
Rocky Enterprise Linux 9.2 Manual Pages on command 'fallocate.2'

$ man fallocate.2

FALLOCATE(2) Linux Programmer's Manual FALLOCATE(2)

NAME

 fallocate - manipulate file space

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <fcntl.h>

 int fallocate(int fd, int mode, off_t offset, off_t len);

DESCRIPTION

 This is a nonportable, Linux-specific system call. For the portable, POSIX.1-specified

 method of ensuring that space is allocated for a file, see posix_fallocate(3).

 fallocate() allows the caller to directly manipulate the allocated disk space for the file

 referred to by fd for the byte range starting at offset and continuing for len bytes.

 The mode argument determines the operation to be performed on the given range. Details of

 the supported operations are given in the subsections below.

 Allocating disk space

 The default operation (i.e., mode is zero) of fallocate() allocates the disk space within

 the range specified by offset and len. The file size (as reported by stat(2)) will be

 changed if offset+len is greater than the file size. Any subregion within the range spec?

 ified by offset and len that did not contain data before the call will be initialized to

 zero. This default behavior closely resembles the behavior of the posix_fallocate(3) li?

 brary function, and is intended as a method of optimally implementing that function.

 After a successful call, subsequent writes into the range specified by offset and len are

 guaranteed not to fail because of lack of disk space. Page 1/5

 If the FALLOC_FL_KEEP_SIZE flag is specified in mode, the behavior of the call is similar,

 but the file size will not be changed even if offset+len is greater than the file size.

 Preallocating zeroed blocks beyond the end of the file in this manner is useful for opti?

 mizing append workloads.

 If the FALLOC_FL_UNSHARE flag is specified in mode, shared file data extents will be made

 private to the file to guarantee that a subsequent write will not fail due to lack of

 space. Typically, this will be done by performing a copy-on-write operation on all shared

 data in the file. This flag may not be supported by all filesystems.

 Because allocation is done in block size chunks, fallocate() may allocate a larger range

 of disk space than was specified.

 Deallocating file space

 Specifying the FALLOC_FL_PUNCH_HOLE flag (available since Linux 2.6.38) in mode deallo?

 cates space (i.e., creates a hole) in the byte range starting at offset and continuing for

 len bytes. Within the specified range, partial filesystem blocks are zeroed, and whole

 filesystem blocks are removed from the file. After a successful call, subsequent reads

 from this range will return zeros.

 The FALLOC_FL_PUNCH_HOLE flag must be ORed with FALLOC_FL_KEEP_SIZE in mode; in other

 words, even when punching off the end of the file, the file size (as reported by stat(2))

 does not change.

 Not all filesystems support FALLOC_FL_PUNCH_HOLE; if a filesystem doesn't support the op?

 eration, an error is returned. The operation is supported on at least the following

 filesystems:

 * XFS (since Linux 2.6.38)

 * ext4 (since Linux 3.0)

 * Btrfs (since Linux 3.7)

 * tmpfs(5) (since Linux 3.5)

 * gfs2(5) (since Linux 4.16)

 Collapsing file space

 Specifying the FALLOC_FL_COLLAPSE_RANGE flag (available since Linux 3.15) in mode removes

 a byte range from a file, without leaving a hole. The byte range to be collapsed starts

 at offset and continues for len bytes. At the completion of the operation, the contents

 of the file starting at the location offset+len will be appended at the location offset,

 and the file will be len bytes smaller. Page 2/5

 A filesystem may place limitations on the granularity of the operation, in order to ensure

 efficient implementation. Typically, offset and len must be a multiple of the filesystem

 logical block size, which varies according to the filesystem type and configuration. If a

 filesystem has such a requirement, fallocate() fails with the error EINVAL if this re?

 quirement is violated.

 If the region specified by offset plus len reaches or passes the end of file, an error is

 returned; instead, use ftruncate(2) to truncate a file.

 No other flags may be specified in mode in conjunction with FALLOC_FL_COLLAPSE_RANGE.

 As at Linux 3.15, FALLOC_FL_COLLAPSE_RANGE is supported by ext4 (only for extent-based

 files) and XFS.

 Zeroing file space

 Specifying the FALLOC_FL_ZERO_RANGE flag (available since Linux 3.15) in mode zeros space

 in the byte range starting at offset and continuing for len bytes. Within the specified

 range, blocks are preallocated for the regions that span the holes in the file. After a

 successful call, subsequent reads from this range will return zeros.

 Zeroing is done within the filesystem preferably by converting the range into unwritten

 extents. This approach means that the specified range will not be physically zeroed out

 on the device (except for partial blocks at the either end of the range), and I/O is (oth?

 erwise) required only to update metadata.

 If the FALLOC_FL_KEEP_SIZE flag is additionally specified in mode, the behavior of the

 call is similar, but the file size will not be changed even if offset+len is greater than

 the file size. This behavior is the same as when preallocating space with FAL?

 LOC_FL_KEEP_SIZE specified.

 Not all filesystems support FALLOC_FL_ZERO_RANGE; if a filesystem doesn't support the op?

 eration, an error is returned. The operation is supported on at least the following

 filesystems:

 * XFS (since Linux 3.15)

 * ext4, for extent-based files (since Linux 3.15)

 * SMB3 (since Linux 3.17)

 * Btrfs (since Linux 4.16)

 Increasing file space

 Specifying the FALLOC_FL_INSERT_RANGE flag (available since Linux 4.1) in mode increases

 the file space by inserting a hole within the file size without overwriting any existing Page 3/5

 data. The hole will start at offset and continue for len bytes. When inserting the hole

 inside file, the contents of the file starting at offset will be shifted upward (i.e., to

 a higher file offset) by len bytes. Inserting a hole inside a file increases the file

 size by len bytes.

 This mode has the same limitations as FALLOC_FL_COLLAPSE_RANGE regarding the granularity

 of the operation. If the granularity requirements are not met, fallocate() fails with the

 error EINVAL. If the offset is equal to or greater than the end of file, an error is re?

 turned. For such operations (i.e., inserting a hole at the end of file), ftruncate(2)

 should be used.

 No other flags may be specified in mode in conjunction with FALLOC_FL_INSERT_RANGE.

 FALLOC_FL_INSERT_RANGE requires filesystem support. Filesystems that support this opera?

 tion include XFS (since Linux 4.1) and ext4 (since Linux 4.2).

RETURN VALUE

 On success, fallocate() returns zero. On error, -1 is returned and errno is set to indi?

 cate the error.

ERRORS

 EBADF fd is not a valid file descriptor, or is not opened for writing.

 EFBIG offset+len exceeds the maximum file size.

 EFBIG mode is FALLOC_FL_INSERT_RANGE, and the current file size+len exceeds the maximum

 file size.

 EINTR A signal was caught during execution; see signal(7).

 EINVAL offset was less than 0, or len was less than or equal to 0.

 EINVAL mode is FALLOC_FL_COLLAPSE_RANGE and the range specified by offset plus len reaches

 or passes the end of the file.

 EINVAL mode is FALLOC_FL_INSERT_RANGE and the range specified by offset reaches or passes

 the end of the file.

 EINVAL mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_INSERT_RANGE, but either offset or

 len is not a multiple of the filesystem block size.

 EINVAL mode contains one of FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_INSERT_RANGE and also

 other flags; no other flags are permitted with FALLOC_FL_COLLAPSE_RANGE or FAL?

 LOC_FL_INSERT_RANGE.

 EINVAL mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_ZERO_RANGE or

FALLOC_FL_INSERT_RANGE, Page 4/5

 but the file referred to by fd is not a regular file.

 EIO An I/O error occurred while reading from or writing to a filesystem.

 ENODEV fd does not refer to a regular file or a directory. (If fd is a pipe or FIFO, a

 different error results.)

 ENOSPC There is not enough space left on the device containing the file referred to by fd.

 ENOSYS This kernel does not implement fallocate().

 EOPNOTSUPP

 The filesystem containing the file referred to by fd does not support this opera?

 tion; or the mode is not supported by the filesystem containing the file referred

 to by fd.

 EPERM The file referred to by fd is marked immutable (see chattr(1)).

 EPERM mode specifies FALLOC_FL_PUNCH_HOLE or FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN?

 SERT_RANGE and the file referred to by fd is marked append-only (see chattr(1)).

 EPERM The operation was prevented by a file seal; see fcntl(2).

 ESPIPE fd refers to a pipe or FIFO.

 ETXTBSY

 mode specifies FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_INSERT_RANGE, but the file re?

 ferred to by fd is currently being executed.

VERSIONS

 fallocate() is available on Linux since kernel 2.6.23. Support is provided by glibc since

 version 2.10. The FALLOC_FL_* flags are defined in glibc headers only since version 2.18.

CONFORMING TO

 fallocate() is Linux-specific.

SEE ALSO

 fallocate(1), ftruncate(2), posix_fadvise(3), posix_fallocate(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-11-19 FALLOCATE(2)

Page 5/5

