
Rocky Enterprise Linux 9.2 Manual Pages on command 'feraiseexcept.3'

$ man feraiseexcept.3

FENV(3) Linux Programmer's Manual FENV(3)

NAME

 feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept, fegetenv,

 fegetround, feholdexcept, fesetround, fesetenv, feupdateenv, feenableexcept, fedisableex?

 cept, fegetexcept - floating-point rounding and exception handling

SYNOPSIS

 #include <fenv.h>

 int feclearexcept(int excepts);

 int fegetexceptflag(fexcept_t *flagp, int excepts);

 int feraiseexcept(int excepts);

 int fesetexceptflag(const fexcept_t *flagp, int excepts);

 int fetestexcept(int excepts);

 int fegetround(void);

 int fesetround(int rounding_mode);

 int fegetenv(fenv_t *envp);

 int feholdexcept(fenv_t *envp);

 int fesetenv(const fenv_t *envp);

 int feupdateenv(const fenv_t *envp);

 Link with -lm.

DESCRIPTION

 These eleven functions were defined in C99, and describe the handling of floating-point

 rounding and exceptions (overflow, zero-divide, etc.).

 Exceptions Page 1/5

 The divide-by-zero exception occurs when an operation on finite numbers produces infinity

 as exact answer.

 The overflow exception occurs when a result has to be represented as a floating-point num?

 ber, but has (much) larger absolute value than the largest (finite) floating-point number

 that is representable.

 The underflow exception occurs when a result has to be represented as a floating-point

 number, but has smaller absolute value than the smallest positive normalized floating-

 point number (and would lose much accuracy when represented as a denormalized number).

 The inexact exception occurs when the rounded result of an operation is not equal to the

 infinite precision result. It may occur whenever overflow or underflow occurs.

 The invalid exception occurs when there is no well-defined result for an operation, as for

 0/0 or infinity - infinity or sqrt(-1).

 Exception handling

 Exceptions are represented in two ways: as a single bit (exception present/absent), and

 these bits correspond in some implementation-defined way with bit positions in an integer,

 and also as an opaque structure that may contain more information about the exception

 (perhaps the code address where it occurred).

 Each of the macros FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW, FE_UNDERFLOW is de?

 fined when the implementation supports handling of the corresponding exception, and if so

 then defines the corresponding bit(s), so that one can call exception handling functions,

 for example, using the integer argument FE_OVERFLOW|FE_UNDERFLOW. Other exceptions may be

 supported. The macro FE_ALL_EXCEPT is the bitwise OR of all bits corresponding to sup?

 ported exceptions.

 The feclearexcept() function clears the supported exceptions represented by the bits in

 its argument.

 The fegetexceptflag() function stores a representation of the state of the exception flags

 represented by the argument excepts in the opaque object *flagp.

 The feraiseexcept() function raises the supported exceptions represented by the bits in

 excepts.

 The fesetexceptflag() function sets the complete status for the exceptions represented by

 excepts to the value *flagp. This value must have been obtained by an earlier call of

 fegetexceptflag() with a last argument that contained all bits in excepts.

 The fetestexcept() function returns a word in which the bits are set that were set in the Page 2/5

 argument excepts and for which the corresponding exception is currently set.

 Rounding mode

 The rounding mode determines how the result of floating-point operations is treated when

 the result cannot be exactly represented in the significand. Various rounding modes may

 be provided: round to nearest (the default), round up (toward positive infinity), round

 down (toward negative infinity), and round toward zero.

 Each of the macros FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, and FE_TOWARDZERO is defined when

 the implementation supports getting and setting the corresponding rounding direction.

 The fegetround() function returns the macro corresponding to the current rounding mode.

 The fesetround() function sets the rounding mode as specified by its argument and returns

 zero when it was successful.

 C99 and POSIX.1-2008 specify an identifier, FLT_ROUNDS, defined in <float.h>, which indi?

 cates the implementation-defined rounding behavior for floating-point addition. This

 identifier has one of the following values:

 -1 The rounding mode is not determinable.

 0 Rounding is toward 0.

 1 Rounding is toward nearest number.

 2 Rounding is toward positive infinity.

 3 Rounding is toward negative infinity.

 Other values represent machine-dependent, nonstandard rounding modes.

 The value of FLT_ROUNDS should reflect the current rounding mode as set by fesetround()

 (but see BUGS).

 Floating-point environment

 The entire floating-point environment, including control modes and status flags, can be

 handled as one opaque object, of type fenv_t. The default environment is denoted by

 FE_DFL_ENV (of type const fenv_t *). This is the environment setup at program start and

 it is defined by ISO C to have round to nearest, all exceptions cleared and a nonstop

 (continue on exceptions) mode.

 The fegetenv() function saves the current floating-point environment in the object *envp.

 The feholdexcept() function does the same, then clears all exception flags, and sets a

 nonstop (continue on exceptions) mode, if available. It returns zero when successful.

 The fesetenv() function restores the floating-point environment from the object *envp.

 This object must be known to be valid, for example, the result of a call to fegetenv() or Page 3/5

 feholdexcept() or equal to FE_DFL_ENV. This call does not raise exceptions.

 The feupdateenv() function installs the floating-point environment represented by the ob?

 ject *envp, except that currently raised exceptions are not cleared. After calling this

 function, the raised exceptions will be a bitwise OR of those previously set with those in

 *envp. As before, the object *envp must be known to be valid.

RETURN VALUE

 These functions return zero on success and nonzero if an error occurred.

VERSIONS

 These functions first appeared in glibc in version 2.1.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?feclearexcept(), fegetexceptflag(), ? Thread safety ? MT-Safe ?

 ?feraiseexcept(), fesetexceptflag(), ? ? ?

 ?fetestexcept(), fegetround(), ? ? ?

 ?fesetround(), fegetenv(), ? ? ?

 ?feholdexcept(), fesetenv(), ? ? ?

 ?feupdateenv(), feenableexcept(), ? ? ?

 ?fedisableexcept(), fegetexcept() ? ? ?

 ??

CONFORMING TO

 IEC 60559 (IEC 559:1989), ANSI/IEEE 854, C99, POSIX.1-2001.

NOTES

 Glibc notes

 If possible, the GNU C Library defines a macro FE_NOMASK_ENV which represents an environ?

 ment where every exception raised causes a trap to occur. You can test for this macro us?

 ing #ifdef. It is defined only if _GNU_SOURCE is defined. The C99 standard does not de?

 fine a way to set individual bits in the floating-point mask, for example, to trap on spe?

 cific flags. Since version 2.2, glibc supports the functions feenableexcept() and fedis?

 ableexcept() to set individual floating-point traps, and fegetexcept() to query the state.

 #define _GNU_SOURCE /* See feature_test_macros(7) */ Page 4/5

 #include <fenv.h>

 int feenableexcept(int excepts);

 int fedisableexcept(int excepts);

 int fegetexcept(void);

 The feenableexcept() and fedisableexcept() functions enable (disable) traps for each of

 the exceptions represented by excepts and return the previous set of enabled exceptions

 when successful, and -1 otherwise. The fegetexcept() function returns the set of all cur?

 rently enabled exceptions.

BUGS

 C99 specifies that the value of FLT_ROUNDS should reflect changes to the current rounding

 mode, as set by fesetround(). Currently, this does not occur: FLT_ROUNDS always has the

 value 1.

SEE ALSO

 math_error(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 FENV(3)

Page 5/5

