
Rocky Enterprise Linux 9.2 Manual Pages on command 'fdatasync.2'

$ man fdatasync.2

FSYNC(2) Linux Programmer's Manual FSYNC(2)

NAME

 fsync, fdatasync - synchronize a file's in-core state with storage device

SYNOPSIS

 #include <unistd.h>

 int fsync(int fd);

 int fdatasync(int fd);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fsync():

 Glibc 2.16 and later:

 No feature test macros need be defined

 Glibc up to and including 2.15:

 _BSD_SOURCE || _XOPEN_SOURCE

 || /* since glibc 2.8: */ _POSIX_C_SOURCE >= 200112L

 fdatasync():

 _POSIX_C_SOURCE >= 199309L || _XOPEN_SOURCE >= 500

DESCRIPTION

 fsync() transfers ("flushes") all modified in-core data of (i.e., modified buffer cache

 pages for) the file referred to by the file descriptor fd to the disk device (or other

 permanent storage device) so that all changed information can be retrieved even if the

 system crashes or is rebooted. This includes writing through or flushing a disk cache if

 present. The call blocks until the device reports that the transfer has completed.

 As well as flushing the file data, fsync() also flushes the metadata information associ? Page 1/3

 ated with the file (see inode(7)).

 Calling fsync() does not necessarily ensure that the entry in the directory containing the

 file has also reached disk. For that an explicit fsync() on a file descriptor for the di?

 rectory is also needed.

 fdatasync() is similar to fsync(), but does not flush modified metadata unless that meta?

 data is needed in order to allow a subsequent data retrieval to be correctly handled. For

 example, changes to st_atime or st_mtime (respectively, time of last access and time of

 last modification; see inode(7)) do not require flushing because they are not necessary

 for a subsequent data read to be handled correctly. On the other hand, a change to the

 file size (st_size, as made by say ftruncate(2)), would require a metadata flush.

 The aim of fdatasync() is to reduce disk activity for applications that do not require all

 metadata to be synchronized with the disk.

RETURN VALUE

 On success, these system calls return zero. On error, -1 is returned, and errno is set

 appropriately.

ERRORS

 EBADF fd is not a valid open file descriptor.

 EIO An error occurred during synchronization. This error may relate to data written to

 some other file descriptor on the same file. Since Linux 4.13, errors from write-

 back will be reported to all file descriptors that might have written the data

 which triggered the error. Some filesystems (e.g., NFS) keep close track of which

 data came through which file descriptor, and give more precise reporting. Other

 filesystems (e.g., most local filesystems) will report errors to all file descrip?

 tors that were open on the file when the error was recorded.

 ENOSPC Disk space was exhausted while synchronizing.

 EROFS, EINVAL

 fd is bound to a special file (e.g., a pipe, FIFO, or socket) which does not sup?

 port synchronization.

 ENOSPC, EDQUOT

 fd is bound to a file on NFS or another filesystem which does not allocate space at

 the time of a write(2) system call, and some previous write failed due to insuffi?

 cient storage space.

CONFORMING TO Page 2/3

 POSIX.1-2001, POSIX.1-2008, 4.3BSD.

 On POSIX systems on which fdatasync() is available, _POSIX_SYNCHRONIZED_IO is defined in

 <unistd.h> to a value greater than 0. (See also sysconf(3).)

NOTES

 On some UNIX systems (but not Linux), fd must be a writable file descriptor.

 In Linux 2.2 and earlier, fdatasync() is equivalent to fsync(), and so has no performance

 advantage.

 The fsync() implementations in older kernels and lesser used filesystems do not know how

 to flush disk caches. In these cases disk caches need to be disabled using hdparm(8) or

 sdparm(8) to guarantee safe operation.

SEE ALSO

 sync(1), bdflush(2), open(2), posix_fadvise(2), pwritev(2), sync(2), sync_file_range(2),

 fflush(3), fileno(3), hdparm(8), mount(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 FSYNC(2)

Page 3/3

