
Rocky Enterprise Linux 9.2 Manual Pages on command 'epoll_ctl.2'

$ man epoll_ctl.2

EPOLL_CTL(2)                        Linux Programmer's Manual                        EPOLL_CTL(2)

NAME

       epoll_ctl - control interface for an epoll file descriptor

SYNOPSIS

       #include <sys/epoll.h>

       int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

DESCRIPTION

       This  system  call  is  used to add, modify, or remove entries in the interest list of the

       epoll(7) instance referred to by the file descriptor epfd.  It requests that the operation

       op be performed for the target file descriptor, fd.

       Valid values for the op argument are:

       EPOLL_CTL_ADD

              Add  an  entry  to the interest list of the epoll file descriptor, epfd.  The entry

              includes the file descriptor, fd, a reference to the corresponding  open  file  de?

              scription (see epoll(7) and open(2)), and the settings specified in event.

       EPOLL_CTL_MOD

              Change  the  settings  associated  with fd in the interest list to the new settings

              specified in event.

       EPOLL_CTL_DEL

              Remove (deregister) the target file descriptor fd  from  the  interest  list.   The

              event argument is ignored and can be NULL (but see BUGS below).

       The  event  argument  describes  the  object linked to the file descriptor fd.  The struct

       epoll_event is defined as: Page 1/6



           typedef union epoll_data {

               void        *ptr;

               int          fd;

               uint32_t     u32;

               uint64_t     u64;

           } epoll_data_t;

           struct epoll_event {

               uint32_t     events;      /* Epoll events */

               epoll_data_t data;        /* User data variable */

           };

       The data member of the epoll_event structure specifies data that the  kernel  should  save

       and then return (via epoll_wait(2)) when this file descriptor becomes ready.

       The  events  member  of the epoll_event structure is a bit mask composed by ORing together

       zero or more of the following available event types:

       EPOLLIN

              The associated file is available for read(2) operations.

       EPOLLOUT

              The associated file is available for write(2) operations.

       EPOLLRDHUP (since Linux 2.6.17)

              Stream socket peer closed connection, or shut  down  writing  half  of  connection.

              (This  flag  is  especially  useful for writing simple code to detect peer shutdown

              when using edge-triggered monitoring.)

       EPOLLPRI

              There is an exceptional condition on the file descriptor.  See  the  discussion  of

              POLLPRI in poll(2).

       EPOLLERR

              Error condition happened on the associated file descriptor.  This event is also re?

              ported for the write end of a pipe when the read end has been closed.

              epoll_wait(2) will always report for this event; it is not necessary to set  it  in

              events when calling epoll_ctl().

       EPOLLHUP

              Hang up happened on the associated file descriptor.

              epoll_wait(2)  will  always  wait  for this event; it is not necessary to set it in Page 2/6



              events when calling epoll_ctl().

              Note that when reading from a channel such as a pipe or a stream socket, this event

              merely  indicates  that  the  peer closed its end of the channel.  Subsequent reads

              from the channel will return 0 (end of file) only after all outstanding data in the

              channel has been consumed.

       EPOLLET

              Requests  edge-triggered  notification for the associated file descriptor.  The de?

              fault behavior for epoll is level-triggered.  See epoll(7) for more detailed infor?

              mation about edge-triggered and level-triggered notification.

              This  flag is an input flag for the event.events field when calling epoll_ctl(); it

              is never returned by epoll_wait(2).

       EPOLLONESHOT (since Linux 2.6.2)

              Requests one-shot notification for the associated file descriptor.  This means that

              after an event notified for the file descriptor by epoll_wait(2), the file descrip?

              tor is disabled in the interest list and no other events will be  reported  by  the

              epoll  interface.   The  user must call epoll_ctl() with EPOLL_CTL_MOD to rearm the

              file descriptor with a new event mask.

              This flag is an input flag for the event.events field when calling epoll_ctl();  it

              is never returned by epoll_wait(2).

       EPOLLWAKEUP (since Linux 3.5)

              If EPOLLONESHOT and EPOLLET are clear and the process has the CAP_BLOCK_SUSPEND ca?

              pability, ensure that the system does not enter "suspend" or "hibernate" while this

              event  is pending or being processed.  The event is considered as being "processed"

              from the time when it is returned by a call to epoll_wait(2) until the next call to

              epoll_wait(2)  on  the  same epoll(7) file descriptor, the closure of that file de?

              scriptor, the removal of the event  file  descriptor  with  EPOLL_CTL_DEL,  or  the

              clearing of EPOLLWAKEUP for the event file descriptor with EPOLL_CTL_MOD.  See also

              BUGS.

              This flag is an input flag for the event.events field when calling epoll_ctl();  it

              is never returned by epoll_wait(2).

       EPOLLEXCLUSIVE (since Linux 4.5)

              Sets  an exclusive wakeup mode for the epoll file descriptor that is being attached

              to the target file descriptor, fd.  When a wakeup event occurs and  multiple  epoll Page 3/6



              file  descriptors are attached to the same target file using EPOLLEXCLUSIVE, one or

              more of the epoll file descriptors will receive an event with  epoll_wait(2).   The

              default in this scenario (when EPOLLEXCLUSIVE is not set) is for all epoll file de?

              scriptors to receive an event.  EPOLLEXCLUSIVE is thus useful for avoiding thunder?

              ing herd problems in certain scenarios.

              If  the same file descriptor is in multiple epoll instances, some with the EPOLLEX?

              CLUSIVE flag, and others without, then events will be provided  to  all  epoll  in?

              stances  that  did  not  specify  EPOLLEXCLUSIVE, and at least one of the epoll in?

              stances that did specify EPOLLEXCLUSIVE.

              The following values may be specified in conjunction with EPOLLEXCLUSIVE:  EPOLLIN,

              EPOLLOUT,  EPOLLWAKEUP,  and EPOLLET.  EPOLLHUP and EPOLLERR can also be specified,

              but this is not required: as usual, these events are always reported if they occur,

              regardless of whether they are specified in events.  Attempts to specify other val?

              ues in events yield the error EINVAL.

              EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD operation; attempts  to  employ

              it  with  EPOLL_CTL_MOD  yield  an  error.   If  EPOLLEXCLUSIVE  has been set using

              epoll_ctl(), then a subsequent EPOLL_CTL_MOD on the same epfd, fd  pair  yields  an

              error.  A call to epoll_ctl() that specifies EPOLLEXCLUSIVE in events and specifies

              the target file descriptor fd as an epoll instance will likewise fail.   The  error

              in all of these cases is EINVAL.

              The  EPOLLEXCLUSIVE  flag  is an input flag for the event.events field when calling

              epoll_ctl(); it is never returned by epoll_wait(2).

RETURN VALUE

       When successful, epoll_ctl() returns zero.  When an error occurs, epoll_ctl()  returns  -1

       and errno is set appropriately.

ERRORS

       EBADF  epfd or fd is not a valid file descriptor.

       EEXIST op  was  EPOLL_CTL_ADD,  and  the supplied file descriptor fd is already registered

              with this epoll instance.

       EINVAL epfd is not an epoll file descriptor, or fd is the same as epfd, or  the  requested

              operation op is not supported by this interface.

       EINVAL An invalid event type was specified along with EPOLLEXCLUSIVE in events.

       EINVAL op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE. Page 4/6



       EINVAL op  was  EPOLL_CTL_MOD  and  the EPOLLEXCLUSIVE flag has previously been applied to

              this epfd, fd pair.

       EINVAL EPOLLEXCLUSIVE was specified in event and fd refers to an epoll instance.

       ELOOP  fd refers to an epoll instance and this EPOLL_CTL_ADD operation would result  in  a

              circular loop of epoll instances monitoring one another or a nesting depth of epoll

              instances greater than 5.

       ENOENT op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered with this epoll in?

              stance.

       ENOMEM There was insufficient memory to handle the requested op control operation.

       ENOSPC The limit imposed by /proc/sys/fs/epoll/max_user_watches was encountered while try?

              ing to register (EPOLL_CTL_ADD) a new file descriptor on an  epoll  instance.   See

              epoll(7) for further details.

       EPERM  The  target  file fd does not support epoll.  This error can occur if fd refers to,

              for example, a regular file or a directory.

VERSIONS

       epoll_ctl() was added to the kernel in version 2.6.  Library support is provided in  glibc

       starting with version 2.3.2.

CONFORMING TO

       epoll_ctl() is Linux-specific.

NOTES

       The epoll interface supports all file descriptors that support poll(2).

BUGS

       In  kernel  versions before 2.6.9, the EPOLL_CTL_DEL operation required a non-null pointer

       in event, even though this argument is ignored.  Since Linux 2.6.9, event can be specified

       as NULL when using EPOLL_CTL_DEL.  Applications that need to be portable to kernels before

       2.6.9 should specify a non-null pointer in event.

       If EPOLLWAKEUP is specified in flags, but the caller does not have  the  CAP_BLOCK_SUSPEND

       capability,  then  the EPOLLWAKEUP flag is silently ignored.  This unfortunate behavior is

       necessary because no validity checks were performed on the flags argument in the  original

       implementation,  and  the addition of the EPOLLWAKEUP with a check that caused the call to

       fail if the caller did not have the CAP_BLOCK_SUSPEND capability caused a breakage  in  at

       least  one existing user-space application that happened to randomly (and uselessly) spec?

       ify this bit.  A robust  application  should  therefore  double  check  that  it  has  the Page 5/6



       CAP_BLOCK_SUSPEND capability if attempting to use the EPOLLWAKEUP flag.

SEE ALSO

       epoll_create(2), epoll_wait(2), poll(2), epoll(7)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A description of the

       project, information about reporting bugs, and the latest version of  this  page,  can  be

       found at https://www.kernel.org/doc/man-pages/.

Linux                                       2020-11-01                               EPOLL_CTL(2)

Page 6/6


