
Rocky Enterprise Linux 9.2 Manual Pages on command 'gai_suspend.3'

$ man gai_suspend.3

GETADDRINFO_A(3) Linux Programmer's Manual GETADDRINFO_A(3)

NAME

 getaddrinfo_a, gai_suspend, gai_error, gai_cancel - asynchronous network address and ser?

 vice translation

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <netdb.h>

 int getaddrinfo_a(int mode, struct gaicb *list[],

 int nitems, struct sigevent *sevp);

 int gai_suspend(const struct gaicb * const list[], int nitems,

 const struct timespec *timeout);

 int gai_error(struct gaicb *req);

 int gai_cancel(struct gaicb *req);

 Link with -lanl.

DESCRIPTION

 The getaddrinfo_a() function performs the same task as getaddrinfo(3), but allows multiple

 name look-ups to be performed asynchronously, with optional notification on completion of

 look-up operations.

 The mode argument has one of the following values:

 GAI_WAIT

 Perform the look-ups synchronously. The call blocks until the look-ups have com?

 pleted.

 GAI_NOWAIT Page 1/12

 Perform the look-ups asynchronously. The call returns immediately, and the re?

 quests are resolved in the background. See the discussion of the sevp argument be?

 low.

 The array list specifies the look-up requests to process. The nitems argument specifies

 the number of elements in list. The requested look-up operations are started in parallel.

 NULL elements in list are ignored. Each request is described by a gaicb structure, de?

 fined as follows:

 struct gaicb {

 const char *ar_name;

 const char *ar_service;

 const struct addrinfo *ar_request;

 struct addrinfo *ar_result;

 };

 The elements of this structure correspond to the arguments of getaddrinfo(3). Thus,

 ar_name corresponds to the node argument and ar_service to the service argument, identify?

 ing an Internet host and a service. The ar_request element corresponds to the hints argu?

 ment, specifying the criteria for selecting the returned socket address structures. Fi?

 nally, ar_result corresponds to the res argument; you do not need to initialize this ele?

 ment, it will be automatically set when the request is resolved. The addrinfo structure

 referenced by the last two elements is described in getaddrinfo(3).

 When mode is specified as GAI_NOWAIT, notifications about resolved requests can be ob?

 tained by employing the sigevent structure pointed to by the sevp argument. For the defi?

 nition and general details of this structure, see sigevent(7). The sevp->sigev_notify

 field can have the following values:

 SIGEV_NONE

 Don't provide any notification.

 SIGEV_SIGNAL

 When a look-up completes, generate the signal sigev_signo for the process. See

 sigevent(7) for general details. The si_code field of the siginfo_t structure will

 be set to SI_ASYNCNL.

 SIGEV_THREAD

 When a look-up completes, invoke sigev_notify_function as if it were the start

 function of a new thread. See sigevent(7) for details. Page 2/12

 For SIGEV_SIGNAL and SIGEV_THREAD, it may be useful to point sevp->sigev_value.sival_ptr

 to list.

 The gai_suspend() function suspends execution of the calling thread, waiting for the com?

 pletion of one or more requests in the array list. The nitems argument specifies the size

 of the array list. The call blocks until one of the following occurs:

 * One or more of the operations in list completes.

 * The call is interrupted by a signal that is caught.

 * The time interval specified in timeout elapses. This argument specifies a timeout in

 seconds plus nanoseconds (see nanosleep(2) for details of the timespec structure). If

 timeout is NULL, then the call blocks indefinitely (until one of the events above oc?

 curs).

 No explicit indication of which request was completed is given; you must determine which

 request(s) have completed by iterating with gai_error() over the list of requests.

 The gai_error() function returns the status of the request req: either EAI_INPROGRESS if

 the request was not completed yet, 0 if it was handled successfully, or an error code if

 the request could not be resolved.

 The gai_cancel() function cancels the request req. If the request has been canceled suc?

 cessfully, the error status of the request will be set to EAI_CANCELED and normal asyn?

 chronous notification will be performed. The request cannot be canceled if it is cur?

 rently being processed; in that case, it will be handled as if gai_cancel() has never been

 called. If req is NULL, an attempt is made to cancel all outstanding requests that the

 process has made.

RETURN VALUE

 The getaddrinfo_a() function returns 0 if all of the requests have been enqueued success?

 fully, or one of the following nonzero error codes:

 EAI_AGAIN

 The resources necessary to enqueue the look-up requests were not available. The

 application may check the error status of each request to determine which ones

 failed.

 EAI_MEMORY

 Out of memory.

 EAI_SYSTEM

 mode is invalid. Page 3/12

 The gai_suspend() function returns 0 if at least one of the listed requests has been com?

 pleted. Otherwise, it returns one of the following nonzero error codes:

 EAI_AGAIN

 The given timeout expired before any of the requests could be completed.

 EAI_ALLDONE

 There were no actual requests given to the function.

 EAI_INTR

 A signal has interrupted the function. Note that this interruption might have been

 caused by signal notification of some completed look-up request.

 The gai_error() function can return EAI_INPROGRESS for an unfinished look-up request, 0

 for a successfully completed look-up (as described above), one of the error codes that

 could be returned by getaddrinfo(3), or the error code EAI_CANCELED if the request has

 been canceled explicitly before it could be finished.

 The gai_cancel() function can return one of these values:

 EAI_CANCELED

 The request has been canceled successfully.

 EAI_NOTCANCELED

 The request has not been canceled.

 EAI_ALLDONE

 The request has already completed.

 The gai_strerror(3) function translates these error codes to a human readable string,

 suitable for error reporting.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?getaddrinfo_a(), gai_suspend(), ? Thread safety ? MT-Safe ?

 ?gai_error(), gai_cancel() ? ? ?

 ??

CONFORMING TO

 These functions are GNU extensions; they first appeared in glibc in version 2.2.3.

NOTES Page 4/12

 The interface of getaddrinfo_a() was modeled after the lio_listio(3) interface.

EXAMPLES

 Two examples are provided: a simple example that resolves several requests in parallel

 synchronously, and a complex example showing some of the asynchronous capabilities.

 Synchronous example

 The program below simply resolves several hostnames in parallel, giving a speed-up com?

 pared to resolving the hostnames sequentially using getaddrinfo(3). The program might be

 used like this:

 $./a.out ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz

 ftp.us.kernel.org: 128.30.2.36

 enoent.linuxfoundation.org: Name or service not known

 gnu.cz: 87.236.197.13

 Here is the program source code

 #define _GNU_SOURCE

 #include <netdb.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 int

 main(int argc, char *argv[])

 {

 int ret;

 struct gaicb *reqs[argc - 1];

 char host[NI_MAXHOST];

 struct addrinfo *res;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s HOST...\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 for (int i = 0; i < argc - 1; i++) {

 reqs[i] = malloc(sizeof(*reqs[0]));

 if (reqs[i] == NULL) {

 perror("malloc"); Page 5/12

 exit(EXIT_FAILURE);

 }

 memset(reqs[i], 0, sizeof(*reqs[0]));

 reqs[i]->ar_name = argv[i + 1];

 }

 ret = getaddrinfo_a(GAI_WAIT, reqs, argc - 1, NULL);

 if (ret != 0) {

 fprintf(stderr, "getaddrinfo_a() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 }

 for (int i = 0; i < argc - 1; i++) {

 printf("%s: ", reqs[i]->ar_name);

 ret = gai_error(reqs[i]);

 if (ret == 0) {

 res = reqs[i]->ar_result;

 ret = getnameinfo(res->ai_addr, res->ai_addrlen,

 host, sizeof(host),

 NULL, 0, NI_NUMERICHOST);

 if (ret != 0) {

 fprintf(stderr, "getnameinfo() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 }

 puts(host);

 } else {

 puts(gai_strerror(ret));

 }

 }

 exit(EXIT_SUCCESS);

 }

 Asynchronous example

 This example shows a simple interactive getaddrinfo_a() front-end. The notification fa? Page 6/12

 cility is not demonstrated.

 An example session might look like this:

 $./a.out

 > a ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz

 > c 2

 [2] gnu.cz: Request not canceled

 > w 0 1

 [00] ftp.us.kernel.org: Finished

 > l

 [00] ftp.us.kernel.org: 216.165.129.139

 [01] enoent.linuxfoundation.org: Processing request in progress

 [02] gnu.cz: 87.236.197.13

 > l

 [00] ftp.us.kernel.org: 216.165.129.139

 [01] enoent.linuxfoundation.org: Name or service not known

 [02] gnu.cz: 87.236.197.13

 The program source is as follows:

 #define _GNU_SOURCE

 #include <netdb.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 static struct gaicb **reqs = NULL;

 static int nreqs = 0;

 static char *

 getcmd(void)

 {

 static char buf[256];

 fputs("> ", stdout); fflush(stdout);

 if (fgets(buf, sizeof(buf), stdin) == NULL)

 return NULL;

 if (buf[strlen(buf) - 1] == '\n')

 buf[strlen(buf) - 1] = 0; Page 7/12

 return buf;

 }

 /* Add requests for specified hostnames */

 static void

 add_requests(void)

 {

 int nreqs_base = nreqs;

 char *host;

 int ret;

 while ((host = strtok(NULL, " "))) {

 nreqs++;

 reqs = realloc(reqs, sizeof(reqs[0]) * nreqs);

 reqs[nreqs - 1] = calloc(1, sizeof(*reqs[0]));

 reqs[nreqs - 1]->ar_name = strdup(host);

 }

 /* Queue nreqs_base..nreqs requests. */

 ret = getaddrinfo_a(GAI_NOWAIT, &reqs[nreqs_base],

 nreqs - nreqs_base, NULL);

 if (ret) {

 fprintf(stderr, "getaddrinfo_a() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 }

 }

 /* Wait until at least one of specified requests completes */

 static void

 wait_requests(void)

 {

 char *id;

 int ret, n;

 struct gaicb const **wait_reqs = calloc(nreqs, sizeof(*wait_reqs));

 /* NULL elements are ignored by gai_suspend(). */

 while ((id = strtok(NULL, " ")) != NULL) { Page 8/12

 n = atoi(id);

 if (n >= nreqs) {

 printf("Bad request number: %s\n", id);

 return;

 }

 wait_reqs[n] = reqs[n];

 }

 ret = gai_suspend(wait_reqs, nreqs, NULL);

 if (ret) {

 printf("gai_suspend(): %s\n", gai_strerror(ret));

 return;

 }

 for (int i = 0; i < nreqs; i++) {

 if (wait_reqs[i] == NULL)

 continue;

 ret = gai_error(reqs[i]);

 if (ret == EAI_INPROGRESS)

 continue;

 printf("[%02d] %s: %s\n", i, reqs[i]->ar_name,

 ret == 0 ? "Finished" : gai_strerror(ret));

 }

 }

 /* Cancel specified requests */

 static void

 cancel_requests(void)

 {

 char *id;

 int ret, n;

 while ((id = strtok(NULL, " ")) != NULL) {

 n = atoi(id);

 if (n >= nreqs) {

 printf("Bad request number: %s\n", id);

 return; Page 9/12

 }

 ret = gai_cancel(reqs[n]);

 printf("[%s] %s: %s\n", id, reqs[atoi(id)]->ar_name,

 gai_strerror(ret));

 }

 }

 /* List all requests */

 static void

 list_requests(void)

 {

 int ret;

 char host[NI_MAXHOST];

 struct addrinfo *res;

 for (int i = 0; i < nreqs; i++) {

 printf("[%02d] %s: ", i, reqs[i]->ar_name);

 ret = gai_error(reqs[i]);

 if (!ret) {

 res = reqs[i]->ar_result;

 ret = getnameinfo(res->ai_addr, res->ai_addrlen,

 host, sizeof(host),

 NULL, 0, NI_NUMERICHOST);

 if (ret) {

 fprintf(stderr, "getnameinfo() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 }

 puts(host);

 } else {

 puts(gai_strerror(ret));

 }

 }

 }

 int Page 10/12

 main(int argc, char *argv[])

 {

 char *cmdline;

 char *cmd;

 while ((cmdline = getcmd()) != NULL) {

 cmd = strtok(cmdline, " ");

 if (cmd == NULL) {

 list_requests();

 } else {

 switch (cmd[0]) {

 case 'a':

 add_requests();

 break;

 case 'w':

 wait_requests();

 break;

 case 'c':

 cancel_requests();

 break;

 case 'l':

 list_requests();

 break;

 default:

 fprintf(stderr, "Bad command: %c\n", cmd[0]);

 break;

 }

 }

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getaddrinfo(3), inet(3), lio_listio(3), hostname(7), ip(7), sigevent(7)

COLOPHON Page 11/12

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETADDRINFO_A(3)

Page 12/12

