
Rocky Enterprise Linux 9.2 Manual Pages on command 'feature_test_macros.7'

$ man feature_test_macros.7

FEATURE_TEST_MACROS(7) Linux Programmer's Manual FEATURE_TEST_MACROS(7)

NAME

 feature_test_macros - feature test macros

DESCRIPTION

 Feature test macros allow the programmer to control the definitions that are exposed by

 system header files when a program is compiled.

 NOTE: In order to be effective, a feature test macro must be defined before including any

 header files. This can be done either in the compilation command (cc -DMACRO=value) or by

 defining the macro within the source code before including any headers. The requirement

 that the macro must be defined before including any header file exists because header

 files may freely include one another. Thus, for example, in the following lines, defining

 the _GNU_SOURCE macro may have no effect because the header <abc.h> itself includes

 <xyz.h> (POSIX explicitly allows this):

 #include <abc.h>

 #define _GNU_SOURCE

 #include <xyz.h>

 Some feature test macros are useful for creating portable applications, by preventing non?

 standard definitions from being exposed. Other macros can be used to expose nonstandard

 definitions that are not exposed by default.

 The precise effects of each of the feature test macros described below can be ascertained

 by inspecting the <features.h> header file. Note: applications do not need to directly

 include <features.h>; indeed, doing so is actively discouraged. See NOTES.

 Specification of feature test macro requirements in manual pages Page 1/13

 When a function requires that a feature test macro is defined, the manual page SYNOPSIS

 typically includes a note of the following form (this example from the acct(2) manual

 page):

 #include <unistd.h>

 int acct(const char *filename);

 Feature Test Macro Requirements for glibc (see

 feature_test_macros(7)):

 acct(): _BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

 The || means that in order to obtain the declaration of acct(2) from <unistd.h>, either of

 the following macro definitions must be made before including any header files:

 #define _BSD_SOURCE

 #define _XOPEN_SOURCE /* or any value < 500 */

 Alternatively, equivalent definitions can be included in the compilation command:

 cc -D_BSD_SOURCE

 cc -D_XOPEN_SOURCE # Or any value < 500

 Note that, as described below, some feature test macros are defined by default, so that it

 may not always be necessary to explicitly specify the feature test macro(s) shown in the

 SYNOPSIS.

 In a few cases, manual pages use a shorthand for expressing the feature test macro re?

 quirements (this example from readahead(2)):

 #define _GNU_SOURCE

 #include <fcntl.h>

 ssize_t readahead(int fd, off64_t *offset, size_t count);

 This format is employed in cases where only a single feature test macro can be used to ex?

 pose the function declaration, and that macro is not defined by default.

 Feature test macros understood by glibc

 The paragraphs below explain how feature test macros are handled in Linux glibc 2.x, x >

 0.

 First, though a summary of a few details for the impatient:

 * The macros that you most likely need to use in modern source code are _POSIX_C_SOURCE

 (for definitions from various versions of POSIX.1), _XOPEN_SOURCE (for definitions from

 various versions of SUS), _GNU_SOURCE (for GNU and/or Linux specific stuff), and _DE?

 FAULT_SOURCE (to get definitions that would normally be provided by default). Page 2/13

 * Certain macros are defined with default values. Thus, although one or more macros may

 be indicated as being required in the SYNOPSIS of a man page, it may not be necessary

 to define them explicitly. Full details of the defaults are given later in this man

 page.

 * Defining _XOPEN_SOURCE with a value of 600 or greater produces the same effects as

 defining _POSIX_C_SOURCE with a value of 200112L or greater. Where one sees

 _POSIX_C_SOURCE >= 200112L

 in the feature test macro requirements in the SYNOPSIS of a man page, it is implicit

 that the following has the same effect:

 _XOPEN_SOURCE >= 600

 * Defining _XOPEN_SOURCE with a value of 700 or greater produces the same effects as

 defining _POSIX_C_SOURCE with a value of 200809L or greater. Where one sees

 _POSIX_C_SOURCE >= 200809L

 in the feature test macro requirements in the SYNOPSIS of a man page, it is implicit

 that the following has the same effect:

 _XOPEN_SOURCE >= 700

 Linux glibc understands the following feature test macros:

 __STRICT_ANSI__

 ISO Standard C. This macro is implicitly defined by gcc(1) when invoked with, for

 example, the -std=c99 or -ansi flag.

 _POSIX_C_SOURCE

 Defining this macro causes header files to expose definitions as follows:

 ? The value 1 exposes definitions conforming to POSIX.1-1990 and ISO C (1990).

 ? The value 2 or greater additionally exposes definitions for POSIX.2-1992.

 ? The value 199309L or greater additionally exposes definitions for POSIX.1b

 (real-time extensions).

 ? The value 199506L or greater additionally exposes definitions for POSIX.1c

 (threads).

 ? (Since glibc 2.3.3) The value 200112L or greater additionally exposes defini?

 tions corresponding to the POSIX.1-2001 base specification (excluding the XSI

 extension). This value also causes C95 (since glibc 2.12) and C99 (since glibc

 2.10) features to be exposed (in other words, the equivalent of defining

 _ISOC99_SOURCE). Page 3/13

 ? (Since glibc 2.10) The value 200809L or greater additionally exposes definitions

 corresponding to the POSIX.1-2008 base specification (excluding the XSI exten?

 sion).

 _POSIX_SOURCE

 Defining this obsolete macro with any value is equivalent to defining

 _POSIX_C_SOURCE with the value 1.

 Since this macro is obsolete, its usage is generally not documented when discussing

 feature test macro requirements in the man pages.

 _XOPEN_SOURCE

 Defining this macro causes header files to expose definitions as follows:

 ? Defining with any value exposes definitions conforming to POSIX.1, POSIX.2, and

 XPG4.

 ? The value 500 or greater additionally exposes definitions for SUSv2 (UNIX 98).

 ? (Since glibc 2.2) The value 600 or greater additionally exposes definitions for

 SUSv3 (UNIX 03; i.e., the POSIX.1-2001 base specification plus the XSI exten?

 sion) and C99 definitions.

 ? (Since glibc 2.10) The value 700 or greater additionally exposes definitions for

 SUSv4 (i.e., the POSIX.1-2008 base specification plus the XSI extension).

 If __STRICT_ANSI__ is not defined, or _XOPEN_SOURCE is defined with a value greater

 than or equal to 500 and neither _POSIX_SOURCE nor _POSIX_C_SOURCE is explicitly

 defined, then the following macros are implicitly defined:

 ? _POSIX_SOURCE is defined with the value 1.

 ? _POSIX_C_SOURCE is defined, according to the value of _XOPEN_SOURCE:

 _XOPEN_SOURCE < 500

 _POSIX_C_SOURCE is defined with the value 2.

 500 <= _XOPEN_SOURCE < 600

 _POSIX_C_SOURCE is defined with the value 199506L.

 600 <= _XOPEN_SOURCE < 700

 _POSIX_C_SOURCE is defined with the value 200112L.

 700 <= _XOPEN_SOURCE (since glibc 2.10)

 _POSIX_C_SOURCE is defined with the value 200809L.

 In addition, defining _XOPEN_SOURCE with a value of 500 or greater produces the

 same effects as defining _XOPEN_SOURCE_EXTENDED. Page 4/13

 _XOPEN_SOURCE_EXTENDED

 If this macro is defined, and _XOPEN_SOURCE is defined, then expose definitions

 corresponding to the XPG4v2 (SUSv1) UNIX extensions (UNIX 95). Defining

 _XOPEN_SOURCE with a value of 500 or more also produces the same effect as defining

 _XOPEN_SOURCE_EXTENDED. Use of _XOPEN_SOURCE_EXTENDED in new source code should be

 avoided.

 Since defining _XOPEN_SOURCE with a value of 500 or more has the same effect as

 defining _XOPEN_SOURCE_EXTENDED, the latter (obsolete) feature test macro is gener?

 ally not described in the SYNOPSIS in man pages.

 _ISOC99_SOURCE (since glibc 2.1.3)

 Exposes declarations consistent with the ISO C99 standard.

 Earlier glibc 2.1.x versions recognized an equivalent macro named _ISOC9X_SOURCE

 (because the C99 standard had not then been finalized). Although the use of this

 macro is obsolete, glibc continues to recognize it for backward compatibility.

 Defining _ISOC99_SOURCE also exposes ISO C (1990) Amendment 1 ("C95") definitions.

 (The primary change in C95 was support for international character sets.)

 Invoking the C compiler with the option -std=c99 produces the same effects as

 defining this macro.

 _ISOC11_SOURCE (since glibc 2.16)

 Exposes declarations consistent with the ISO C11 standard. Defining this macro

 also enables C99 and C95 features (like _ISOC99_SOURCE).

 Invoking the C compiler with the option -std=c11 produces the same effects as

 defining this macro.

 _LARGEFILE64_SOURCE

 Expose definitions for the alternative API specified by the LFS (Large File Summit)

 as a "transitional extension" to the Single UNIX Specification. (See ?http:/

 /opengroup.org/platform/lfs.html?.) The alternative API consists of a set of new

 objects (i.e., functions and types) whose names are suffixed with "64" (e.g.,

 off64_t versus off_t, lseek64() versus lseek(), etc.). New programs should not em?

 ploy this macro; instead _FILE_OFFSET_BITS=64 should be employed.

 _LARGEFILE_SOURCE

 This macro was historically used to expose certain functions (specifically

 fseeko(3) and ftello(3)) that address limitations of earlier APIs (fseek(3) and Page 5/13

 ftell(3)) that use long for file offsets. This macro is implicitly defined if

 _XOPEN_SOURCE is defined with a value greater than or equal to 500. New programs

 should not employ this macro; defining _XOPEN_SOURCE as just described or defining

 _FILE_OFFSET_BITS with the value 64 is the preferred mechanism to achieve the same

 result.

 _FILE_OFFSET_BITS

 Defining this macro with the value 64 automatically converts references to 32-bit

 functions and data types related to file I/O and filesystem operations into refer?

 ences to their 64-bit counterparts. This is useful for performing I/O on large

 files (> 2 Gigabytes) on 32-bit systems. (Defining this macro permits correctly

 written programs to use large files with only a recompilation being required.)

 64-bit systems naturally permit file sizes greater than 2 Gigabytes, and on those

 systems this macro has no effect.

 _BSD_SOURCE (deprecated since glibc 2.20)

 Defining this macro with any value causes header files to expose BSD-derived defi?

 nitions.

 In glibc versions up to and including 2.18, defining this macro also causes BSD

 definitions to be preferred in some situations where standards conflict, unless one

 or more of _SVID_SOURCE, _POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE,

 _XOPEN_SOURCE_EXTENDED, or _GNU_SOURCE is defined, in which case BSD definitions

 are disfavored. Since glibc 2.19, _BSD_SOURCE no longer causes BSD definitions to

 be preferred in case of conflicts.

 Since glibc 2.20, this macro is deprecated. It now has the same effect as defining

 _DEFAULT_SOURCE, but generates a compile-time warning (unless _DEFAULT_SOURCE is

 also defined). Use _DEFAULT_SOURCE instead. To allow code that requires

 _BSD_SOURCE in glibc 2.19 and earlier and _DEFAULT_SOURCE in glibc 2.20 and later

 to compile without warnings, define both _BSD_SOURCE and _DEFAULT_SOURCE.

 _SVID_SOURCE (deprecated since glibc 2.20)

 Defining this macro with any value causes header files to expose System V-derived

 definitions. (SVID == System V Interface Definition; see standards(7).)

 Since glibc 2.20, this macro is deprecated in the same fashion as _BSD_SOURCE.

 _DEFAULT_SOURCE (since glibc 2.19)

 This macro can be defined to ensure that the "default" definitions are provided Page 6/13

 even when the defaults would otherwise be disabled, as happens when individual

 macros are explicitly defined, or the compiler is invoked in one of its "standard"

 modes (e.g., cc -std=c99). Defining _DEFAULT_SOURCE without defining other indi?

 vidual macros or invoking the compiler in one of its "standard" modes has no ef?

 fect.

 The "default" definitions comprise those required by POSIX.1-2008 and ISO C99, as

 well as various definitions originally derived from BSD and System V. On glibc

 2.19 and earlier, these defaults were approximately equivalent to explicitly defin?

 ing the following:

 cc -D_BSD_SOURCE -D_SVID_SOURCE -D_POSIX_C_SOURCE=200809

 _ATFILE_SOURCE (since glibc 2.4)

 Defining this macro with any value causes header files to expose declarations of a

 range of functions with the suffix "at"; see openat(2). Since glibc 2.10, this

 macro is also implicitly defined if _POSIX_C_SOURCE is defined with a value greater

 than or equal to 200809L.

 _GNU_SOURCE

 Defining this macro (with any value) implicitly defines _ATFILE_SOURCE, _LARGE?

 FILE64_SOURCE, _ISOC99_SOURCE, _XOPEN_SOURCE_EXTENDED, _POSIX_SOURCE,

 _POSIX_C_SOURCE with the value 200809L (200112L in glibc versions before 2.10;

 199506L in glibc versions before 2.5; 199309L in glibc versions before 2.1) and

 _XOPEN_SOURCE with the value 700 (600 in glibc versions before 2.10; 500 in glibc

 versions before 2.2). In addition, various GNU-specific extensions are also ex?

 posed.

 Since glibc 2.19, defining _GNU_SOURCE also has the effect of implicitly defining

 _DEFAULT_SOURCE. In glibc versions before 2.20, defining _GNU_SOURCE also had the

 effect of implicitly defining _BSD_SOURCE and _SVID_SOURCE.

 _REENTRANT

 Historically, on various C libraries it was necessary to define this macro in all

 multithreaded code. (Some C libraries may still require this.) In glibc, this

 macro also exposed definitions of certain reentrant functions.

 However, glibc has been thread-safe by default for many years; since glibc 2.3, the

 only effect of defining _REENTRANT has been to enable one or two of the same decla?

 rations that are also enabled by defining _POSIX_C_SOURCE with a value of 199606L Page 7/13

 or greater.

 _REENTRANT is now obsolete. In glibc 2.25 and later, defining _REENTRANT is equiv?

 alent to defining _POSIX_C_SOURCE with the value 199606L. If a higher POSIX con?

 formance level is selected by any other means (such as _POSIX_C_SOURCE itself,

 _XOPEN_SOURCE, _DEFAULT_SOURCE, or _GNU_SOURCE), then defining _REENTRANT has no

 effect.

 This macro is automatically defined if one compiles with cc -pthread.

 _THREAD_SAFE

 Synonym for the (deprecated) _REENTRANT, provided for compatibility with some other

 implementations.

 _FORTIFY_SOURCE (since glibc 2.3.4)

 Defining this macro causes some lightweight checks to be performed to detect some

 buffer overflow errors when employing various string and memory manipulation func?

 tions (for example, memcpy(3), memset(3), stpcpy(3), strcpy(3), strncpy(3), str?

 cat(3), strncat(3), sprintf(3), snprintf(3), vsprintf(3), vsnprintf(3), gets(3),

 and wide character variants thereof). For some functions, argument consistency is

 checked; for example, a check is made that open(2) has been supplied with a mode

 argument when the specified flags include O_CREAT. Not all problems are detected,

 just some common cases.

 If _FORTIFY_SOURCE is set to 1, with compiler optimization level 1 (gcc -O1) and

 above, checks that shouldn't change the behavior of conforming programs are per?

 formed. With _FORTIFY_SOURCE set to 2, some more checking is added, but some con?

 forming programs might fail.

 Some of the checks can be performed at compile time (via macros logic implemented

 in header files), and result in compiler warnings; other checks take place at run

 time, and result in a run-time error if the check fails.

 Use of this macro requires compiler support, available with gcc(1) since version

 4.0.

 Default definitions, implicit definitions, and combining definitions

 If no feature test macros are explicitly defined, then the following feature test macros

 are defined by default: _BSD_SOURCE (in glibc 2.19 and earlier), _SVID_SOURCE (in glibc

 2.19 and earlier), _DEFAULT_SOURCE (since glibc 2.19), _POSIX_SOURCE, and

 _POSIX_C_SOURCE=200809L (200112L in glibc versions before 2.10; 199506L in glibc versions Page 8/13

 before 2.4; 199309L in glibc versions before 2.1).

 If any of __STRICT_ANSI__, _ISOC99_SOURCE, _ISOC11_SOURCE (since glibc 2.18),

 _POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE, _XOPEN_SOURCE_EXTENDED (in glibc 2.11 and

 earlier), _BSD_SOURCE (in glibc 2.19 and earlier), or _SVID_SOURCE (in glibc 2.19 and ear?

 lier) is explicitly defined, then _BSD_SOURCE, _SVID_SOURCE, and _DEFAULT_SOURCE are not

 defined by default.

 If _POSIX_SOURCE and _POSIX_C_SOURCE are not explicitly defined, and either

 __STRICT_ANSI__ is not defined or _XOPEN_SOURCE is defined with a value of 500 or more,

 then

 * _POSIX_SOURCE is defined with the value 1; and

 * _POSIX_C_SOURCE is defined with one of the following values:

 ? 2, if _XOPEN_SOURCE is defined with a value less than 500;

 ? 199506L, if _XOPEN_SOURCE is defined with a value greater than or equal to 500 and

 less than 600; or

 ? (since glibc 2.4) 200112L, if _XOPEN_SOURCE is defined with a value greater than or

 equal to 600 and less than 700.

 ? (Since glibc 2.10) 200809L, if _XOPEN_SOURCE is defined with a value greater than or

 equal to 700.

 ? Older versions of glibc do not know about the values 200112L and 200809L for

 _POSIX_C_SOURCE, and the setting of this macro will depend on the glibc version.

 ? If _XOPEN_SOURCE is undefined, then the setting of _POSIX_C_SOURCE depends on the

 glibc version: 199506L, in glibc versions before 2.4; 200112L, in glibc 2.4 to 2.9;

 and 200809L, since glibc 2.10.

 Multiple macros can be defined; the results are additive.

CONFORMING TO

 POSIX.1 specifies _POSIX_C_SOURCE, _POSIX_SOURCE, and _XOPEN_SOURCE.

 _XOPEN_SOURCE_EXTENDED was specified by XPG4v2 (aka SUSv1), but is not present in SUSv2

 and later. _FILE_OFFSET_BITS is not specified by any standard, but is employed on some

 other implementations.

 _BSD_SOURCE, _SVID_SOURCE, _DEFAULT_SOURCE, _ATFILE_SOURCE, _GNU_SOURCE,

_FORTIFY_SOURCE,

 _REENTRANT, and _THREAD_SAFE are specific to Linux (glibc).

NOTES Page 9/13

 <features.h> is a Linux/glibc-specific header file. Other systems have an analogous file,

 but typically with a different name. This header file is automatically included by other

 header files as required: it is not necessary to explicitly include it in order to employ

 feature test macros.

 According to which of the above feature test macros are defined, <features.h> internally

 defines various other macros that are checked by other glibc header files. These macros

 have names prefixed by two underscores (e.g., __USE_MISC). Programs should never define

 these macros directly: instead, the appropriate feature test macro(s) from the list above

 should be employed.

EXAMPLES

 The program below can be used to explore how the various feature test macros are set de?

 pending on the glibc version and what feature test macros are explicitly set. The follow?

 ing shell session, on a system with glibc 2.10, shows some examples of what we would see:

 $ cc ftm.c

 $./a.out

 _POSIX_SOURCE defined

 _POSIX_C_SOURCE defined: 200809L

 _BSD_SOURCE defined

 _SVID_SOURCE defined

 _ATFILE_SOURCE defined

 $ cc -D_XOPEN_SOURCE=500 ftm.c

 $./a.out

 _POSIX_SOURCE defined

 _POSIX_C_SOURCE defined: 199506L

 _XOPEN_SOURCE defined: 500

 $ cc -D_GNU_SOURCE ftm.c

 $./a.out

 _POSIX_SOURCE defined

 _POSIX_C_SOURCE defined: 200809L

 _ISOC99_SOURCE defined

 _XOPEN_SOURCE defined: 700

 _XOPEN_SOURCE_EXTENDED defined

 _LARGEFILE64_SOURCE defined Page 10/13

 _BSD_SOURCE defined

 _SVID_SOURCE defined

 _ATFILE_SOURCE defined

 _GNU_SOURCE defined

 Program source

 /* ftm.c */

 #include <stdint.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <stdlib.h>

 int

 main(int argc, char *argv[])

 {

 #ifdef _POSIX_SOURCE

 printf("_POSIX_SOURCE defined\n");

 #endif

 #ifdef _POSIX_C_SOURCE

 printf("_POSIX_C_SOURCE defined: %jdL\n",

 (intmax_t) _POSIX_C_SOURCE);

 #endif

 #ifdef _ISOC99_SOURCE

 printf("_ISOC99_SOURCE defined\n");

 #endif

 #ifdef _ISOC11_SOURCE

 printf("_ISOC11_SOURCE defined\n");

 #endif

 #ifdef _XOPEN_SOURCE

 printf("_XOPEN_SOURCE defined: %d\n", _XOPEN_SOURCE);

 #endif

 #ifdef _XOPEN_SOURCE_EXTENDED

 printf("_XOPEN_SOURCE_EXTENDED defined\n");

 #endif

 #ifdef _LARGEFILE64_SOURCE Page 11/13

 printf("_LARGEFILE64_SOURCE defined\n");

 #endif

 #ifdef _FILE_OFFSET_BITS

 printf("_FILE_OFFSET_BITS defined: %d\n", _FILE_OFFSET_BITS);

 #endif

 #ifdef _BSD_SOURCE

 printf("_BSD_SOURCE defined\n");

 #endif

 #ifdef _SVID_SOURCE

 printf("_SVID_SOURCE defined\n");

 #endif

 #ifdef _DEFAULT_SOURCE

 printf("_DEFAULT_SOURCE defined\n");

 #endif

 #ifdef _ATFILE_SOURCE

 printf("_ATFILE_SOURCE defined\n");

 #endif

 #ifdef _GNU_SOURCE

 printf("_GNU_SOURCE defined\n");

 #endif

 #ifdef _REENTRANT

 printf("_REENTRANT defined\n");

 #endif

 #ifdef _THREAD_SAFE

 printf("_THREAD_SAFE defined\n");

 #endif

 #ifdef _FORTIFY_SOURCE

 printf("_FORTIFY_SOURCE defined\n");

 #endif

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 libc(7), standards(7), system_data_types(7) Page 12/13

 The section "Feature Test Macros" under info libc.

 /usr/include/features.h

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 FEATURE_TEST_MACROS(7)

Page 13/13

