
Rocky Enterprise Linux 9.2 Manual Pages on command 'find.1'

$ man find.1

FIND(1) General Commands Manual FIND(1)

NAME

 find - search for files in a directory hierarchy

SYNOPSIS

 find [-H] [-L] [-P] [-D debugopts] [-Olevel] [starting-point...] [expression]

DESCRIPTION

 This manual page documents the GNU version of find. GNU find searches the directory tree

 rooted at each given starting-point by evaluating the given expression from left to right,

 according to the rules of precedence (see section OPERATORS), until the outcome is known

 (the left hand side is false for and operations, true for or), at which point find moves

 on to the next file name. If no starting-point is specified, `.' is assumed.

 If you are using find in an environment where security is important (for example if you

 are using it to search directories that are writable by other users), you should read the

 `Security Considerations' chapter of the findutils documentation, which is called Finding

 Files and comes with findutils. That document also includes a lot more detail and discus?

 sion than this manual page, so you may find it a more useful source of information.

OPTIONS

 The -H, -L and -P options control the treatment of symbolic links. Command-line arguments

 following these are taken to be names of files or directories to be examined, up to the

 first argument that begins with `-', or the argument `(' or `!'. That argument and any

 following arguments are taken to be the expression describing what is to be searched for.

 If no paths are given, the current directory is used. If no expression is given, the ex?

 pression -print is used (but you should probably consider using -print0 instead, anyway). Page 1/35

 This manual page talks about `options' within the expression list. These options control

 the behaviour of find but are specified immediately after the last path name. The five

 `real' options -H, -L, -P, -D and -O must appear before the first path name, if at all. A

 double dash -- could theoretically be used to signal that any remaining arguments are not

 options, but this does not really work due to the way find determines the end of the fol?

 lowing path arguments: it does that by reading until an expression argument comes (which

 also starts with a `-'). Now, if a path argument would start with a `-', then find would

 treat it as expression argument instead. Thus, to ensure that all start points are taken

 as such, and especially to prevent that wildcard patterns expanded by the calling shell

 are not mistakenly treated as expression arguments, it is generally safer to prefix wild?

 cards or dubious path names with either `./' or to use absolute path names starting with

 '/'.

 -P Never follow symbolic links. This is the default behaviour. When find examines or

 prints information about files, and the file is a symbolic link, the information

 used shall be taken from the properties of the symbolic link itself.

 -L Follow symbolic links. When find examines or prints information about files, the

 information used shall be taken from the properties of the file to which the link

 points, not from the link itself (unless it is a broken symbolic link or find is

 unable to examine the file to which the link points). Use of this option implies

 -noleaf. If you later use the -P option, -noleaf will still be in effect. If -L

 is in effect and find discovers a symbolic link to a subdirectory during its

 search, the subdirectory pointed to by the symbolic link will be searched.

 When the -L option is in effect, the -type predicate will always match against the

 type of the file that a symbolic link points to rather than the link itself (unless

 the symbolic link is broken). Actions that can cause symbolic links to become bro?

 ken while find is executing (for example -delete) can give rise to confusing behav?

 iour. Using -L causes the -lname and -ilname predicates always to return false.

 -H Do not follow symbolic links, except while processing the command line arguments.

 When find examines or prints information about files, the information used shall be

 taken from the properties of the symbolic link itself. The only exception to this

 behaviour is when a file specified on the command line is a symbolic link, and the

 link can be resolved. For that situation, the information used is taken from what?

 ever the link points to (that is, the link is followed). The information about the Page 2/35

 link itself is used as a fallback if the file pointed to by the symbolic link can?

 not be examined. If -H is in effect and one of the paths specified on the command

 line is a symbolic link to a directory, the contents of that directory will be ex?

 amined (though of course -maxdepth 0 would prevent this).

 If more than one of -H, -L and -P is specified, each overrides the others; the last one

 appearing on the command line takes effect. Since it is the default, the -P option should

 be considered to be in effect unless either -H or -L is specified.

 GNU find frequently stats files during the processing of the command line itself, before

 any searching has begun. These options also affect how those arguments are processed.

 Specifically, there are a number of tests that compare files listed on the command line

 against a file we are currently considering. In each case, the file specified on the com?

 mand line will have been examined and some of its properties will have been saved. If the

 named file is in fact a symbolic link, and the -P option is in effect (or if neither -H

 nor -L were specified), the information used for the comparison will be taken from the

 properties of the symbolic link. Otherwise, it will be taken from the properties of the

 file the link points to. If find cannot follow the link (for example because it has in?

 sufficient privileges or the link points to a nonexistent file) the properties of the link

 itself will be used.

 When the -H or -L options are in effect, any symbolic links listed as the argument of

 -newer will be dereferenced, and the timestamp will be taken from the file to which the

 symbolic link points. The same consideration applies to -newerXY, -anewer and -cnewer.

 The -follow option has a similar effect to -L, though it takes effect at the point where

 it appears (that is, if -L is not used but -follow is, any symbolic links appearing after

 -follow on the command line will be dereferenced, and those before it will not).

 -D debugopts

 Print diagnostic information; this can be helpful to diagnose problems with why

 find is not doing what you want. The list of debug options should be comma sepa?

 rated. Compatibility of the debug options is not guaranteed between releases of

 findutils. For a complete list of valid debug options, see the output of find

 -D help. Valid debug options include

 exec Show diagnostic information relating to -exec, -execdir, -ok and -okdir

 opt Prints diagnostic information relating to the optimisation of the expression

 tree; see the -O option. Page 3/35

 rates Prints a summary indicating how often each predicate succeeded or failed.

 search Navigate the directory tree verbosely.

 stat Print messages as files are examined with the stat and lstat system calls.

 The find program tries to minimise such calls.

 tree Show the expression tree in its original and optimised form.

 all Enable all of the other debug options (but help).

 help Explain the debugging options.

 -Olevel

 Enables query optimisation. The find program reorders tests to speed up execution

 while preserving the overall effect; that is, predicates with side effects are not

 reordered relative to each other. The optimisations performed at each optimisation

 level are as follows.

 0 Equivalent to optimisation level 1.

 1 This is the default optimisation level and corresponds to the traditional

 behaviour. Expressions are reordered so that tests based only on the names

 of files (for example -name and -regex) are performed first.

 2 Any -type or -xtype tests are performed after any tests based only on the

 names of files, but before any tests that require information from the in?

 ode. On many modern versions of Unix, file types are returned by readdir()

 and so these predicates are faster to evaluate than predicates which need to

 stat the file first. If you use the -fstype FOO predicate and specify a

 filesystem type FOO which is not known (that is, present in `/etc/mtab') at

 the time find starts, that predicate is equivalent to -false.

 3 At this optimisation level, the full cost-based query optimiser is enabled.

 The order of tests is modified so that cheap (i.e. fast) tests are performed

 first and more expensive ones are performed later, if necessary. Within

 each cost band, predicates are evaluated earlier or later according to

 whether they are likely to succeed or not. For -o, predicates which are

 likely to succeed are evaluated earlier, and for -a, predicates which are

 likely to fail are evaluated earlier.

 The cost-based optimiser has a fixed idea of how likely any given test is to suc?

 ceed. In some cases the probability takes account of the specific nature of the

 test (for example, -type f is assumed to be more likely to succeed than -type c). Page 4/35

 The cost-based optimiser is currently being evaluated. If it does not actually im?

 prove the performance of find, it will be removed again. Conversely, optimisations

 that prove to be reliable, robust and effective may be enabled at lower optimisa?

 tion levels over time. However, the default behaviour (i.e. optimisation level 1)

 will not be changed in the 4.3.x release series. The findutils test suite runs all

 the tests on find at each optimisation level and ensures that the result is the

 same.

EXPRESSION

 The part of the command line after the list of starting points is the expression. This is

 a kind of query specification describing how we match files and what we do with the files

 that were matched. An expression is composed of a sequence of things:

 Tests Tests return a true or false value, usually on the basis of some property of a file

 we are considering. The -empty test for example is true only when the current file

 is empty.

 Actions

 Actions have side effects (such as printing something on the standard output) and

 return either true or false, usually based on whether or not they are successful.

 The -print action for example prints the name of the current file on the standard

 output.

 Global options

 Global options affect the operation of tests and actions specified on any part of

 the command line. Global options always return true. The -depth option for exam?

 ple makes find traverse the file system in a depth-first order.

 Positional options

 Positional options affect only tests or actions which follow them. Positional op?

 tions always return true. The -regextype option for example is positional, speci?

 fying the regular expression dialect for regular expressions occurring later on the

 command line.

 Operators

 Operators join together the other items within the expression. They include for

 example -o (meaning logical OR) and -a (meaning logical AND). Where an operator is

 missing, -a is assumed.

 The -print action is performed on all files for which the whole expression is true, unless Page 5/35

 it contains an action other than -prune or -quit. Actions which inhibit the default

 -print are -delete, -exec, -execdir, -ok, -okdir, -fls, -fprint, -fprintf, -ls, -print and

 -printf.

 The -delete action also acts like an option (since it implies -depth).

 POSITIONAL OPTIONS

 Positional options always return true. They affect only tests occurring later on the com?

 mand line.

 -daystart

 Measure times (for -amin, -atime, -cmin, -ctime, -mmin, and -mtime) from the begin?

 ning of today rather than from 24 hours ago. This option only affects tests which

 appear later on the command line.

 -follow

 Deprecated; use the -L option instead. Dereference symbolic links. Implies

 -noleaf. The -follow option affects only those tests which appear after it on the

 command line. Unless the -H or -L option has been specified, the position of the

 -follow option changes the behaviour of the -newer predicate; any files listed as

 the argument of -newer will be dereferenced if they are symbolic links. The same

 consideration applies to -newerXY, -anewer and -cnewer. Similarly, the -type pred?

 icate will always match against the type of the file that a symbolic link points to

 rather than the link itself. Using -follow causes the -lname and -ilname predi?

 cates always to return false.

 -regextype type

 Changes the regular expression syntax understood by -regex and -iregex tests which

 occur later on the command line. To see which regular expression types are known,

 use -regextype help. The Texinfo documentation (see SEE ALSO) explains the meaning

 of and differences between the various types of regular expression.

 -warn, -nowarn

 Turn warning messages on or off. These warnings apply only to the command line us?

 age, not to any conditions that find might encounter when it searches directories.

 The default behaviour corresponds to -warn if standard input is a tty, and to

 -nowarn otherwise. If a warning message relating to command-line usage is pro?

 duced, the exit status of find is not affected. If the POSIXLY_CORRECT environment

 variable is set, and -warn is also used, it is not specified which, if any, warn? Page 6/35

 ings will be active.

 GLOBAL OPTIONS

 Global options always return true. Global options take effect even for tests which occur

 earlier on the command line. To prevent confusion, global options should specified on the

 command-line after the list of start points, just before the first test, positional option

 or action. If you specify a global option in some other place, find will issue a warning

 message explaining that this can be confusing.

 The global options occur after the list of start points, and so are not the same kind of

 option as -L, for example.

 -d A synonym for -depth, for compatibility with FreeBSD, NetBSD, MacOS X and OpenBSD.

 -depth Process each directory's contents before the directory itself. The -delete action

 also implies -depth.

 -help, --help

 Print a summary of the command-line usage of find and exit.

 -ignore_readdir_race

 Normally, find will emit an error message when it fails to stat a file. If you

 give this option and a file is deleted between the time find reads the name of the

 file from the directory and the time it tries to stat the file, no error message

 will be issued. This also applies to files or directories whose names are given on

 the command line. This option takes effect at the time the command line is read,

 which means that you cannot search one part of the filesystem with this option on

 and part of it with this option off (if you need to do that, you will need to issue

 two find commands instead, one with the option and one without it).

 Furthermore, find with the -ignore_readdir_race option will ignore errors of the

 -delete action in the case the file has disappeared since the parent directory was

 read: it will not output an error diagnostic, and the return code of the -delete

 action will be true.

 -maxdepth levels

 Descend at most levels (a non-negative integer) levels of directories below the

 starting-points. Using -maxdepth 0 means only apply the tests and actions to the

 starting-points themselves.

 -mindepth levels

 Do not apply any tests or actions at levels less than levels (a non-negative inte? Page 7/35

 ger). Using -mindepth 1 means process all files except the starting-points.

 -mount Don't descend directories on other filesystems. An alternate name for -xdev, for

 compatibility with some other versions of find.

 -noignore_readdir_race

 Turns off the effect of -ignore_readdir_race.

 -noleaf

 Do not optimize by assuming that directories contain 2 fewer subdirectories than

 their hard link count. This option is needed when searching filesystems that do

 not follow the Unix directory-link convention, such as CD-ROM or MS-DOS filesystems

 or AFS volume mount points. Each directory on a normal Unix filesystem has at

 least 2 hard links: its name and its `.' entry. Additionally, its subdirectories

 (if any) each have a `..' entry linked to that directory. When find is examining a

 directory, after it has statted 2 fewer subdirectories than the directory's link

 count, it knows that the rest of the entries in the directory are non-directories

 (`leaf' files in the directory tree). If only the files' names need to be exam?

 ined, there is no need to stat them; this gives a significant increase in search

 speed.

 -version, --version

 Print the find version number and exit.

 -xdev Don't descend directories on other filesystems.

 TESTS

 Some tests, for example -newerXY and -samefile, allow comparison between the file cur?

 rently being examined and some reference file specified on the command line. When these

 tests are used, the interpretation of the reference file is determined by the options -H,

 -L and -P and any previous -follow, but the reference file is only examined once, at the

 time the command line is parsed. If the reference file cannot be examined (for example,

 the stat(2) system call fails for it), an error message is issued, and find exits with a

 nonzero status.

 A numeric argument n can be specified to tests (like -amin, -mtime, -gid, -inum, -links,

 -size, -uid and -used) as

 +n for greater than n,

 -n for less than n,

 n for exactly n. Page 8/35

 Supported tests:

 -amin n

 File was last accessed less than, more than or exactly n minutes ago.

 -anewer reference

 Time of the last access of the current file is more recent than that of the last

 data modification of the reference file. If reference is a symbolic link and the

 -H option or the -L option is in effect, then the time of the last data modifica?

 tion of the file it points to is always used.

 -atime n

 File was last accessed less than, more than or exactly n*24 hours ago. When find

 figures out how many 24-hour periods ago the file was last accessed, any fractional

 part is ignored, so to match -atime +1, a file has to have been accessed at least

 two days ago.

 -cmin n

 File's status was last changed less than, more than or exactly n minutes ago.

 -cnewer reference

 Time of the last status change of the current file is more recent than that of the

 last data modification of the reference file. If reference is a symbolic link and

 the -H option or the -L option is in effect, then the time of the last data modifi?

 cation of the file it points to is always used.

 -ctime n

 File's status was last changed less than, more than or exactly n*24 hours ago. See

 the comments for -atime to understand how rounding affects the interpretation of

 file status change times.

 -empty File is empty and is either a regular file or a directory.

 -executable

 Matches files which are executable and directories which are searchable (in a file

 name resolution sense) by the current user. This takes into account access control

 lists and other permissions artefacts which the -perm test ignores. This test

 makes use of the access(2) system call, and so can be fooled by NFS servers which

 do UID mapping (or root-squashing), since many systems implement access(2) in the

 client's kernel and so cannot make use of the UID mapping information held on the

 server. Because this test is based only on the result of the access(2) system Page 9/35

 call, there is no guarantee that a file for which this test succeeds can actually

 be executed.

 -false Always false.

 -fstype type

 File is on a filesystem of type type. The valid filesystem types vary among dif?

 ferent versions of Unix; an incomplete list of filesystem types that are accepted

 on some version of Unix or another is: ufs, 4.2, 4.3, nfs, tmp, mfs, S51K, S52K.

 You can use -printf with the %F directive to see the types of your filesystems.

 -gid n File's numeric group ID is less than, more than or exactly n.

 -group gname

 File belongs to group gname (numeric group ID allowed).

 -ilname pattern

 Like -lname, but the match is case insensitive. If the -L option or the -follow

 option is in effect, this test returns false unless the symbolic link is broken.

 -iname pattern

 Like -name, but the match is case insensitive. For example, the patterns `fo*' and

 `F??' match the file names `Foo', `FOO', `foo', `fOo', etc. The pattern `*foo*`

 will also match a file called '.foobar'.

 -inum n

 File has inode number smaller than, greater than or exactly n. It is normally eas?

 ier to use the -samefile test instead.

 -ipath pattern

 Like -path. but the match is case insensitive.

 -iregex pattern

 Like -regex, but the match is case insensitive.

 -iwholename pattern

 See -ipath. This alternative is less portable than -ipath.

 -links n

 File has less than, more than or exactly n hard links.

 -lname pattern

 File is a symbolic link whose contents match shell pattern pattern. The metachar?

 acters do not treat `/' or `.' specially. If the -L option or the -follow option

 is in effect, this test returns false unless the symbolic link is broken. Page 10/35

 -mmin n

 File's data was last modified less than, more than or exactly n minutes ago.

 -mtime n

 File's data was last modified less than, more than or exactly n*24 hours ago. See

 the comments for -atime to understand how rounding affects the interpretation of

 file modification times.

 -name pattern

 Base of file name (the path with the leading directories removed) matches shell

 pattern pattern. Because the leading directories are removed, the file names con?

 sidered for a match with -name will never include a slash, so `-name a/b' will

 never match anything (you probably need to use -path instead). A warning is issued

 if you try to do this, unless the environment variable POSIXLY_CORRECT is set. The

 metacharacters (`*', `?', and `[]') match a `.' at the start of the base name (this

 is a change in findutils-4.2.2; see section STANDARDS CONFORMANCE below). To ig?

 nore a directory and the files under it, use -prune rather than checking every file

 in the tree; see an example in the description of that action. Braces are not

 recognised as being special, despite the fact that some shells including Bash imbue

 braces with a special meaning in shell patterns. The filename matching is per?

 formed with the use of the fnmatch(3) library function. Don't forget to enclose

 the pattern in quotes in order to protect it from expansion by the shell.

 -newer reference

 Time of the last data modification of the current file is more recent than that of

 the last data modification of the reference file. If reference is a symbolic link

 and the -H option or the -L option is in effect, then the time of the last data

 modification of the file it points to is always used.

 -newerXY reference

 Succeeds if timestamp X of the file being considered is newer than timestamp Y of

 the file reference. The letters X and Y can be any of the following letters:

 a The access time of the file reference

 B The birth time of the file reference

 c The inode status change time of reference

 m The modification time of the file reference

 t reference is interpreted directly as a time Page 11/35

 Some combinations are invalid; for example, it is invalid for X to be t. Some com?

 binations are not implemented on all systems; for example B is not supported on all

 systems. If an invalid or unsupported combination of XY is specified, a fatal er?

 ror results. Time specifications are interpreted as for the argument to the -d op?

 tion of GNU date. If you try to use the birth time of a reference file, and the

 birth time cannot be determined, a fatal error message results. If you specify a

 test which refers to the birth time of files being examined, this test will fail

 for any files where the birth time is unknown.

 -nogroup

 No group corresponds to file's numeric group ID.

 -nouser

 No user corresponds to file's numeric user ID.

 -path pattern

 File name matches shell pattern pattern. The metacharacters do not treat `/' or

 `.' specially; so, for example,

 find . -path "./sr*sc"

 will print an entry for a directory called ./src/misc (if one exists). To ignore a

 whole directory tree, use -prune rather than checking every file in the tree. Note

 that the pattern match test applies to the whole file name, starting from one of

 the start points named on the command line. It would only make sense to use an ab?

 solute path name here if the relevant start point is also an absolute path. This

 means that this command will never match anything:

 find bar -path /foo/bar/myfile -print

 Find compares the -path argument with the concatenation of a directory name and the

 base name of the file it's examining. Since the concatenation will never end with

 a slash, -path arguments ending in a slash will match nothing (except perhaps a

 start point specified on the command line). The predicate -path is also supported

 by HP-UX find and is part of the POSIX 2008 standard.

 -perm mode

 File's permission bits are exactly mode (octal or symbolic). Since an exact match

 is required, if you want to use this form for symbolic modes, you may have to spec?

 ify a rather complex mode string. For example `-perm g=w' will only match files

 which have mode 0020 (that is, ones for which group write permission is the only Page 12/35

 permission set). It is more likely that you will want to use the `/' or `-' forms,

 for example `-perm -g=w', which matches any file with group write permission. See

 the EXAMPLES section for some illustrative examples.

 -perm -mode

 All of the permission bits mode are set for the file. Symbolic modes are accepted

 in this form, and this is usually the way in which you would want to use them. You

 must specify `u', `g' or `o' if you use a symbolic mode. See the EXAMPLES section

 for some illustrative examples.

 -perm /mode

 Any of the permission bits mode are set for the file. Symbolic modes are accepted

 in this form. You must specify `u', `g' or `o' if you use a symbolic mode. See

 the EXAMPLES section for some illustrative examples. If no permission bits in mode

 are set, this test matches any file (the idea here is to be consistent with the be?

 haviour of -perm -000).

 -perm +mode

 This is no longer supported (and has been deprecated since 2005). Use -perm /mode

 instead.

 -readable

 Matches files which are readable by the current user. This takes into account ac?

 cess control lists and other permissions artefacts which the -perm test ignores.

 This test makes use of the access(2) system call, and so can be fooled by NFS

 servers which do UID mapping (or root-squashing), since many systems implement ac?

 cess(2) in the client's kernel and so cannot make use of the UID mapping informa?

 tion held on the server.

 -regex pattern

 File name matches regular expression pattern. This is a match on the whole path,

 not a search. For example, to match a file named ./fubar3, you can use the regular

 expression `.*bar.' or `.*b.*3', but not `f.*r3'. The regular expressions under?

 stood by find are by default Emacs Regular Expressions (except that `.' matches

 newline), but this can be changed with the -regextype option.

 -samefile name

 File refers to the same inode as name. When -L is in effect, this can include sym?

 bolic links. Page 13/35

 -size n[cwbkMG]

 File uses less than, more than or exactly n units of space, rounding up. The fol?

 lowing suffixes can be used:

 `b' for 512-byte blocks (this is the default if no suffix is used)

 `c' for bytes

 `w' for two-byte words

 `k' for kibibytes (KiB, units of 1024 bytes)

 `M' for mebibytes (MiB, units of 1024 * 1024 = 1048576 bytes)

 `G' for gibibytes (GiB, units of 1024 * 1024 * 1024 = 1073741824 bytes)

 The size is simply the st_size member of the struct stat populated by the lstat (or

 stat) system call, rounded up as shown above. In other words, it's consistent with

 the result you get for ls -l. Bear in mind that the `%k' and `%b' format speci?

 fiers of -printf handle sparse files differently. The `b' suffix always denotes

 512-byte blocks and never 1024-byte blocks, which is different to the behaviour of

 -ls.

 The + and - prefixes signify greater than and less than, as usual; i.e., an exact

 size of n units does not match. Bear in mind that the size is rounded up to the

 next unit. Therefore -size -1M is not equivalent to -size -1048576c. The former

 only matches empty files, the latter matches files from 0 to 1,048,575 bytes.

 -true Always true.

 -type c

 File is of type c:

 b block (buffered) special

 c character (unbuffered) special

 d directory

 p named pipe (FIFO)

 f regular file

 l symbolic link; this is never true if the -L option or the -follow option is

 in effect, unless the symbolic link is broken. If you want to search for

 symbolic links when -L is in effect, use -xtype.

 s socket

 D door (Solaris)

 To search for more than one type at once, you can supply the combined list of type Page 14/35

 letters separated by a comma `,' (GNU extension).

 -uid n File's numeric user ID is less than, more than or exactly n.

 -used n

 File was last accessed less than, more than or exactly n days after its status was

 last changed.

 -user uname

 File is owned by user uname (numeric user ID allowed).

 -wholename pattern

 See -path. This alternative is less portable than -path.

 -writable

 Matches files which are writable by the current user. This takes into account ac?

 cess control lists and other permissions artefacts which the -perm test ignores.

 This test makes use of the access(2) system call, and so can be fooled by NFS

 servers which do UID mapping (or root-squashing), since many systems implement ac?

 cess(2) in the client's kernel and so cannot make use of the UID mapping informa?

 tion held on the server.

 -xtype c

 The same as -type unless the file is a symbolic link. For symbolic links: if the

 -H or -P option was specified, true if the file is a link to a file of type c; if

 the -L option has been given, true if c is `l'. In other words, for symbolic

 links, -xtype checks the type of the file that -type does not check.

 -context pattern

 (SELinux only) Security context of the file matches glob pattern.

 ACTIONS

 -delete

 Delete files; true if removal succeeded. If the removal failed, an error message

 is issued. If -delete fails, find's exit status will be nonzero (when it eventu?

 ally exits). Use of -delete automatically turns on the `-depth' option.

 Warnings: Don't forget that the find command line is evaluated as an expression, so

 putting -delete first will make find try to delete everything below the starting

 points you specified. When testing a find command line that you later intend to

 use with -delete, you should explicitly specify -depth in order to avoid later sur?

 prises. Because -delete implies -depth, you cannot usefully use -prune and -delete Page 15/35

 together.

 Together with the -ignore_readdir_race option, find will ignore errors of the

 -delete action in the case the file has disappeared since the parent directory was

 read: it will not output an error diagnostic, and the return code of the -delete

 action will be true.

 -exec command ;

 Execute command; true if 0 status is returned. All following arguments to find are

 taken to be arguments to the command until an argument consisting of `;' is encoun?

 tered. The string `{}' is replaced by the current file name being processed every?

 where it occurs in the arguments to the command, not just in arguments where it is

 alone, as in some versions of find. Both of these constructions might need to be

 escaped (with a `\') or quoted to protect them from expansion by the shell. See

 the EXAMPLES section for examples of the use of the -exec option. The specified

 command is run once for each matched file. The command is executed in the starting

 directory. There are unavoidable security problems surrounding use of the -exec

 action; you should use the -execdir option instead.

 -exec command {} +

 This variant of the -exec action runs the specified command on the selected files,

 but the command line is built by appending each selected file name at the end; the

 total number of invocations of the command will be much less than the number of

 matched files. The command line is built in much the same way that xargs builds

 its command lines. Only one instance of `{}' is allowed within the command, and it

 must appear at the end, immediately before the `+'; it needs to be escaped (with a

 `\') or quoted to protect it from interpretation by the shell. The command is exe?

 cuted in the starting directory. If any invocation with the `+' form returns a

 non-zero value as exit status, then find returns a non-zero exit status. If find

 encounters an error, this can sometimes cause an immediate exit, so some pending

 commands may not be run at all. For this reason -exec my-command ... {} + -quit

 may not result in my-command actually being run. This variant of -exec always re?

 turns true.

 -execdir command ;

 -execdir command {} +

 Like -exec, but the specified command is run from the subdirectory containing the Page 16/35

 matched file, which is not normally the directory in which you started find. As

 with -exec, the {} should be quoted if find is being invoked from a shell. This a

 much more secure method for invoking commands, as it avoids race conditions during

 resolution of the paths to the matched files. As with the -exec action, the `+'

 form of -execdir will build a command line to process more than one matched file,

 but any given invocation of command will only list files that exist in the same

 subdirectory. If you use this option, you must ensure that your $PATH environment

 variable does not reference `.'; otherwise, an attacker can run any commands they

 like by leaving an appropriately-named file in a directory in which you will run

 -execdir. The same applies to having entries in $PATH which are empty or which are

 not absolute directory names. If any invocation with the `+' form returns a non-

 zero value as exit status, then find returns a non-zero exit status. If find en?

 counters an error, this can sometimes cause an immediate exit, so some pending com?

 mands may not be run at all. The result of the action depends on whether the + or

 the ; variant is being used; -execdir command {} + always returns true, while -ex?

 ecdir command {} ; returns true only if command returns 0.

 -fls file

 True; like -ls but write to file like -fprint. The output file is always created,

 even if the predicate is never matched. See the UNUSUAL FILENAMES section for in?

 formation about how unusual characters in filenames are handled.

 -fprint file

 True; print the full file name into file file. If file does not exist when find is

 run, it is created; if it does exist, it is truncated. The file names /dev/stdout

 and /dev/stderr are handled specially; they refer to the standard output and stan?

 dard error output, respectively. The output file is always created, even if the

 predicate is never matched. See the UNUSUAL FILENAMES section for information

 about how unusual characters in filenames are handled.

 -fprint0 file

 True; like -print0 but write to file like -fprint. The output file is always cre?

 ated, even if the predicate is never matched. See the UNUSUAL FILENAMES section

 for information about how unusual characters in filenames are handled.

 -fprintf file format

 True; like -printf but write to file like -fprint. The output file is always cre? Page 17/35

 ated, even if the predicate is never matched. See the UNUSUAL FILENAMES section

 for information about how unusual characters in filenames are handled.

 -ls True; list current file in ls -dils format on standard output. The block counts

 are of 1 KB blocks, unless the environment variable POSIXLY_CORRECT is set, in

 which case 512-byte blocks are used. See the UNUSUAL FILENAMES section for infor?

 mation about how unusual characters in filenames are handled.

 -ok command ;

 Like -exec but ask the user first. If the user agrees, run the command. Otherwise

 just return false. If the command is run, its standard input is redirected from

 /dev/null.

 The response to the prompt is matched against a pair of regular expressions to de?

 termine if it is an affirmative or negative response. This regular expression is

 obtained from the system if the `POSIXLY_CORRECT' environment variable is set, or

 otherwise from find's message translations. If the system has no suitable defini?

 tion, find's own definition will be used. In either case, the interpretation of

 the regular expression itself will be affected by the environment variables

 'LC_CTYPE' (character classes) and 'LC_COLLATE' (character ranges and equivalence

 classes).

 -okdir command ;

 Like -execdir but ask the user first in the same way as for -ok. If the user does

 not agree, just return false. If the command is run, its standard input is redi?

 rected from /dev/null.

 -print True; print the full file name on the standard output, followed by a newline. If

 you are piping the output of find into another program and there is the faintest

 possibility that the files which you are searching for might contain a newline,

 then you should seriously consider using the -print0 option instead of -print. See

 the UNUSUAL FILENAMES section for information about how unusual characters in file?

 names are handled.

 -print0

 True; print the full file name on the standard output, followed by a null character

 (instead of the newline character that -print uses). This allows file names that

 contain newlines or other types of white space to be correctly interpreted by pro?

 grams that process the find output. This option corresponds to the -0 option of Page 18/35

 xargs.

 -printf format

 True; print format on the standard output, interpreting `\' escapes and `%' direc?

 tives. Field widths and precisions can be specified as with the printf(3) C func?

 tion. Please note that many of the fields are printed as %s rather than %d, and

 this may mean that flags don't work as you might expect. This also means that the

 `-' flag does work (it forces fields to be left-aligned). Unlike -print, -printf

 does not add a newline at the end of the string. The escapes and directives are:

 \a Alarm bell.

 \b Backspace.

 \c Stop printing from this format immediately and flush the output.

 \f Form feed.

 \n Newline.

 \r Carriage return.

 \t Horizontal tab.

 \v Vertical tab.

 \0 ASCII NUL.

 \\ A literal backslash (`\').

 \NNN The character whose ASCII code is NNN (octal).

 A `\' character followed by any other character is treated as an ordinary charac?

 ter, so they both are printed.

 %% A literal percent sign.

 %a File's last access time in the format returned by the C ctime(3) function.

 %Ak File's last access time in the format specified by k, which is either `@' or

 a directive for the C strftime(3) function. The following shows an incom?

 plete list of possible values for k. Please refer to the documentation of

 strftime(3) for the full list. Some of the conversion specification charac?

 ters might not be available on all systems, due to differences in the imple?

 mentation of the strftime(3) library function.

 @ seconds since Jan. 1, 1970, 00:00 GMT, with fractional part.

 Time fields:

 H hour (00..23)

 I hour (01..12) Page 19/35

 k hour (0..23)

 l hour (1..12)

 M minute (00..59)

 p locale's AM or PM

 r time, 12-hour (hh:mm:ss [AP]M)

 S Second (00.00 .. 61.00). There is a fractional part.

 T time, 24-hour (hh:mm:ss.xxxxxxxxxx)

 + Date and time, separated by `+', for example `2004-04-28+22:22:05.0'.

 This is a GNU extension. The time is given in the current timezone

 (which may be affected by setting the TZ environment variable). The

 seconds field includes a fractional part.

 X locale's time representation (H:M:S). The seconds field includes a

 fractional part.

 Z time zone (e.g., EDT), or nothing if no time zone is determinable

 Date fields:

 a locale's abbreviated weekday name (Sun..Sat)

 A locale's full weekday name, variable length (Sunday..Saturday)

 b locale's abbreviated month name (Jan..Dec)

 B locale's full month name, variable length (January..December)

 c locale's date and time (Sat Nov 04 12:02:33 EST 1989). The format is

 the same as for ctime(3) and so to preserve compatibility with that

 format, there is no fractional part in the seconds field.

 d day of month (01..31)

 D date (mm/dd/yy)

 F date (yyyy-mm-dd)

 h same as b

 j day of year (001..366)

 m month (01..12)

 U week number of year with Sunday as first day of week (00..53)

 w day of week (0..6)

 W week number of year with Monday as first day of week (00..53)

 x locale's date representation (mm/dd/yy)

 y last two digits of year (00..99) Page 20/35

 Y year (1970...)

 %b The amount of disk space used for this file in 512-byte blocks. Since disk

 space is allocated in multiples of the filesystem block size this is usually

 greater than %s/512, but it can also be smaller if the file is a sparse

 file.

 %c File's last status change time in the format returned by the C ctime(3)

 function.

 %Ck File's last status change time in the format specified by k, which is the

 same as for %A.

 %d File's depth in the directory tree; 0 means the file is a starting-point.

 %D The device number on which the file exists (the st_dev field of struct

 stat), in decimal.

 %f Print the basename; the file's name with any leading directories removed

 (only the last element). For /, the result is `/'. See the EXAMPLES sec?

 tion for an example.

 %F Type of the filesystem the file is on; this value can be used for -fstype.

 %g File's group name, or numeric group ID if the group has no name.

 %G File's numeric group ID.

 %h Dirname; the Leading directories of the file's name (all but the last ele?

 ment). If the file name contains no slashes (since it is in the current di?

 rectory) the %h specifier expands to `.'. For files which are themselves

 directories and contain a slash (including /), %h expands to the empty

 string. See the EXAMPLES section for an example.

 %H Starting-point under which file was found.

 %i File's inode number (in decimal).

 %k The amount of disk space used for this file in 1 KB blocks. Since disk

 space is allocated in multiples of the filesystem block size this is usually

 greater than %s/1024, but it can also be smaller if the file is a sparse

 file.

 %l Object of symbolic link (empty string if file is not a symbolic link).

 %m File's permission bits (in octal). This option uses the `traditional' num?

 bers which most Unix implementations use, but if your particular implementa?

 tion uses an unusual ordering of octal permissions bits, you will see a dif? Page 21/35

 ference between the actual value of the file's mode and the output of %m.

 Normally you will want to have a leading zero on this number, and to do

 this, you should use the # flag (as in, for example, `%#m').

 %M File's permissions (in symbolic form, as for ls). This directive is sup?

 ported in findutils 4.2.5 and later.

 %n Number of hard links to file.

 %p File's name.

 %P File's name with the name of the starting-point under which it was found re?

 moved.

 %s File's size in bytes.

 %S File's sparseness. This is calculated as (BLOCKSIZE*st_blocks / st_size).

 The exact value you will get for an ordinary file of a certain length is

 system-dependent. However, normally sparse files will have values less than

 1.0, and files which use indirect blocks may have a value which is greater

 than 1.0. In general the number of blocks used by a file is file system de?

 pendent. The value used for BLOCKSIZE is system-dependent, but is usually

 512 bytes. If the file size is zero, the value printed is undefined. On

 systems which lack support for st_blocks, a file's sparseness is assumed to

 be 1.0.

 %t File's last modification time in the format returned by the C ctime(3) func?

 tion.

 %Tk File's last modification time in the format specified by k, which is the

 same as for %A.

 %u File's user name, or numeric user ID if the user has no name.

 %U File's numeric user ID.

 %y File's type (like in ls -l), U=unknown type (shouldn't happen)

 %Y File's type (like %y), plus follow symbolic links: `L'=loop, `N'=nonexis?

 tent, `?' for any other error when determining the type of the target of a

 symbolic link.

 %Z (SELinux only) file's security context.

 %{ %[%(

 Reserved for future use.

 A `%' character followed by any other character is discarded, but the other charac? Page 22/35

 ter is printed (don't rely on this, as further format characters may be intro?

 duced). A `%' at the end of the format argument causes undefined behaviour since

 there is no following character. In some locales, it may hide your door keys,

 while in others it may remove the final page from the novel you are reading.

 The %m and %d directives support the #, 0 and + flags, but the other directives do

 not, even if they print numbers. Numeric directives that do not support these

 flags include G, U, b, D, k and n. The `-' format flag is supported and changes

 the alignment of a field from right-justified (which is the default) to left-justi?

 fied.

 See the UNUSUAL FILENAMES section for information about how unusual characters in

 filenames are handled.

 -prune True; if the file is a directory, do not descend into it. If -depth is given, then

 -prune has no effect. Because -delete implies -depth, you cannot usefully use

 -prune and -delete together. For example, to skip the directory src/emacs and all

 files and directories under it, and print the names of the other files found, do

 something like this:

 find . -path ./src/emacs -prune -o -print

 -quit Exit immediately (with return value zero if no errors have occurred). This is dif?

 ferent to -prune because -prune only applies to the contents of pruned directories,

 while -quit simply makes find stop immediately. No child processes will be left

 running. Any command lines which have been built by -exec ... + or -execdir ... +

 are invoked before the program is exited. After -quit is executed, no more files

 specified on the command line will be processed. For example,

 `find /tmp/foo /tmp/bar -print -quit` will print only `/tmp/foo`.

 One common use of -quit is to stop searching the file system once we have found

 what we want. For example, if we want to find just a single file we can do this:

 find / -name needle -print -quit

 OPERATORS

 Listed in order of decreasing precedence:

 (expr)

 Force precedence. Since parentheses are special to the shell, you will normally

 need to quote them. Many of the examples in this manual page use backslashes for

 this purpose: `\(...\)' instead of `(...)'. Page 23/35

 ! expr True if expr is false. This character will also usually need protection from in?

 terpretation by the shell.

 -not expr

 Same as ! expr, but not POSIX compliant.

 expr1 expr2

 Two expressions in a row are taken to be joined with an implied -a; expr2 is not

 evaluated if expr1 is false.

 expr1 -a expr2

 Same as expr1 expr2.

 expr1 -and expr2

 Same as expr1 expr2, but not POSIX compliant.

 expr1 -o expr2

 Or; expr2 is not evaluated if expr1 is true.

 expr1 -or expr2

 Same as expr1 -o expr2, but not POSIX compliant.

 expr1 , expr2

 List; both expr1 and expr2 are always evaluated. The value of expr1 is discarded;

 the value of the list is the value of expr2. The comma operator can be useful for

 searching for several different types of thing, but traversing the filesystem hier?

 archy only once. The -fprintf action can be used to list the various matched items

 into several different output files.

 Please note that -a when specified implicitly (for example by two tests appearing without

 an explicit operator between them) or explicitly has higher precedence than -o. This

 means that find . -name afile -o -name bfile -print will never print afile.

UNUSUAL FILENAMES

 Many of the actions of find result in the printing of data which is under the control of

 other users. This includes file names, sizes, modification times and so forth. File

 names are a potential problem since they can contain any character except `\0' and `/'.

 Unusual characters in file names can do unexpected and often undesirable things to your

 terminal (for example, changing the settings of your function keys on some terminals).

 Unusual characters are handled differently by various actions, as described below.

 -print0, -fprint0

 Always print the exact filename, unchanged, even if the output is going to a termi? Page 24/35

 nal.

 -ls, -fls

 Unusual characters are always escaped. White space, backslash, and double quote

 characters are printed using C-style escaping (for example `\f', `\"'). Other un?

 usual characters are printed using an octal escape. Other printable characters

 (for -ls and -fls these are the characters between octal 041 and 0176) are printed

 as-is.

 -printf, -fprintf

 If the output is not going to a terminal, it is printed as-is. Otherwise, the re?

 sult depends on which directive is in use. The directives %D, %F, %g, %G, %H, %Y,

 and %y expand to values which are not under control of files' owners, and so are

 printed as-is. The directives %a, %b, %c, %d, %i, %k, %m, %M, %n, %s, %t, %u and

 %U have values which are under the control of files' owners but which cannot be

 used to send arbitrary data to the terminal, and so these are printed as-is. The

 directives %f, %h, %l, %p and %P are quoted. This quoting is performed in the same

 way as for GNU ls. This is not the same quoting mechanism as the one used for -ls

 and -fls. If you are able to decide what format to use for the output of find then

 it is normally better to use `\0' as a terminator than to use newline, as file

 names can contain white space and newline characters. The setting of the

 `LC_CTYPE' environment variable is used to determine which characters need to be

 quoted.

 -print, -fprint

 Quoting is handled in the same way as for -printf and -fprintf. If you are using

 find in a script or in a situation where the matched files might have arbitrary

 names, you should consider using -print0 instead of -print.

 The -ok and -okdir actions print the current filename as-is. This may change in a future

 release.

STANDARDS CONFORMANCE

 For closest compliance to the POSIX standard, you should set the POSIXLY_CORRECT environ?

 ment variable. The following options are specified in the POSIX standard (IEEE Std

 1003.1-2008, 2016 Edition):

 -H This option is supported.

 -L This option is supported. Page 25/35

 -name This option is supported, but POSIX conformance depends on the POSIX conformance of

 the system's fnmatch(3) library function. As of findutils-4.2.2, shell metacharac?

 ters (`*', `?' or `[]' for example) match a leading `.', because IEEE PASC inter?

 pretation 126 requires this. This is a change from previous versions of findutils.

 -type Supported. POSIX specifies `b', `c', `d', `l', `p', `f' and `s'. GNU find also

 supports `D', representing a Door, where the OS provides these. Furthermore, GNU

 find allows multiple types to be specified at once in a comma-separated list.

 -ok Supported. Interpretation of the response is according to the `yes' and `no' pat?

 terns selected by setting the `LC_MESSAGES' environment variable. When the

 `POSIXLY_CORRECT' environment variable is set, these patterns are taken system's

 definition of a positive (yes) or negative (no) response. See the system's docu?

 mentation for nl_langinfo(3), in particular YESEXPR and NOEXPR. When `POSIXLY_COR?

 RECT' is not set, the patterns are instead taken from find's own message catalogue.

 -newer Supported. If the file specified is a symbolic link, it is always dereferenced.

 This is a change from previous behaviour, which used to take the relevant time from

 the symbolic link; see the HISTORY section below.

 -perm Supported. If the POSIXLY_CORRECT environment variable is not set, some mode argu?

 ments (for example +a+x) which are not valid in POSIX are supported for backward-

 compatibility.

 Other primaries

 The primaries -atime, -ctime, -depth, -exec, -group, -links, -mtime, -nogroup,

 -nouser, -ok, -path, -print, -prune, -size, -user and -xdev are all supported.

 The POSIX standard specifies parentheses `(', `)', negation `!' and the logical AND/OR op?

 erators -a and -o.

 All other options, predicates, expressions and so forth are extensions beyond the POSIX

 standard. Many of these extensions are not unique to GNU find, however.

 The POSIX standard requires that find detects loops:

 The find utility shall detect infinite loops; that is, entering a previously vis?

 ited directory that is an ancestor of the last file encountered. When it detects

 an infinite loop, find shall write a diagnostic message to standard error and shall

 either recover its position in the hierarchy or terminate.

 GNU find complies with these requirements. The link count of directories which contain

 entries which are hard links to an ancestor will often be lower than they otherwise should Page 26/35

 be. This can mean that GNU find will sometimes optimise away the visiting of a subdirec?

 tory which is actually a link to an ancestor. Since find does not actually enter such a

 subdirectory, it is allowed to avoid emitting a diagnostic message. Although this behav?

 iour may be somewhat confusing, it is unlikely that anybody actually depends on this be?

 haviour. If the leaf optimisation has been turned off with -noleaf, the directory entry

 will always be examined and the diagnostic message will be issued where it is appropriate.

 Symbolic links cannot be used to create filesystem cycles as such, but if the -L option or

 the -follow option is in use, a diagnostic message is issued when find encounters a loop

 of symbolic links. As with loops containing hard links, the leaf optimisation will often

 mean that find knows that it doesn't need to call stat() or chdir() on the symbolic link,

 so this diagnostic is frequently not necessary.

 The -d option is supported for compatibility with various BSD systems, but you should use

 the POSIX-compliant option -depth instead.

 The POSIXLY_CORRECT environment variable does not affect the behaviour of the -regex or

 -iregex tests because those tests aren't specified in the POSIX standard.

ENVIRONMENT VARIABLES

 LANG Provides a default value for the internationalization variables that are unset or

 null.

 LC_ALL If set to a non-empty string value, override the values of all the other interna?

 tionalization variables.

 LC_COLLATE

 The POSIX standard specifies that this variable affects the pattern matching to be

 used for the -name option. GNU find uses the fnmatch(3) library function, and so

 support for `LC_COLLATE' depends on the system library. This variable also affects

 the interpretation of the response to -ok; while the `LC_MESSAGES' variable selects

 the actual pattern used to interpret the response to -ok, the interpretation of any

 bracket expressions in the pattern will be affected by `LC_COLLATE'.

 LC_CTYPE

 This variable affects the treatment of character classes used in regular expres?

 sions and also with the -name test, if the system's fnmatch(3) library function

 supports this. This variable also affects the interpretation of any character

 classes in the regular expressions used to interpret the response to the prompt is?

 sued by -ok. The `LC_CTYPE' environment variable will also affect which characters Page 27/35

 are considered to be unprintable when filenames are printed; see the section UN?

 USUAL FILENAMES.

 LC_MESSAGES

 Determines the locale to be used for internationalised messages. If the

 `POSIXLY_CORRECT' environment variable is set, this also determines the interpreta?

 tion of the response to the prompt made by the -ok action.

 NLSPATH

 Determines the location of the internationalisation message catalogues.

 PATH Affects the directories which are searched to find the executables invoked by

 -exec, -execdir, -ok and -okdir.

 POSIXLY_CORRECT

 Determines the block size used by -ls and -fls. If POSIXLY_CORRECT is set, blocks

 are units of 512 bytes. Otherwise they are units of 1024 bytes.

 Setting this variable also turns off warning messages (that is, implies -nowarn) by

 default, because POSIX requires that apart from the output for -ok, all messages

 printed on stderr are diagnostics and must result in a non-zero exit status.

 When POSIXLY_CORRECT is not set, -perm +zzz is treated just like -perm /zzz if +zzz

 is not a valid symbolic mode. When POSIXLY_CORRECT is set, such constructs are

 treated as an error.

 When POSIXLY_CORRECT is set, the response to the prompt made by the -ok action is

 interpreted according to the system's message catalogue, as opposed to according to

 find's own message translations.

 TZ Affects the time zone used for some of the time-related format directives of

 -printf and -fprintf.

EXAMPLES

 Simple `find|xargs` approach

 ? Find files named core in or below the directory /tmp and delete them.

 $ find /tmp -name core -type f -print | xargs /bin/rm -f

 Note that this will work incorrectly if there are any filenames containing new?

 lines, single or double quotes, or spaces.

 Safer `find -print0 | xargs -0` approach

 ? Find files named core in or below the directory /tmp and delete them, processing

 filenames in such a way that file or directory names containing single or double Page 28/35

 quotes, spaces or newlines are correctly handled.

 $ find /tmp -name core -type f -print0 | xargs -0 /bin/rm -f

 The -name test comes before the -type test in order to avoid having to call stat(2)

 on every file.

 Note that there is still a race between the time find traverses the hierarchy printing the

 matching filenames, and the time the process executed by xargs works with that file.

 Executing a command for each file

 ? Run file on every file in or below the current directory.

 $ find . -type f -exec file '{}' \;

 Notice that the braces are enclosed in single quote marks to protect them from in?

 terpretation as shell script punctuation. The semicolon is similarly protected by

 the use of a backslash, though single quotes could have been used in that case

 also.

 In many cases, one might prefer the `-exec ... +` or better the `-execdir ... +` syntax

 for performance and security reasons.

 Traversing the filesystem just once - for 2 different actions

 ? Traverse the filesystem just once, listing set-user-ID files and directories into

 /root/suid.txt and large files into /root/big.txt.

 $ find / \

 \(-perm -4000 -fprintf /root/suid.txt '%#m %u %p\n' \) , \

 \(-size +100M -fprintf /root/big.txt '%-10s %p\n' \)

 This example uses the line-continuation character '\' on the first two lines to in?

 struct the shell to continue reading the command on the next line.

 Searching files by age

 ? Search for files in your home directory which have been modified in the last

 twenty-four hours.

 $ find $HOME -mtime 0

 This command works this way because the time since each file was last modified is

 divided by 24 hours and any remainder is discarded. That means that to match

 -mtime 0, a file will have to have a modification in the past which is less than 24

 hours ago.

 Searching files by permissions

 ? Search for files which are executable but not readable. Page 29/35

 $ find /sbin /usr/sbin -executable \! -readable -print

 ? Search for files which have read and write permission for their owner, and group,

 but which other users can read but not write to.

 $ find . -perm 664

 Files which meet these criteria but have other permissions bits set (for example if

 someone can execute the file) will not be matched.

 ? Search for files which have read and write permission for their owner and group,

 and which other users can read, without regard to the presence of any extra permis?

 sion bits (for example the executable bit).

 $ find . -perm -664

 This will match a file which has mode 0777, for example.

 ? Search for files which are writable by somebody (their owner, or their group, or

 anybody else).

 $ find . -perm /222

 ? Search for files which are writable by either their owner or their group.

 $ find . -perm /220

 $ find . -perm /u+w,g+w

 $ find . -perm /u=w,g=w

 All three of these commands do the same thing, but the first one uses the octal

 representation of the file mode, and the other two use the symbolic form. The

 files don't have to be writable by both the owner and group to be matched; either

 will do.

 ? Search for files which are writable by both their owner and their group.

 $ find . -perm -220

 $ find . -perm -g+w,u+w

 Both these commands do the same thing.

 ? A more elaborate search on permissions.

 $ find . -perm -444 -perm /222 \! -perm /111

 $ find . -perm -a+r -perm /a+w \! -perm /a+x

 These two commands both search for files that are readable for everybody (-perm

 -444 or -perm -a+r), have at least one write bit set (-perm /222 or -perm /a+w) but

 are not executable for anybody (! -perm /111 or ! -perm /a+x respectively).

 Pruning - omitting files and subdirectories Page 30/35

 ? Copy the contents of /source-dir to /dest-dir, but omit files and directories named

 .snapshot (and anything in them). It also omits files or directories whose name

 ends in '~', but not their contents.

 $ cd /source-dir

 $ find . -name .snapshot -prune -o \(\! -name '*~' -print0 \) \

 | cpio -pmd0 /dest-dir

 The construct -prune -o \(... -print0 \) is quite common. The idea here is that

 the expression before -prune matches things which are to be pruned. However, the

 -prune action itself returns true, so the following -o ensures that the right hand

 side is evaluated only for those directories which didn't get pruned (the contents

 of the pruned directories are not even visited, so their contents are irrelevant).

 The expression on the right hand side of the -o is in parentheses only for clarity.

 It emphasises that the -print0 action takes place only for things that didn't have

 -prune applied to them. Because the default `and' condition between tests binds

 more tightly than -o, this is the default anyway, but the parentheses help to show

 what is going on.

 ? Given the following directory of projects and their associated SCM administrative

 directories, perform an efficient search for the projects' roots:

 $ find repo/ \

 \(-exec test -d '{}/.svn' \; \

 -or -exec test -d '{}/.git' \; \

 -or -exec test -d '{}/CVS' \; \

 \) -print -prune

 Sample output:

 repo/project1/CVS

 repo/gnu/project2/.svn

 repo/gnu/project3/.svn

 repo/gnu/project3/src/.svn

 repo/project4/.git

 In this example, -prune prevents unnecessary descent into directories that have al?

 ready been discovered (for example we do not search project3/src because we already

 found project3/.svn), but ensures sibling directories (project2 and project3) are

 found. Page 31/35

 Other useful examples

 ? Search for several file types.

 $ find /tmp -type f,d,l

 Search for files, directories, and symbolic links in the directory /tmp passing

 these types as a comma-separated list (GNU extension), which is otherwise equiva?

 lent to the longer, yet more portable:

 $ find /tmp \(-type f -o -type d -o -type l \)

 ? Search for files with the particular name needle and stop immediately when we find

 the first one.

 $ find / -name needle -print -quit

 ? Demonstrate the interpretation of the %f and %h format directives of the -printf

 action for some corner-cases. Here is an example including some output.

 $ find . .. / /tmp /tmp/TRACE compile compile/64/tests/find -maxdepth 0 -printf '[%h][%f]\n'

 [.][.]

 [.][..]

 [][/]

 [][tmp]

 [/tmp][TRACE]

 [.][compile]

 [compile/64/tests][find]

EXIT STATUS

 find exits with status 0 if all files are processed successfully, greater than 0 if errors

 occur. This is deliberately a very broad description, but if the return value is non-

 zero, you should not rely on the correctness of the results of find.

 When some error occurs, find may stop immediately, without completing all the actions

 specified. For example, some starting points may not have been examined or some pending

 program invocations for -exec ... {} + or -execdir ... {} + may not have been performed.

HISTORY

 As of findutils-4.2.2, shell metacharacters (`*', `?' or `[]' for example) used in file?

 name patterns match a leading `.', because IEEE POSIX interpretation 126 requires this.

 As of findutils-4.3.3, -perm /000 now matches all files instead of none.

 Nanosecond-resolution timestamps were implemented in findutils-4.3.3.

 As of findutils-4.3.11, the -delete action sets find's exit status to a nonzero value when Page 32/35

 it fails. However, find will not exit immediately. Previously, find's exit status was

 unaffected by the failure of -delete.

 Feature Added in Also occurs in

 -newerXY 4.3.3 BSD

 -D 4.3.1

 -O 4.3.1

 -readable 4.3.0

 -writable 4.3.0

 -executable 4.3.0

 -regextype 4.2.24

 -exec ... + 4.2.12 POSIX

 -execdir 4.2.12 BSD

 -okdir 4.2.12

 -samefile 4.2.11

 -H 4.2.5 POSIX

 -L 4.2.5 POSIX

 -P 4.2.5 BSD

 -delete 4.2.3

 -quit 4.2.3

 -d 4.2.3 BSD

 -wholename 4.2.0

 -iwholename 4.2.0

 -ignore_readdir_race 4.2.0

 -fls 4.0

 -ilname 3.8

 -iname 3.8

 -ipath 3.8

 -iregex 3.8

 The syntax -perm +MODE was removed in findutils-4.5.12, in favour of -perm /MODE. The

 +MODE syntax had been deprecated since findutils-4.2.21 which was released in 2005.

NON-BUGS

 Operator precedence surprises

 The command find . -name afile -o -name bfile -print will never print afile because this Page 33/35

 is actually equivalent to find . -name afile -o \(-name bfile -a -print \). Remember

 that the precedence of -a is higher than that of -o and when there is no operator speci?

 fied between tests, -a is assumed.

 ?paths must precede expression? error message

 $ find . -name *.c -print

 find: paths must precede expression

 find: possible unquoted pattern after predicate `-name'?

 This happens when the shell could expand the pattern *.c to more than one file name exist?

 ing in the current directory, and passing the resulting file names in the command line to

 find like this:

 find . -name frcode.c locate.c word_io.c -print

 That command is of course not going to work, because the -name predicate allows exactly

 only one pattern as argument. Instead of doing things this way, you should enclose the

 pattern in quotes or escape the wildcard, thus allowing find to use the pattern with the

 wildcard during the search for file name matching instead of file names expanded by the

 parent shell:

 $ find . -name '*.c' -print

 $ find . -name *.c -print

BUGS

 There are security problems inherent in the behaviour that the POSIX standard specifies

 for find, which therefore cannot be fixed. For example, the -exec action is inherently

 insecure, and -execdir should be used instead.

 The environment variable LC_COLLATE has no effect on the -ok action.

REPORTING BUGS

 GNU findutils online help: <https://www.gnu.org/software/findutils/#get-help>

 Report any translation bugs to <https://translationproject.org/team/>

 Report any other issue via the form at the GNU Savannah bug tracker:

 <https://savannah.gnu.org/bugs/?group=findutils>

 General topics about the GNU findutils package are discussed at the bug-findutils mailing

 list:

 <https://lists.gnu.org/mailman/listinfo/bug-findutils>

COPYRIGHT

 Copyright ? 1990-2021 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or Page 34/35

 later <https://gnu.org/licenses/gpl.html>.

 This is free software: you are free to change and redistribute it. There is NO WARRANTY,

 to the extent permitted by law.

SEE ALSO

 chmod(1), locate(1), ls(1), updatedb(1), xargs(1), lstat(2), stat(2), ctime(3) fnmatch(3),

 printf(3), strftime(3), locatedb(5), regex(7)

 Full documentation <https://www.gnu.org/software/findutils/find>

 or available locally via: info find

 FIND(1)

Page 35/35

