
Rocky Enterprise Linux 9.2 Manual Pages on command 'exit.3'

$ man exit.3

EXIT(3) Linux Programmer's Manual EXIT(3)

NAME

 exit - cause normal process termination

SYNOPSIS

 #include <stdlib.h>

 void exit(int status);

DESCRIPTION

 The exit() function causes normal process termination and the least significant byte of

 status (i.e., status & 0xFF) is returned to the parent (see wait(2)).

 All functions registered with atexit(3) and on_exit(3) are called, in the reverse order of

 their registration. (It is possible for one of these functions to use atexit(3) or

 on_exit(3) to register an additional function to be executed during exit processing; the

 new registration is added to the front of the list of functions that remain to be called.)

 If one of these functions does not return (e.g., it calls _exit(2), or kills itself with a

 signal), then none of the remaining functions is called, and further exit processing (in

 particular, flushing of stdio(3) streams) is abandoned. If a function has been registered

 multiple times using atexit(3) or on_exit(3), then it is called as many times as it was

 registered.

 All open stdio(3) streams are flushed and closed. Files created by tmpfile(3) are re?

 moved.

 The C standard specifies two constants, EXIT_SUCCESS and EXIT_FAILURE, that may be passed

 to exit() to indicate successful or unsuccessful termination, respectively.

RETURN VALUE Page 1/3

 The exit() function does not return.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?exit() ? Thread safety ? MT-Unsafe race:exit ?

 ??

 The exit() function uses a global variable that is not protected, so it is not thread-

 safe.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, C89, C99, SVr4, 4.3BSD.

NOTES

 The behavior is undefined if one of the functions registered using atexit(3) and

 on_exit(3) calls either exit() or longjmp(3). Note that a call to execve(2) removes reg?

 istrations created using atexit(3) and on_exit(3).

 The use of EXIT_SUCCESS and EXIT_FAILURE is slightly more portable (to non-UNIX environ?

 ments) than the use of 0 and some nonzero value like 1 or -1. In particular, VMS uses a

 different convention.

 BSD has attempted to standardize exit codes (which some C libraries such as the GNU C li?

 brary have also adopted); see the file <sysexits.h>.

 After exit(), the exit status must be transmitted to the parent process. There are three

 cases:

 ? If the parent has set SA_NOCLDWAIT, or has set the SIGCHLD handler to SIG_IGN, the sta?

 tus is discarded and the child dies immediately.

 ? If the parent was waiting on the child, it is notified of the exit status and the child

 dies immediately.

 ? Otherwise, the child becomes a "zombie" process: most of the process resources are re?

 cycled, but a slot containing minimal information about the child process (termination

 status, resource usage statistics) is retained in process table. This allows the par?

 ent to subsequently use waitpid(2) (or similar) to learn the termination status of the

 child; at that point the zombie process slot is released.

 If the implementation supports the SIGCHLD signal, this signal is sent to the parent. If Page 2/3

 the parent has set SA_NOCLDWAIT, it is undefined whether a SIGCHLD signal is sent.

 Signals sent to other processes

 If the exiting process is a session leader and its controlling terminal is the controlling

 terminal of the session, then each process in the foreground process group of this con?

 trolling terminal is sent a SIGHUP signal, and the terminal is disassociated from this

 session, allowing it to be acquired by a new controlling process.

 If the exit of the process causes a process group to become orphaned, and if any member of

 the newly orphaned process group is stopped, then a SIGHUP signal followed by a SIGCONT

 signal will be sent to each process in this process group. See setpgid(2) for an explana?

 tion of orphaned process groups.

 Except in the above cases, where the signalled processes may be children of the terminat?

 ing process, termination of a process does not in general cause a signal to be sent to

 children of that process. However, a process can use the prctl(2) PR_SET_PDEATHSIG opera?

 tion to arrange that it receives a signal if its parent terminates.

SEE ALSO

 _exit(2), get_robust_list(2), setpgid(2), wait(2), atexit(3), on_exit(3), tmpfile(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-02-09 EXIT(3)

Page 3/3

