
Rocky Enterprise Linux 9.2 Manual Pages on command 'fopencookie.3'

$ man fopencookie.3

FOPENCOOKIE(3) Linux Programmer's Manual FOPENCOOKIE(3)

NAME

 fopencookie - opening a custom stream

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <stdio.h>

 FILE *fopencookie(void *cookie, const char *mode,

 cookie_io_functions_t io_funcs);

DESCRIPTION

 The fopencookie() function allows the programmer to create a custom implementation for a

 standard I/O stream. This implementation can store the stream's data at a location of its

 own choosing; for example, fopencookie() is used to implement fmemopen(3), which provides

 a stream interface to data that is stored in a buffer in memory.

 In order to create a custom stream the programmer must:

 * Implement four "hook" functions that are used internally by the standard I/O library

 when performing I/O on the stream.

 * Define a "cookie" data type, a structure that provides bookkeeping information (e.g.,

 where to store data) used by the aforementioned hook functions. The standard I/O pack?

 age knows nothing about the contents of this cookie (thus it is typed as void * when

 passed to fopencookie()), but automatically supplies the cookie as the first argument

 when calling the hook functions.

 * Call fopencookie() to open a new stream and associate the cookie and hook functions

 with that stream. Page 1/8

 The fopencookie() function serves a purpose similar to fopen(3): it opens a new stream and

 returns a pointer to a FILE object that is used to operate on that stream.

 The cookie argument is a pointer to the caller's cookie structure that is to be associated

 with the new stream. This pointer is supplied as the first argument when the standard I/O

 library invokes any of the hook functions described below.

 The mode argument serves the same purpose as for fopen(3). The following modes are sup?

 ported: r, w, a, r+, w+, and a+. See fopen(3) for details.

 The io_funcs argument is a structure that contains four fields pointing to the programmer-

 defined hook functions that are used to implement this stream. The structure is defined

 as follows

 typedef struct {

 cookie_read_function_t *read;

 cookie_write_function_t *write;

 cookie_seek_function_t *seek;

 cookie_close_function_t *close;

 } cookie_io_functions_t;

 The four fields are as follows:

 cookie_read_function_t *read

 This function implements read operations for the stream. When called, it receives

 three arguments:

 ssize_t read(void *cookie, char *buf, size_t size);

 The buf and size arguments are, respectively, a buffer into which input data can be

 placed and the size of that buffer. As its function result, the read function

 should return the number of bytes copied into buf, 0 on end of file, or -1 on er?

 ror. The read function should update the stream offset appropriately.

 If *read is a null pointer, then reads from the custom stream always return end of

 file.

 cookie_write_function_t *write

 This function implements write operations for the stream. When called, it receives

 three arguments:

 ssize_t write(void *cookie, const char *buf, size_t size);

 The buf and size arguments are, respectively, a buffer of data to be output to the

 stream and the size of that buffer. As its function result, the write function Page 2/8

 should return the number of bytes copied from buf, or 0 on error. (The function

 must not return a negative value.) The write function should update the stream

 offset appropriately.

 If *write is a null pointer, then output to the stream is discarded.

 cookie_seek_function_t *seek

 This function implements seek operations on the stream. When called, it receives

 three arguments:

 int seek(void *cookie, off64_t *offset, int whence);

 The *offset argument specifies the new file offset depending on which of the fol?

 lowing three values is supplied in whence:

 SEEK_SET

 The stream offset should be set *offset bytes from the start of the stream.

 SEEK_CUR

 *offset should be added to the current stream offset.

 SEEK_END

 The stream offset should be set to the size of the stream plus *offset.

 Before returning, the seek function should update *offset to indicate the new

 stream offset.

 As its function result, the seek function should return 0 on success, and -1 on er?

 ror.

 If *seek is a null pointer, then it is not possible to perform seek operations on

 the stream.

 cookie_close_function_t *close

 This function closes the stream. The hook function can do things such as freeing

 buffers allocated for the stream. When called, it receives one argument:

 int close(void *cookie);

 The cookie argument is the cookie that the programmer supplied when calling fopen?

 cookie().

 As its function result, the close function should return 0 on success, and EOF on

 error.

 If *close is NULL, then no special action is performed when the stream is closed.

RETURN VALUE

 On success fopencookie() returns a pointer to the new stream. On error, NULL is returned. Page 3/8

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?fopencookie() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 This function is a nonstandard GNU extension.

EXAMPLES

 The program below implements a custom stream whose functionality is similar (but not iden?

 tical) to that available via fmemopen(3). It implements a stream whose data is stored in

 a memory buffer. The program writes its command-line arguments to the stream, and then

 seeks through the stream reading two out of every five characters and writing them to

 standard output. The following shell session demonstrates the use of the program:

 $./a.out 'hello world'

 /he/

 / w/

 /d/

 Reached end of file

 Note that a more general version of the program below could be improved to more robustly

 handle various error situations (e.g., opening a stream with a cookie that already has an

 open stream; closing a stream that has already been closed).

 Program source

 #define _GNU_SOURCE

 #include <sys/types.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <string.h>

 #define INIT_BUF_SIZE 4

 struct memfile_cookie {

 char *buf; /* Dynamically sized buffer for data */ Page 4/8

 size_t allocated; /* Size of buf */

 size_t endpos; /* Number of characters in buf */

 off_t offset; /* Current file offset in buf */

 };

 ssize_t

 memfile_write(void *c, const char *buf, size_t size)

 {

 char *new_buff;

 struct memfile_cookie *cookie = c;

 /* Buffer too small? Keep doubling size until big enough */

 while (size + cookie->offset > cookie->allocated) {

 new_buff = realloc(cookie->buf, cookie->allocated * 2);

 if (new_buff == NULL) {

 return -1;

 } else {

 cookie->allocated *= 2;

 cookie->buf = new_buff;

 }

 }

 memcpy(cookie->buf + cookie->offset, buf, size);

 cookie->offset += size;

 if (cookie->offset > cookie->endpos)

 cookie->endpos = cookie->offset;

 return size;

 }

 ssize_t

 memfile_read(void *c, char *buf, size_t size)

 {

 ssize_t xbytes;

 struct memfile_cookie *cookie = c;

 /* Fetch minimum of bytes requested and bytes available */

 xbytes = size;

 if (cookie->offset + size > cookie->endpos) Page 5/8

 xbytes = cookie->endpos - cookie->offset;

 if (xbytes < 0) /* offset may be past endpos */

 xbytes = 0;

 memcpy(buf, cookie->buf + cookie->offset, xbytes);

 cookie->offset += xbytes;

 return xbytes;

 }

 int

 memfile_seek(void *c, off64_t *offset, int whence)

 {

 off64_t new_offset;

 struct memfile_cookie *cookie = c;

 if (whence == SEEK_SET)

 new_offset = *offset;

 else if (whence == SEEK_END)

 new_offset = cookie->endpos + *offset;

 else if (whence == SEEK_CUR)

 new_offset = cookie->offset + *offset;

 else

 return -1;

 if (new_offset < 0)

 return -1;

 cookie->offset = new_offset;

 *offset = new_offset;

 return 0;

 }

 int

 memfile_close(void *c)

 {

 struct memfile_cookie *cookie = c;

 free(cookie->buf);

 cookie->allocated = 0;

 cookie->buf = NULL; Page 6/8

 return 0;

 }

 int

 main(int argc, char *argv[])

 {

 cookie_io_functions_t memfile_func = {

 .read = memfile_read,

 .write = memfile_write,

 .seek = memfile_seek,

 .close = memfile_close

 };

 FILE *stream;

 struct memfile_cookie mycookie;

 size_t nread;

 char buf[1000];

 /* Set up the cookie before calling fopencookie() */

 mycookie.buf = malloc(INIT_BUF_SIZE);

 if (mycookie.buf == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 mycookie.allocated = INIT_BUF_SIZE;

 mycookie.offset = 0;

 mycookie.endpos = 0;

 stream = fopencookie(&mycookie,"w+", memfile_func);

 if (stream == NULL) {

 perror("fopencookie");

 exit(EXIT_FAILURE);

 }

 /* Write command-line arguments to our file */

 for (int j = 1; j < argc; j++)

 if (fputs(argv[j], stream) == EOF) {

 perror("fputs"); Page 7/8

 exit(EXIT_FAILURE);

 }

 /* Read two bytes out of every five, until EOF */

 for (long p = 0; ; p += 5) {

 if (fseek(stream, p, SEEK_SET) == -1) {

 perror("fseek");

 exit(EXIT_FAILURE);

 }

 nread = fread(buf, 1, 2, stream);

 if (nread == 0) {

 if (ferror(stream) != 0) {

 fprintf(stderr, "fread failed\n");

 exit(EXIT_FAILURE);

 }

 printf("Reached end of file\n");

 break;

 }

 printf("/%.*s/\n", (int) nread, buf);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 fclose(3), fmemopen(3), fopen(3), fseek(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 FOPENCOOKIE(3)

Page 8/8

