entries. This code is larger and slower

 than code generated without this option. On M680x0 processors, this option is

 not needed; -fPIC suffices.

 GCC normally uses a single instruction to load values from the GOT. While this

 is relatively efficient, it only works if the GOT is smaller than about 64k.

 Anything larger causes the linker to report an error such as: Page 351/493

 relocation truncated to fit: R_68K_GOT16O foobar

 If this happens, you should recompile your code with -mxgot. It should then

 work with very large GOTs. However, code generated with -mxgot is less

 efficient, since it takes 4 instructions to fetch the value of a global symbol.

 Note that some linkers, including newer versions of the GNU linker, can create

 multiple GOTs and sort GOT entries. If you have such a linker, you should only

 need to use -mxgot when compiling a single object file that accesses more than

 8192 GOT entries. Very few do.

 These options have no effect unless GCC is generating position-independent

 code.

 -mlong-jump-table-offsets

 Use 32-bit offsets in "switch" tables. The default is to use 16-bit offsets.

 MCore Options

 These are the -m options defined for the Motorola M*Core processors.

 -mhardlit

 -mno-hardlit

 Inline constants into the code stream if it can be done in two instructions or

 less.

 -mdiv

 -mno-div

 Use the divide instruction. (Enabled by default).

 -mrelax-immediate

 -mno-relax-immediate

 Allow arbitrary-sized immediates in bit operations.

 -mwide-bitfields

 -mno-wide-bitfields

 Always treat bit-fields as "int"-sized.

 -m4byte-functions

 -mno-4byte-functions

 Force all functions to be aligned to a 4-byte boundary.

 -mcallgraph-data

 -mno-callgraph-data

 Emit callgraph information. Page 352/493

 -mslow-bytes

 -mno-slow-bytes

 Prefer word access when reading byte quantities.

 -mlittle-endian

 -mbig-endian

 Generate code for a little-endian target.

 -m210

 -m340

 Generate code for the 210 processor.

 -mno-lsim

 Assume that runtime support has been provided and so omit the simulator library

 (libsim.a) from the linker command line.

 -mstack-increment=size

 Set the maximum amount for a single stack increment operation. Large values

 can increase the speed of programs that contain functions that need a large

 amount of stack space, but they can also trigger a segmentation fault if the

 stack is extended too much. The default value is 0x1000.

 MeP Options

 -mabsdiff

 Enables the "abs" instruction, which is the absolute difference between two

 registers.

 -mall-opts

 Enables all the optional instructions---average, multiply, divide, bit

 operations, leading zero, absolute difference, min/max, clip, and saturation.

 -maverage

 Enables the "ave" instruction, which computes the average of two registers.

 -mbased=n

 Variables of size n bytes or smaller are placed in the ".based" section by

 default. Based variables use the $tp register as a base register, and there is

 a 128-byte limit to the ".based" section.

 -mbitops

 Enables the bit operation instructions---bit test ("btstm"), set ("bsetm"),

 clear ("bclrm"), invert ("bnotm"), and test-and-set ("tas"). Page 353/493

 -mc=name

 Selects which section constant data is placed in. name may be tiny, near, or

 far.

 -mclip

 Enables the "clip" instruction. Note that -mclip is not useful unless you also

 provide -mminmax.

 -mconfig=name

 Selects one of the built-in core configurations. Each MeP chip has one or more

 modules in it; each module has a core CPU and a variety of coprocessors,

 optional instructions, and peripherals. The "MeP-Integrator" tool, not part of

 GCC, provides these configurations through this option; using this option is

 the same as using all the corresponding command-line options. The default

 configuration is default.

 -mcop

 Enables the coprocessor instructions. By default, this is a 32-bit

 coprocessor. Note that the coprocessor is normally enabled via the -mconfig=

 option.

 -mcop32

 Enables the 32-bit coprocessor's instructions.

 -mcop64

 Enables the 64-bit coprocessor's instructions.

 -mivc2

 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.

 -mdc

 Causes constant variables to be placed in the ".near" section.

 -mdiv

 Enables the "div" and "divu" instructions.

 -meb

 Generate big-endian code.

 -mel

 Generate little-endian code.

 -mio-volatile

 Tells the compiler that any variable marked with the "io" attribute is to be Page 354/493

 considered volatile.

 -ml Causes variables to be assigned to the ".far" section by default.

 -mleadz

 Enables the "leadz" (leading zero) instruction.

 -mm Causes variables to be assigned to the ".near" section by default.

 -mminmax

 Enables the "min" and "max" instructions.

 -mmult

 Enables the multiplication and multiply-accumulate instructions.

 -mno-opts

 Disables all the optional instructions enabled by -mall-opts.

 -mrepeat

 Enables the "repeat" and "erepeat" instructions, used for low-overhead looping.

 -ms Causes all variables to default to the ".tiny" section. Note that there is a

 65536-byte limit to this section. Accesses to these variables use the %gp base

 register.

 -msatur

 Enables the saturation instructions. Note that the compiler does not currently

 generate these itself, but this option is included for compatibility with other

 tools, like "as".

 -msdram

 Link the SDRAM-based runtime instead of the default ROM-based runtime.

 -msim

 Link the simulator run-time libraries.

 -msimnovec

 Link the simulator runtime libraries, excluding built-in support for reset and

 exception vectors and tables.

 -mtf

 Causes all functions to default to the ".far" section. Without this option,

 functions default to the ".near" section.

 -mtiny=n

 Variables that are n bytes or smaller are allocated to the ".tiny" section.

 These variables use the $gp base register. The default for this option is 4, Page 355/493

 but note that there's a 65536-byte limit to the ".tiny" section.

 MicroBlaze Options

 -msoft-float

 Use software emulation for floating point (default).

 -mhard-float

 Use hardware floating-point instructions.

 -mmemcpy

 Do not optimize block moves, use "memcpy".

 -mno-clearbss

 This option is deprecated. Use -fno-zero-initialized-in-bss instead.

 -mcpu=cpu-type

 Use features of, and schedule code for, the given CPU. Supported values are in

 the format vX.YY.Z, where X is a major version, YY is the minor version, and Z

 is compatibility code. Example values are v3.00.a, v4.00.b, v5.00.a, v5.00.b,

 v5.00.b, v6.00.a.

 -mxl-soft-mul

 Use software multiply emulation (default).

 -mxl-soft-div

 Use software emulation for divides (default).

 -mxl-barrel-shift

 Use the hardware barrel shifter.

 -mxl-pattern-compare

 Use pattern compare instructions.

 -msmall-divides

 Use table lookup optimization for small signed integer divisions.

 -mxl-stack-check

 This option is deprecated. Use -fstack-check instead.

 -mxl-gp-opt

 Use GP-relative ".sdata"/".sbss" sections.

 -mxl-multiply-high

 Use multiply high instructions for high part of 32x32 multiply.

 -mxl-float-convert

 Use hardware floating-point conversion instructions. Page 356/493

 -mxl-float-sqrt

 Use hardware floating-point square root instruction.

 -mbig-endian

 Generate code for a big-endian target.

 -mlittle-endian

 Generate code for a little-endian target.

 -mxl-reorder

 Use reorder instructions (swap and byte reversed load/store).

 -mxl-mode-app-model

 Select application model app-model. Valid models are

 executable

 normal executable (default), uses startup code crt0.o.

 xmdstub

 for use with Xilinx Microprocessor Debugger (XMD) based software intrusive

 debug agent called xmdstub. This uses startup file crt1.o and sets the

 start address of the program to 0x800.

 bootstrap

 for applications that are loaded using a bootloader. This model uses

 startup file crt2.o which does not contain a processor reset vector

 handler. This is suitable for transferring control on a processor reset to

 the bootloader rather than the application.

 novectors

 for applications that do not require any of the MicroBlaze vectors. This

 option may be useful for applications running within a monitoring

 application. This model uses crt3.o as a startup file.

 Option -xl-mode-app-model is a deprecated alias for -mxl-mode-app-model.

 MIPS Options

 -EB Generate big-endian code.

 -EL Generate little-endian code. This is the default for mips*el-*-*

 configurations.

 -march=arch

 Generate code that runs on arch, which can be the name of a generic MIPS ISA,

 or the name of a particular processor. The ISA names are: mips1, mips2, mips3, Page 357/493

 mips4, mips32, mips32r2, mips32r3, mips32r5, mips32r6, mips64, mips64r2,

 mips64r3, mips64r5 and mips64r6. The processor names are: 4kc, 4km, 4kp, 4ksc,

 4kec, 4kem, 4kep, 4ksd, 5kc, 5kf, 20kc, 24kc, 24kf2_1, 24kf1_1, 24kec,

 24kef2_1, 24kef1_1, 34kc, 34kf2_1, 34kf1_1, 34kn, 74kc, 74kf2_1, 74kf1_1,

 74kf3_2, 1004kc, 1004kf2_1, 1004kf1_1, i6400, interaptiv, loongson2e,

 loongson2f, loongson3a, m4k, m14k, m14kc, m14ke, m14kec, m5100, m5101, octeon,

 octeon+, octeon2, octeon3, orion, p5600, r2000, r3000, r3900, r4000, r4400,

 r4600, r4650, r4700, r6000, r8000, rm7000, rm9000, r10000, r12000, r14000,

 r16000, sb1, sr71000, vr4100, vr4111, vr4120, vr4130, vr4300, vr5000, vr5400,

 vr5500, xlr and xlp. The special value from-abi selects the most compatible

 architecture for the selected ABI (that is, mips1 for 32-bit ABIs and mips3 for

 64-bit ABIs).

 The native Linux/GNU toolchain also supports the value native, which selects

 the best architecture option for the host processor. -march=native has no

 effect if GCC does not recognize the processor.

 In processor names, a final 000 can be abbreviated as k (for example,

 -march=r2k). Prefixes are optional, and vr may be written r.

 Names of the form nf2_1 refer to processors with FPUs clocked at half the rate

 of the core, names of the form nf1_1 refer to processors with FPUs clocked at

 the same rate as the core, and names of the form nf3_2 refer to processors with

 FPUs clocked a ratio of 3:2 with respect to the core. For compatibility

 reasons, nf is accepted as a synonym for nf2_1 while nx and bfx are accepted as

 synonyms for nf1_1.

 GCC defines two macros based on the value of this option. The first is

 "_MIPS_ARCH", which gives the name of target architecture, as a string. The

 second has the form "_MIPS_ARCH_foo", where foo is the capitalized value of

 "_MIPS_ARCH". For example, -march=r2000 sets "_MIPS_ARCH" to "r2000" and

 defines the macro "_MIPS_ARCH_R2000".

 Note that the "_MIPS_ARCH" macro uses the processor names given above. In

 other words, it has the full prefix and does not abbreviate 000 as k. In the

 case of from-abi, the macro names the resolved architecture (either "mips1" or

 "mips3"). It names the default architecture when no -march option is given.

 -mtune=arch Page 358/493

 Optimize for arch. Among other things, this option controls the way

 instructions are scheduled, and the perceived cost of arithmetic operations.

 The list of arch values is the same as for -march.

 When this option is not used, GCC optimizes for the processor specified by

 -march. By using -march and -mtune together, it is possible to generate code

 that runs on a family of processors, but optimize the code for one particular

 member of that family.

 -mtune defines the macros "_MIPS_TUNE" and "_MIPS_TUNE_foo", which work in the

 same way as the -march ones described above.

 -mips1

 Equivalent to -march=mips1.

 -mips2

 Equivalent to -march=mips2.

 -mips3

 Equivalent to -march=mips3.

 -mips4

 Equivalent to -march=mips4.

 -mips32

 Equivalent to -march=mips32.

 -mips32r3

 Equivalent to -march=mips32r3.

 -mips32r5

 Equivalent to -march=mips32r5.

 -mips32r6

 Equivalent to -march=mips32r6.

 -mips64

 Equivalent to -march=mips64.

 -mips64r2

 Equivalent to -march=mips64r2.

 -mips64r3

 Equivalent to -march=mips64r3.

 -mips64r5

 Equivalent to -march=mips64r5. Page 359/493

 -mips64r6

 Equivalent to -march=mips64r6.

 -mips16

 -mno-mips16

 Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or MIPS64

 architecture, it makes use of the MIPS16e ASE.

 MIPS16 code generation can also be controlled on a per-function basis by means

 of "mips16" and "nomips16" attributes.

 -mflip-mips16

 Generate MIPS16 code on alternating functions. This option is provided for

 regression testing of mixed MIPS16/non-MIPS16 code generation, and is not

 intended for ordinary use in compiling user code.

 -minterlink-compressed

 -mno-interlink-compressed

 Require (do not require) that code using the standard (uncompressed) MIPS ISA

 be link-compatible with MIPS16 and microMIPS code, and vice versa.

 For example, code using the standard ISA encoding cannot jump directly to

 MIPS16 or microMIPS code; it must either use a call or an indirect jump.

 -minterlink-compressed therefore disables direct jumps unless GCC knows that

 the target of the jump is not compressed.

 -minterlink-mips16

 -mno-interlink-mips16

 Aliases of -minterlink-compressed and -mno-interlink-compressed. These options

 predate the microMIPS ASE and are retained for backwards compatibility.

 -mabi=32

 -mabi=o64

 -mabi=n32

 -mabi=64

 -mabi=eabi

 Generate code for the given ABI.

 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates

 64-bit code when you select a 64-bit architecture, but you can use -mgp32 to

 get 32-bit code instead. Page 360/493

 For information about the O64 ABI, see

 <http://gcc.gnu.org/projects/mipso64-abi.html>.

 GCC supports a variant of the o32 ABI in which floating-point registers are 64

 rather than 32 bits wide. You can select this combination with -mabi=32

 -mfp64. This ABI relies on the "mthc1" and "mfhc1" instructions and is

 therefore only supported for MIPS32R2, MIPS32R3 and MIPS32R5 processors.

 The register assignments for arguments and return values remain the same, but

 each scalar value is passed in a single 64-bit register rather than a pair of

 32-bit registers. For example, scalar floating-point values are returned in

 $f0 only, not a $f0/$f1 pair. The set of call-saved registers also remains the

 same in that the even-numbered double-precision registers are saved.

 Two additional variants of the o32 ABI are supported to enable a transition

 from 32-bit to 64-bit registers. These are FPXX (-mfpxx) and FP64A (-mfp64

 -mno-odd-spreg). The FPXX extension mandates that all code must execute

 correctly when run using 32-bit or 64-bit registers. The code can be

 interlinked with either FP32 or FP64, but not both. The FP64A extension is

 similar to the FP64 extension but forbids the use of odd-numbered single-

 precision registers. This can be used in conjunction with the "FRE" mode of

 FPUs in MIPS32R5 processors and allows both FP32 and FP64A code to interlink

 and run in the same process without changing FPU modes.

 -mabicalls

 -mno-abicalls

 Generate (do not generate) code that is suitable for SVR4-style dynamic

 objects. -mabicalls is the default for SVR4-based systems.

 -mshared

 -mno-shared

 Generate (do not generate) code that is fully position-independent, and that

 can therefore be linked into shared libraries. This option only affects

 -mabicalls.

 All -mabicalls code has traditionally been position-independent, regardless of

 options like -fPIC and -fpic. However, as an extension, the GNU toolchain

 allows executables to use absolute accesses for locally-binding symbols. It

 can also use shorter GP initialization sequences and generate direct calls to Page 361/493

 locally-defined functions. This mode is selected by -mno-shared.

 -mno-shared depends on binutils 2.16 or higher and generates objects that can

 only be linked by the GNU linker. However, the option does not affect the ABI

 of the final executable; it only affects the ABI of relocatable objects. Using

 -mno-shared generally makes executables both smaller and quicker.

 -mshared is the default.

 -mplt

 -mno-plt

 Assume (do not assume) that the static and dynamic linkers support PLTs and

 copy relocations. This option only affects -mno-shared -mabicalls. For the

 n64 ABI, this option has no effect without -msym32.

 You can make -mplt the default by configuring GCC with --with-mips-plt. The

 default is -mno-plt otherwise.

 -mxgot

 -mno-xgot

 Lift (do not lift) the usual restrictions on the size of the global offset

 table.

 GCC normally uses a single instruction to load values from the GOT. While this

 is relatively efficient, it only works if the GOT is smaller than about 64k.

 Anything larger causes the linker to report an error such as:

 relocation truncated to fit: R_MIPS_GOT16 foobar

 If this happens, you should recompile your code with -mxgot. This works with

 very large GOTs, although the code is also less efficient, since it takes three

 instructions to fetch the value of a global symbol.

 Note that some linkers can create multiple GOTs. If you have such a linker,

 you should only need to use -mxgot when a single object file accesses more than

 64k's worth of GOT entries. Very few do.

 These options have no effect unless GCC is generating position independent

 code.

 -mgp32

 Assume that general-purpose registers are 32 bits wide.

 -mgp64

 Assume that general-purpose registers are 64 bits wide. Page 362/493

 -mfp32

 Assume that floating-point registers are 32 bits wide.

 -mfp64

 Assume that floating-point registers are 64 bits wide.

 -mfpxx

 Do not assume the width of floating-point registers.

 -mhard-float

 Use floating-point coprocessor instructions.

 -msoft-float

 Do not use floating-point coprocessor instructions. Implement floating-point

 calculations using library calls instead.

 -mno-float

 Equivalent to -msoft-float, but additionally asserts that the program being

 compiled does not perform any floating-point operations. This option is

 presently supported only by some bare-metal MIPS configurations, where it may

 select a special set of libraries that lack all floating-point support

 (including, for example, the floating-point "printf" formats). If code

 compiled with -mno-float accidentally contains floating-point operations, it is

 likely to suffer a link-time or run-time failure.

 -msingle-float

 Assume that the floating-point coprocessor only supports single-precision

 operations.

 -mdouble-float

 Assume that the floating-point coprocessor supports double-precision

 operations. This is the default.

 -modd-spreg

 -mno-odd-spreg

 Enable the use of odd-numbered single-precision floating-point registers for

 the o32 ABI. This is the default for processors that are known to support

 these registers. When using the o32 FPXX ABI, -mno-odd-spreg is set by

 default.

 -mabs=2008

 -mabs=legacy Page 363/493

 These options control the treatment of the special not-a-number (NaN) IEEE 754

 floating-point data with the "abs.fmt" and "neg.fmt" machine instructions.

 By default or when -mabs=legacy is used the legacy treatment is selected. In

 this case these instructions are considered arithmetic and avoided where

 correct operation is required and the input operand might be a NaN. A longer

 sequence of instructions that manipulate the sign bit of floating-point datum

 manually is used instead unless the -ffinite-math-only option has also been

 specified.

 The -mabs=2008 option selects the IEEE 754-2008 treatment. In this case these

 instructions are considered non-arithmetic and therefore operating correctly in

 all cases, including in particular where the input operand is a NaN. These

 instructions are therefore always used for the respective operations.

 -mnan=2008

 -mnan=legacy

 These options control the encoding of the special not-a-number (NaN) IEEE 754

 floating-point data.

 The -mnan=legacy option selects the legacy encoding. In this case quiet NaNs

 (qNaNs) are denoted by the first bit of their trailing significand field being

 0, whereas signaling NaNs (sNaNs) are denoted by the first bit of their

 trailing significand field being 1.

 The -mnan=2008 option selects the IEEE 754-2008 encoding. In this case qNaNs

 are denoted by the first bit of their trailing significand field being 1,

 whereas sNaNs are denoted by the first bit of their trailing significand field

 being 0.

 The default is -mnan=legacy unless GCC has been configured with

 --with-nan=2008.

 -mllsc

 -mno-llsc

 Use (do not use) ll, sc, and sync instructions to implement atomic memory

 built-in functions. When neither option is specified, GCC uses the

 instructions if the target architecture supports them.

 -mllsc is useful if the runtime environment can emulate the instructions and

 -mno-llsc can be useful when compiling for nonstandard ISAs. You can make Page 364/493

 either option the default by configuring GCC with --with-llsc and

 --without-llsc respectively. --with-llsc is the default for some

 configurations; see the installation documentation for details.

 -mdsp

 -mno-dsp

 Use (do not use) revision 1 of the MIPS DSP ASE.

 This option defines the preprocessor macro "__mips_dsp". It also defines

 "__mips_dsp_rev" to 1.

 -mdspr2

 -mno-dspr2

 Use (do not use) revision 2 of the MIPS DSP ASE.

 This option defines the preprocessor macros "__mips_dsp" and "__mips_dspr2".

 It also defines "__mips_dsp_rev" to 2.

 -msmartmips

 -mno-smartmips

 Use (do not use) the MIPS SmartMIPS ASE.

 -mpaired-single

 -mno-paired-single

 Use (do not use) paired-single floating-point instructions.

 This option requires hardware floating-point support to be enabled.

 -mdmx

 -mno-mdmx

 Use (do not use) MIPS Digital Media Extension instructions. This option can

 only be used when generating 64-bit code and requires hardware floating-point

 support to be enabled.

 -mips3d

 -mno-mips3d

 Use (do not use) the MIPS-3D ASE. The option -mips3d implies -mpaired-single.

 -mmicromips

 -mno-micromips

 Generate (do not generate) microMIPS code.

 MicroMIPS code generation can also be controlled on a per-function basis by

 means of "micromips" and "nomicromips" attributes. Page 365/493

 -mmt

 -mno-mt

 Use (do not use) MT Multithreading instructions.

 -mmcu

 -mno-mcu

 Use (do not use) the MIPS MCU ASE instructions.

 -meva

 -mno-eva

 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.

 -mvirt

 -mno-virt

 Use (do not use) the MIPS Virtualization (VZ) instructions.

 -mxpa

 -mno-xpa

 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.

 -mlong64

 Force "long" types to be 64 bits wide. See -mlong32 for an explanation of the

 default and the way that the pointer size is determined.

 -mlong32

 Force "long", "int", and pointer types to be 32 bits wide.

 The default size of "int"s, "long"s and pointers depends on the ABI. All the

 supported ABIs use 32-bit "int"s. The n64 ABI uses 64-bit "long"s, as does the

 64-bit EABI; the others use 32-bit "long"s. Pointers are the same size as

 "long"s, or the same size as integer registers, whichever is smaller.

 -msym32

 -mno-sym32

 Assume (do not assume) that all symbols have 32-bit values, regardless of the

 selected ABI. This option is useful in combination with -mabi=64 and

 -mno-abicalls because it allows GCC to generate shorter and faster references

 to symbolic addresses.

 -G num

 Put definitions of externally-visible data in a small data section if that data

 is no bigger than num bytes. GCC can then generate more efficient accesses to Page 366/493

 the data; see -mgpopt for details.

 The default -G option depends on the configuration.

 -mlocal-sdata

 -mno-local-sdata

 Extend (do not extend) the -G behavior to local data too, such as to static

 variables in C. -mlocal-sdata is the default for all configurations.

 If the linker complains that an application is using too much small data, you

 might want to try rebuilding the less performance-critical parts with

 -mno-local-sdata. You might also want to build large libraries with

 -mno-local-sdata, so that the libraries leave more room for the main program.

 -mextern-sdata

 -mno-extern-sdata

 Assume (do not assume) that externally-defined data is in a small data section

 if the size of that data is within the -G limit. -mextern-sdata is the default

 for all configurations.

 If you compile a module Mod with -mextern-sdata -G num -mgpopt, and Mod

 references a variable Var that is no bigger than num bytes, you must make sure

 that Var is placed in a small data section. If Var is defined by another

 module, you must either compile that module with a high-enough -G setting or

 attach a "section" attribute to Var's definition. If Var is common, you must

 link the application with a high-enough -G setting.

 The easiest way of satisfying these restrictions is to compile and link every

 module with the same -G option. However, you may wish to build a library that

 supports several different small data limits. You can do this by compiling the

 library with the highest supported -G setting and additionally using

 -mno-extern-sdata to stop the library from making assumptions about externally-

 defined data.

 -mgpopt

 -mno-gpopt

 Use (do not use) GP-relative accesses for symbols that are known to be in a

 small data section; see -G, -mlocal-sdata and -mextern-sdata. -mgpopt is the

 default for all configurations.

 -mno-gpopt is useful for cases where the $gp register might not hold the value Page 367/493

 of "_gp". For example, if the code is part of a library that might be used in

 a boot monitor, programs that call boot monitor routines pass an unknown value

 in $gp. (In such situations, the boot monitor itself is usually compiled with

 -G0.)

 -mno-gpopt implies -mno-local-sdata and -mno-extern-sdata.

 -membedded-data

 -mno-embedded-data

 Allocate variables to the read-only data section first if possible, then next

 in the small data section if possible, otherwise in data. This gives slightly

 slower code than the default, but reduces the amount of RAM required when

 executing, and thus may be preferred for some embedded systems.

 -muninit-const-in-rodata

 -mno-uninit-const-in-rodata

 Put uninitialized "const" variables in the read-only data section. This option

 is only meaningful in conjunction with -membedded-data.

 -mcode-readable=setting

 Specify whether GCC may generate code that reads from executable sections.

 There are three possible settings:

 -mcode-readable=yes

 Instructions may freely access executable sections. This is the default

 setting.

 -mcode-readable=pcrel

 MIPS16 PC-relative load instructions can access executable sections, but

 other instructions must not do so. This option is useful on 4KSc and 4KSd

 processors when the code TLBs have the Read Inhibit bit set. It is also

 useful on processors that can be configured to have a dual instruction/data

 SRAM interface and that, like the M4K, automatically redirect PC-relative

 loads to the instruction RAM.

 -mcode-readable=no

 Instructions must not access executable sections. This option can be

 useful on targets that are configured to have a dual instruction/data SRAM

 interface but that (unlike the M4K) do not automatically redirect PC-

 relative loads to the instruction RAM. Page 368/493

 -msplit-addresses

 -mno-split-addresses

 Enable (disable) use of the "%hi()" and "%lo()" assembler relocation operators.

 This option has been superseded by -mexplicit-relocs but is retained for

 backwards compatibility.

 -mexplicit-relocs

 -mno-explicit-relocs

 Use (do not use) assembler relocation operators when dealing with symbolic

 addresses. The alternative, selected by -mno-explicit-relocs, is to use

 assembler macros instead.

 -mexplicit-relocs is the default if GCC was configured to use an assembler that

 supports relocation operators.

 -mcheck-zero-division

 -mno-check-zero-division

 Trap (do not trap) on integer division by zero.

 The default is -mcheck-zero-division.

 -mdivide-traps

 -mdivide-breaks

 MIPS systems check for division by zero by generating either a conditional trap

 or a break instruction. Using traps results in smaller code, but is only

 supported on MIPS II and later. Also, some versions of the Linux kernel have a

 bug that prevents trap from generating the proper signal ("SIGFPE"). Use

 -mdivide-traps to allow conditional traps on architectures that support them

 and -mdivide-breaks to force the use of breaks.

 The default is usually -mdivide-traps, but this can be overridden at configure

 time using --with-divide=breaks. Divide-by-zero checks can be completely

 disabled using -mno-check-zero-division.

 -mload-store-pairs

 -mno-load-store-pairs

 Enable (disable) an optimization that pairs consecutive load or store

 instructions to enable load/store bonding. This option is enabled by default

 but only takes effect when the selected architecture is known to support

 bonding. Page 369/493

 -mmemcpy

 -mno-memcpy

 Force (do not force) the use of "memcpy" for non-trivial block moves. The

 default is -mno-memcpy, which allows GCC to inline most constant-sized copies.

 -mlong-calls

 -mno-long-calls

 Disable (do not disable) use of the "jal" instruction. Calling functions using

 "jal" is more efficient but requires the caller and callee to be in the same

 256 megabyte segment.

 This option has no effect on abicalls code. The default is -mno-long-calls.

 -mmad

 -mno-mad

 Enable (disable) use of the "mad", "madu" and "mul" instructions, as provided

 by the R4650 ISA.

 -mimadd

 -mno-imadd

 Enable (disable) use of the "madd" and "msub" integer instructions. The

 default is -mimadd on architectures that support "madd" and "msub" except for

 the 74k architecture where it was found to generate slower code.

 -mfused-madd

 -mno-fused-madd

 Enable (disable) use of the floating-point multiply-accumulate instructions,

 when they are available. The default is -mfused-madd.

 On the R8000 CPU when multiply-accumulate instructions are used, the

 intermediate product is calculated to infinite precision and is not subject to

 the FCSR Flush to Zero bit. This may be undesirable in some circumstances. On

 other processors the result is numerically identical to the equivalent

 computation using separate multiply, add, subtract and negate instructions.

 -nocpp

 Tell the MIPS assembler to not run its preprocessor over user assembler files

 (with a .s suffix) when assembling them.

 -mfix-24k

 -mno-fix-24k Page 370/493

 Work around the 24K E48 (lost data on stores during refill) errata. The

 workarounds are implemented by the assembler rather than by GCC.

 -mfix-r4000

 -mno-fix-r4000

 Work around certain R4000 CPU errata:

 - A double-word or a variable shift may give an incorrect result if executed

 immediately after starting an integer division.

 - A double-word or a variable shift may give an incorrect result if executed

 while an integer multiplication is in progress.

 - An integer division may give an incorrect result if started in a delay slot

 of a taken branch or a jump.

 -mfix-r4400

 -mno-fix-r4400

 Work around certain R4400 CPU errata:

 - A double-word or a variable shift may give an incorrect result if executed

 immediately after starting an integer division.

 -mfix-r10000

 -mno-fix-r10000

 Work around certain R10000 errata:

 - "ll"/"sc" sequences may not behave atomically on revisions prior to 3.0.

 They may deadlock on revisions 2.6 and earlier.

 This option can only be used if the target architecture supports branch-likely

 instructions. -mfix-r10000 is the default when -march=r10000 is used;

 -mno-fix-r10000 is the default otherwise.

 -mfix-rm7000

 -mno-fix-rm7000

 Work around the RM7000 "dmult"/"dmultu" errata. The workarounds are

 implemented by the assembler rather than by GCC.

 -mfix-vr4120

 -mno-fix-vr4120

 Work around certain VR4120 errata:

 - "dmultu" does not always produce the correct result.

 - "div" and "ddiv" do not always produce the correct result if one of the Page 371/493

 operands is negative.

 The workarounds for the division errata rely on special functions in libgcc.a.

 At present, these functions are only provided by the "mips64vr*-elf"

 configurations.

 Other VR4120 errata require a NOP to be inserted between certain pairs of

 instructions. These errata are handled by the assembler, not by GCC itself.

 -mfix-vr4130

 Work around the VR4130 "mflo"/"mfhi" errata. The workarounds are implemented

 by the assembler rather than by GCC, although GCC avoids using "mflo" and

 "mfhi" if the VR4130 "macc", "macchi", "dmacc" and "dmacchi" instructions are

 available instead.

 -mfix-sb1

 -mno-fix-sb1

 Work around certain SB-1 CPU core errata. (This flag currently works around

 the SB-1 revision 2 "F1" and "F2" floating-point errata.)

 -mr10k-cache-barrier=setting

 Specify whether GCC should insert cache barriers to avoid the side-effects of

 speculation on R10K processors.

 In common with many processors, the R10K tries to predict the outcome of a

 conditional branch and speculatively executes instructions from the "taken"

 branch. It later aborts these instructions if the predicted outcome is wrong.

 However, on the R10K, even aborted instructions can have side effects.

 This problem only affects kernel stores and, depending on the system, kernel

 loads. As an example, a speculatively-executed store may load the target

 memory into cache and mark the cache line as dirty, even if the store itself is

 later aborted. If a DMA operation writes to the same area of memory before the

 "dirty" line is flushed, the cached data overwrites the DMA-ed data. See the

 R10K processor manual for a full description, including other potential

 problems.

 One workaround is to insert cache barrier instructions before every memory

 access that might be speculatively executed and that might have side effects

 even if aborted. -mr10k-cache-barrier=setting controls GCC's implementation of

 this workaround. It assumes that aborted accesses to any byte in the following Page 372/493

 regions does not have side effects:

 1. the memory occupied by the current function's stack frame;

 2. the memory occupied by an incoming stack argument;

 3. the memory occupied by an object with a link-time-constant address.

 It is the kernel's responsibility to ensure that speculative accesses to these

 regions are indeed safe.

 If the input program contains a function declaration such as:

 void foo (void);

 then the implementation of "foo" must allow "j foo" and "jal foo" to be

 executed speculatively. GCC honors this restriction for functions it compiles

 itself. It expects non-GCC functions (such as hand-written assembly code) to

 do the same.

 The option has three forms:

 -mr10k-cache-barrier=load-store

 Insert a cache barrier before a load or store that might be speculatively

 executed and that might have side effects even if aborted.

 -mr10k-cache-barrier=store

 Insert a cache barrier before a store that might be speculatively executed

 and that might have side effects even if aborted.

 -mr10k-cache-barrier=none

 Disable the insertion of cache barriers. This is the default setting.

 -mflush-func=func

 -mno-flush-func

 Specifies the function to call to flush the I and D caches, or to not call any

 such function. If called, the function must take the same arguments as the

 common "_flush_func", that is, the address of the memory range for which the

 cache is being flushed, the size of the memory range, and the number 3 (to

 flush both caches). The default depends on the target GCC was configured for,

 but commonly is either "_flush_func" or "__cpu_flush".

 mbranch-cost=num

 Set the cost of branches to roughly num "simple" instructions. This cost is

 only a heuristic and is not guaranteed to produce consistent results across

 releases. A zero cost redundantly selects the default, which is based on the Page 373/493

 -mtune setting.

 -mbranch-likely

 -mno-branch-likely

 Enable or disable use of Branch Likely instructions, regardless of the default

 for the selected architecture. By default, Branch Likely instructions may be

 generated if they are supported by the selected architecture. An exception is

 for the MIPS32 and MIPS64 architectures and processors that implement those

 architectures; for those, Branch Likely instructions are not be generated by

 default because the MIPS32 and MIPS64 architectures specifically deprecate

 their use.

 -mcompact-branches=never

 -mcompact-branches=optimal

 -mcompact-branches=always

 These options control which form of branches will be generated. The default is

 -mcompact-branches=optimal.

 The -mcompact-branches=never option ensures that compact branch instructions

 will never be generated.

 The -mcompact-branches=always option ensures that a compact branch instruction

 will be generated if available. If a compact branch instruction is not

 available, a delay slot form of the branch will be used instead.

 This option is supported from MIPS Release 6 onwards.

 The -mcompact-branches=optimal option will cause a delay slot branch to be used

 if one is available in the current ISA and the delay slot is successfully

 filled. If the delay slot is not filled, a compact branch will be chosen if

 one is available.

 -mfp-exceptions

 -mno-fp-exceptions

 Specifies whether FP exceptions are enabled. This affects how FP instructions

 are scheduled for some processors. The default is that FP exceptions are

 enabled.

 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting

 64-bit code, then we can use both FP pipes. Otherwise, we can only use one FP

 pipe. Page 374/493

 -mvr4130-align

 -mno-vr4130-align

 The VR4130 pipeline is two-way superscalar, but can only issue two instructions

 together if the first one is 8-byte aligned. When this option is enabled, GCC

 aligns pairs of instructions that it thinks should execute in parallel.

 This option only has an effect when optimizing for the VR4130. It normally

 makes code faster, but at the expense of making it bigger. It is enabled by

 default at optimization level -O3.

 -msynci

 -mno-synci

 Enable (disable) generation of "synci" instructions on architectures that

 support it. The "synci" instructions (if enabled) are generated when

 "__builtin___clear_cache" is compiled.

 This option defaults to -mno-synci, but the default can be overridden by

 configuring GCC with --with-synci.

 When compiling code for single processor systems, it is generally safe to use

 "synci". However, on many multi-core (SMP) systems, it does not invalidate the

 instruction caches on all cores and may lead to undefined behavior.

 -mrelax-pic-calls

 -mno-relax-pic-calls

 Try to turn PIC calls that are normally dispatched via register $25 into direct

 calls. This is only possible if the linker can resolve the destination at link

 time and if the destination is within range for a direct call.

 -mrelax-pic-calls is the default if GCC was configured to use an assembler and

 a linker that support the ".reloc" assembly directive and -mexplicit-relocs is

 in effect. With -mno-explicit-relocs, this optimization can be performed by

 the assembler and the linker alone without help from the compiler.

 -mmcount-ra-address

 -mno-mcount-ra-address

 Emit (do not emit) code that allows "_mcount" to modify the calling function's

 return address. When enabled, this option extends the usual "_mcount"

 interface with a new ra-address parameter, which has type "intptr_t *" and is

 passed in register $12. "_mcount" can then modify the return address by doing Page 375/493

 both of the following:

 * Returning the new address in register $31.

 * Storing the new address in "*ra-address", if ra-address is nonnull.

 The default is -mno-mcount-ra-address.

 -mframe-header-opt

 -mno-frame-header-opt

 Enable (disable) frame header optimization in the o32 ABI. When using the o32

 ABI, calling functions will allocate 16 bytes on the stack for the called

 function to write out register arguments. When enabled, this optimization will

 suppress the allocation of the frame header if it can be determined that it is

 unused.

 This optimization is off by default at all optimization levels.

 -mlxc1-sxc1

 -mno-lxc1-sxc1

 When applicable, enable (disable) the generation of "lwxc1", "swxc1", "ldxc1",

 "sdxc1" instructions. Enabled by default.

 -mmadd4

 -mno-madd4

 When applicable, enable (disable) the generation of 4-operand "madd.s",

 "madd.d" and related instructions. Enabled by default.

 MMIX Options

 These options are defined for the MMIX:

 -mlibfuncs

 -mno-libfuncs

 Specify that intrinsic library functions are being compiled, passing all values

 in registers, no matter the size.

 -mepsilon

 -mno-epsilon

 Generate floating-point comparison instructions that compare with respect to

 the "rE" epsilon register.

 -mabi=mmixware

 -mabi=gnu

 Generate code that passes function parameters and return values that (in the Page 376/493

 called function) are seen as registers $0 and up, as opposed to the GNU ABI

 which uses global registers $231 and up.

 -mzero-extend

 -mno-zero-extend

 When reading data from memory in sizes shorter than 64 bits, use (do not use)

 zero-extending load instructions by default, rather than sign-extending ones.

 -mknuthdiv

 -mno-knuthdiv

 Make the result of a division yielding a remainder have the same sign as the

 divisor. With the default, -mno-knuthdiv, the sign of the remainder follows

 the sign of the dividend. Both methods are arithmetically valid, the latter

 being almost exclusively used.

 -mtoplevel-symbols

 -mno-toplevel-symbols

 Prepend (do not prepend) a : to all global symbols, so the assembly code can be

 used with the "PREFIX" assembly directive.

 -melf

 Generate an executable in the ELF format, rather than the default mmo format

 used by the mmix simulator.

 -mbranch-predict

 -mno-branch-predict

 Use (do not use) the probable-branch instructions, when static branch

 prediction indicates a probable branch.

 -mbase-addresses

 -mno-base-addresses

 Generate (do not generate) code that uses base addresses. Using a base address

 automatically generates a request (handled by the assembler and the linker) for

 a constant to be set up in a global register. The register is used for one or

 more base address requests within the range 0 to 255 from the value held in the

 register. The generally leads to short and fast code, but the number of

 different data items that can be addressed is limited. This means that a

 program that uses lots of static data may require -mno-base-addresses.

 -msingle-exit Page 377/493

 -mno-single-exit

 Force (do not force) generated code to have a single exit point in each

 function.

 MN10300 Options

 These -m options are defined for Matsushita MN10300 architectures:

 -mmult-bug

 Generate code to avoid bugs in the multiply instructions for the MN10300

 processors. This is the default.

 -mno-mult-bug

 Do not generate code to avoid bugs in the multiply instructions for the MN10300

 processors.

 -mam33

 Generate code using features specific to the AM33 processor.

 -mno-am33

 Do not generate code using features specific to the AM33 processor. This is

 the default.

 -mam33-2

 Generate code using features specific to the AM33/2.0 processor.

 -mam34

 Generate code using features specific to the AM34 processor.

 -mtune=cpu-type

 Use the timing characteristics of the indicated CPU type when scheduling

 instructions. This does not change the targeted processor type. The CPU type

 must be one of mn10300, am33, am33-2 or am34.

 -mreturn-pointer-on-d0

 When generating a function that returns a pointer, return the pointer in both

 "a0" and "d0". Otherwise, the pointer is returned only in "a0", and attempts

 to call such functions without a prototype result in errors. Note that this

 option is on by default; use -mno-return-pointer-on-d0 to disable it.

 -mno-crt0

 Do not link in the C run-time initialization object file.

 -mrelax

 Indicate to the linker that it should perform a relaxation optimization pass to Page 378/493

 shorten branches, calls and absolute memory addresses. This option only has an

 effect when used on the command line for the final link step.

 This option makes symbolic debugging impossible.

 -mliw

 Allow the compiler to generate Long Instruction Word instructions if the target

 is the AM33 or later. This is the default. This option defines the

 preprocessor macro "__LIW__".

 -mnoliw

 Do not allow the compiler to generate Long Instruction Word instructions. This

 option defines the preprocessor macro "__NO_LIW__".

 -msetlb

 Allow the compiler to generate the SETLB and Lcc instructions if the target is

 the AM33 or later. This is the default. This option defines the preprocessor

 macro "__SETLB__".

 -mnosetlb

 Do not allow the compiler to generate SETLB or Lcc instructions. This option

 defines the preprocessor macro "__NO_SETLB__".

 Moxie Options

 -meb

 Generate big-endian code. This is the default for moxie-*-* configurations.

 -mel

 Generate little-endian code.

 -mmul.x

 Generate mul.x and umul.x instructions. This is the default for moxiebox-*-*

 configurations.

 -mno-crt0

 Do not link in the C run-time initialization object file.

 MSP430 Options

 These options are defined for the MSP430:

 -masm-hex

 Force assembly output to always use hex constants. Normally such constants are

 signed decimals, but this option is available for testsuite and/or aesthetic

 purposes. Page 379/493

 -mmcu=

 Select the MCU to target. This is used to create a C preprocessor symbol based

 upon the MCU name, converted to upper case and pre- and post-fixed with __.

 This in turn is used by the msp430.h header file to select an MCU-specific

 supplementary header file.

 The option also sets the ISA to use. If the MCU name is one that is known to

 only support the 430 ISA then that is selected, otherwise the 430X ISA is

 selected. A generic MCU name of msp430 can also be used to select the 430 ISA.

 Similarly the generic msp430x MCU name selects the 430X ISA.

 In addition an MCU-specific linker script is added to the linker command line.

 The script's name is the name of the MCU with .ld appended. Thus specifying

 -mmcu=xxx on the gcc command line defines the C preprocessor symbol "__XXX__"

 and cause the linker to search for a script called xxx.ld.

 This option is also passed on to the assembler.

 -mwarn-mcu

 -mno-warn-mcu

 This option enables or disables warnings about conflicts between the MCU name

 specified by the -mmcu option and the ISA set by the -mcpu option and/or the

 hardware multiply support set by the -mhwmult option. It also toggles warnings

 about unrecognized MCU names. This option is on by default.

 -mcpu=

 Specifies the ISA to use. Accepted values are msp430, msp430x and msp430xv2.

 This option is deprecated. The -mmcu= option should be used to select the ISA.

 -msim

 Link to the simulator runtime libraries and linker script. Overrides any

 scripts that would be selected by the -mmcu= option.

 -mlarge

 Use large-model addressing (20-bit pointers, 32-bit "size_t").

 -msmall

 Use small-model addressing (16-bit pointers, 16-bit "size_t").

 -mrelax

 This option is passed to the assembler and linker, and allows the linker to

 perform certain optimizations that cannot be done until the final link. Page 380/493

 mhwmult=

 Describes the type of hardware multiply supported by the target. Accepted

 values are none for no hardware multiply, 16bit for the original 16-bit-only

 multiply supported by early MCUs. 32bit for the 16/32-bit multiply supported

 by later MCUs and f5series for the 16/32-bit multiply supported by F5-series

 MCUs. A value of auto can also be given. This tells GCC to deduce the

 hardware multiply support based upon the MCU name provided by the -mmcu option.

 If no -mmcu option is specified or if the MCU name is not recognized then no

 hardware multiply support is assumed. "auto" is the default setting.

 Hardware multiplies are normally performed by calling a library routine. This

 saves space in the generated code. When compiling at -O3 or higher however the

 hardware multiplier is invoked inline. This makes for bigger, but faster code.

 The hardware multiply routines disable interrupts whilst running and restore

 the previous interrupt state when they finish. This makes them safe to use

 inside interrupt handlers as well as in normal code.

 -minrt

 Enable the use of a minimum runtime environment - no static initializers or

 constructors. This is intended for memory-constrained devices. The compiler

 includes special symbols in some objects that tell the linker and runtime which

 code fragments are required.

 -mcode-region=

 -mdata-region=

 These options tell the compiler where to place functions and data that do not

 have one of the "lower", "upper", "either" or "section" attributes. Possible

 values are "lower", "upper", "either" or "any". The first three behave like

 the corresponding attribute. The fourth possible value - "any" - is the

 default. It leaves placement entirely up to the linker script and how it

 assigns the standard sections (".text", ".data", etc) to the memory regions.

 -msilicon-errata=

 This option passes on a request to assembler to enable the fixes for the named

 silicon errata.

 -msilicon-errata-warn=

 This option passes on a request to the assembler to enable warning messages Page 381/493

 when a silicon errata might need to be applied.

 NDS32 Options

 These options are defined for NDS32 implementations:

 -mbig-endian

 Generate code in big-endian mode.

 -mlittle-endian

 Generate code in little-endian mode.

 -mreduced-regs

 Use reduced-set registers for register allocation.

 -mfull-regs

 Use full-set registers for register allocation.

 -mcmov

 Generate conditional move instructions.

 -mno-cmov

 Do not generate conditional move instructions.

 -mperf-ext

 Generate performance extension instructions.

 -mno-perf-ext

 Do not generate performance extension instructions.

 -mv3push

 Generate v3 push25/pop25 instructions.

 -mno-v3push

 Do not generate v3 push25/pop25 instructions.

 -m16-bit

 Generate 16-bit instructions.

 -mno-16-bit

 Do not generate 16-bit instructions.

 -misr-vector-size=num

 Specify the size of each interrupt vector, which must be 4 or 16.

 -mcache-block-size=num

 Specify the size of each cache block, which must be a power of 2 between 4 and

 512.

 -march=arch Page 382/493

 Specify the name of the target architecture.

 -mcmodel=code-model

 Set the code model to one of

 small

 All the data and read-only data segments must be within 512KB addressing

 space. The text segment must be within 16MB addressing space.

 medium

 The data segment must be within 512KB while the read-only data segment can

 be within 4GB addressing space. The text segment should be still within

 16MB addressing space.

 large

 All the text and data segments can be within 4GB addressing space.

 -mctor-dtor

 Enable constructor/destructor feature.

 -mrelax

 Guide linker to relax instructions.

 Nios II Options

 These are the options defined for the Altera Nios II processor.

 -G num

 Put global and static objects less than or equal to num bytes into the small

 data or BSS sections instead of the normal data or BSS sections. The default

 value of num is 8.

 -mgpopt=option

 -mgpopt

 -mno-gpopt

 Generate (do not generate) GP-relative accesses. The following option names

 are recognized:

 none

 Do not generate GP-relative accesses.

 local

 Generate GP-relative accesses for small data objects that are not external,

 weak, or uninitialized common symbols. Also use GP-relative addressing for

 objects that have been explicitly placed in a small data section via a Page 383/493

 "section" attribute.

 global

 As for local, but also generate GP-relative accesses for small data objects

 that are external, weak, or common. If you use this option, you must

 ensure that all parts of your program (including libraries) are compiled

 with the same -G setting.

 data

 Generate GP-relative accesses for all data objects in the program. If you

 use this option, the entire data and BSS segments of your program must fit

 in 64K of memory and you must use an appropriate linker script to allocate

 them within the addressable range of the global pointer.

 all Generate GP-relative addresses for function pointers as well as data

 pointers. If you use this option, the entire text, data, and BSS segments

 of your program must fit in 64K of memory and you must use an appropriate

 linker script to allocate them within the addressable range of the global

 pointer.

 -mgpopt is equivalent to -mgpopt=local, and -mno-gpopt is equivalent to

 -mgpopt=none.

 The default is -mgpopt except when -fpic or -fPIC is specified to generate

 position-independent code. Note that the Nios II ABI does not permit GP-

 relative accesses from shared libraries.

 You may need to specify -mno-gpopt explicitly when building programs that

 include large amounts of small data, including large GOT data sections. In

 this case, the 16-bit offset for GP-relative addressing may not be large enough

 to allow access to the entire small data section.

 -mel

 -meb

 Generate little-endian (default) or big-endian (experimental) code,

 respectively.

 -march=arch

 This specifies the name of the target Nios II architecture. GCC uses this name

 to determine what kind of instructions it can emit when generating assembly

 code. Permissible names are: r1, r2. Page 384/493

 The preprocessor macro "__nios2_arch__" is available to programs, with value 1

 or 2, indicating the targeted ISA level.

 -mbypass-cache

 -mno-bypass-cache

 Force all load and store instructions to always bypass cache by using I/O

 variants of the instructions. The default is not to bypass the cache.

 -mno-cache-volatile

 -mcache-volatile

 Volatile memory access bypass the cache using the I/O variants of the load and

 store instructions. The default is not to bypass the cache.

 -mno-fast-sw-div

 -mfast-sw-div

 Do not use table-based fast divide for small numbers. The default is to use the

 fast divide at -O3 and above.

 -mno-hw-mul

 -mhw-mul

 -mno-hw-mulx

 -mhw-mulx

 -mno-hw-div

 -mhw-div

 Enable or disable emitting "mul", "mulx" and "div" family of instructions by

 the compiler. The default is to emit "mul" and not emit "div" and "mulx".

 -mbmx

 -mno-bmx

 -mcdx

 -mno-cdx

 Enable or disable generation of Nios II R2 BMX (bit manipulation) and CDX (code

 density) instructions. Enabling these instructions also requires -march=r2.

 Since these instructions are optional extensions to the R2 architecture, the

 default is not to emit them.

 -mcustom-insn=N

 -mno-custom-insn

 Each -mcustom-insn=N option enables use of a custom instruction with encoding N Page 385/493

 when generating code that uses insn. For example, -mcustom-fadds=253 generates

 custom instruction 253 for single-precision floating-point add operations

 instead of the default behavior of using a library call.

 The following values of insn are supported. Except as otherwise noted,

 floating-point operations are expected to be implemented with normal IEEE 754

 semantics and correspond directly to the C operators or the equivalent GCC

 built-in functions.

 Single-precision floating point:

 fadds, fsubs, fdivs, fmuls

 Binary arithmetic operations.

 fnegs

 Unary negation.

 fabss

 Unary absolute value.

 fcmpeqs, fcmpges, fcmpgts, fcmples, fcmplts, fcmpnes

 Comparison operations.

 fmins, fmaxs

 Floating-point minimum and maximum. These instructions are only generated

 if -ffinite-math-only is specified.

 fsqrts

 Unary square root operation.

 fcoss, fsins, ftans, fatans, fexps, flogs

 Floating-point trigonometric and exponential functions. These instructions

 are only generated if -funsafe-math-optimizations is also specified.

 Double-precision floating point:

 faddd, fsubd, fdivd, fmuld

 Binary arithmetic operations.

 fnegd

 Unary negation.

 fabsd

 Unary absolute value.

 fcmpeqd, fcmpged, fcmpgtd, fcmpled, fcmpltd, fcmpned

 Comparison operations. Page 386/493

 fmind, fmaxd

 Double-precision minimum and maximum. These instructions are only

 generated if -ffinite-math-only is specified.

 fsqrtd

 Unary square root operation.

 fcosd, fsind, ftand, fatand, fexpd, flogd

 Double-precision trigonometric and exponential functions. These

 instructions are only generated if -funsafe-math-optimizations is also

 specified.

 Conversions:

 fextsd

 Conversion from single precision to double precision.

 ftruncds

 Conversion from double precision to single precision.

 fixsi, fixsu, fixdi, fixdu

 Conversion from floating point to signed or unsigned integer types, with

 truncation towards zero.

 round

 Conversion from single-precision floating point to signed integer, rounding

 to the nearest integer and ties away from zero. This corresponds to the

 "__builtin_lroundf" function when -fno-math-errno is used.

 floatis, floatus, floatid, floatud

 Conversion from signed or unsigned integer types to floating-point types.

 In addition, all of the following transfer instructions for internal registers

 X and Y must be provided to use any of the double-precision floating-point

 instructions. Custom instructions taking two double-precision source operands

 expect the first operand in the 64-bit register X. The other operand (or only

 operand of a unary operation) is given to the custom arithmetic instruction

 with the least significant half in source register src1 and the most

 significant half in src2. A custom instruction that returns a double-precision

 result returns the most significant 32 bits in the destination register and the

 other half in 32-bit register Y. GCC automatically generates the necessary

 code sequences to write register X and/or read register Y when double-precision Page 387/493

 floating-point instructions are used.

 fwrx

 Write src1 into the least significant half of X and src2 into the most

 significant half of X.

 fwry

 Write src1 into Y.

 frdxhi, frdxlo

 Read the most or least (respectively) significant half of X and store it in

 dest.

 frdy

 Read the value of Y and store it into dest.

 Note that you can gain more local control over generation of Nios II custom

 instructions by using the "target("custom-insn=N")" and

 "target("no-custom-insn")" function attributes or pragmas.

 -mcustom-fpu-cfg=name

 This option enables a predefined, named set of custom instruction encodings

 (see -mcustom-insn above). Currently, the following sets are defined:

 -mcustom-fpu-cfg=60-1 is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253

 -mcustom-fsubs=254 -fsingle-precision-constant

 -mcustom-fpu-cfg=60-2 is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253

 -mcustom-fsubs=254 -mcustom-fdivs=255 -fsingle-precision-constant

 -mcustom-fpu-cfg=72-3 is equivalent to: -mcustom-floatus=243 -mcustom-fixsi=244

 -mcustom-floatis=245 -mcustom-fcmpgts=246 -mcustom-fcmples=249

 -mcustom-fcmpeqs=250 -mcustom-fcmpnes=251 -mcustom-fmuls=252 -mcustom-fadds=253

 -mcustom-fsubs=254 -mcustom-fdivs=255 -fsingle-precision-constant

 Custom instruction assignments given by individual -mcustom-insn= options

 override those given by -mcustom-fpu-cfg=, regardless of the order of the

 options on the command line.

 Note that you can gain more local control over selection of a FPU configuration

 by using the "target("custom-fpu-cfg=name")" function attribute or pragma.

 These additional -m options are available for the Altera Nios II ELF (bare-metal)

 target:

 -mhal Page 388/493

 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime

 startup and termination code, and is typically used in conjunction with

 -msys-crt0= to specify the location of the alternate startup code provided by

 the HAL BSP.

 -msmallc

 Link with a limited version of the C library, -lsmallc, rather than Newlib.

 -msys-crt0=startfile

 startfile is the file name of the startfile (crt0) to use when linking. This

 option is only useful in conjunction with -mhal.

 -msys-lib=systemlib

 systemlib is the library name of the library that provides low-level system

 calls required by the C library, e.g. "read" and "write". This option is

 typically used to link with a library provided by a HAL BSP.

 Nvidia PTX Options

 These options are defined for Nvidia PTX:

 -m32

 -m64

 Generate code for 32-bit or 64-bit ABI.

 -mmainkernel

 Link in code for a __main kernel. This is for stand-alone instead of

 offloading execution.

 -moptimize

 Apply partitioned execution optimizations. This is the default when any level

 of optimization is selected.

 -msoft-stack

 Generate code that does not use ".local" memory directly for stack storage.

 Instead, a per-warp stack pointer is maintained explicitly. This enables

 variable-length stack allocation (with variable-length arrays or "alloca"), and

 when global memory is used for underlying storage, makes it possible to access

 automatic variables from other threads, or with atomic instructions. This code

 generation variant is used for OpenMP offloading, but the option is exposed on

 its own for the purpose of testing the compiler; to generate code suitable for

 linking into programs using OpenMP offloading, use option -mgomp. Page 389/493

 -muniform-simt

 Switch to code generation variant that allows to execute all threads in each

 warp, while maintaining memory state and side effects as if only one thread in

 each warp was active outside of OpenMP SIMD regions. All atomic operations and

 calls to runtime (malloc, free, vprintf) are conditionally executed (iff

 current lane index equals the master lane index), and the register being

 assigned is copied via a shuffle instruction from the master lane. Outside of

 SIMD regions lane 0 is the master; inside, each thread sees itself as the

 master. Shared memory array "int __nvptx_uni[]" stores all-zeros or all-ones

 bitmasks for each warp, indicating current mode (0 outside of SIMD regions).

 Each thread can bitwise-and the bitmask at position "tid.y" with current lane

 index to compute the master lane index.

 -mgomp

 Generate code for use in OpenMP offloading: enables -msoft-stack and

 -muniform-simt options, and selects corresponding multilib variant.

 PDP-11 Options

 These options are defined for the PDP-11:

 -mfpu

 Use hardware FPP floating point. This is the default. (FIS floating point on

 the PDP-11/40 is not supported.)

 -msoft-float

 Do not use hardware floating point.

 -mac0

 Return floating-point results in ac0 (fr0 in Unix assembler syntax).

 -mno-ac0

 Return floating-point results in memory. This is the default.

 -m40

 Generate code for a PDP-11/40.

 -m45

 Generate code for a PDP-11/45. This is the default.

 -m10

 Generate code for a PDP-11/10.

 -mbcopy-builtin Page 390/493

 Use inline "movmemhi" patterns for copying memory. This is the default.

 -mbcopy

 Do not use inline "movmemhi" patterns for copying memory.

 -mint16

 -mno-int32

 Use 16-bit "int". This is the default.

 -mint32

 -mno-int16

 Use 32-bit "int".

 -mfloat64

 -mno-float32

 Use 64-bit "float". This is the default.

 -mfloat32

 -mno-float64

 Use 32-bit "float".

 -mabshi

 Use "abshi2" pattern. This is the default.

 -mno-abshi

 Do not use "abshi2" pattern.

 -mbranch-expensive

 Pretend that branches are expensive. This is for experimenting with code

 generation only.

 -mbranch-cheap

 Do not pretend that branches are expensive. This is the default.

 -munix-asm

 Use Unix assembler syntax. This is the default when configured for

 pdp11-*-bsd.

 -mdec-asm

 Use DEC assembler syntax. This is the default when configured for any PDP-11

 target other than pdp11-*-bsd.

 picoChip Options

 These -m options are defined for picoChip implementations:

 -mae=ae_type Page 391/493

 Set the instruction set, register set, and instruction scheduling parameters

 for array element type ae_type. Supported values for ae_type are ANY, MUL, and

 MAC.

 -mae=ANY selects a completely generic AE type. Code generated with this option

 runs on any of the other AE types. The code is not as efficient as it would be

 if compiled for a specific AE type, and some types of operation (e.g.,

 multiplication) do not work properly on all types of AE.

 -mae=MUL selects a MUL AE type. This is the most useful AE type for compiled

 code, and is the default.

 -mae=MAC selects a DSP-style MAC AE. Code compiled with this option may suffer

 from poor performance of byte (char) manipulation, since the DSP AE does not

 provide hardware support for byte load/stores.

 -msymbol-as-address

 Enable the compiler to directly use a symbol name as an address in a load/store

 instruction, without first loading it into a register. Typically, the use of

 this option generates larger programs, which run faster than when the option

 isn't used. However, the results vary from program to program, so it is left

 as a user option, rather than being permanently enabled.

 -mno-inefficient-warnings

 Disables warnings about the generation of inefficient code. These warnings can

 be generated, for example, when compiling code that performs byte-level memory

 operations on the MAC AE type. The MAC AE has no hardware support for byte-

 level memory operations, so all byte load/stores must be synthesized from word

 load/store operations. This is inefficient and a warning is generated to

 indicate that you should rewrite the code to avoid byte operations, or to

 target an AE type that has the necessary hardware support. This option

 disables these warnings.

 PowerPC Options

 These are listed under

 RISC-V Options

 These command-line options are defined for RISC-V targets:

 -mbranch-cost=n

 Set the cost of branches to roughly n instructions. Page 392/493

 -mplt

 -mno-plt

 When generating PIC code, do or don't allow the use of PLTs. Ignored for non-

 PIC. The default is -mplt.

 -mabi=ABI-string

 Specify integer and floating-point calling convention. ABI-string contains two

 parts: the size of integer types and the registers used for floating-point

 types. For example -march=rv64ifd -mabi=lp64d means that long and pointers are

 64-bit (implicitly defining int to be 32-bit), and that floating-point values

 up to 64 bits wide are passed in F registers. Contrast this with

 -march=rv64ifd -mabi=lp64f, which still allows the compiler to generate code

 that uses the F and D extensions but only allows floating-point values up to 32

 bits long to be passed in registers; or -march=rv64ifd -mabi=lp64, in which no

 floating-point arguments will be passed in registers.

 The default for this argument is system dependent, users who want a specific

 calling convention should specify one explicitly. The valid calling

 conventions are: ilp32, ilp32f, ilp32d, lp64, lp64f, and lp64d. Some calling

 conventions are impossible to implement on some ISAs: for example,

 -march=rv32if -mabi=ilp32d is invalid because the ABI requires 64-bit values be

 passed in F registers, but F registers are only 32 bits wide.

 -mfdiv

 -mno-fdiv

 Do or don't use hardware floating-point divide and square root instructions.

 This requires the F or D extensions for floating-point registers. The default

 is to use them if the specified architecture has these instructions.

 -mdiv

 -mno-div

 Do or don't use hardware instructions for integer division. This requires the

 M extension. The default is to use them if the specified architecture has

 these instructions.

 -march=ISA-string

 Generate code for given RISC-V ISA (e.g. rv64im). ISA strings must be lower-

 case. Examples include rv64i, rv32g, and rv32imaf. Page 393/493

 -mtune=processor-string

 Optimize the output for the given processor, specified by microarchitecture

 name.

 -msmall-data-limit=n

 Put global and static data smaller than n bytes into a special section (on some

 targets).

 -msave-restore

 -mno-save-restore

 Do or don't use smaller but slower prologue and epilogue code that uses library

 function calls. The default is to use fast inline prologues and epilogues.

 -mstrict-align

 -mno-strict-align

 Do not or do generate unaligned memory accesses. The default is set depending

 on whether the processor we are optimizing for supports fast unaligned access

 or not.

 -mcmodel=medlow

 Generate code for the medium-low code model. The program and its statically

 defined symbols must lie within a single 2 GiB address range and must lie

 between absolute addresses -2 GiB and +2 GiB. Programs can be statically or

 dynamically linked. This is the default code model.

 -mcmodel=medany

 Generate code for the medium-any code model. The program and its statically

 defined symbols must be within any single 2 GiB address range. Programs can be

 statically or dynamically linked.

 -mexplicit-relocs

 -mno-exlicit-relocs

 Use or do not use assembler relocation operators when dealing with symbolic

 addresses. The alternative is to use assembler macros instead, which may limit

 optimization.

 RL78 Options

 -msim

 Links in additional target libraries to support operation within a simulator.

 -mmul=none Page 394/493

 -mmul=g10

 -mmul=g13

 -mmul=g14

 -mmul=rl78

 Specifies the type of hardware multiplication and division support to be used.

 The simplest is "none", which uses software for both multiplication and

 division. This is the default. The "g13" value is for the hardware

 multiply/divide peripheral found on the RL78/G13 (S2 core) targets. The "g14"

 value selects the use of the multiplication and division instructions supported

 by the RL78/G14 (S3 core) parts. The value "rl78" is an alias for "g14" and

 the value "mg10" is an alias for "none".

 In addition a C preprocessor macro is defined, based upon the setting of this

 option. Possible values are: "__RL78_MUL_NONE__", "__RL78_MUL_G13__" or

 "__RL78_MUL_G14__".

 -mcpu=g10

 -mcpu=g13

 -mcpu=g14

 -mcpu=rl78

 Specifies the RL78 core to target. The default is the G14 core, also known as

 an S3 core or just RL78. The G13 or S2 core does not have multiply or divide

 instructions, instead it uses a hardware peripheral for these operations. The

 G10 or S1 core does not have register banks, so it uses a different calling

 convention.

 If this option is set it also selects the type of hardware multiply support to

 use, unless this is overridden by an explicit -mmul=none option on the command

 line. Thus specifying -mcpu=g13 enables the use of the G13 hardware multiply

 peripheral and specifying -mcpu=g10 disables the use of hardware

 multiplications altogether.

 Note, although the RL78/G14 core is the default target, specifying -mcpu=g14 or

 -mcpu=rl78 on the command line does change the behavior of the toolchain since

 it also enables G14 hardware multiply support. If these options are not

 specified on the command line then software multiplication routines will be

 used even though the code targets the RL78 core. This is for backwards Page 395/493

 compatibility with older toolchains which did not have hardware multiply and

 divide support.

 In addition a C preprocessor macro is defined, based upon the setting of this

 option. Possible values are: "__RL78_G10__", "__RL78_G13__" or "__RL78_G14__".

 -mg10

 -mg13

 -mg14

 -mrl78

 These are aliases for the corresponding -mcpu= option. They are provided for

 backwards compatibility.

 -mallregs

 Allow the compiler to use all of the available registers. By default registers

 "r24..r31" are reserved for use in interrupt handlers. With this option

 enabled these registers can be used in ordinary functions as well.

 -m64bit-doubles

 -m32bit-doubles

 Make the "double" data type be 64 bits (-m64bit-doubles) or 32 bits

 (-m32bit-doubles) in size. The default is -m32bit-doubles.

 -msave-mduc-in-interrupts

 -mno-save-mduc-in-interrupts

 Specifies that interrupt handler functions should preserve the MDUC registers.

 This is only necessary if normal code might use the MDUC registers, for example

 because it performs multiplication and division operations. The default is to

 ignore the MDUC registers as this makes the interrupt handlers faster. The

 target option -mg13 needs to be passed for this to work as this feature is only

 available on the G13 target (S2 core). The MDUC registers will only be saved

 if the interrupt handler performs a multiplication or division operation or it

 calls another function.

 IBM RS/6000 and PowerPC Options

 These -m options are defined for the IBM RS/6000 and PowerPC:

 -mpowerpc-gpopt

 -mno-powerpc-gpopt

 -mpowerpc-gfxopt Page 396/493

 -mno-powerpc-gfxopt

 -mpowerpc64

 -mno-powerpc64

 -mmfcrf

 -mno-mfcrf

 -mpopcntb

 -mno-popcntb

 -mpopcntd

 -mno-popcntd

 -mfprnd

 -mno-fprnd

 -mcmpb

 -mno-cmpb

 -mmfpgpr

 -mno-mfpgpr

 -mhard-dfp

 -mno-hard-dfp

 You use these options to specify which instructions are available on the

 processor you are using. The default value of these options is determined when

 configuring GCC. Specifying the -mcpu=cpu_type overrides the specification of

 these options. We recommend you use the -mcpu=cpu_type option rather than the

 options listed above.

 Specifying -mpowerpc-gpopt allows GCC to use the optional PowerPC architecture

 instructions in the General Purpose group, including floating-point square

 root. Specifying -mpowerpc-gfxopt allows GCC to use the optional PowerPC

 architecture instructions in the Graphics group, including floating-point

 select.

 The -mmfcrf option allows GCC to generate the move from condition register

 field instruction implemented on the POWER4 processor and other processors that

 support the PowerPC V2.01 architecture. The -mpopcntb option allows GCC to

 generate the popcount and double-precision FP reciprocal estimate instruction

 implemented on the POWER5 processor and other processors that support the

 PowerPC V2.02 architecture. The -mpopcntd option allows GCC to generate the Page 397/493

 popcount instruction implemented on the POWER7 processor and other processors

 that support the PowerPC V2.06 architecture. The -mfprnd option allows GCC to

 generate the FP round to integer instructions implemented on the POWER5+

 processor and other processors that support the PowerPC V2.03 architecture.

 The -mcmpb option allows GCC to generate the compare bytes instruction

 implemented on the POWER6 processor and other processors that support the

 PowerPC V2.05 architecture. The -mmfpgpr option allows GCC to generate the FP

 move to/from general-purpose register instructions implemented on the POWER6X

 processor and other processors that support the extended PowerPC V2.05

 architecture. The -mhard-dfp option allows GCC to generate the decimal

 floating-point instructions implemented on some POWER processors.

 The -mpowerpc64 option allows GCC to generate the additional 64-bit

 instructions that are found in the full PowerPC64 architecture and to treat

 GPRs as 64-bit, doubleword quantities. GCC defaults to -mno-powerpc64.

 -mcpu=cpu_type

 Set architecture type, register usage, and instruction scheduling parameters

 for machine type cpu_type. Supported values for cpu_type are 401, 403, 405,

 405fp, 440, 440fp, 464, 464fp, 476, 476fp, 505, 601, 602, 603, 603e, 604, 604e,

 620, 630, 740, 7400, 7450, 750, 801, 821, 823, 860, 970, 8540, a2, e300c2,

 e300c3, e500mc, e500mc64, e5500, e6500, ec603e, G3, G4, G5, titan, power3,

 power4, power5, power5+, power6, power6x, power7, power8, power9, powerpc,

 powerpc64, powerpc64le, and rs64.

 -mcpu=powerpc, -mcpu=powerpc64, and -mcpu=powerpc64le specify pure 32-bit

 PowerPC (either endian), 64-bit big endian PowerPC and 64-bit little endian

 PowerPC architecture machine types, with an appropriate, generic processor

 model assumed for scheduling purposes.

 The other options specify a specific processor. Code generated under those

 options runs best on that processor, and may not run at all on others.

 The -mcpu options automatically enable or disable the following options:

 -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple -mpopcntb -mpopcntd

 -mpowerpc64 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float

 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx -mcrypto -mdirect-move

 -mhtm -mpower8-fusion -mpower8-vector -mquad-memory -mquad-memory-atomic Page 398/493

 -mfloat128 -mfloat128-hardware

 The particular options set for any particular CPU varies between compiler

 versions, depending on what setting seems to produce optimal code for that CPU;

 it doesn't necessarily reflect the actual hardware's capabilities. If you wish

 to set an individual option to a particular value, you may specify it after the

 -mcpu option, like -mcpu=970 -mno-altivec.

 On AIX, the -maltivec and -mpowerpc64 options are not enabled or disabled by

 the -mcpu option at present because AIX does not have full support for these

 options. You may still enable or disable them individually if you're sure

 it'll work in your environment.

 -mtune=cpu_type

 Set the instruction scheduling parameters for machine type cpu_type, but do not

 set the architecture type or register usage, as -mcpu=cpu_type does. The same

 values for cpu_type are used for -mtune as for -mcpu. If both are specified,

 the code generated uses the architecture and registers set by -mcpu, but the

 scheduling parameters set by -mtune.

 -mcmodel=small

 Generate PowerPC64 code for the small model: The TOC is limited to 64k.

 -mcmodel=medium

 Generate PowerPC64 code for the medium model: The TOC and other static data may

 be up to a total of 4G in size. This is the default for 64-bit Linux.

 -mcmodel=large

 Generate PowerPC64 code for the large model: The TOC may be up to 4G in size.

 Other data and code is only limited by the 64-bit address space.

 -maltivec

 -mno-altivec

 Generate code that uses (does not use) AltiVec instructions, and also enable

 the use of built-in functions that allow more direct access to the AltiVec

 instruction set. You may also need to set -mabi=altivec to adjust the current

 ABI with AltiVec ABI enhancements.

 When -maltivec is used, rather than -maltivec=le or -maltivec=be, the element

 order for AltiVec intrinsics such as "vec_splat", "vec_extract", and

 "vec_insert" match array element order corresponding to the endianness of the Page 399/493

 target. That is, element zero identifies the leftmost element in a vector

 register when targeting a big-endian platform, and identifies the rightmost

 element in a vector register when targeting a little-endian platform.

 -maltivec=be

 Generate AltiVec instructions using big-endian element order, regardless of

 whether the target is big- or little-endian. This is the default when

 targeting a big-endian platform.

 The element order is used to interpret element numbers in AltiVec intrinsics

 such as "vec_splat", "vec_extract", and "vec_insert". By default, these match

 array element order corresponding to the endianness for the target.

 -maltivec=le

 Generate AltiVec instructions using little-endian element order, regardless of

 whether the target is big- or little-endian. This is the default when

 targeting a little-endian platform. This option is currently ignored when

 targeting a big-endian platform.

 The element order is used to interpret element numbers in AltiVec intrinsics

 such as "vec_splat", "vec_extract", and "vec_insert". By default, these match

 array element order corresponding to the endianness for the target.

 -mvrsave

 -mno-vrsave

 Generate VRSAVE instructions when generating AltiVec code.

 -mgen-cell-microcode

 Generate Cell microcode instructions.

 -mwarn-cell-microcode

 Warn when a Cell microcode instruction is emitted. An example of a Cell

 microcode instruction is a variable shift.

 -msecure-plt

 Generate code that allows ld and ld.so to build executables and shared

 libraries with non-executable ".plt" and ".got" sections. This is a PowerPC

 32-bit SYSV ABI option.

 -mbss-plt

 Generate code that uses a BSS ".plt" section that ld.so fills in, and requires

 ".plt" and ".got" sections that are both writable and executable. This is a Page 400/493

 PowerPC 32-bit SYSV ABI option.

 -misel

 -mno-isel

 This switch enables or disables the generation of ISEL instructions.

 -misel=yes/no

 This switch has been deprecated. Use -misel and -mno-isel instead.

 -mlra

 Enable Local Register Allocation. By default the port uses LRA. (i.e.

 -mno-lra).

 -mspe

 -mno-spe

 This switch enables or disables the generation of SPE simd instructions.

 -mpaired

 -mno-paired

 This switch enables or disables the generation of PAIRED simd instructions.

 -mspe=yes/no

 This option has been deprecated. Use -mspe and -mno-spe instead.

 -mvsx

 -mno-vsx

 Generate code that uses (does not use) vector/scalar (VSX) instructions, and

 also enable the use of built-in functions that allow more direct access to the

 VSX instruction set.

 -mcrypto

 -mno-crypto

 Enable the use (disable) of the built-in functions that allow direct access to

 the cryptographic instructions that were added in version 2.07 of the PowerPC

 ISA.

 -mdirect-move

 -mno-direct-move

 Generate code that uses (does not use) the instructions to move data between

 the general purpose registers and the vector/scalar (VSX) registers that were

 added in version 2.07 of the PowerPC ISA.

 -mhtm Page 401/493

 -mno-htm

 Enable (disable) the use of the built-in functions that allow direct access to

 the Hardware Transactional Memory (HTM) instructions that were added in version

 2.07 of the PowerPC ISA.

 -mpower8-fusion

 -mno-power8-fusion

 Generate code that keeps (does not keeps) some integer operations adjacent so

 that the instructions can be fused together on power8 and later processors.

 -mpower8-vector

 -mno-power8-vector

 Generate code that uses (does not use) the vector and scalar instructions that

 were added in version 2.07 of the PowerPC ISA. Also enable the use of built-in

 functions that allow more direct access to the vector instructions.

 -mquad-memory

 -mno-quad-memory

 Generate code that uses (does not use) the non-atomic quad word memory

 instructions. The -mquad-memory option requires use of 64-bit mode.

 -mquad-memory-atomic

 -mno-quad-memory-atomic

 Generate code that uses (does not use) the atomic quad word memory

 instructions. The -mquad-memory-atomic option requires use of 64-bit mode.

 -mupper-regs-di

 -mno-upper-regs-di

 Generate code that uses (does not use) the scalar instructions that target all

 64 registers in the vector/scalar floating point register set that were added

 in version 2.06 of the PowerPC ISA when processing integers. -mupper-regs-di

 is turned on by default if you use any of the -mcpu=power7, -mcpu=power8,

 -mcpu=power9, or -mvsx options.

 -mupper-regs-df

 -mno-upper-regs-df

 Generate code that uses (does not use) the scalar double precision instructions

 that target all 64 registers in the vector/scalar floating point register set

 that were added in version 2.06 of the PowerPC ISA. -mupper-regs-df is turned Page 402/493

 on by default if you use any of the -mcpu=power7, -mcpu=power8, -mcpu=power9,

 or -mvsx options.

 -mupper-regs-sf

 -mno-upper-regs-sf

 Generate code that uses (does not use) the scalar single precision instructions

 that target all 64 registers in the vector/scalar floating point register set

 that were added in version 2.07 of the PowerPC ISA. -mupper-regs-sf is turned

 on by default if you use either of the -mcpu=power8, -mpower8-vector, or

 -mcpu=power9 options.

 -mupper-regs

 -mno-upper-regs

 Generate code that uses (does not use) the scalar instructions that target all

 64 registers in the vector/scalar floating point register set, depending on the

 model of the machine.

 If the -mno-upper-regs option is used, it turns off both -mupper-regs-sf and

 -mupper-regs-df options.

 -mfloat128

 -mno-float128

 Enable/disable the __float128 keyword for IEEE 128-bit floating point and use

 either software emulation for IEEE 128-bit floating point or hardware

 instructions.

 The VSX instruction set (-mvsx, -mcpu=power7, or -mcpu=power8) must be enabled

 to use the -mfloat128 option. The -mfloat128 option only works on PowerPC

 64-bit Linux systems.

 If you use the ISA 3.0 instruction set (-mcpu=power9), the -mfloat128 option

 will also enable the generation of ISA 3.0 IEEE 128-bit floating point

 instructions. Otherwise, IEEE 128-bit floating point will be done with

 software emulation.

 -mfloat128-hardware

 -mno-float128-hardware

 Enable/disable using ISA 3.0 hardware instructions to support the __float128

 data type.

 If you use -mfloat128-hardware, it will enable the option -mfloat128 as well. Page 403/493

 If you select ISA 3.0 instructions with -mcpu=power9, but do not use either

 -mfloat128 or -mfloat128-hardware, the IEEE 128-bit floating point support will

 not be enabled.

 -mfloat-gprs=yes/single/double/no

 -mfloat-gprs

 This switch enables or disables the generation of floating-point operations on

 the general-purpose registers for architectures that support it.

 The argument yes or single enables the use of single-precision floating-point

 operations.

 The argument double enables the use of single and double-precision floating-

 point operations.

 The argument no disables floating-point operations on the general-purpose

 registers.

 This option is currently only available on the MPC854x.

 -m32

 -m64

 Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets

 (including GNU/Linux). The 32-bit environment sets int, long and pointer to 32

 bits and generates code that runs on any PowerPC variant. The 64-bit

 environment sets int to 32 bits and long and pointer to 64 bits, and generates

 code for PowerPC64, as for -mpowerpc64.

 -mfull-toc

 -mno-fp-in-toc

 -mno-sum-in-toc

 -mminimal-toc

 Modify generation of the TOC (Table Of Contents), which is created for every

 executable file. The -mfull-toc option is selected by default. In that case,

 GCC allocates at least one TOC entry for each unique non-automatic variable

 reference in your program. GCC also places floating-point constants in the

 TOC. However, only 16,384 entries are available in the TOC.

 If you receive a linker error message that saying you have overflowed the

 available TOC space, you can reduce the amount of TOC space used with the

 -mno-fp-in-toc and -mno-sum-in-toc options. -mno-fp-in-toc prevents GCC from Page 404/493

 putting floating-point constants in the TOC and -mno-sum-in-toc forces GCC to

 generate code to calculate the sum of an address and a constant at run time

 instead of putting that sum into the TOC. You may specify one or both of these

 options. Each causes GCC to produce very slightly slower and larger code at

 the expense of conserving TOC space.

 If you still run out of space in the TOC even when you specify both of these

 options, specify -mminimal-toc instead. This option causes GCC to make only

 one TOC entry for every file. When you specify this option, GCC produces code

 that is slower and larger but which uses extremely little TOC space. You may

 wish to use this option only on files that contain less frequently-executed

 code.

 -maix64

 -maix32

 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit "long"

 type, and the infrastructure needed to support them. Specifying -maix64

 implies -mpowerpc64, while -maix32 disables the 64-bit ABI and implies

 -mno-powerpc64. GCC defaults to -maix32.

 -mxl-compat

 -mno-xl-compat

 Produce code that conforms more closely to IBM XL compiler semantics when using

 AIX-compatible ABI. Pass floating-point arguments to prototyped functions

 beyond the register save area (RSA) on the stack in addition to argument FPRs.

 Do not assume that most significant double in 128-bit long double value is

 properly rounded when comparing values and converting to double. Use XL symbol

 names for long double support routines.

 The AIX calling convention was extended but not initially documented to handle

 an obscure K&R C case of calling a function that takes the address of its

 arguments with fewer arguments than declared. IBM XL compilers access

 floating-point arguments that do not fit in the RSA from the stack when a

 subroutine is compiled without optimization. Because always storing floating-

 point arguments on the stack is inefficient and rarely needed, this option is

 not enabled by default and only is necessary when calling subroutines compiled

 by IBM XL compilers without optimization. Page 405/493

 -mpe

 Support IBM RS/6000 SP Parallel Environment (PE). Link an application written

 to use message passing with special startup code to enable the application to

 run. The system must have PE installed in the standard location

 (/usr/lpp/ppe.poe/), or the specs file must be overridden with the -specs=

 option to specify the appropriate directory location. The Parallel Environment

 does not support threads, so the -mpe option and the -pthread option are

 incompatible.

 -malign-natural

 -malign-power

 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option -malign-natural

 overrides the ABI-defined alignment of larger types, such as floating-point

 doubles, on their natural size-based boundary. The option -malign-power

 instructs GCC to follow the ABI-specified alignment rules. GCC defaults to the

 standard alignment defined in the ABI.

 On 64-bit Darwin, natural alignment is the default, and -malign-power is not

 supported.

 -msoft-float

 -mhard-float

 Generate code that does not use (uses) the floating-point register set.

 Software floating-point emulation is provided if you use the -msoft-float

 option, and pass the option to GCC when linking.

 -msingle-float

 -mdouble-float

 Generate code for single- or double-precision floating-point operations.

 -mdouble-float implies -msingle-float.

 -msimple-fpu

 Do not generate "sqrt" and "div" instructions for hardware floating-point unit.

 -mfpu=name

 Specify type of floating-point unit. Valid values for name are sp_lite

 (equivalent to -msingle-float -msimple-fpu), dp_lite (equivalent to

 -mdouble-float -msimple-fpu), sp_full (equivalent to -msingle-float), and

 dp_full (equivalent to -mdouble-float). Page 406/493

 -mxilinx-fpu

 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.

 -mmultiple

 -mno-multiple

 Generate code that uses (does not use) the load multiple word instructions and

 the store multiple word instructions. These instructions are generated by

 default on POWER systems, and not generated on PowerPC systems. Do not use

 -mmultiple on little-endian PowerPC systems, since those instructions do not

 work when the processor is in little-endian mode. The exceptions are PPC740

 and PPC750 which permit these instructions in little-endian mode.

 -mstring

 -mno-string

 Generate code that uses (does not use) the load string instructions and the

 store string word instructions to save multiple registers and do small block

 moves. These instructions are generated by default on POWER systems, and not

 generated on PowerPC systems. Do not use -mstring on little-endian PowerPC

 systems, since those instructions do not work when the processor is in little-

 endian mode. The exceptions are PPC740 and PPC750 which permit these

 instructions in little-endian mode.

 -mupdate

 -mno-update

 Generate code that uses (does not use) the load or store instructions that

 update the base register to the address of the calculated memory location.

 These instructions are generated by default. If you use -mno-update, there is

 a small window between the time that the stack pointer is updated and the

 address of the previous frame is stored, which means code that walks the stack

 frame across interrupts or signals may get corrupted data.

 -mavoid-indexed-addresses

 -mno-avoid-indexed-addresses

 Generate code that tries to avoid (not avoid) the use of indexed load or store

 instructions. These instructions can incur a performance penalty on Power6

 processors in certain situations, such as when stepping through large arrays

 that cross a 16M boundary. This option is enabled by default when targeting Page 407/493

 Power6 and disabled otherwise.

 -mfused-madd

 -mno-fused-madd

 Generate code that uses (does not use) the floating-point multiply and

 accumulate instructions. These instructions are generated by default if

 hardware floating point is used. The machine-dependent -mfused-madd option is

 now mapped to the machine-independent -ffp-contract=fast option, and

 -mno-fused-madd is mapped to -ffp-contract=off.

 -mmulhw

 -mno-mulhw

 Generate code that uses (does not use) the half-word multiply and multiply-

 accumulate instructions on the IBM 405, 440, 464 and 476 processors. These

 instructions are generated by default when targeting those processors.

 -mdlmzb

 -mno-dlmzb

 Generate code that uses (does not use) the string-search dlmzb instruction on

 the IBM 405, 440, 464 and 476 processors. This instruction is generated by

 default when targeting those processors.

 -mno-bit-align

 -mbit-align

 On System V.4 and embedded PowerPC systems do not (do) force structures and

 unions that contain bit-fields to be aligned to the base type of the bit-field.

 For example, by default a structure containing nothing but 8 "unsigned" bit-

 fields of length 1 is aligned to a 4-byte boundary and has a size of 4 bytes.

 By using -mno-bit-align, the structure is aligned to a 1-byte boundary and is 1

 byte in size.

 -mno-strict-align

 -mstrict-align

 On System V.4 and embedded PowerPC systems do not (do) assume that unaligned

 memory references are handled by the system.

 -mrelocatable

 -mno-relocatable

 Generate code that allows (does not allow) a static executable to be relocated Page 408/493

 to a different address at run time. A simple embedded PowerPC system loader

 should relocate the entire contents of ".got2" and 4-byte locations listed in

 the ".fixup" section, a table of 32-bit addresses generated by this option.

 For this to work, all objects linked together must be compiled with

 -mrelocatable or -mrelocatable-lib. -mrelocatable code aligns the stack to an

 8-byte boundary.

 -mrelocatable-lib

 -mno-relocatable-lib

 Like -mrelocatable, -mrelocatable-lib generates a ".fixup" section to allow

 static executables to be relocated at run time, but -mrelocatable-lib does not

 use the smaller stack alignment of -mrelocatable. Objects compiled with

 -mrelocatable-lib may be linked with objects compiled with any combination of

 the -mrelocatable options.

 -mno-toc

 -mtoc

 On System V.4 and embedded PowerPC systems do not (do) assume that register 2

 contains a pointer to a global area pointing to the addresses used in the

 program.

 -mlittle

 -mlittle-endian

 On System V.4 and embedded PowerPC systems compile code for the processor in

 little-endian mode. The -mlittle-endian option is the same as -mlittle.

 -mbig

 -mbig-endian

 On System V.4 and embedded PowerPC systems compile code for the processor in

 big-endian mode. The -mbig-endian option is the same as -mbig.

 -mdynamic-no-pic

 On Darwin and Mac OS X systems, compile code so that it is not relocatable, but

 that its external references are relocatable. The resulting code is suitable

 for applications, but not shared libraries.

 -msingle-pic-base

 Treat the register used for PIC addressing as read-only, rather than loading it

 in the prologue for each function. The runtime system is responsible for Page 409/493

 initializing this register with an appropriate value before execution begins.

 -mprioritize-restricted-insns=priority

 This option controls the priority that is assigned to dispatch-slot restricted

 instructions during the second scheduling pass. The argument priority takes

 the value 0, 1, or 2 to assign no, highest, or second-highest (respectively)

 priority to dispatch-slot restricted instructions.

 -msched-costly-dep=dependence_type

 This option controls which dependences are considered costly by the target

 during instruction scheduling. The argument dependence_type takes one of the

 following values:

 no No dependence is costly.

 all All dependences are costly.

 true_store_to_load

 A true dependence from store to load is costly.

 store_to_load

 Any dependence from store to load is costly.

 number

 Any dependence for which the latency is greater than or equal to number is

 costly.

 -minsert-sched-nops=scheme

 This option controls which NOP insertion scheme is used during the second

 scheduling pass. The argument scheme takes one of the following values:

 no Don't insert NOPs.

 pad Pad with NOPs any dispatch group that has vacant issue slots, according to

 the scheduler's grouping.

 regroup_exact

 Insert NOPs to force costly dependent insns into separate groups. Insert

 exactly as many NOPs as needed to force an insn to a new group, according

 to the estimated processor grouping.

 number

 Insert NOPs to force costly dependent insns into separate groups. Insert

 number NOPs to force an insn to a new group.

 -mcall-sysv Page 410/493

 On System V.4 and embedded PowerPC systems compile code using calling

 conventions that adhere to the March 1995 draft of the System V Application

 Binary Interface, PowerPC processor supplement. This is the default unless you

 configured GCC using powerpc-*-eabiaix.

 -mcall-sysv-eabi

 -mcall-eabi

 Specify both -mcall-sysv and -meabi options.

 -mcall-sysv-noeabi

 Specify both -mcall-sysv and -mno-eabi options.

 -mcall-aixdesc

 On System V.4 and embedded PowerPC systems compile code for the AIX operating

 system.

 -mcall-linux

 On System V.4 and embedded PowerPC systems compile code for the Linux-based GNU

 system.

 -mcall-freebsd

 On System V.4 and embedded PowerPC systems compile code for the FreeBSD

 operating system.

 -mcall-netbsd

 On System V.4 and embedded PowerPC systems compile code for the NetBSD

 operating system.

 -mcall-openbsd

 On System V.4 and embedded PowerPC systems compile code for the OpenBSD

 operating system.

 -maix-struct-return

 Return all structures in memory (as specified by the AIX ABI).

 -msvr4-struct-return

 Return structures smaller than 8 bytes in registers (as specified by the SVR4

 ABI).

 -mabi=abi-type

 Extend the current ABI with a particular extension, or remove such extension.

 Valid values are altivec, no-altivec, spe, no-spe, ibmlongdouble,

 ieeelongdouble, elfv1, elfv2. Page 411/493

 -mabi=spe

 Extend the current ABI with SPE ABI extensions. This does not change the

 default ABI, instead it adds the SPE ABI extensions to the current ABI.

 -mabi=no-spe

 Disable Book-E SPE ABI extensions for the current ABI.

 -mabi=ibmlongdouble

 Change the current ABI to use IBM extended-precision long double. This is a

 PowerPC 32-bit SYSV ABI option. Requires -mlong-double-128 to be enabled.

 -mabi=ieeelongdouble

 Change the current ABI to use IEEE extended-precision long double. This is a

 PowerPC 32-bit Linux ABI option. Requires -mlong-double-128 to be enabled.

 -mabi=elfv1

 Change the current ABI to use the ELFv1 ABI. This is the default ABI for big-

 endian PowerPC 64-bit Linux. Overriding the default ABI requires special

 system support and is likely to fail in spectacular ways.

 -mabi=elfv2

 Change the current ABI to use the ELFv2 ABI. This is the default ABI for

 little-endian PowerPC 64-bit Linux. Overriding the default ABI requires

 special system support and is likely to fail in spectacular ways.

 -mgnu-attribute

 -mno-gnu-attribute

 Emit .gnu_attribute assembly directives to set tag/value pairs in a

 .gnu.attributes section that specify ABI variations in function parameters or

 return values.

 -mprototype

 -mno-prototype

 On System V.4 and embedded PowerPC systems assume that all calls to variable

 argument functions are properly prototyped. Otherwise, the compiler must

 insert an instruction before every non-prototyped call to set or clear bit 6 of

 the condition code register ("CR") to indicate whether floating-point values

 are passed in the floating-point registers in case the function takes variable

 arguments. With -mprototype, only calls to prototyped variable argument

 functions set or clear the bit. Page 412/493

 -msim

 On embedded PowerPC systems, assume that the startup module is called

 sim-crt0.o and that the standard C libraries are libsim.a and libc.a. This is

 the default for powerpc-*-eabisim configurations.

 -mmvme

 On embedded PowerPC systems, assume that the startup module is called crt0.o

 and the standard C libraries are libmvme.a and libc.a.

 -mads

 On embedded PowerPC systems, assume that the startup module is called crt0.o

 and the standard C libraries are libads.a and libc.a.

 -myellowknife

 On embedded PowerPC systems, assume that the startup module is called crt0.o

 and the standard C libraries are libyk.a and libc.a.

 -mvxworks

 On System V.4 and embedded PowerPC systems, specify that you are compiling for

 a VxWorks system.

 -memb

 On embedded PowerPC systems, set the "PPC_EMB" bit in the ELF flags header to

 indicate that eabi extended relocations are used.

 -meabi

 -mno-eabi

 On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded

 Applications Binary Interface (EABI), which is a set of modifications to the

 System V.4 specifications. Selecting -meabi means that the stack is aligned to

 an 8-byte boundary, a function "__eabi" is called from "main" to set up the

 EABI environment, and the -msdata option can use both "r2" and "r13" to point

 to two separate small data areas. Selecting -mno-eabi means that the stack is

 aligned to a 16-byte boundary, no EABI initialization function is called from

 "main", and the -msdata option only uses "r13" to point to a single small data

 area. The -meabi option is on by default if you configured GCC using one of

 the powerpc*-*-eabi* options.

 -msdata=eabi

 On System V.4 and embedded PowerPC systems, put small initialized "const" Page 413/493

 global and static data in the ".sdata2" section, which is pointed to by

 register "r2". Put small initialized non-"const" global and static data in the

 ".sdata" section, which is pointed to by register "r13". Put small

 uninitialized global and static data in the ".sbss" section, which is adjacent

 to the ".sdata" section. The -msdata=eabi option is incompatible with the

 -mrelocatable option. The -msdata=eabi option also sets the -memb option.

 -msdata=sysv

 On System V.4 and embedded PowerPC systems, put small global and static data in

 the ".sdata" section, which is pointed to by register "r13". Put small

 uninitialized global and static data in the ".sbss" section, which is adjacent

 to the ".sdata" section. The -msdata=sysv option is incompatible with the

 -mrelocatable option.

 -msdata=default

 -msdata

 On System V.4 and embedded PowerPC systems, if -meabi is used, compile code the

 same as -msdata=eabi, otherwise compile code the same as -msdata=sysv.

 -msdata=data

 On System V.4 and embedded PowerPC systems, put small global data in the

 ".sdata" section. Put small uninitialized global data in the ".sbss" section.

 Do not use register "r13" to address small data however. This is the default

 behavior unless other -msdata options are used.

 -msdata=none

 -mno-sdata

 On embedded PowerPC systems, put all initialized global and static data in the

 ".data" section, and all uninitialized data in the ".bss" section.

 -mreadonly-in-sdata

 -mreadonly-in-sdata

 Put read-only objects in the ".sdata" section as well. This is the default.

 -mblock-move-inline-limit=num

 Inline all block moves (such as calls to "memcpy" or structure copies) less

 than or equal to num bytes. The minimum value for num is 32 bytes on 32-bit

 targets and 64 bytes on 64-bit targets. The default value is target-specific.

 -G num Page 414/493

 On embedded PowerPC systems, put global and static items less than or equal to

 num bytes into the small data or BSS sections instead of the normal data or BSS

 section. By default, num is 8. The -G num switch is also passed to the

 linker. All modules should be compiled with the same -G num value.

 -mregnames

 -mno-regnames

 On System V.4 and embedded PowerPC systems do (do not) emit register names in

 the assembly language output using symbolic forms.

 -mlongcall

 -mno-longcall

 By default assume that all calls are far away so that a longer and more

 expensive calling sequence is required. This is required for calls farther

 than 32 megabytes (33,554,432 bytes) from the current location. A short call

 is generated if the compiler knows the call cannot be that far away. This

 setting can be overridden by the "shortcall" function attribute, or by "#pragma

 longcall(0)".

 Some linkers are capable of detecting out-of-range calls and generating glue

 code on the fly. On these systems, long calls are unnecessary and generate

 slower code. As of this writing, the AIX linker can do this, as can the GNU

 linker for PowerPC/64. It is planned to add this feature to the GNU linker for

 32-bit PowerPC systems as well.

 On Darwin/PPC systems, "#pragma longcall" generates "jbsr callee, L42", plus a

 branch island (glue code). The two target addresses represent the callee and

 the branch island. The Darwin/PPC linker prefers the first address and

 generates a "bl callee" if the PPC "bl" instruction reaches the callee

 directly; otherwise, the linker generates "bl L42" to call the branch island.

 The branch island is appended to the body of the calling function; it computes

 the full 32-bit address of the callee and jumps to it.

 On Mach-O (Darwin) systems, this option directs the compiler emit to the glue

 for every direct call, and the Darwin linker decides whether to use or discard

 it.

 In the future, GCC may ignore all longcall specifications when the linker is

 known to generate glue. Page 415/493

 -mtls-markers

 -mno-tls-markers

 Mark (do not mark) calls to "__tls_get_addr" with a relocation specifying the

 function argument. The relocation allows the linker to reliably associate

 function call with argument setup instructions for TLS optimization, which in

 turn allows GCC to better schedule the sequence.

 -mrecip

 -mno-recip

 This option enables use of the reciprocal estimate and reciprocal square root

 estimate instructions with additional Newton-Raphson steps to increase

 precision instead of doing a divide or square root and divide for floating-

 point arguments. You should use the -ffast-math option when using -mrecip (or

 at least -funsafe-math-optimizations, -ffinite-math-only, -freciprocal-math and

 -fno-trapping-math). Note that while the throughput of the sequence is

 generally higher than the throughput of the non-reciprocal instruction, the

 precision of the sequence can be decreased by up to 2 ulp (i.e. the inverse of

 1.0 equals 0.99999994) for reciprocal square roots.

 -mrecip=opt

 This option controls which reciprocal estimate instructions may be used. opt

 is a comma-separated list of options, which may be preceded by a "!" to invert

 the option:

 all Enable all estimate instructions.

 default

 Enable the default instructions, equivalent to -mrecip.

 none

 Disable all estimate instructions, equivalent to -mno-recip.

 div Enable the reciprocal approximation instructions for both single and double

 precision.

 divf

 Enable the single-precision reciprocal approximation instructions.

 divd

 Enable the double-precision reciprocal approximation instructions.

 rsqrt Page 416/493

 Enable the reciprocal square root approximation instructions for both

 single and double precision.

 rsqrtf

 Enable the single-precision reciprocal square root approximation

 instructions.

 rsqrtd

 Enable the double-precision reciprocal square root approximation

 instructions.

 So, for example, -mrecip=all,!rsqrtd enables all of the reciprocal estimate

 instructions, except for the "FRSQRTE", "XSRSQRTEDP", and "XVRSQRTEDP"

 instructions which handle the double-precision reciprocal square root

 calculations.

 -mrecip-precision

 -mno-recip-precision

 Assume (do not assume) that the reciprocal estimate instructions provide

 higher-precision estimates than is mandated by the PowerPC ABI. Selecting

 -mcpu=power6, -mcpu=power7 or -mcpu=power8 automatically selects

 -mrecip-precision. The double-precision square root estimate instructions are

 not generated by default on low-precision machines, since they do not provide

 an estimate that converges after three steps.

 -mveclibabi=type

 Specifies the ABI type to use for vectorizing intrinsics using an external

 library. The only type supported at present is mass, which specifies to use

 IBM's Mathematical Acceleration Subsystem (MASS) libraries for vectorizing

 intrinsics using external libraries. GCC currently emits calls to "acosd2",

 "acosf4", "acoshd2", "acoshf4", "asind2", "asinf4", "asinhd2", "asinhf4",

 "atan2d2", "atan2f4", "atand2", "atanf4", "atanhd2", "atanhf4", "cbrtd2",

 "cbrtf4", "cosd2", "cosf4", "coshd2", "coshf4", "erfcd2", "erfcf4", "erfd2",

 "erff4", "exp2d2", "exp2f4", "expd2", "expf4", "expm1d2", "expm1f4", "hypotd2",

 "hypotf4", "lgammad2", "lgammaf4", "log10d2", "log10f4", "log1pd2", "log1pf4",

 "log2d2", "log2f4", "logd2", "logf4", "powd2", "powf4", "sind2", "sinf4",

 "sinhd2", "sinhf4", "sqrtd2", "sqrtf4", "tand2", "tanf4", "tanhd2", and

 "tanhf4" when generating code for power7. Both -ftree-vectorize and Page 417/493

 -funsafe-math-optimizations must also be enabled. The MASS libraries must be

 specified at link time.

 -mfriz

 -mno-friz

 Generate (do not generate) the "friz" instruction when the

 -funsafe-math-optimizations option is used to optimize rounding of floating-

 point values to 64-bit integer and back to floating point. The "friz"

 instruction does not return the same value if the floating-point number is too

 large to fit in an integer.

 -mpointers-to-nested-functions

 -mno-pointers-to-nested-functions

 Generate (do not generate) code to load up the static chain register ("r11")

 when calling through a pointer on AIX and 64-bit Linux systems where a function

 pointer points to a 3-word descriptor giving the function address, TOC value to

 be loaded in register "r2", and static chain value to be loaded in register

 "r11". The -mpointers-to-nested-functions is on by default. You cannot call

 through pointers to nested functions or pointers to functions compiled in other

 languages that use the static chain if you use

 -mno-pointers-to-nested-functions.

 -msave-toc-indirect

 -mno-save-toc-indirect

 Generate (do not generate) code to save the TOC value in the reserved stack

 location in the function prologue if the function calls through a pointer on

 AIX and 64-bit Linux systems. If the TOC value is not saved in the prologue,

 it is saved just before the call through the pointer. The

 -mno-save-toc-indirect option is the default.

 -mcompat-align-parm

 -mno-compat-align-parm

 Generate (do not generate) code to pass structure parameters with a maximum

 alignment of 64 bits, for compatibility with older versions of GCC.

 Older versions of GCC (prior to 4.9.0) incorrectly did not align a structure

 parameter on a 128-bit boundary when that structure contained a member

 requiring 128-bit alignment. This is corrected in more recent versions of GCC. Page 418/493

 This option may be used to generate code that is compatible with functions

 compiled with older versions of GCC.

 The -mno-compat-align-parm option is the default.

 -mstack-protector-guard=guard

 -mstack-protector-guard-reg=reg

 -mstack-protector-guard-offset=offset

 Generate stack protection code using canary at guard. Supported locations are

 global for global canary or tls for per-thread canary in the TLS block (the

 default with GNU libc version 2.4 or later).

 With the latter choice the options -mstack-protector-guard-reg=reg and

 -mstack-protector-guard-offset=offset furthermore specify which register to use

 as base register for reading the canary, and from what offset from that base

 register. The default for those is as specified in the relevant ABI.

 RX Options

 These command-line options are defined for RX targets:

 -m64bit-doubles

 -m32bit-doubles

 Make the "double" data type be 64 bits (-m64bit-doubles) or 32 bits

 (-m32bit-doubles) in size. The default is -m32bit-doubles. Note RX floating-

 point hardware only works on 32-bit values, which is why the default is

 -m32bit-doubles.

 -fpu

 -nofpu

 Enables (-fpu) or disables (-nofpu) the use of RX floating-point hardware. The

 default is enabled for the RX600 series and disabled for the RX200 series.

 Floating-point instructions are only generated for 32-bit floating-point

 values, however, so the FPU hardware is not used for doubles if the

 -m64bit-doubles option is used.

 Note If the -fpu option is enabled then -funsafe-math-optimizations is also

 enabled automatically. This is because the RX FPU instructions are themselves

 unsafe.

 -mcpu=name

 Selects the type of RX CPU to be targeted. Currently three types are Page 419/493

 supported, the generic RX600 and RX200 series hardware and the specific RX610

 CPU. The default is RX600.

 The only difference between RX600 and RX610 is that the RX610 does not support

 the "MVTIPL" instruction.

 The RX200 series does not have a hardware floating-point unit and so -nofpu is

 enabled by default when this type is selected.

 -mbig-endian-data

 -mlittle-endian-data

 Store data (but not code) in the big-endian format. The default is

 -mlittle-endian-data, i.e. to store data in the little-endian format.

 -msmall-data-limit=N

 Specifies the maximum size in bytes of global and static variables which can be

 placed into the small data area. Using the small data area can lead to smaller

 and faster code, but the size of area is limited and it is up to the programmer

 to ensure that the area does not overflow. Also when the small data area is

 used one of the RX's registers (usually "r13") is reserved for use pointing to

 this area, so it is no longer available for use by the compiler. This could

 result in slower and/or larger code if variables are pushed onto the stack

 instead of being held in this register.

 Note, common variables (variables that have not been initialized) and constants

 are not placed into the small data area as they are assigned to other sections

 in the output executable.

 The default value is zero, which disables this feature. Note, this feature is

 not enabled by default with higher optimization levels (-O2 etc) because of the

 potentially detrimental effects of reserving a register. It is up to the

 programmer to experiment and discover whether this feature is of benefit to

 their program. See the description of the -mpid option for a description of

 how the actual register to hold the small data area pointer is chosen.

 -msim

 -mno-sim

 Use the simulator runtime. The default is to use the libgloss board-specific

 runtime.

 -mas100-syntax Page 420/493

 -mno-as100-syntax

 When generating assembler output use a syntax that is compatible with Renesas's

 AS100 assembler. This syntax can also be handled by the GAS assembler, but it

 has some restrictions so it is not generated by default.

 -mmax-constant-size=N

 Specifies the maximum size, in bytes, of a constant that can be used as an

 operand in a RX instruction. Although the RX instruction set does allow

 constants of up to 4 bytes in length to be used in instructions, a longer value

 equates to a longer instruction. Thus in some circumstances it can be

 beneficial to restrict the size of constants that are used in instructions.

 Constants that are too big are instead placed into a constant pool and

 referenced via register indirection.

 The value N can be between 0 and 4. A value of 0 (the default) or 4 means that

 constants of any size are allowed.

 -mrelax

 Enable linker relaxation. Linker relaxation is a process whereby the linker

 attempts to reduce the size of a program by finding shorter versions of various

 instructions. Disabled by default.

 -mint-register=N

 Specify the number of registers to reserve for fast interrupt handler

 functions. The value N can be between 0 and 4. A value of 1 means that

 register "r13" is reserved for the exclusive use of fast interrupt handlers. A

 value of 2 reserves "r13" and "r12". A value of 3 reserves "r13", "r12" and

 "r11", and a value of 4 reserves "r13" through "r10". A value of 0, the

 default, does not reserve any registers.

 -msave-acc-in-interrupts

 Specifies that interrupt handler functions should preserve the accumulator

 register. This is only necessary if normal code might use the accumulator

 register, for example because it performs 64-bit multiplications. The default

 is to ignore the accumulator as this makes the interrupt handlers faster.

 -mpid

 -mno-pid

 Enables the generation of position independent data. When enabled any access Page 421/493

 to constant data is done via an offset from a base address held in a register.

 This allows the location of constant data to be determined at run time without

 requiring the executable to be relocated, which is a benefit to embedded

 applications with tight memory constraints. Data that can be modified is not

 affected by this option.

 Note, using this feature reserves a register, usually "r13", for the constant

 data base address. This can result in slower and/or larger code, especially in

 complicated functions.

 The actual register chosen to hold the constant data base address depends upon

 whether the -msmall-data-limit and/or the -mint-register command-line options

 are enabled. Starting with register "r13" and proceeding downwards, registers

 are allocated first to satisfy the requirements of -mint-register, then -mpid

 and finally -msmall-data-limit. Thus it is possible for the small data area

 register to be "r8" if both -mint-register=4 and -mpid are specified on the

 command line.

 By default this feature is not enabled. The default can be restored via the

 -mno-pid command-line option.

 -mno-warn-multiple-fast-interrupts

 -mwarn-multiple-fast-interrupts

 Prevents GCC from issuing a warning message if it finds more than one fast

 interrupt handler when it is compiling a file. The default is to issue a

 warning for each extra fast interrupt handler found, as the RX only supports

 one such interrupt.

 -mallow-string-insns

 -mno-allow-string-insns

 Enables or disables the use of the string manipulation instructions "SMOVF",

 "SCMPU", "SMOVB", "SMOVU", "SUNTIL" "SWHILE" and also the "RMPA" instruction.

 These instructions may prefetch data, which is not safe to do if accessing an

 I/O register. (See section 12.2.7 of the RX62N Group User's Manual for more

 information).

 The default is to allow these instructions, but it is not possible for GCC to

 reliably detect all circumstances where a string instruction might be used to

 access an I/O register, so their use cannot be disabled automatically. Instead Page 422/493

 it is reliant upon the programmer to use the -mno-allow-string-insns option if

 their program accesses I/O space.

 When the instructions are enabled GCC defines the C preprocessor symbol

 "__RX_ALLOW_STRING_INSNS__", otherwise it defines the symbol

 "__RX_DISALLOW_STRING_INSNS__".

 -mjsr

 -mno-jsr

 Use only (or not only) "JSR" instructions to access functions. This option can

 be used when code size exceeds the range of "BSR" instructions. Note that

 -mno-jsr does not mean to not use "JSR" but instead means that any type of

 branch may be used.

 Note: The generic GCC command-line option -ffixed-reg has special significance to

 the RX port when used with the "interrupt" function attribute. This attribute

 indicates a function intended to process fast interrupts. GCC ensures that it only

 uses the registers "r10", "r11", "r12" and/or "r13" and only provided that the

 normal use of the corresponding registers have been restricted via the -ffixed-reg

 or -mint-register command-line options.

 S/390 and zSeries Options

 These are the -m options defined for the S/390 and zSeries architecture.

 -mhard-float

 -msoft-float

 Use (do not use) the hardware floating-point instructions and registers for

 floating-point operations. When -msoft-float is specified, functions in

 libgcc.a are used to perform floating-point operations. When -mhard-float is

 specified, the compiler generates IEEE floating-point instructions. This is

 the default.

 -mhard-dfp

 -mno-hard-dfp

 Use (do not use) the hardware decimal-floating-point instructions for decimal-

 floating-point operations. When -mno-hard-dfp is specified, functions in

 libgcc.a are used to perform decimal-floating-point operations. When

 -mhard-dfp is specified, the compiler generates decimal-floating-point hardware

 instructions. This is the default for -march=z9-ec or higher. Page 423/493

 -mlong-double-64

 -mlong-double-128

 These switches control the size of "long double" type. A size of 64 bits makes

 the "long double" type equivalent to the "double" type. This is the default.

 -mbackchain

 -mno-backchain

 Store (do not store) the address of the caller's frame as backchain pointer

 into the callee's stack frame. A backchain may be needed to allow debugging

 using tools that do not understand DWARF call frame information. When

 -mno-packed-stack is in effect, the backchain pointer is stored at the bottom

 of the stack frame; when -mpacked-stack is in effect, the backchain is placed

 into the topmost word of the 96/160 byte register save area.

 In general, code compiled with -mbackchain is call-compatible with code

 compiled with -mmo-backchain; however, use of the backchain for debugging

 purposes usually requires that the whole binary is built with -mbackchain.

 Note that the combination of -mbackchain, -mpacked-stack and -mhard-float is

 not supported. In order to build a linux kernel use -msoft-float.

 The default is to not maintain the backchain.

 -mpacked-stack

 -mno-packed-stack

 Use (do not use) the packed stack layout. When -mno-packed-stack is specified,

 the compiler uses the all fields of the 96/160 byte register save area only for

 their default purpose; unused fields still take up stack space. When

 -mpacked-stack is specified, register save slots are densely packed at the top

 of the register save area; unused space is reused for other purposes, allowing

 for more efficient use of the available stack space. However, when -mbackchain

 is also in effect, the topmost word of the save area is always used to store

 the backchain, and the return address register is always saved two words below

 the backchain.

 As long as the stack frame backchain is not used, code generated with

 -mpacked-stack is call-compatible with code generated with -mno-packed-stack.

 Note that some non-FSF releases of GCC 2.95 for S/390 or zSeries generated code

 that uses the stack frame backchain at run time, not just for debugging Page 424/493

 purposes. Such code is not call-compatible with code compiled with

 -mpacked-stack. Also, note that the combination of -mbackchain, -mpacked-stack

 and -mhard-float is not supported. In order to build a linux kernel use

 -msoft-float.

 The default is to not use the packed stack layout.

 -msmall-exec

 -mno-small-exec

 Generate (or do not generate) code using the "bras" instruction to do

 subroutine calls. This only works reliably if the total executable size does

 not exceed 64k. The default is to use the "basr" instruction instead, which

 does not have this limitation.

 -m64

 -m31

 When -m31 is specified, generate code compliant to the GNU/Linux for S/390 ABI.

 When -m64 is specified, generate code compliant to the GNU/Linux for zSeries

 ABI. This allows GCC in particular to generate 64-bit instructions. For the

 s390 targets, the default is -m31, while the s390x targets default to -m64.

 -mzarch

 -mesa

 When -mzarch is specified, generate code using the instructions available on

 z/Architecture. When -mesa is specified, generate code using the instructions

 available on ESA/390. Note that -mesa is not possible with -m64. When

 generating code compliant to the GNU/Linux for S/390 ABI, the default is -mesa.

 When generating code compliant to the GNU/Linux for zSeries ABI, the default is

 -mzarch.

 -mhtm

 -mno-htm

 The -mhtm option enables a set of builtins making use of instructions available

 with the transactional execution facility introduced with the IBM zEnterprise

 EC12 machine generation S/390 System z Built-in Functions. -mhtm is enabled by

 default when using -march=zEC12.

 -mvx

 -mno-vx Page 425/493

 When -mvx is specified, generate code using the instructions available with the

 vector extension facility introduced with the IBM z13 machine generation. This

 option changes the ABI for some vector type values with regard to alignment and

 calling conventions. In case vector type values are being used in an ABI-

 relevant context a GAS .gnu_attribute command will be added to mark the

 resulting binary with the ABI used. -mvx is enabled by default when using

 -march=z13.

 -mzvector

 -mno-zvector

 The -mzvector option enables vector language extensions and builtins using

 instructions available with the vector extension facility introduced with the

 IBM z13 machine generation. This option adds support for vector to be used as

 a keyword to define vector type variables and arguments. vector is only

 available when GNU extensions are enabled. It will not be expanded when

 requesting strict standard compliance e.g. with -std=c99. In addition to the

 GCC low-level builtins -mzvector enables a set of builtins added for

 compatibility with AltiVec-style implementations like Power and Cell. In order

 to make use of these builtins the header file vecintrin.h needs to be included.

 -mzvector is disabled by default.

 -mmvcle

 -mno-mvcle

 Generate (or do not generate) code using the "mvcle" instruction to perform

 block moves. When -mno-mvcle is specified, use a "mvc" loop instead. This is

 the default unless optimizing for size.

 -mdebug

 -mno-debug

 Print (or do not print) additional debug information when compiling. The

 default is to not print debug information.

 -march=cpu-type

 Generate code that runs on cpu-type, which is the name of a system representing

 a certain processor type. Possible values for cpu-type are z900/arch5,

 z990/arch6, z9-109, z9-ec/arch7, z10/arch8, z196/arch9, zEC12, z13/arch11,

 z14/arch12, and native. Page 426/493

 The default is -march=z900. g5/arch3 and g6 are deprecated and will be removed

 with future releases.

 Specifying native as cpu type can be used to select the best architecture

 option for the host processor. -march=native has no effect if GCC does not

 recognize the processor.

 -mtune=cpu-type

 Tune to cpu-type everything applicable about the generated code, except for the

 ABI and the set of available instructions. The list of cpu-type values is the

 same as for -march. The default is the value used for -march.

 -mtpf-trace

 -mno-tpf-trace

 Generate code that adds (does not add) in TPF OS specific branches to trace

 routines in the operating system. This option is off by default, even when

 compiling for the TPF OS.

 -mfused-madd

 -mno-fused-madd

 Generate code that uses (does not use) the floating-point multiply and

 accumulate instructions. These instructions are generated by default if

 hardware floating point is used.

 -mwarn-framesize=framesize

 Emit a warning if the current function exceeds the given frame size. Because

 this is a compile-time check it doesn't need to be a real problem when the

 program runs. It is intended to identify functions that most probably cause a

 stack overflow. It is useful to be used in an environment with limited stack

 size e.g. the linux kernel.

 -mwarn-dynamicstack

 Emit a warning if the function calls "alloca" or uses dynamically-sized arrays.

 This is generally a bad idea with a limited stack size.

 -mstack-guard=stack-guard

 -mstack-size=stack-size

 If these options are provided the S/390 back end emits additional instructions

 in the function prologue that trigger a trap if the stack size is stack-guard

 bytes above the stack-size (remember that the stack on S/390 grows downward). Page 427/493

 If the stack-guard option is omitted the smallest power of 2 larger than the

 frame size of the compiled function is chosen. These options are intended to

 be used to help debugging stack overflow problems. The additionally emitted

 code causes only little overhead and hence can also be used in production-like

 systems without greater performance degradation. The given values have to be

 exact powers of 2 and stack-size has to be greater than stack-guard without

 exceeding 64k. In order to be efficient the extra code makes the assumption

 that the stack starts at an address aligned to the value given by stack-size.

 The stack-guard option can only be used in conjunction with stack-size.

 -mhotpatch=pre-halfwords,post-halfwords

 If the hotpatch option is enabled, a "hot-patching" function prologue is

 generated for all functions in the compilation unit. The funtion label is

 prepended with the given number of two-byte NOP instructions (pre-halfwords,

 maximum 1000000). After the label, 2 * post-halfwords bytes are appended,

 using the largest NOP like instructions the architecture allows (maximum

 1000000).

 If both arguments are zero, hotpatching is disabled.

 This option can be overridden for individual functions with the "hotpatch"

 attribute.

 Score Options

 These options are defined for Score implementations:

 -meb

 Compile code for big-endian mode. This is the default.

 -mel

 Compile code for little-endian mode.

 -mnhwloop

 Disable generation of "bcnz" instructions.

 -muls

 Enable generation of unaligned load and store instructions.

 -mmac

 Enable the use of multiply-accumulate instructions. Disabled by default.

 -mscore5

 Specify the SCORE5 as the target architecture. Page 428/493

 -mscore5u

 Specify the SCORE5U of the target architecture.

 -mscore7

 Specify the SCORE7 as the target architecture. This is the default.

 -mscore7d

 Specify the SCORE7D as the target architecture.

 SH Options

 These -m options are defined for the SH implementations:

 -m1 Generate code for the SH1.

 -m2 Generate code for the SH2.

 -m2e

 Generate code for the SH2e.

 -m2a-nofpu

 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way that

 the floating-point unit is not used.

 -m2a-single-only

 Generate code for the SH2a-FPU, in such a way that no double-precision

 floating-point operations are used.

 -m2a-single

 Generate code for the SH2a-FPU assuming the floating-point unit is in single-

 precision mode by default.

 -m2a

 Generate code for the SH2a-FPU assuming the floating-point unit is in double-

 precision mode by default.

 -m3 Generate code for the SH3.

 -m3e

 Generate code for the SH3e.

 -m4-nofpu

 Generate code for the SH4 without a floating-point unit.

 -m4-single-only

 Generate code for the SH4 with a floating-point unit that only supports single-

 precision arithmetic.

 -m4-single Page 429/493

 Generate code for the SH4 assuming the floating-point unit is in single-

 precision mode by default.

 -m4 Generate code for the SH4.

 -m4-100

 Generate code for SH4-100.

 -m4-100-nofpu

 Generate code for SH4-100 in such a way that the floating-point unit is not

 used.

 -m4-100-single

 Generate code for SH4-100 assuming the floating-point unit is in single-

 precision mode by default.

 -m4-100-single-only

 Generate code for SH4-100 in such a way that no double-precision floating-point

 operations are used.

 -m4-200

 Generate code for SH4-200.

 -m4-200-nofpu

 Generate code for SH4-200 without in such a way that the floating-point unit is

 not used.

 -m4-200-single

 Generate code for SH4-200 assuming the floating-point unit is in single-

 precision mode by default.

 -m4-200-single-only

 Generate code for SH4-200 in such a way that no double-precision floating-point

 operations are used.

 -m4-300

 Generate code for SH4-300.

 -m4-300-nofpu

 Generate code for SH4-300 without in such a way that the floating-point unit is

 not used.

 -m4-300-single

 Generate code for SH4-300 in such a way that no double-precision floating-point

 operations are used. Page 430/493

 -m4-300-single-only

 Generate code for SH4-300 in such a way that no double-precision floating-point

 operations are used.

 -m4-340

 Generate code for SH4-340 (no MMU, no FPU).

 -m4-500

 Generate code for SH4-500 (no FPU). Passes -isa=sh4-nofpu to the assembler.

 -m4a-nofpu

 Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-

 point unit is not used.

 -m4a-single-only

 Generate code for the SH4a, in such a way that no double-precision floating-

 point operations are used.

 -m4a-single

 Generate code for the SH4a assuming the floating-point unit is in single-

 precision mode by default.

 -m4a

 Generate code for the SH4a.

 -m4al

 Same as -m4a-nofpu, except that it implicitly passes -dsp to the assembler.

 GCC doesn't generate any DSP instructions at the moment.

 -mb Compile code for the processor in big-endian mode.

 -ml Compile code for the processor in little-endian mode.

 -mdalign

 Align doubles at 64-bit boundaries. Note that this changes the calling

 conventions, and thus some functions from the standard C library do not work

 unless you recompile it first with -mdalign.

 -mrelax

 Shorten some address references at link time, when possible; uses the linker

 option -relax.

 -mbigtable

 Use 32-bit offsets in "switch" tables. The default is to use 16-bit offsets.

 -mbitops Page 431/493

 Enable the use of bit manipulation instructions on SH2A.

 -mfmovd

 Enable the use of the instruction "fmovd". Check -mdalign for alignment

 constraints.

 -mrenesas

 Comply with the calling conventions defined by Renesas.

 -mno-renesas

 Comply with the calling conventions defined for GCC before the Renesas

 conventions were available. This option is the default for all targets of the

 SH toolchain.

 -mnomacsave

 Mark the "MAC" register as call-clobbered, even if -mrenesas is given.

 -mieee

 -mno-ieee

 Control the IEEE compliance of floating-point comparisons, which affects the

 handling of cases where the result of a comparison is unordered. By default

 -mieee is implicitly enabled. If -ffinite-math-only is enabled -mno-ieee is

 implicitly set, which results in faster floating-point greater-equal and less-

 equal comparisons. The implicit settings can be overridden by specifying

 either -mieee or -mno-ieee.

 -minline-ic_invalidate

 Inline code to invalidate instruction cache entries after setting up nested

 function trampolines. This option has no effect if -musermode is in effect and

 the selected code generation option (e.g. -m4) does not allow the use of the

 "icbi" instruction. If the selected code generation option does not allow the

 use of the "icbi" instruction, and -musermode is not in effect, the inlined

 code manipulates the instruction cache address array directly with an

 associative write. This not only requires privileged mode at run time, but it

 also fails if the cache line had been mapped via the TLB and has become

 unmapped.

 -misize

 Dump instruction size and location in the assembly code.

 -mpadstruct Page 432/493

 This option is deprecated. It pads structures to multiple of 4 bytes, which is

 incompatible with the SH ABI.

 -matomic-model=model

 Sets the model of atomic operations and additional parameters as a comma

 separated list. For details on the atomic built-in functions see __atomic

 Builtins. The following models and parameters are supported:

 none

 Disable compiler generated atomic sequences and emit library calls for

 atomic operations. This is the default if the target is not

 "sh*-*-linux*".

 soft-gusa

 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic

 built-in functions. The generated atomic sequences require additional

 support from the interrupt/exception handling code of the system and are

 only suitable for SH3* and SH4* single-core systems. This option is

 enabled by default when the target is "sh*-*-linux*" and SH3* or SH4*.

 When the target is SH4A, this option also partially utilizes the hardware

 atomic instructions "movli.l" and "movco.l" to create more efficient code,

 unless strict is specified.

 soft-tcb

 Generate software atomic sequences that use a variable in the thread

 control block. This is a variation of the gUSA sequences which can also be

 used on SH1* and SH2* targets. The generated atomic sequences require

 additional support from the interrupt/exception handling code of the system

 and are only suitable for single-core systems. When using this model, the

 gbr-offset= parameter has to be specified as well.

 soft-imask

 Generate software atomic sequences that temporarily disable interrupts by

 setting "SR.IMASK = 1111". This model works only when the program runs in

 privileged mode and is only suitable for single-core systems. Additional

 support from the interrupt/exception handling code of the system is not

 required. This model is enabled by default when the target is

 "sh*-*-linux*" and SH1* or SH2*. Page 433/493

 hard-llcs

 Generate hardware atomic sequences using the "movli.l" and "movco.l"

 instructions only. This is only available on SH4A and is suitable for

 multi-core systems. Since the hardware instructions support only 32 bit

 atomic variables access to 8 or 16 bit variables is emulated with 32 bit

 accesses. Code compiled with this option is also compatible with other

 software atomic model interrupt/exception handling systems if executed on

 an SH4A system. Additional support from the interrupt/exception handling

 code of the system is not required for this model.

 gbr-offset=

 This parameter specifies the offset in bytes of the variable in the thread

 control block structure that should be used by the generated atomic

 sequences when the soft-tcb model has been selected. For other models this

 parameter is ignored. The specified value must be an integer multiple of

 four and in the range 0-1020.

 strict

 This parameter prevents mixed usage of multiple atomic models, even if they

 are compatible, and makes the compiler generate atomic sequences of the

 specified model only.

 -mtas

 Generate the "tas.b" opcode for "__atomic_test_and_set". Notice that depending

 on the particular hardware and software configuration this can degrade overall

 performance due to the operand cache line flushes that are implied by the

 "tas.b" instruction. On multi-core SH4A processors the "tas.b" instruction

 must be used with caution since it can result in data corruption for certain

 cache configurations.

 -mprefergot

 When generating position-independent code, emit function calls using the Global

 Offset Table instead of the Procedure Linkage Table.

 -musermode

 -mno-usermode

 Don't allow (allow) the compiler generating privileged mode code. Specifying

 -musermode also implies -mno-inline-ic_invalidate if the inlined code would not Page 434/493

 work in user mode. -musermode is the default when the target is

 "sh*-*-linux*". If the target is SH1* or SH2* -musermode has no effect, since

 there is no user mode.

 -multcost=number

 Set the cost to assume for a multiply insn.

 -mdiv=strategy

 Set the division strategy to be used for integer division operations. strategy

 can be one of:

 call-div1

 Calls a library function that uses the single-step division instruction

 "div1" to perform the operation. Division by zero calculates an

 unspecified result and does not trap. This is the default except for SH4,

 SH2A and SHcompact.

 call-fp

 Calls a library function that performs the operation in double precision

 floating point. Division by zero causes a floating-point exception. This

 is the default for SHcompact with FPU. Specifying this for targets that do

 not have a double precision FPU defaults to "call-div1".

 call-table

 Calls a library function that uses a lookup table for small divisors and

 the "div1" instruction with case distinction for larger divisors. Division

 by zero calculates an unspecified result and does not trap. This is the

 default for SH4. Specifying this for targets that do not have dynamic

 shift instructions defaults to "call-div1".

 When a division strategy has not been specified the default strategy is

 selected based on the current target. For SH2A the default strategy is to use

 the "divs" and "divu" instructions instead of library function calls.

 -maccumulate-outgoing-args

 Reserve space once for outgoing arguments in the function prologue rather than

 around each call. Generally beneficial for performance and size. Also needed

 for unwinding to avoid changing the stack frame around conditional code.

 -mdivsi3_libfunc=name

 Set the name of the library function used for 32-bit signed division to name. Page 435/493

 This only affects the name used in the call division strategies, and the

 compiler still expects the same sets of input/output/clobbered registers as if

 this option were not present.

 -mfixed-range=register-range

 Generate code treating the given register range as fixed registers. A fixed

 register is one that the register allocator can not use. This is useful when

 compiling kernel code. A register range is specified as two registers

 separated by a dash. Multiple register ranges can be specified separated by a

 comma.

 -mbranch-cost=num

 Assume num to be the cost for a branch instruction. Higher numbers make the

 compiler try to generate more branch-free code if possible. If not specified

 the value is selected depending on the processor type that is being compiled

 for.

 -mzdcbranch

 -mno-zdcbranch

 Assume (do not assume) that zero displacement conditional branch instructions

 "bt" and "bf" are fast. If -mzdcbranch is specified, the compiler prefers zero

 displacement branch code sequences. This is enabled by default when generating

 code for SH4 and SH4A. It can be explicitly disabled by specifying

 -mno-zdcbranch.

 -mcbranch-force-delay-slot

 Force the usage of delay slots for conditional branches, which stuffs the delay

 slot with a "nop" if a suitable instruction cannot be found. By default this

 option is disabled. It can be enabled to work around hardware bugs as found in

 the original SH7055.

 -mfused-madd

 -mno-fused-madd

 Generate code that uses (does not use) the floating-point multiply and

 accumulate instructions. These instructions are generated by default if

 hardware floating point is used. The machine-dependent -mfused-madd option is

 now mapped to the machine-independent -ffp-contract=fast option, and

 -mno-fused-madd is mapped to -ffp-contract=off. Page 436/493

 -mfsca

 -mno-fsca

 Allow or disallow the compiler to emit the "fsca" instruction for sine and

 cosine approximations. The option -mfsca must be used in combination with

 -funsafe-math-optimizations. It is enabled by default when generating code for

 SH4A. Using -mno-fsca disables sine and cosine approximations even if

 -funsafe-math-optimizations is in effect.

 -mfsrra

 -mno-fsrra

 Allow or disallow the compiler to emit the "fsrra" instruction for reciprocal

 square root approximations. The option -mfsrra must be used in combination

 with -funsafe-math-optimizations and -ffinite-math-only. It is enabled by

 default when generating code for SH4A. Using -mno-fsrra disables reciprocal

 square root approximations even if -funsafe-math-optimizations and

 -ffinite-math-only are in effect.

 -mpretend-cmove

 Prefer zero-displacement conditional branches for conditional move instruction

 patterns. This can result in faster code on the SH4 processor.

 -mfdpic

 Generate code using the FDPIC ABI.

 Solaris 2 Options

 These -m options are supported on Solaris 2:

 -mclear-hwcap

 -mclear-hwcap tells the compiler to remove the hardware capabilities generated

 by the Solaris assembler. This is only necessary when object files use ISA

 extensions not supported by the current machine, but check at runtime whether

 or not to use them.

 -mimpure-text

 -mimpure-text, used in addition to -shared, tells the compiler to not pass -z

 text to the linker when linking a shared object. Using this option, you can

 link position-dependent code into a shared object.

 -mimpure-text suppresses the "relocations remain against allocatable but non-

 writable sections" linker error message. However, the necessary relocations Page 437/493

 trigger copy-on-write, and the shared object is not actually shared across

 processes. Instead of using -mimpure-text, you should compile all source code

 with -fpic or -fPIC.

 These switches are supported in addition to the above on Solaris 2:

 -pthreads

 This is a synonym for -pthread.

 SPARC Options

 These -m options are supported on the SPARC:

 -mno-app-regs

 -mapp-regs

 Specify -mapp-regs to generate output using the global registers 2 through 4,

 which the SPARC SVR4 ABI reserves for applications. Like the global register

 1, each global register 2 through 4 is then treated as an allocable register

 that is clobbered by function calls. This is the default.

 To be fully SVR4 ABI-compliant at the cost of some performance loss, specify

 -mno-app-regs. You should compile libraries and system software with this

 option.

 -mflat

 -mno-flat

 With -mflat, the compiler does not generate save/restore instructions and uses

 a "flat" or single register window model. This model is compatible with the

 regular register window model. The local registers and the input registers

 (0--5) are still treated as "call-saved" registers and are saved on the stack

 as needed.

 With -mno-flat (the default), the compiler generates save/restore instructions

 (except for leaf functions). This is the normal operating mode.

 -mfpu

 -mhard-float

 Generate output containing floating-point instructions. This is the default.

 -mno-fpu

 -msoft-float

 Generate output containing library calls for floating point. Warning: the

 requisite libraries are not available for all SPARC targets. Normally the Page 438/493

 facilities of the machine's usual C compiler are used, but this cannot be done

 directly in cross-compilation. You must make your own arrangements to provide

 suitable library functions for cross-compilation. The embedded targets

 sparc-*-aout and sparclite-*-* do provide software floating-point support.

 -msoft-float changes the calling convention in the output file; therefore, it

 is only useful if you compile all of a program with this option. In

 particular, you need to compile libgcc.a, the library that comes with GCC, with

 -msoft-float in order for this to work.

 -mhard-quad-float

 Generate output containing quad-word (long double) floating-point instructions.

 -msoft-quad-float

 Generate output containing library calls for quad-word (long double) floating-

 point instructions. The functions called are those specified in the SPARC ABI.

 This is the default.

 As of this writing, there are no SPARC implementations that have hardware

 support for the quad-word floating-point instructions. They all invoke a trap

 handler for one of these instructions, and then the trap handler emulates the

 effect of the instruction. Because of the trap handler overhead, this is much

 slower than calling the ABI library routines. Thus the -msoft-quad-float

 option is the default.

 -mno-unaligned-doubles

 -munaligned-doubles

 Assume that doubles have 8-byte alignment. This is the default.

 With -munaligned-doubles, GCC assumes that doubles have 8-byte alignment only

 if they are contained in another type, or if they have an absolute address.

 Otherwise, it assumes they have 4-byte alignment. Specifying this option

 avoids some rare compatibility problems with code generated by other compilers.

 It is not the default because it results in a performance loss, especially for

 floating-point code.

 -muser-mode

 -mno-user-mode

 Do not generate code that can only run in supervisor mode. This is relevant

 only for the "casa" instruction emitted for the LEON3 processor. This is the Page 439/493

 default.

 -mfaster-structs

 -mno-faster-structs

 With -mfaster-structs, the compiler assumes that structures should have 8-byte

 alignment. This enables the use of pairs of "ldd" and "std" instructions for

 copies in structure assignment, in place of twice as many "ld" and "st" pairs.

 However, the use of this changed alignment directly violates the SPARC ABI.

 Thus, it's intended only for use on targets where the developer acknowledges

 that their resulting code is not directly in line with the rules of the ABI.

 -mstd-struct-return

 -mno-std-struct-return

 With -mstd-struct-return, the compiler generates checking code in functions

 returning structures or unions to detect size mismatches between the two sides

 of function calls, as per the 32-bit ABI.

 The default is -mno-std-struct-return. This option has no effect in 64-bit

 mode.

 -mlra

 -mno-lra

 Enable Local Register Allocation. This is the default for SPARC since GCC 7 so

 -mno-lra needs to be passed to get old Reload.

 -mcpu=cpu_type

 Set the instruction set, register set, and instruction scheduling parameters

 for machine type cpu_type. Supported values for cpu_type are v7, cypress, v8,

 supersparc, hypersparc, leon, leon3, leon3v7, sparclite, f930, f934,

 sparclite86x, sparclet, tsc701, v9, ultrasparc, ultrasparc3, niagara, niagara2,

 niagara3, niagara4, niagara7 and m8.

 Native Solaris and GNU/Linux toolchains also support the value native, which

 selects the best architecture option for the host processor. -mcpu=native has

 no effect if GCC does not recognize the processor.

 Default instruction scheduling parameters are used for values that select an

 architecture and not an implementation. These are v7, v8, sparclite, sparclet,

 v9.

 Here is a list of each supported architecture and their supported Page 440/493

 implementations.

 v7 cypress, leon3v7

 v8 supersparc, hypersparc, leon, leon3

 sparclite

 f930, f934, sparclite86x

 sparclet

 tsc701

 v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4, niagara7,

 m8

 By default (unless configured otherwise), GCC generates code for the V7 variant

 of the SPARC architecture. With -mcpu=cypress, the compiler additionally

 optimizes it for the Cypress CY7C602 chip, as used in the

 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older

 SPARCStation 1, 2, IPX etc.

 With -mcpu=v8, GCC generates code for the V8 variant of the SPARC architecture.

 The only difference from V7 code is that the compiler emits the integer

 multiply and integer divide instructions which exist in SPARC-V8 but not in

 SPARC-V7. With -mcpu=supersparc, the compiler additionally optimizes it for

 the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series.

 With -mcpu=sparclite, GCC generates code for the SPARClite variant of the SPARC

 architecture. This adds the integer multiply, integer divide step and scan

 ("ffs") instructions which exist in SPARClite but not in SPARC-V7. With

 -mcpu=f930, the compiler additionally optimizes it for the Fujitsu MB86930

 chip, which is the original SPARClite, with no FPU. With -mcpu=f934, the

 compiler additionally optimizes it for the Fujitsu MB86934 chip, which is the

 more recent SPARClite with FPU.

 With -mcpu=sparclet, GCC generates code for the SPARClet variant of the SPARC

 architecture. This adds the integer multiply, multiply/accumulate, integer

 divide step and scan ("ffs") instructions which exist in SPARClet but not in

 SPARC-V7. With -mcpu=tsc701, the compiler additionally optimizes it for the

 TEMIC SPARClet chip.

 With -mcpu=v9, GCC generates code for the V9 variant of the SPARC architecture.

 This adds 64-bit integer and floating-point move instructions, 3 additional Page 441/493

 floating-point condition code registers and conditional move instructions.

 With -mcpu=ultrasparc, the compiler additionally optimizes it for the Sun

 UltraSPARC I/II/IIi chips. With -mcpu=ultrasparc3, the compiler additionally

 optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With

 -mcpu=niagara, the compiler additionally optimizes it for Sun UltraSPARC T1

 chips. With -mcpu=niagara2, the compiler additionally optimizes it for Sun

 UltraSPARC T2 chips. With -mcpu=niagara3, the compiler additionally optimizes

 it for Sun UltraSPARC T3 chips. With -mcpu=niagara4, the compiler additionally

 optimizes it for Sun UltraSPARC T4 chips. With -mcpu=niagara7, the compiler

 additionally optimizes it for Oracle SPARC M7 chips. With -mcpu=m8, the

 compiler additionally optimizes it for Oracle M8 chips.

 -mtune=cpu_type

 Set the instruction scheduling parameters for machine type cpu_type, but do not

 set the instruction set or register set that the option -mcpu=cpu_type does.

 The same values for -mcpu=cpu_type can be used for -mtune=cpu_type, but the

 only useful values are those that select a particular CPU implementation.

 Those are cypress, supersparc, hypersparc, leon, leon3, leon3v7, f930, f934,

 sparclite86x, tsc701, ultrasparc, ultrasparc3, niagara, niagara2, niagara3,

 niagara4, niagara7 and m8. With native Solaris and GNU/Linux toolchains,

 native can also be used.

 -mv8plus

 -mno-v8plus

 With -mv8plus, GCC generates code for the SPARC-V8+ ABI. The difference from

 the V8 ABI is that the global and out registers are considered 64 bits wide.

 This is enabled by default on Solaris in 32-bit mode for all SPARC-V9

 processors.

 -mvis

 -mno-vis

 With -mvis, GCC generates code that takes advantage of the UltraSPARC Visual

 Instruction Set extensions. The default is -mno-vis.

 -mvis2

 -mno-vis2

 With -mvis2, GCC generates code that takes advantage of version 2.0 of the Page 442/493

 UltraSPARC Visual Instruction Set extensions. The default is -mvis2 when

 targeting a cpu that supports such instructions, such as UltraSPARC-III and

 later. Setting -mvis2 also sets -mvis.

 -mvis3

 -mno-vis3

 With -mvis3, GCC generates code that takes advantage of version 3.0 of the

 UltraSPARC Visual Instruction Set extensions. The default is -mvis3 when

 targeting a cpu that supports such instructions, such as niagara-3 and later.

 Setting -mvis3 also sets -mvis2 and -mvis.

 -mvis4

 -mno-vis4

 With -mvis4, GCC generates code that takes advantage of version 4.0 of the

 UltraSPARC Visual Instruction Set extensions. The default is -mvis4 when

 targeting a cpu that supports such instructions, such as niagara-7 and later.

 Setting -mvis4 also sets -mvis3, -mvis2 and -mvis.

 -mvis4b

 -mno-vis4b

 With -mvis4b, GCC generates code that takes advantage of version 4.0 of the

 UltraSPARC Visual Instruction Set extensions, plus the additional VIS

 instructions introduced in the Oracle SPARC Architecture 2017. The default is

 -mvis4b when targeting a cpu that supports such instructions, such as m8 and

 later. Setting -mvis4b also sets -mvis4, -mvis3, -mvis2 and -mvis.

 -mcbcond

 -mno-cbcond

 With -mcbcond, GCC generates code that takes advantage of the UltraSPARC

 Compare-and-Branch-on-Condition instructions. The default is -mcbcond when

 targeting a CPU that supports such instructions, such as Niagara-4 and later.

 -mfmaf

 -mno-fmaf

 With -mfmaf, GCC generates code that takes advantage of the UltraSPARC Fused

 Multiply-Add Floating-point instructions. The default is -mfmaf when targeting

 a CPU that supports such instructions, such as Niagara-3 and later.

 -mfsmuld Page 443/493

 -mno-fsmuld

 With -mfsmuld, GCC generates code that takes advantage of the Floating-point

 Multiply Single to Double (FsMULd) instruction. The default is -mfsmuld when

 targeting a CPU supporting the architecture versions V8 or V9 with FPU except

 -mcpu=leon.

 -mpopc

 -mno-popc

 With -mpopc, GCC generates code that takes advantage of the UltraSPARC

 Population Count instruction. The default is -mpopc when targeting a CPU that

 supports such an instruction, such as Niagara-2 and later.

 -msubxc

 -mno-subxc

 With -msubxc, GCC generates code that takes advantage of the UltraSPARC

 Subtract-Extended-with-Carry instruction. The default is -msubxc when

 targeting a CPU that supports such an instruction, such as Niagara-7 and later.

 -mfix-at697f

 Enable the documented workaround for the single erratum of the Atmel AT697F

 processor (which corresponds to erratum #13 of the AT697E processor).

 -mfix-ut699

 Enable the documented workarounds for the floating-point errata and the data

 cache nullify errata of the UT699 processor.

 -mfix-ut700

 Enable the documented workaround for the back-to-back store errata of the

 UT699E/UT700 processor.

 -mfix-gr712rc

 Enable the documented workaround for the back-to-back store errata of the

 GR712RC processor.

 These -m options are supported in addition to the above on SPARC-V9 processors in

 64-bit environments:

 -m32

 -m64

 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

 int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits Page 444/493

 and long and pointer to 64 bits.

 -mcmodel=which

 Set the code model to one of

 medlow

 The Medium/Low code model: 64-bit addresses, programs must be linked in the

 low 32 bits of memory. Programs can be statically or dynamically linked.

 medmid

 The Medium/Middle code model: 64-bit addresses, programs must be linked in

 the low 44 bits of memory, the text and data segments must be less than 2GB

 in size and the data segment must be located within 2GB of the text

 segment.

 medany

 The Medium/Anywhere code model: 64-bit addresses, programs may be linked

 anywhere in memory, the text and data segments must be less than 2GB in

 size and the data segment must be located within 2GB of the text segment.

 embmedany

 The Medium/Anywhere code model for embedded systems: 64-bit addresses, the

 text and data segments must be less than 2GB in size, both starting

 anywhere in memory (determined at link time). The global register %g4

 points to the base of the data segment. Programs are statically linked and

 PIC is not supported.

 -mmemory-model=mem-model

 Set the memory model in force on the processor to one of

 default

 The default memory model for the processor and operating system.

 rmo Relaxed Memory Order

 pso Partial Store Order

 tso Total Store Order

 sc Sequential Consistency

 These memory models are formally defined in Appendix D of the SPARC-V9

 architecture manual, as set in the processor's "PSTATE.MM" field.

 -mstack-bias

 -mno-stack-bias Page 445/493

 With -mstack-bias, GCC assumes that the stack pointer, and frame pointer if

 present, are offset by -2047 which must be added back when making stack frame

 references. This is the default in 64-bit mode. Otherwise, assume no such

 offset is present.

 SPU Options

 These -m options are supported on the SPU:

 -mwarn-reloc

 -merror-reloc

 The loader for SPU does not handle dynamic relocations. By default, GCC gives

 an error when it generates code that requires a dynamic relocation.

 -mno-error-reloc disables the error, -mwarn-reloc generates a warning instead.

 -msafe-dma

 -munsafe-dma

 Instructions that initiate or test completion of DMA must not be reordered with

 respect to loads and stores of the memory that is being accessed. With

 -munsafe-dma you must use the "volatile" keyword to protect memory accesses,

 but that can lead to inefficient code in places where the memory is known to

 not change. Rather than mark the memory as volatile, you can use -msafe-dma to

 tell the compiler to treat the DMA instructions as potentially affecting all

 memory.

 -mbranch-hints

 By default, GCC generates a branch hint instruction to avoid pipeline stalls

 for always-taken or probably-taken branches. A hint is not generated closer

 than 8 instructions away from its branch. There is little reason to disable

 them, except for debugging purposes, or to make an object a little bit smaller.

 -msmall-mem

 -mlarge-mem

 By default, GCC generates code assuming that addresses are never larger than 18

 bits. With -mlarge-mem code is generated that assumes a full 32-bit address.

 -mstdmain

 By default, GCC links against startup code that assumes the SPU-style main

 function interface (which has an unconventional parameter list). With

 -mstdmain, GCC links your program against startup code that assumes a C99-style Page 446/493

 interface to "main", including a local copy of "argv" strings.

 -mfixed-range=register-range

 Generate code treating the given register range as fixed registers. A fixed

 register is one that the register allocator cannot use. This is useful when

 compiling kernel code. A register range is specified as two registers

 separated by a dash. Multiple register ranges can be specified separated by a

 comma.

 -mea32

 -mea64

 Compile code assuming that pointers to the PPU address space accessed via the

 "__ea" named address space qualifier are either 32 or 64 bits wide. The

 default is 32 bits. As this is an ABI-changing option, all object code in an

 executable must be compiled with the same setting.

 -maddress-space-conversion

 -mno-address-space-conversion

 Allow/disallow treating the "__ea" address space as superset of the generic

 address space. This enables explicit type casts between "__ea" and generic

 pointer as well as implicit conversions of generic pointers to "__ea" pointers.

 The default is to allow address space pointer conversions.

 -mcache-size=cache-size

 This option controls the version of libgcc that the compiler links to an

 executable and selects a software-managed cache for accessing variables in the

 "__ea" address space with a particular cache size. Possible options for cache-

 size are 8, 16, 32, 64 and 128. The default cache size is 64KB.

 -matomic-updates

 -mno-atomic-updates

 This option controls the version of libgcc that the compiler links to an

 executable and selects whether atomic updates to the software-managed cache of

 PPU-side variables are used. If you use atomic updates, changes to a PPU

 variable from SPU code using the "__ea" named address space qualifier do not

 interfere with changes to other PPU variables residing in the same cache line

 from PPU code. If you do not use atomic updates, such interference may occur;

 however, writing back cache lines is more efficient. The default behavior is Page 447/493

 to use atomic updates.

 -mdual-nops

 -mdual-nops=n

 By default, GCC inserts NOPs to increase dual issue when it expects it to

 increase performance. n can be a value from 0 to 10. A smaller n inserts

 fewer NOPs. 10 is the default, 0 is the same as -mno-dual-nops. Disabled with

 -Os.

 -mhint-max-nops=n

 Maximum number of NOPs to insert for a branch hint. A branch hint must be at

 least 8 instructions away from the branch it is affecting. GCC inserts up to n

 NOPs to enforce this, otherwise it does not generate the branch hint.

 -mhint-max-distance=n

 The encoding of the branch hint instruction limits the hint to be within 256

 instructions of the branch it is affecting. By default, GCC makes sure it is

 within 125.

 -msafe-hints

 Work around a hardware bug that causes the SPU to stall indefinitely. By

 default, GCC inserts the "hbrp" instruction to make sure this stall won't

 happen.

 Options for System V

 These additional options are available on System V Release 4 for compatibility with

 other compilers on those systems:

 -G Create a shared object. It is recommended that -symbolic or -shared be used

 instead.

 -Qy Identify the versions of each tool used by the compiler, in a ".ident"

 assembler directive in the output.

 -Qn Refrain from adding ".ident" directives to the output file (this is the

 default).

 -YP,dirs

 Search the directories dirs, and no others, for libraries specified with -l.

 -Ym,dir

 Look in the directory dir to find the M4 preprocessor. The assembler uses this

 option. Page 448/493

 TILE-Gx Options

 These -m options are supported on the TILE-Gx:

 -mcmodel=small

 Generate code for the small model. The distance for direct calls is limited to

 500M in either direction. PC-relative addresses are 32 bits. Absolute

 addresses support the full address range.

 -mcmodel=large

 Generate code for the large model. There is no limitation on call distance,

 pc-relative addresses, or absolute addresses.

 -mcpu=name

 Selects the type of CPU to be targeted. Currently the only supported type is

 tilegx.

 -m32

 -m64

 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

 int, long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits

 and long and pointer to 64 bits.

 -mbig-endian

 -mlittle-endian

 Generate code in big/little endian mode, respectively.

 TILEPro Options

 These -m options are supported on the TILEPro:

 -mcpu=name

 Selects the type of CPU to be targeted. Currently the only supported type is

 tilepro.

 -m32

 Generate code for a 32-bit environment, which sets int, long, and pointer to 32

 bits. This is the only supported behavior so the flag is essentially ignored.

 V850 Options

 These -m options are defined for V850 implementations:

 -mlong-calls

 -mno-long-calls

 Treat all calls as being far away (near). If calls are assumed to be far away, Page 449/493

 the compiler always loads the function's address into a register, and calls

 indirect through the pointer.

 -mno-ep

 -mep

 Do not optimize (do optimize) basic blocks that use the same index pointer 4 or

 more times to copy pointer into the "ep" register, and use the shorter "sld"

 and "sst" instructions. The -mep option is on by default if you optimize.

 -mno-prolog-function

 -mprolog-function

 Do not use (do use) external functions to save and restore registers at the

 prologue and epilogue of a function. The external functions are slower, but

 use less code space if more than one function saves the same number of

 registers. The -mprolog-function option is on by default if you optimize.

 -mspace

 Try to make the code as small as possible. At present, this just turns on the

 -mep and -mprolog-function options.

 -mtda=n

 Put static or global variables whose size is n bytes or less into the tiny data

 area that register "ep" points to. The tiny data area can hold up to 256 bytes

 in total (128 bytes for byte references).

 -msda=n

 Put static or global variables whose size is n bytes or less into the small

 data area that register "gp" points to. The small data area can hold up to 64

 kilobytes.

 -mzda=n

 Put static or global variables whose size is n bytes or less into the first 32

 kilobytes of memory.

 -mv850

 Specify that the target processor is the V850.

 -mv850e3v5

 Specify that the target processor is the V850E3V5. The preprocessor constant

 "__v850e3v5__" is defined if this option is used.

 -mv850e2v4 Page 450/493

 Specify that the target processor is the V850E3V5. This is an alias for the

 -mv850e3v5 option.

 -mv850e2v3

 Specify that the target processor is the V850E2V3. The preprocessor constant

 "__v850e2v3__" is defined if this option is used.

 -mv850e2

 Specify that the target processor is the V850E2. The preprocessor constant

 "__v850e2__" is defined if this option is used.

 -mv850e1

 Specify that the target processor is the V850E1. The preprocessor constants

 "__v850e1__" and "__v850e__" are defined if this option is used.

 -mv850es

 Specify that the target processor is the V850ES. This is an alias for the

 -mv850e1 option.

 -mv850e

 Specify that the target processor is the V850E. The preprocessor constant

 "__v850e__" is defined if this option is used.

 If neither -mv850 nor -mv850e nor -mv850e1 nor -mv850e2 nor -mv850e2v3 nor

 -mv850e3v5 are defined then a default target processor is chosen and the

 relevant __v850*__ preprocessor constant is defined.

 The preprocessor constants "__v850" and "__v851__" are always defined,

 regardless of which processor variant is the target.

 -mdisable-callt

 -mno-disable-callt

 This option suppresses generation of the "CALLT" instruction for the v850e,

 v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture.

 This option is enabled by default when the RH850 ABI is in use (see

 -mrh850-abi), and disabled by default when the GCC ABI is in use. If "CALLT"

 instructions are being generated then the C preprocessor symbol

 "__V850_CALLT__" is defined.

 -mrelax

 -mno-relax

 Pass on (or do not pass on) the -mrelax command-line option to the assembler. Page 451/493

 -mlong-jumps

 -mno-long-jumps

 Disable (or re-enable) the generation of PC-relative jump instructions.

 -msoft-float

 -mhard-float

 Disable (or re-enable) the generation of hardware floating point instructions.

 This option is only significant when the target architecture is V850E2V3 or

 higher. If hardware floating point instructions are being generated then the C

 preprocessor symbol "__FPU_OK__" is defined, otherwise the symbol "__NO_FPU__"

 is defined.

 -mloop

 Enables the use of the e3v5 LOOP instruction. The use of this instruction is

 not enabled by default when the e3v5 architecture is selected because its use

 is still experimental.

 -mrh850-abi

 -mghs

 Enables support for the RH850 version of the V850 ABI. This is the default.

 With this version of the ABI the following rules apply:

 * Integer sized structures and unions are returned via a memory pointer

 rather than a register.

 * Large structures and unions (more than 8 bytes in size) are passed by

 value.

 * Functions are aligned to 16-bit boundaries.

 * The -m8byte-align command-line option is supported.

 * The -mdisable-callt command-line option is enabled by default. The

 -mno-disable-callt command-line option is not supported.

 When this version of the ABI is enabled the C preprocessor symbol

 "__V850_RH850_ABI__" is defined.

 -mgcc-abi

 Enables support for the old GCC version of the V850 ABI. With this version of

 the ABI the following rules apply:

 * Integer sized structures and unions are returned in register "r10".

 * Large structures and unions (more than 8 bytes in size) are passed by Page 452/493

 reference.

 * Functions are aligned to 32-bit boundaries, unless optimizing for size.

 * The -m8byte-align command-line option is not supported.

 * The -mdisable-callt command-line option is supported but not enabled by

 default.

 When this version of the ABI is enabled the C preprocessor symbol

 "__V850_GCC_ABI__" is defined.

 -m8byte-align

 -mno-8byte-align

 Enables support for "double" and "long long" types to be aligned on 8-byte

 boundaries. The default is to restrict the alignment of all objects to at most

 4-bytes. When -m8byte-align is in effect the C preprocessor symbol

 "__V850_8BYTE_ALIGN__" is defined.

 -mbig-switch

 Generate code suitable for big switch tables. Use this option only if the

 assembler/linker complain about out of range branches within a switch table.

 -mapp-regs

 This option causes r2 and r5 to be used in the code generated by the compiler.

 This setting is the default.

 -mno-app-regs

 This option causes r2 and r5 to be treated as fixed registers.

 VAX Options

 These -m options are defined for the VAX:

 -munix

 Do not output certain jump instructions ("aobleq" and so on) that the Unix

 assembler for the VAX cannot handle across long ranges.

 -mgnu

 Do output those jump instructions, on the assumption that the GNU assembler is

 being used.

 -mg Output code for G-format floating-point numbers instead of D-format.

 Visium Options

 -mdebug

 A program which performs file I/O and is destined to run on an MCM target Page 453/493

 should be linked with this option. It causes the libraries libc.a and

 libdebug.a to be linked. The program should be run on the target under the

 control of the GDB remote debugging stub.

 -msim

 A program which performs file I/O and is destined to run on the simulator

 should be linked with option. This causes libraries libc.a and libsim.a to be

 linked.

 -mfpu

 -mhard-float

 Generate code containing floating-point instructions. This is the default.

 -mno-fpu

 -msoft-float

 Generate code containing library calls for floating-point.

 -msoft-float changes the calling convention in the output file; therefore, it

 is only useful if you compile all of a program with this option. In

 particular, you need to compile libgcc.a, the library that comes with GCC, with

 -msoft-float in order for this to work.

 -mcpu=cpu_type

 Set the instruction set, register set, and instruction scheduling parameters

 for machine type cpu_type. Supported values for cpu_type are mcm, gr5 and gr6.

 mcm is a synonym of gr5 present for backward compatibility.

 By default (unless configured otherwise), GCC generates code for the GR5

 variant of the Visium architecture.

 With -mcpu=gr6, GCC generates code for the GR6 variant of the Visium

 architecture. The only difference from GR5 code is that the compiler will

 generate block move instructions.

 -mtune=cpu_type

 Set the instruction scheduling parameters for machine type cpu_type, but do not

 set the instruction set or register set that the option -mcpu=cpu_type would.

 -msv-mode

 Generate code for the supervisor mode, where there are no restrictions on the

 access to general registers. This is the default.

 -muser-mode Page 454/493

 Generate code for the user mode, where the access to some general registers is

 forbidden: on the GR5, registers r24 to r31 cannot be accessed in this mode; on

 the GR6, only registers r29 to r31 are affected.

 VMS Options

 These -m options are defined for the VMS implementations:

 -mvms-return-codes

 Return VMS condition codes from "main". The default is to return POSIX-style

 condition (e.g. error) codes.

 -mdebug-main=prefix

 Flag the first routine whose name starts with prefix as the main routine for

 the debugger.

 -mmalloc64

 Default to 64-bit memory allocation routines.

 -mpointer-size=size

 Set the default size of pointers. Possible options for size are 32 or short for

 32 bit pointers, 64 or long for 64 bit pointers, and no for supporting only 32

 bit pointers. The later option disables "pragma pointer_size".

 VxWorks Options

 The options in this section are defined for all VxWorks targets. Options specific

 to the target hardware are listed with the other options for that target.

 -mrtp

 GCC can generate code for both VxWorks kernels and real time processes (RTPs).

 This option switches from the former to the latter. It also defines the

 preprocessor macro "__RTP__".

 -non-static

 Link an RTP executable against shared libraries rather than static libraries.

 The options -static and -shared can also be used for RTPs; -static is the

 default.

 -Bstatic

 -Bdynamic

 These options are passed down to the linker. They are defined for

 compatibility with Diab.

 -Xbind-lazy Page 455/493

 Enable lazy binding of function calls. This option is equivalent to -Wl,-z,now

 and is defined for compatibility with Diab.

 -Xbind-now

 Disable lazy binding of function calls. This option is the default and is

 defined for compatibility with Diab.

 x86 Options

 These -m options are defined for the x86 family of computers.

 -march=cpu-type

 Generate instructions for the machine type cpu-type. In contrast to

 -mtune=cpu-type, which merely tunes the generated code for the specified cpu-

 type, -march=cpu-type allows GCC to generate code that may not run at all on

 processors other than the one indicated. Specifying -march=cpu-type implies

 -mtune=cpu-type.

 The choices for cpu-type are:

 native

 This selects the CPU to generate code for at compilation time by

 determining the processor type of the compiling machine. Using

 -march=native enables all instruction subsets supported by the local

 machine (hence the result might not run on different machines). Using

 -mtune=native produces code optimized for the local machine under the

 constraints of the selected instruction set.

 i386

 Original Intel i386 CPU.

 i486

 Intel i486 CPU. (No scheduling is implemented for this chip.)

 i586

 pentium

 Intel Pentium CPU with no MMX support.

 lakemont

 Intel Lakemont MCU, based on Intel Pentium CPU.

 pentium-mmx

 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set

 support. Page 456/493

 pentiumpro

 Intel Pentium Pro CPU.

 i686

 When used with -march, the Pentium Pro instruction set is used, so the code

 runs on all i686 family chips. When used with -mtune, it has the same

 meaning as generic.

 pentium2

 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set

 support.

 pentium3

 pentium3m

 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE

 instruction set support.

 pentium-m

 Intel Pentium M; low-power version of Intel Pentium III CPU with MMX, SSE

 and SSE2 instruction set support. Used by Centrino notebooks.

 pentium4

 pentium4m

 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.

 prescott

 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3

 instruction set support.

 nocona

 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,

 SSE2 and SSE3 instruction set support.

 core2

 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3

 instruction set support.

 nehalem

 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2 and POPCNT instruction set support.

 westmere

 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, Page 457/493

 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.

 sandybridge

 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.

 ivybridge

 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,

 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C

 instruction set support.

 haswell

 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND,

 FMA, BMI, BMI2 and F16C instruction set support.

 broadwell

 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND,

 FMA, BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.

 skylake

 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND,

 FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and

 XSAVES instruction set support.

 bonnell

 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and

 SSSE3 instruction set support.

 silvermont

 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set

 support.

 knl Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,

 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE,

 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF,

 AVX512ER and AVX512CD instruction set support.

 skylake-avx512 Page 458/493

 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,

 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,

 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,

 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set

 support.

 k6 AMD K6 CPU with MMX instruction set support.

 k6-2

 k6-3

 Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set

 support.

 athlon

 athlon-tbird

 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch

 instructions support.

 athlon-4

 athlon-xp

 athlon-mp

 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE

 instruction set support.

 k8

 opteron

 athlon64

 athlon-fx

 Processors based on the AMD K8 core with x86-64 instruction set support,

 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors. (This

 supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction

 set extensions.)

 k8-sse3

 opteron-sse3

 athlon64-sse3

 Improved versions of AMD K8 cores with SSE3 instruction set support.

 amdfam10

 barcelona Page 459/493

 CPUs based on AMD Family 10h cores with x86-64 instruction set support.

 (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM

 and 64-bit instruction set extensions.)

 bdver1

 CPUs based on AMD Family 15h cores with x86-64 instruction set support.

 (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2,

 SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set

 extensions.)

 bdver2

 AMD Family 15h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16,

 MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit

 instruction set extensions.)

 bdver3

 AMD Family 15h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, PCL_MUL,

 CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit

 instruction set extensions.

 bdver4

 AMD Family 15h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,

 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,

 SSE4.2, ABM and 64-bit instruction set extensions.

 znver1

 AMD Family 17h core based CPUs with x86-64 instruction set support. (This

 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,

 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,

 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit

 instruction set extensions.

 btver1

 CPUs based on AMD Family 14h cores with x86-64 instruction set support.

 (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit

 instruction set extensions.) Page 460/493

 btver2

 CPUs based on AMD Family 16h cores with x86-64 instruction set support.

 This includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16,

 ABM, SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set

 extensions.

 winchip-c6

 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX

 instruction set support.

 winchip2

 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!

 instruction set support.

 c3 VIA C3 CPU with MMX and 3DNow! instruction set support. (No scheduling is

 implemented for this chip.)

 c3-2

 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support. (No

 scheduling is implemented for this chip.)

 c7 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.

 (No scheduling is implemented for this chip.)

 samuel-2

 VIA Eden Samuel 2 CPU with MMX and 3DNow! instruction set support. (No

 scheduling is implemented for this chip.)

 nehemiah

 VIA Eden Nehemiah CPU with MMX and SSE instruction set support. (No

 scheduling is implemented for this chip.)

 esther

 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.

 (No scheduling is implemented for this chip.)

 eden-x2

 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set

 support. (No scheduling is implemented for this chip.)

 eden-x4

 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,

 AVX and AVX2 instruction set support. (No scheduling is implemented for Page 461/493

 this chip.)

 nano

 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3

 instruction set support. (No scheduling is implemented for this chip.)

 nano-1000

 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3 instruction

 set support. (No scheduling is implemented for this chip.)

 nano-2000

 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3 instruction

 set support. (No scheduling is implemented for this chip.)

 nano-3000

 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1

 instruction set support. (No scheduling is implemented for this chip.)

 nano-x2

 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1

 instruction set support. (No scheduling is implemented for this chip.)

 nano-x4

 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1

 instruction set support. (No scheduling is implemented for this chip.)

 geode

 AMD Geode embedded processor with MMX and 3DNow! instruction set support.

 -mtune=cpu-type

 Tune to cpu-type everything applicable about the generated code, except for the

 ABI and the set of available instructions. While picking a specific cpu-type

 schedules things appropriately for that particular chip, the compiler does not

 generate any code that cannot run on the default machine type unless you use a

 -march=cpu-type option. For example, if GCC is configured for

 i686-pc-linux-gnu then -mtune=pentium4 generates code that is tuned for Pentium

 4 but still runs on i686 machines.

 The choices for cpu-type are the same as for -march. In addition, -mtune

 supports 2 extra choices for cpu-type:

 generic

 Produce code optimized for the most common IA32/AMD64/EM64T processors. If Page 462/493

 you know the CPU on which your code will run, then you should use the

 corresponding -mtune or -march option instead of -mtune=generic. But, if

 you do not know exactly what CPU users of your application will have, then

 you should use this option.

 As new processors are deployed in the marketplace, the behavior of this

 option will change. Therefore, if you upgrade to a newer version of GCC,

 code generation controlled by this option will change to reflect the

 processors that are most common at the time that version of GCC is

 released.

 There is no -march=generic option because -march indicates the instruction

 set the compiler can use, and there is no generic instruction set

 applicable to all processors. In contrast, -mtune indicates the processor

 (or, in this case, collection of processors) for which the code is

 optimized.

 intel

 Produce code optimized for the most current Intel processors, which are

 Haswell and Silvermont for this version of GCC. If you know the CPU on

 which your code will run, then you should use the corresponding -mtune or

 -march option instead of -mtune=intel. But, if you want your application

 performs better on both Haswell and Silvermont, then you should use this

 option.

 As new Intel processors are deployed in the marketplace, the behavior of

 this option will change. Therefore, if you upgrade to a newer version of

 GCC, code generation controlled by this option will change to reflect the

 most current Intel processors at the time that version of GCC is released.

 There is no -march=intel option because -march indicates the instruction

 set the compiler can use, and there is no common instruction set applicable

 to all processors. In contrast, -mtune indicates the processor (or, in

 this case, collection of processors) for which the code is optimized.

 -mcpu=cpu-type

 A deprecated synonym for -mtune.

 -mfpmath=unit

 Generate floating-point arithmetic for selected unit unit. The choices for Page 463/493

 unit are:

 387 Use the standard 387 floating-point coprocessor present on the majority of

 chips and emulated otherwise. Code compiled with this option runs almost

 everywhere. The temporary results are computed in 80-bit precision instead

 of the precision specified by the type, resulting in slightly different

 results compared to most of other chips. See -ffloat-store for more

 detailed description.

 This is the default choice for non-Darwin x86-32 targets.

 sse Use scalar floating-point instructions present in the SSE instruction set.

 This instruction set is supported by Pentium III and newer chips, and in

 the AMD line by Athlon-4, Athlon XP and Athlon MP chips. The earlier

 version of the SSE instruction set supports only single-precision

 arithmetic, thus the double and extended-precision arithmetic are still

 done using 387. A later version, present only in Pentium 4 and AMD x86-64

 chips, supports double-precision arithmetic too.

 For the x86-32 compiler, you must use -march=cpu-type, -msse or -msse2

 switches to enable SSE extensions and make this option effective. For the

 x86-64 compiler, these extensions are enabled by default.

 The resulting code should be considerably faster in the majority of cases

 and avoid the numerical instability problems of 387 code, but may break

 some existing code that expects temporaries to be 80 bits.

 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,

 and the default choice for x86-32 targets with the SSE2 instruction set

 when -ffast-math is enabled.

 sse,387

 sse+387

 both

 Attempt to utilize both instruction sets at once. This effectively doubles

 the amount of available registers, and on chips with separate execution

 units for 387 and SSE the execution resources too. Use this option with

 care, as it is still experimental, because the GCC register allocator does

 not model separate functional units well, resulting in unstable

 performance. Page 464/493

 -masm=dialect

 Output assembly instructions using selected dialect. Also affects which

 dialect is used for basic "asm" and extended "asm". Supported choices (in

 dialect order) are att or intel. The default is att. Darwin does not support

 intel.

 -mieee-fp

 -mno-ieee-fp

 Control whether or not the compiler uses IEEE floating-point comparisons.

 These correctly handle the case where the result of a comparison is unordered.

 -m80387

 -mhard-float

 Generate output containing 80387 instructions for floating point.

 -mno-80387

 -msoft-float

 Generate output containing library calls for floating point.

 Warning: the requisite libraries are not part of GCC. Normally the facilities

 of the machine's usual C compiler are used, but this cannot be done directly in

 cross-compilation. You must make your own arrangements to provide suitable

 library functions for cross-compilation.

 On machines where a function returns floating-point results in the 80387

 register stack, some floating-point opcodes may be emitted even if -msoft-float

 is used.

 -mno-fp-ret-in-387

 Do not use the FPU registers for return values of functions.

 The usual calling convention has functions return values of types "float" and

 "double" in an FPU register, even if there is no FPU. The idea is that the

 operating system should emulate an FPU.

 The option -mno-fp-ret-in-387 causes such values to be returned in ordinary CPU

 registers instead.

 -mno-fancy-math-387

 Some 387 emulators do not support the "sin", "cos" and "sqrt" instructions for

 the 387. Specify this option to avoid generating those instructions. This

 option is the default on OpenBSD and NetBSD. This option is overridden when Page 465/493

 -march indicates that the target CPU always has an FPU and so the instruction

 does not need emulation. These instructions are not generated unless you also

 use the -funsafe-math-optimizations switch.

 -malign-double

 -mno-align-double

 Control whether GCC aligns "double", "long double", and "long long" variables

 on a two-word boundary or a one-word boundary. Aligning "double" variables on

 a two-word boundary produces code that runs somewhat faster on a Pentium at the

 expense of more memory.

 On x86-64, -malign-double is enabled by default.

 Warning: if you use the -malign-double switch, structures containing the above

 types are aligned differently than the published application binary interface

 specifications for the x86-32 and are not binary compatible with structures in

 code compiled without that switch.

 -m96bit-long-double

 -m128bit-long-double

 These switches control the size of "long double" type. The x86-32 application

 binary interface specifies the size to be 96 bits, so -m96bit-long-double is

 the default in 32-bit mode.

 Modern architectures (Pentium and newer) prefer "long double" to be aligned to

 an 8- or 16-byte boundary. In arrays or structures conforming to the ABI, this

 is not possible. So specifying -m128bit-long-double aligns "long double" to a

 16-byte boundary by padding the "long double" with an additional 32-bit zero.

 In the x86-64 compiler, -m128bit-long-double is the default choice as its ABI

 specifies that "long double" is aligned on 16-byte boundary.

 Notice that neither of these options enable any extra precision over the x87

 standard of 80 bits for a "long double".

 Warning: if you override the default value for your target ABI, this changes

 the size of structures and arrays containing "long double" variables, as well

 as modifying the function calling convention for functions taking "long

 double". Hence they are not binary-compatible with code compiled without that

 switch.

 -mlong-double-64 Page 466/493

 -mlong-double-80

 -mlong-double-128

 These switches control the size of "long double" type. A size of 64 bits makes

 the "long double" type equivalent to the "double" type. This is the default for

 32-bit Bionic C library. A size of 128 bits makes the "long double" type

 equivalent to the "__float128" type. This is the default for 64-bit Bionic C

 library.

 Warning: if you override the default value for your target ABI, this changes

 the size of structures and arrays containing "long double" variables, as well

 as modifying the function calling convention for functions taking "long

 double". Hence they are not binary-compatible with code compiled without that

 switch.

 -malign-data=type

 Control how GCC aligns variables. Supported values for type are compat uses

 increased alignment value compatible uses GCC 4.8 and earlier, abi uses

 alignment value as specified by the psABI, and cacheline uses increased

 alignment value to match the cache line size. compat is the default.

 -mlarge-data-threshold=threshold

 When -mcmodel=medium is specified, data objects larger than threshold are

 placed in the large data section. This value must be the same across all

 objects linked into the binary, and defaults to 65535.

 -mrtd

 Use a different function-calling convention, in which functions that take a

 fixed number of arguments return with the "ret num" instruction, which pops

 their arguments while returning. This saves one instruction in the caller

 since there is no need to pop the arguments there.

 You can specify that an individual function is called with this calling

 sequence with the function attribute "stdcall". You can also override the

 -mrtd option by using the function attribute "cdecl".

 Warning: this calling convention is incompatible with the one normally used on

 Unix, so you cannot use it if you need to call libraries compiled with the Unix

 compiler.

 Also, you must provide function prototypes for all functions that take variable Page 467/493

 numbers of arguments (including "printf"); otherwise incorrect code is

 generated for calls to those functions.

 In addition, seriously incorrect code results if you call a function with too

 many arguments. (Normally, extra arguments are harmlessly ignored.)

 -mregparm=num

 Control how many registers are used to pass integer arguments. By default, no

 registers are used to pass arguments, and at most 3 registers can be used. You

 can control this behavior for a specific function by using the function

 attribute "regparm".

 Warning: if you use this switch, and num is nonzero, then you must build all

 modules with the same value, including any libraries. This includes the system

 libraries and startup modules.

 -msseregparm

 Use SSE register passing conventions for float and double arguments and return

 values. You can control this behavior for a specific function by using the

 function attribute "sseregparm".

 Warning: if you use this switch then you must build all modules with the same

 value, including any libraries. This includes the system libraries and startup

 modules.

 -mvect8-ret-in-mem

 Return 8-byte vectors in memory instead of MMX registers. This is the default

 on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun Studio

 compilers until version 12. Later compiler versions (starting with Studio 12

 Update@tie{}1) follow the ABI used by other x86 targets, which is the default

 on Solaris@tie{}10 and later. Only use this option if you need to remain

 compatible with existing code produced by those previous compiler versions or

 older versions of GCC.

 -mpc32

 -mpc64

 -mpc80

 Set 80387 floating-point precision to 32, 64 or 80 bits. When -mpc32 is

 specified, the significands of results of floating-point operations are rounded

 to 24 bits (single precision); -mpc64 rounds the significands of results of Page 468/493

 floating-point operations to 53 bits (double precision) and -mpc80 rounds the

 significands of results of floating-point operations to 64 bits (extended

 double precision), which is the default. When this option is used, floating-

 point operations in higher precisions are not available to the programmer

 without setting the FPU control word explicitly.

 Setting the rounding of floating-point operations to less than the default 80

 bits can speed some programs by 2% or more. Note that some mathematical

 libraries assume that extended-precision (80-bit) floating-point operations are

 enabled by default; routines in such libraries could suffer significant loss of

 accuracy, typically through so-called "catastrophic cancellation", when this

 option is used to set the precision to less than extended precision.

 -mstackrealign

 Realign the stack at entry. On the x86, the -mstackrealign option generates an

 alternate prologue and epilogue that realigns the run-time stack if necessary.

 This supports mixing legacy codes that keep 4-byte stack alignment with modern

 codes that keep 16-byte stack alignment for SSE compatibility. See also the

 attribute "force_align_arg_pointer", applicable to individual functions.

 -mpreferred-stack-boundary=num

 Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.

 If -mpreferred-stack-boundary is not specified, the default is 4 (16 bytes or

 128 bits).

 Warning: When generating code for the x86-64 architecture with SSE extensions

 disabled, -mpreferred-stack-boundary=3 can be used to keep the stack boundary

 aligned to 8 byte boundary. Since x86-64 ABI require 16 byte stack alignment,

 this is ABI incompatible and intended to be used in controlled environment

 where stack space is important limitation. This option leads to wrong code

 when functions compiled with 16 byte stack alignment (such as functions from a

 standard library) are called with misaligned stack. In this case, SSE

 instructions may lead to misaligned memory access traps. In addition, variable

 arguments are handled incorrectly for 16 byte aligned objects (including x87

 long double and __int128), leading to wrong results. You must build all

 modules with -mpreferred-stack-boundary=3, including any libraries. This

 includes the system libraries and startup modules. Page 469/493

 -mincoming-stack-boundary=num

 Assume the incoming stack is aligned to a 2 raised to num byte boundary. If

 -mincoming-stack-boundary is not specified, the one specified by

 -mpreferred-stack-boundary is used.

 On Pentium and Pentium Pro, "double" and "long double" values should be aligned

 to an 8-byte boundary (see -malign-double) or suffer significant run time

 performance penalties. On Pentium III, the Streaming SIMD Extension (SSE) data

 type "__m128" may not work properly if it is not 16-byte aligned.

 To ensure proper alignment of this values on the stack, the stack boundary must

 be as aligned as that required by any value stored on the stack. Further,

 every function must be generated such that it keeps the stack aligned. Thus

 calling a function compiled with a higher preferred stack boundary from a

 function compiled with a lower preferred stack boundary most likely misaligns

 the stack. It is recommended that libraries that use callbacks always use the

 default setting.

 This extra alignment does consume extra stack space, and generally increases

 code size. Code that is sensitive to stack space usage, such as embedded

 systems and operating system kernels, may want to reduce the preferred

 alignment to -mpreferred-stack-boundary=2.

 -mmmx

 -msse

 -msse2

 -msse3

 -mssse3

 -msse4

 -msse4a

 -msse4.1

 -msse4.2

 -mavx

 -mavx2

 -mavx512f

 -mavx512pf

 -mavx512er Page 470/493

 -mavx512cd

 -mavx512vl

 -mavx512bw

 -mavx512dq

 -mavx512ifma

 -mavx512vbmi

 -msha

 -maes

 -mpclmul

 -mclflushopt

 -mfsgsbase

 -mrdrnd

 -mf16c

 -mfma

 -mfma4

 -mprefetchwt1

 -mxop

 -mlwp

 -m3dnow

 -m3dnowa

 -mpopcnt

 -mabm

 -mbmi

 -mbmi2

 -mlzcnt

 -mfxsr

 -mxsave

 -mxsaveopt

 -mxsavec

 -mxsaves

 -mrtm

 -mtbm

 -mmpx Page 471/493

 -mmwaitx

 -mclzero

 -mpku

 These switches enable the use of instructions in the MMX, SSE, SSE2, SSE3,

 SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD, SHA, AES,

 PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, AVX512VL,

 AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR, XSAVE, XSAVEOPT,

 LZCNT, RTM, MPX, MWAITX, PKU, 3DNow! or enhanced 3DNow! extended instruction

 sets. Each has a corresponding -mno- option to disable use of these

 instructions.

 These extensions are also available as built-in functions: see x86 Built-in

 Functions, for details of the functions enabled and disabled by these switches.

 To generate SSE/SSE2 instructions automatically from floating-point code (as

 opposed to 387 instructions), see -mfpmath=sse.

 GCC depresses SSEx instructions when -mavx is used. Instead, it generates new

 AVX instructions or AVX equivalence for all SSEx instructions when needed.

 These options enable GCC to use these extended instructions in generated code,

 even without -mfpmath=sse. Applications that perform run-time CPU detection

 must compile separate files for each supported architecture, using the

 appropriate flags. In particular, the file containing the CPU detection code

 should be compiled without these options.

 -mdump-tune-features

 This option instructs GCC to dump the names of the x86 performance tuning

 features and default settings. The names can be used in -mtune-ctrl=feature-

 list.

 -mtune-ctrl=feature-list

 This option is used to do fine grain control of x86 code generation features.

 feature-list is a comma separated list of feature names. See also

 -mdump-tune-features. When specified, the feature is turned on if it is not

 preceded with ^, otherwise, it is turned off. -mtune-ctrl=feature-list is

 intended to be used by GCC developers. Using it may lead to code paths not

 covered by testing and can potentially result in compiler ICEs or runtime

 errors. Page 472/493

 -mno-default

 This option instructs GCC to turn off all tunable features. See also

 -mtune-ctrl=feature-list and -mdump-tune-features.

 -mcld

 This option instructs GCC to emit a "cld" instruction in the prologue of

 functions that use string instructions. String instructions depend on the DF

 flag to select between autoincrement or autodecrement mode. While the ABI

 specifies the DF flag to be cleared on function entry, some operating systems

 violate this specification by not clearing the DF flag in their exception

 dispatchers. The exception handler can be invoked with the DF flag set, which

 leads to wrong direction mode when string instructions are used. This option

 can be enabled by default on 32-bit x86 targets by configuring GCC with the

 --enable-cld configure option. Generation of "cld" instructions can be

 suppressed with the -mno-cld compiler option in this case.

 -mvzeroupper

 This option instructs GCC to emit a "vzeroupper" instruction before a transfer

 of control flow out of the function to minimize the AVX to SSE transition

 penalty as well as remove unnecessary "zeroupper" intrinsics.

 -mprefer-avx128

 This option instructs GCC to use 128-bit AVX instructions instead of 256-bit

 AVX instructions in the auto-vectorizer.

 -mcx16

 This option enables GCC to generate "CMPXCHG16B" instructions in 64-bit code to

 implement compare-and-exchange operations on 16-byte aligned 128-bit objects.

 This is useful for atomic updates of data structures exceeding one machine word

 in size. The compiler uses this instruction to implement __sync Builtins.

 However, for __atomic Builtins operating on 128-bit integers, a library call is

 always used.

 -msahf

 This option enables generation of "SAHF" instructions in 64-bit code. Early

 Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of

 Pentium 4 G1 step in December 2005, lacked the "LAHF" and "SAHF" instructions

 which are supported by AMD64. These are load and store instructions, Page 473/493

 respectively, for certain status flags. In 64-bit mode, the "SAHF" instruction

 is used to optimize "fmod", "drem", and "remainder" built-in functions; see

 Other Builtins for details.

 -mmovbe

 This option enables use of the "movbe" instruction to implement

 "__builtin_bswap32" and "__builtin_bswap64".

 -mcrc32

 This option enables built-in functions "__builtin_ia32_crc32qi",

 "__builtin_ia32_crc32hi", "__builtin_ia32_crc32si" and "__builtin_ia32_crc32di"

 to generate the "crc32" machine instruction.

 -mrecip

 This option enables use of "RCPSS" and "RSQRTSS" instructions (and their

 vectorized variants "RCPPS" and "RSQRTPS") with an additional Newton-Raphson

 step to increase precision instead of "DIVSS" and "SQRTSS" (and their

 vectorized variants) for single-precision floating-point arguments. These

 instructions are generated only when -funsafe-math-optimizations is enabled

 together with -ffinite-math-only and -fno-trapping-math. Note that while the

 throughput of the sequence is higher than the throughput of the non-reciprocal

 instruction, the precision of the sequence can be decreased by up to 2 ulp

 (i.e. the inverse of 1.0 equals 0.99999994).

 Note that GCC implements "1.0f/sqrtf(x)" in terms of "RSQRTSS" (or "RSQRTPS")

 already with -ffast-math (or the above option combination), and doesn't need

 -mrecip.

 Also note that GCC emits the above sequence with additional Newton-Raphson step

 for vectorized single-float division and vectorized "sqrtf(x)" already with

 -ffast-math (or the above option combination), and doesn't need -mrecip.

 -mrecip=opt

 This option controls which reciprocal estimate instructions may be used. opt

 is a comma-separated list of options, which may be preceded by a ! to invert

 the option:

 all Enable all estimate instructions.

 default

 Enable the default instructions, equivalent to -mrecip. Page 474/493

 none

 Disable all estimate instructions, equivalent to -mno-recip.

 div Enable the approximation for scalar division.

 vec-div

 Enable the approximation for vectorized division.

 sqrt

 Enable the approximation for scalar square root.

 vec-sqrt

 Enable the approximation for vectorized square root.

 So, for example, -mrecip=all,!sqrt enables all of the reciprocal

 approximations, except for square root.

 -mveclibabi=type

 Specifies the ABI type to use for vectorizing intrinsics using an external

 library. Supported values for type are svml for the Intel short vector math

 library and acml for the AMD math core library. To use this option, both

 -ftree-vectorize and -funsafe-math-optimizations have to be enabled, and an

 SVML or ACML ABI-compatible library must be specified at link time.

 GCC currently emits calls to "vmldExp2", "vmldLn2", "vmldLog102", "vmldLog102",

 "vmldPow2", "vmldTanh2", "vmldTan2", "vmldAtan2", "vmldAtanh2", "vmldCbrt2",

 "vmldSinh2", "vmldSin2", "vmldAsinh2", "vmldAsin2", "vmldCosh2", "vmldCos2",

 "vmldAcosh2", "vmldAcos2", "vmlsExp4", "vmlsLn4", "vmlsLog104", "vmlsLog104",

 "vmlsPow4", "vmlsTanh4", "vmlsTan4", "vmlsAtan4", "vmlsAtanh4", "vmlsCbrt4",

 "vmlsSinh4", "vmlsSin4", "vmlsAsinh4", "vmlsAsin4", "vmlsCosh4", "vmlsCos4",

 "vmlsAcosh4" and "vmlsAcos4" for corresponding function type when

 -mveclibabi=svml is used, and "__vrd2_sin", "__vrd2_cos", "__vrd2_exp",

 "__vrd2_log", "__vrd2_log2", "__vrd2_log10", "__vrs4_sinf", "__vrs4_cosf",

 "__vrs4_expf", "__vrs4_logf", "__vrs4_log2f", "__vrs4_log10f" and "__vrs4_powf"

 for the corresponding function type when -mveclibabi=acml is used.

 -mabi=name

 Generate code for the specified calling convention. Permissible values are

 sysv for the ABI used on GNU/Linux and other systems, and ms for the Microsoft

 ABI. The default is to use the Microsoft ABI when targeting Microsoft Windows

 and the SysV ABI on all other systems. You can control this behavior for Page 475/493

 specific functions by using the function attributes "ms_abi" and "sysv_abi".

 -mtls-dialect=type

 Generate code to access thread-local storage using the gnu or gnu2 conventions.

 gnu is the conservative default; gnu2 is more efficient, but it may add

 compile- and run-time requirements that cannot be satisfied on all systems.

 -mpush-args

 -mno-push-args

 Use PUSH operations to store outgoing parameters. This method is shorter and

 usually equally fast as method using SUB/MOV operations and is enabled by

 default. In some cases disabling it may improve performance because of

 improved scheduling and reduced dependencies.

 -maccumulate-outgoing-args

 If enabled, the maximum amount of space required for outgoing arguments is

 computed in the function prologue. This is faster on most modern CPUs because

 of reduced dependencies, improved scheduling and reduced stack usage when the

 preferred stack boundary is not equal to 2. The drawback is a notable increase

 in code size. This switch implies -mno-push-args.

 -mthreads

 Support thread-safe exception handling on MinGW. Programs that rely on thread-

 safe exception handling must compile and link all code with the -mthreads

 option. When compiling, -mthreads defines -D_MT; when linking, it links in a

 special thread helper library -lmingwthrd which cleans up per-thread exception-

 handling data.

 -mms-bitfields

 -mno-ms-bitfields

 Enable/disable bit-field layout compatible with the native Microsoft Windows

 compiler.

 If "packed" is used on a structure, or if bit-fields are used, it may be that

 the Microsoft ABI lays out the structure differently than the way GCC normally

 does. Particularly when moving packed data between functions compiled with GCC

 and the native Microsoft compiler (either via function call or as data in a

 file), it may be necessary to access either format.

 This option is enabled by default for Microsoft Windows targets. This behavior Page 476/493

 can also be controlled locally by use of variable or type attributes. For more

 information, see x86 Variable Attributes and x86 Type Attributes.

 The Microsoft structure layout algorithm is fairly simple with the exception of

 the bit-field packing. The padding and alignment of members of structures and

 whether a bit-field can straddle a storage-unit boundary are determine by these

 rules:

 1. Structure members are stored sequentially in the order in which they are

 declared: the first member has the lowest memory address and the last

 member the highest.

 2. Every data object has an alignment requirement. The alignment requirement

 for all data except structures, unions, and arrays is either the size of

 the object or the current packing size (specified with either the "aligned"

 attribute or the "pack" pragma), whichever is less. For structures,

 unions, and arrays, the alignment requirement is the largest alignment

 requirement of its members. Every object is allocated an offset so that:

 offset % alignment_requirement == 0

 3. Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation

 unit if the integral types are the same size and if the next bit-field fits

 into the current allocation unit without crossing the boundary imposed by

 the common alignment requirements of the bit-fields.

 MSVC interprets zero-length bit-fields in the following ways:

 1. If a zero-length bit-field is inserted between two bit-fields that

 are normally coalesced, the bit-fields are not coalesced.

 For example:

 struct

 {

 unsigned long bf_1 : 12;

 unsigned long : 0;

 unsigned long bf_2 : 12;

 } t1;

 The size of "t1" is 8 bytes with the zero-length bit-field. If the zero-

 length bit-field were removed, "t1"'s size would be 4 bytes.

 2. If a zero-length bit-field is inserted after a bit-field, "foo", and the Page 477/493

 alignment of the zero-length bit-field is greater than the member that

 follows it, "bar", "bar" is aligned as the type of the zero-length bit-

 field.

 For example:

 struct

 {

 char foo : 4;

 short : 0;

 char bar;

 } t2;

 struct

 {

 char foo : 4;

 short : 0;

 double bar;

 } t3;

 For "t2", "bar" is placed at offset 2, rather than offset 1. Accordingly,

 the size of "t2" is 4. For "t3", the zero-length bit-field does not affect

 the alignment of "bar" or, as a result, the size of the structure.

 Taking this into account, it is important to note the following:

 1. If a zero-length bit-field follows a normal bit-field, the type of the

 zero-length bit-field may affect the alignment of the structure as

 whole. For example, "t2" has a size of 4 bytes, since the zero-length

 bit-field follows a normal bit-field, and is of type short.

 2. Even if a zero-length bit-field is not followed by a normal bit-field,

 it may

 still affect the alignment of the structure:

 struct

 {

 char foo : 6;

 long : 0;

 } t4;

 Here, "t4" takes up 4 bytes. Page 478/493

 3. Zero-length bit-fields following non-bit-field members are ignored:

 struct

 {

 char foo;

 long : 0;

 char bar;

 } t5;

 Here, "t5" takes up 2 bytes.

 -mno-align-stringops

 Do not align the destination of inlined string operations. This switch reduces

 code size and improves performance in case the destination is already aligned,

 but GCC doesn't know about it.

 -minline-all-stringops

 By default GCC inlines string operations only when the destination is known to

 be aligned to least a 4-byte boundary. This enables more inlining and

 increases code size, but may improve performance of code that depends on fast

 "memcpy", "strlen", and "memset" for short lengths.

 -minline-stringops-dynamically

 For string operations of unknown size, use run-time checks with inline code for

 small blocks and a library call for large blocks.

 -mstringop-strategy=alg

 Override the internal decision heuristic for the particular algorithm to use

 for inlining string operations. The allowed values for alg are:

 rep_byte

 rep_4byte

 rep_8byte

 Expand using i386 "rep" prefix of the specified size.

 byte_loop

 loop

 unrolled_loop

 Expand into an inline loop.

 libcall

 Always use a library call. Page 479/493

 -mmemcpy-strategy=strategy

 Override the internal decision heuristic to decide if "__builtin_memcpy" should

 be inlined and what inline algorithm to use when the expected size of the copy

 operation is known. strategy is a comma-separated list of

 alg:max_size:dest_align triplets. alg is specified in -mstringop-strategy,

 max_size specifies the max byte size with which inline algorithm alg is

 allowed. For the last triplet, the max_size must be "-1". The max_size of the

 triplets in the list must be specified in increasing order. The minimal byte

 size for alg is 0 for the first triplet and "max_size + 1" of the preceding

 range.

 -mmemset-strategy=strategy

 The option is similar to -mmemcpy-strategy= except that it is to control

 "__builtin_memset" expansion.

 -momit-leaf-frame-pointer

 Don't keep the frame pointer in a register for leaf functions. This avoids the

 instructions to save, set up, and restore frame pointers and makes an extra

 register available in leaf functions. The option -fomit-leaf-frame-pointer

 removes the frame pointer for leaf functions, which might make debugging

 harder.

 -mtls-direct-seg-refs

 -mno-tls-direct-seg-refs

 Controls whether TLS variables may be accessed with offsets from the TLS

 segment register (%gs for 32-bit, %fs for 64-bit), or whether the thread base

 pointer must be added. Whether or not this is valid depends on the operating

 system, and whether it maps the segment to cover the entire TLS area.

 For systems that use the GNU C Library, the default is on.

 -msse2avx

 -mno-sse2avx

 Specify that the assembler should encode SSE instructions with VEX prefix. The

 option -mavx turns this on by default.

 -mfentry

 -mno-fentry

 If profiling is active (-pg), put the profiling counter call before the Page 480/493

 prologue. Note: On x86 architectures the attribute "ms_hook_prologue" isn't

 possible at the moment for -mfentry and -pg.

 -mrecord-mcount

 -mno-record-mcount

 If profiling is active (-pg), generate a __mcount_loc section that contains

 pointers to each profiling call. This is useful for automatically patching and

 out calls.

 -mnop-mcount

 -mno-nop-mcount

 If profiling is active (-pg), generate the calls to the profiling functions as

 NOPs. This is useful when they should be patched in later dynamically. This is

 likely only useful together with -mrecord-mcount.

 -mskip-rax-setup

 -mno-skip-rax-setup

 When generating code for the x86-64 architecture with SSE extensions disabled,

 -mskip-rax-setup can be used to skip setting up RAX register when there are no

 variable arguments passed in vector registers.

 Warning: Since RAX register is used to avoid unnecessarily saving vector

 registers on stack when passing variable arguments, the impacts of this option

 are callees may waste some stack space, misbehave or jump to a random location.

 GCC 4.4 or newer don't have those issues, regardless the RAX register value.

 -m8bit-idiv

 -mno-8bit-idiv

 On some processors, like Intel Atom, 8-bit unsigned integer divide is much

 faster than 32-bit/64-bit integer divide. This option generates a run-time

 check. If both dividend and divisor are within range of 0 to 255, 8-bit

 unsigned integer divide is used instead of 32-bit/64-bit integer divide.

 -mavx256-split-unaligned-load

 -mavx256-split-unaligned-store

 Split 32-byte AVX unaligned load and store.

 -mstack-protector-guard=guard

 Generate stack protection code using canary at guard. Supported locations are

 global for global canary or tls for per-thread canary in the TLS block (the Page 481/493

 default). This option has effect only when -fstack-protector or

 -fstack-protector-all is specified.

 -mmitigate-rop

 Try to avoid generating code sequences that contain unintended return opcodes,

 to mitigate against certain forms of attack. At the moment, this option is

 limited in what it can do and should not be relied on to provide serious

 protection.

 -mgeneral-regs-only

 Generate code that uses only the general-purpose registers. This prevents the

 compiler from using floating-point, vector, mask and bound registers.

 -mindirect-branch=choice

 Convert indirect call and jump with choice. The default is keep, which keeps

 indirect call and jump unmodified. thunk converts indirect call and jump to

 call and return thunk. thunk-inline converts indirect call and jump to inlined

 call and return thunk. thunk-extern converts indirect call and jump to

 external call and return thunk provided in a separate object file. You can

 control this behavior for a specific function by using the function attribute

 "indirect_branch".

 Note that -mcmodel=large is incompatible with -mindirect-branch=thunk nor

 -mindirect-branch=thunk-extern since the thunk function may not be reachable in

 large code model.

 -mfunction-return=choice

 Convert function return with choice. The default is keep, which keeps function

 return unmodified. thunk converts function return to call and return thunk.

 thunk-inline converts function return to inlined call and return thunk. thunk-

 extern converts function return to external call and return thunk provided in a

 separate object file. You can control this behavior for a specific function by

 using the function attribute "function_return".

 Note that -mcmodel=large is incompatible with -mfunction-return=thunk nor

 -mfunction-return=thunk-extern since the thunk function may not be reachable in

 large code model.

 -mindirect-branch-register

 Force indirect call and jump via register. Page 482/493

 These -m switches are supported in addition to the above on x86-64 processors in

 64-bit environments.

 -m32

 -m64

 -mx32

 -m16

 -miamcu

 Generate code for a 16-bit, 32-bit or 64-bit environment. The -m32 option sets

 "int", "long", and pointer types to 32 bits, and generates code that runs on

 any i386 system.

 The -m64 option sets "int" to 32 bits and "long" and pointer types to 64 bits,

 and generates code for the x86-64 architecture. For Darwin only the -m64

 option also turns off the -fno-pic and -mdynamic-no-pic options.

 The -mx32 option sets "int", "long", and pointer types to 32 bits, and

 generates code for the x86-64 architecture.

 The -m16 option is the same as -m32, except for that it outputs the

 ".code16gcc" assembly directive at the beginning of the assembly output so that

 the binary can run in 16-bit mode.

 The -miamcu option generates code which conforms to Intel MCU psABI. It

 requires the -m32 option to be turned on.

 -mno-red-zone

 Do not use a so-called "red zone" for x86-64 code. The red zone is mandated by

 the x86-64 ABI; it is a 128-byte area beyond the location of the stack pointer

 that is not modified by signal or interrupt handlers and therefore can be used

 for temporary data without adjusting the stack pointer. The flag -mno-red-zone

 disables this red zone.

 -mcmodel=small

 Generate code for the small code model: the program and its symbols must be

 linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs

 can be statically or dynamically linked. This is the default code model.

 -mcmodel=kernel

 Generate code for the kernel code model. The kernel runs in the negative 2 GB

 of the address space. This model has to be used for Linux kernel code. Page 483/493

 -mcmodel=medium

 Generate code for the medium model: the program is linked in the lower 2 GB of

 the address space. Small symbols are also placed there. Symbols with sizes

 larger than -mlarge-data-threshold are put into large data or BSS sections and

 can be located above 2GB. Programs can be statically or dynamically linked.

 -mcmodel=large

 Generate code for the large model. This model makes no assumptions about

 addresses and sizes of sections.

 -maddress-mode=long

 Generate code for long address mode. This is only supported for 64-bit and x32

 environments. It is the default address mode for 64-bit environments.

 -maddress-mode=short

 Generate code for short address mode. This is only supported for 32-bit and

 x32 environments. It is the default address mode for 32-bit and x32

 environments.

 x86 Windows Options

 These additional options are available for Microsoft Windows targets:

 -mconsole

 This option specifies that a console application is to be generated, by

 instructing the linker to set the PE header subsystem type required for console

 applications. This option is available for Cygwin and MinGW targets and is

 enabled by default on those targets.

 -mdll

 This option is available for Cygwin and MinGW targets. It specifies that a

 DLL---a dynamic link library---is to be generated, enabling the selection of

 the required runtime startup object and entry point.

 -mnop-fun-dllimport

 This option is available for Cygwin and MinGW targets. It specifies that the

 "dllimport" attribute should be ignored.

 -mthread

 This option is available for MinGW targets. It specifies that MinGW-specific

 thread support is to be used.

 -municode Page 484/493

 This option is available for MinGW-w64 targets. It causes the "UNICODE"

 preprocessor macro to be predefined, and chooses Unicode-capable runtime

 startup code.

 -mwin32

 This option is available for Cygwin and MinGW targets. It specifies that the

 typical Microsoft Windows predefined macros are to be set in the pre-processor,

 but does not influence the choice of runtime library/startup code.

 -mwindows

 This option is available for Cygwin and MinGW targets. It specifies that a GUI

 application is to be generated by instructing the linker to set the PE header

 subsystem type appropriately.

 -fno-set-stack-executable

 This option is available for MinGW targets. It specifies that the executable

 flag for the stack used by nested functions isn't set. This is necessary for

 binaries running in kernel mode of Microsoft Windows, as there the User32 API,

 which is used to set executable privileges, isn't available.

 -fwritable-relocated-rdata

 This option is available for MinGW and Cygwin targets. It specifies that

 relocated-data in read-only section is put into the ".data" section. This is a

 necessary for older runtimes not supporting modification of ".rdata" sections

 for pseudo-relocation.

 -mpe-aligned-commons

 This option is available for Cygwin and MinGW targets. It specifies that the

 GNU extension to the PE file format that permits the correct alignment of

 COMMON variables should be used when generating code. It is enabled by default

 if GCC detects that the target assembler found during configuration supports

 the feature.

 See also under x86 Options for standard options.

 Xstormy16 Options

 These options are defined for Xstormy16:

 -msim

 Choose startup files and linker script suitable for the simulator.

 Xtensa Options Page 485/493

 These options are supported for Xtensa targets:

 -mconst16

 -mno-const16

 Enable or disable use of "CONST16" instructions for loading constant values.

 The "CONST16" instruction is currently not a standard option from Tensilica.

 When enabled, "CONST16" instructions are always used in place of the standard

 "L32R" instructions. The use of "CONST16" is enabled by default only if the

 "L32R" instruction is not available.

 -mfused-madd

 -mno-fused-madd

 Enable or disable use of fused multiply/add and multiply/subtract instructions

 in the floating-point option. This has no effect if the floating-point option

 is not also enabled. Disabling fused multiply/add and multiply/subtract

 instructions forces the compiler to use separate instructions for the multiply

 and add/subtract operations. This may be desirable in some cases where strict

 IEEE 754-compliant results are required: the fused multiply add/subtract

 instructions do not round the intermediate result, thereby producing results

 with more bits of precision than specified by the IEEE standard. Disabling

 fused multiply add/subtract instructions also ensures that the program output

 is not sensitive to the compiler's ability to combine multiply and add/subtract

 operations.

 -mserialize-volatile

 -mno-serialize-volatile

 When this option is enabled, GCC inserts "MEMW" instructions before "volatile"

 memory references to guarantee sequential consistency. The default is

 -mserialize-volatile. Use -mno-serialize-volatile to omit the "MEMW"

 instructions.

 -mforce-no-pic

 For targets, like GNU/Linux, where all user-mode Xtensa code must be position-

 independent code (PIC), this option disables PIC for compiling kernel code.

 -mtext-section-literals

 -mno-text-section-literals

 These options control the treatment of literal pools. The default is Page 486/493

 -mno-text-section-literals, which places literals in a separate section in the

 output file. This allows the literal pool to be placed in a data RAM/ROM, and

 it also allows the linker to combine literal pools from separate object files

 to remove redundant literals and improve code size. With

 -mtext-section-literals, the literals are interspersed in the text section in

 order to keep them as close as possible to their references. This may be

 necessary for large assembly files. Literals for each function are placed

 right before that function.

 -mauto-litpools

 -mno-auto-litpools

 These options control the treatment of literal pools. The default is

 -mno-auto-litpools, which places literals in a separate section in the output

 file unless -mtext-section-literals is used. With -mauto-litpools the literals

 are interspersed in the text section by the assembler. Compiler does not

 produce explicit ".literal" directives and loads literals into registers with

 "MOVI" instructions instead of "L32R" to let the assembler do relaxation and

 place literals as necessary. This option allows assembler to create several

 literal pools per function and assemble very big functions, which may not be

 possible with -mtext-section-literals.

 -mtarget-align

 -mno-target-align

 When this option is enabled, GCC instructs the assembler to automatically align

 instructions to reduce branch penalties at the expense of some code density.

 The assembler attempts to widen density instructions to align branch targets

 and the instructions following call instructions. If there are not enough

 preceding safe density instructions to align a target, no widening is

 performed. The default is -mtarget-align. These options do not affect the

 treatment of auto-aligned instructions like "LOOP", which the assembler always

 aligns, either by widening density instructions or by inserting NOP

 instructions.

 -mlongcalls

 -mno-longcalls

 When this option is enabled, GCC instructs the assembler to translate direct Page 487/493

 calls to indirect calls unless it can determine that the target of a direct

 call is in the range allowed by the call instruction. This translation

 typically occurs for calls to functions in other source files. Specifically,

 the assembler translates a direct "CALL" instruction into an "L32R" followed by

 a "CALLX" instruction. The default is -mno-longcalls. This option should be

 used in programs where the call target can potentially be out of range. This

 option is implemented in the assembler, not the compiler, so the assembly code

 generated by GCC still shows direct call instructions---look at the

 disassembled object code to see the actual instructions. Note that the

 assembler uses an indirect call for every cross-file call, not just those that

 really are out of range.

 zSeries Options

 These are listed under

ENVIRONMENT

 This section describes several environment variables that affect how GCC operates.

 Some of them work by specifying directories or prefixes to use when searching for

 various kinds of files. Some are used to specify other aspects of the compilation

 environment.

 Note that you can also specify places to search using options such as -B, -I and

 -L. These take precedence over places specified using environment variables, which

 in turn take precedence over those specified by the configuration of GCC.

 LANG

 LC_CTYPE

 LC_MESSAGES

 LC_ALL

 These environment variables control the way that GCC uses localization

 information which allows GCC to work with different national conventions. GCC

 inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been

 configured to do so. These locale categories can be set to any value supported

 by your installation. A typical value is en_GB.UTF-8 for English in the United

 Kingdom encoded in UTF-8.

 The LC_CTYPE environment variable specifies character classification. GCC uses

 it to determine the character boundaries in a string; this is needed for some Page 488/493

 multibyte encodings that contain quote and escape characters that are otherwise

 interpreted as a string end or escape.

 The LC_MESSAGES environment variable specifies the language to use in

 diagnostic messages.

 If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE

 and LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of

 the LANG environment variable. If none of these variables are set, GCC

 defaults to traditional C English behavior.

 TMPDIR

 If TMPDIR is set, it specifies the directory to use for temporary files. GCC

 uses temporary files to hold the output of one stage of compilation which is to

 be used as input to the next stage: for example, the output of the

 preprocessor, which is the input to the compiler proper.

 GCC_COMPARE_DEBUG

 Setting GCC_COMPARE_DEBUG is nearly equivalent to passing -fcompare-debug to

 the compiler driver. See the documentation of this option for more details.

 GCC_EXEC_PREFIX

 If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the

 subprograms executed by the compiler. No slash is added when this prefix is

 combined with the name of a subprogram, but you can specify a prefix that ends

 with a slash if you wish.

 If GCC_EXEC_PREFIX is not set, GCC attempts to figure out an appropriate prefix

 to use based on the pathname it is invoked with.

 If GCC cannot find the subprogram using the specified prefix, it tries looking

 in the usual places for the subprogram.

 The default value of GCC_EXEC_PREFIX is prefix/lib/gcc/ where prefix is the

 prefix to the installed compiler. In many cases prefix is the value of "prefix"

 when you ran the configure script.

 Other prefixes specified with -B take precedence over this prefix.

 This prefix is also used for finding files such as crt0.o that are used for

 linking.

 In addition, the prefix is used in an unusual way in finding the directories to

 search for header files. For each of the standard directories whose name Page 489/493

 normally begins with /usr/local/lib/gcc (more precisely, with the value of

 GCC_INCLUDE_DIR), GCC tries replacing that beginning with the specified prefix

 to produce an alternate directory name. Thus, with -Bfoo/, GCC searches

 foo/bar just before it searches the standard directory /usr/local/lib/bar. If

 a standard directory begins with the configured prefix then the value of prefix

 is replaced by GCC_EXEC_PREFIX when looking for header files.

 COMPILER_PATH

 The value of COMPILER_PATH is a colon-separated list of directories, much like

 PATH. GCC tries the directories thus specified when searching for subprograms,

 if it cannot find the subprograms using GCC_EXEC_PREFIX.

 LIBRARY_PATH

 The value of LIBRARY_PATH is a colon-separated list of directories, much like

 PATH. When configured as a native compiler, GCC tries the directories thus

 specified when searching for special linker files, if it cannot find them using

 GCC_EXEC_PREFIX. Linking using GCC also uses these directories when searching

 for ordinary libraries for the -l option (but directories specified with -L

 come first).

 LANG

 This variable is used to pass locale information to the compiler. One way in

 which this information is used is to determine the character set to be used

 when character literals, string literals and comments are parsed in C and C++.

 When the compiler is configured to allow multibyte characters, the following

 values for LANG are recognized:

 C-JIS

 Recognize JIS characters.

 C-SJIS

 Recognize SJIS characters.

 C-EUCJP

 Recognize EUCJP characters.

 If LANG is not defined, or if it has some other value, then the compiler uses

 "mblen" and "mbtowc" as defined by the default locale to recognize and

 translate multibyte characters.

 Some additional environment variables affect the behavior of the preprocessor. Page 490/493

 CPATH

 C_INCLUDE_PATH

 CPLUS_INCLUDE_PATH

 OBJC_INCLUDE_PATH

 Each variable's value is a list of directories separated by a special

 character, much like PATH, in which to look for header files. The special

 character, "PATH_SEPARATOR", is target-dependent and determined at GCC build

 time. For Microsoft Windows-based targets it is a semicolon, and for almost

 all other targets it is a colon.

 CPATH specifies a list of directories to be searched as if specified with -I,

 but after any paths given with -I options on the command line. This

 environment variable is used regardless of which language is being

 preprocessed.

 The remaining environment variables apply only when preprocessing the

 particular language indicated. Each specifies a list of directories to be

 searched as if specified with -isystem, but after any paths given with -isystem

 options on the command line.

 In all these variables, an empty element instructs the compiler to search its

 current working directory. Empty elements can appear at the beginning or end

 of a path. For instance, if the value of CPATH is ":/special/include", that

 has the same effect as -I. -I/special/include.

 DEPENDENCIES_OUTPUT

 If this variable is set, its value specifies how to output dependencies for

 Make based on the non-system header files processed by the compiler. System

 header files are ignored in the dependency output.

 The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the

 Make rules are written to that file, guessing the target name from the source

 file name. Or the value can have the form file target, in which case the rules

 are written to file file using target as the target name.

 In other words, this environment variable is equivalent to combining the

 options -MM and -MF, with an optional -MT switch too.

 SUNPRO_DEPENDENCIES

 This variable is the same as DEPENDENCIES_OUTPUT (see above), except that Page 491/493

 system header files are not ignored, so it implies -M rather than -MM.

 However, the dependence on the main input file is omitted.

 SOURCE_DATE_EPOCH

 If this variable is set, its value specifies a UNIX timestamp to be used in

 replacement of the current date and time in the "__DATE__" and "__TIME__"

 macros, so that the embedded timestamps become reproducible.

 The value of SOURCE_DATE_EPOCH must be a UNIX timestamp, defined as the number

 of seconds (excluding leap seconds) since 01 Jan 1970 00:00:00 represented in

 ASCII; identical to the output of @command{date +%s} on GNU/Linux and other

 systems that support the %s extension in the "date" command.

 The value should be a known timestamp such as the last modification time of the

 source or package and it should be set by the build process.

BUGS

 For instructions on reporting bugs, see <file:///usr/share/doc/gcc-7/README.Bugs>.

FOOTNOTES

 1. On some systems, gcc -shared needs to build supplementary stub code for

 constructors to work. On multi-libbed systems, gcc -shared must select the

 correct support libraries to link against. Failing to supply the correct flags

 may lead to subtle defects. Supplying them in cases where they are not

 necessary is innocuous.

SEE ALSO

 gpl(7), gfdl(7), fsf-funding(7), cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1),

 dbx(1), sdb(1) and the Info entries for gcc, cpp, as, ld, binutils and gdb.

AUTHOR

 See the Info entry for gcc, or

 <http://gcc.gnu.org/onlinedocs/gcc/Contributors.html>, for contributors to GCC.

COPYRIGHT

 Copyright (c) 1988-2017 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document under the

 terms of the GNU Free Documentation License, Version 1.3 or any later version

 published by the Free Software Foundation; with the Invariant Sections being "GNU

 General Public License" and "Funding Free Software", the Front-Cover texts being

 (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of Page 492/493

 the license is included in the gfdl(7) man page.

 (a) The FSF's Front-Cover Text is:

 A GNU Manual

 (b) The FSF's Back-Cover Text is:

 You have freedom to copy and modify this GNU Manual, like GNU

 software. Copies published by the Free Software Foundation raise

 funds for GNU development.

gcc-7 2019-11-14 GCC(1)

Page 493/493

