
Rocky Enterprise Linux 9.2 Manual Pages on command 'duplicity.1'

$ man duplicity.1

DUPLICITY(1) User Manuals DUPLICITY(1)

NAME

 duplicity - Encrypted incremental backup to local or remote storage.

SYNOPSIS

 For detailed descriptions for each command see chapter ACTIONS.

 duplicity [full|incremental] [options] source_directory target_url

 duplicity verify [options] [--compare-data] [--file-to-restore <relpath>] [--time time]

 source_url target_directory

 duplicity collection-status [options] [--file-changed <relpath>] target_url

 duplicity list-current-files [options] [--time time] target_url

 duplicity [restore] [options] [--file-to-restore <relpath>] [--time time] source_url

 target_directory

 duplicity remove-older-than <time> [options] [--force] target_url

 duplicity remove-all-but-n-full <count> [options] [--force] target_url

 duplicity remove-all-inc-of-but-n-full <count> [options] [--force] target_url

 duplicity cleanup [options] [--force] target_url

 duplicity replicate [options] [--time time] source_url target_url

DESCRIPTION

 Duplicity incrementally backs up files and folders into tar-format volumes encrypted with

 GnuPG and places them to a remote (or local) storage backend. See chapter URL FORMAT for

 a list of all supported backends and how to address them. Because duplicity uses

 librsync, incremental backups are space efficient and only record the parts of files that

 have changed since the last backup. Currently duplicity supports deleted files, full Unix Page 1/41

 permissions, uid/gid, directories, symbolic links, fifos, etc., but not hard links.

 If you are backing up the root directory /, remember to --exclude /proc, or else duplicity

 will probably crash on the weird stuff in there.

EXAMPLES

 Here is an example of a backup, using sftp to back up /home/me to some_dir on the

 other.host machine:

 duplicity /home/me sftp://uid@other.host/some_dir

 If the above is run repeatedly, the first will be a full backup, and subsequent ones will

 be incremental. To force a full backup, use the full action:

 duplicity full /home/me sftp://uid@other.host/some_dir

 or enforcing a full every other time via --full-if-older-than <time> , e.g. a full every

 month:

 duplicity --full-if-older-than 1M /home/me sftp://uid@other.host/some_dir

 Now suppose we accidentally delete /home/me and want to restore it the way it was at the

 time of last backup:

 duplicity sftp://uid@other.host/some_dir /home/me

 Duplicity enters restore mode because the URL comes before the local directory. If we

 wanted to restore just the file "Mail/article" in /home/me as it was three days ago into

 /home/me/restored_file:

 duplicity -t 3D --file-to-restore Mail/article sftp://uid@other.host/some_dir

 /home/me/restored_file

 The following command compares the latest backup with the current files:

 duplicity verify sftp://uid@other.host/some_dir /home/me

 Finally, duplicity recognizes several include/exclude options. For instance, the

 following will backup the root directory, but exclude /mnt, /tmp, and /proc:

 duplicity --exclude /mnt --exclude /tmp --exclude /proc / file:///usr/local/backup

 Note that in this case the destination is the local directory /usr/local/backup. The

 following will backup only the /home and /etc directories under root:

 duplicity --include /home --include /etc --exclude '**' / file:///usr/local/backup

 Duplicity can also access a repository via ftp. If a user name is given, the environment

 variable FTP_PASSWORD is read to determine the password:

 FTP_PASSWORD=mypassword duplicity /local/dir ftp://user@other.host/some_dir

ACTIONS Page 2/41

 Duplicity knows action commands, which can be finetuned with options.

 The actions for backup (full,incr) and restoration (restore) can as well be left out as

 duplicity detects in what mode it should switch to by the order of target URL and local

 folder. If the target URL comes before the local folder a restore is in order, is the

 local folder before target URL then this folder is about to be backed up to the target

 URL.

 If a backup is in order and old signatures can be found duplicity automatically performs

 an incremental backup.

 Note: The following explanations explain some but not all options that can be used in

 connection with that action command. Consult the OPTIONS section for more detailed

 informations.

 full <folder> <url>

 Perform a full backup. A new backup chain is started even if signatures are

 available for an incremental backup.

 incr <folder> <url>

 If this is requested an incremental backup will be performed. Duplicity will abort

 if no old signatures can be found.

 verify [--compare-data] [--time <time>] [--file-to-restore <rel_path>] <url> <local_path>

 Verify tests the integrity of the backup archives at the remote location by

 downloading each file and checking both that it can restore the archive and that

 the restored file matches the signature of that file stored in the backup, i.e.

 compares the archived file with its hash value from archival time. Verify does not

 actually restore and will not overwrite any local files. Duplicity will exit with a

 non-zero error level if any files do not match the signature stored in the archive

 for that file. On verbosity level 4 or higher, it will log a message for each file

 that differs from the stored signature. Files must be downloaded to the local

 machine in order to compare them. Verify does not compare the backed-up version of

 the file to the current local copy of the files unless the --compare-data option is

 used (see below).

 The --file-to-restore option restricts verify to that file or folder. The --time

 option allows to select a backup to verify. The --compare-data option enables data

 comparison (see below).

 collection-status [--file-changed <relpath>]<url> Page 3/41

 Summarize the status of the backup repository by printing the chains and sets

 found, and the number of volumes in each.

 list-current-files [--time <time>] <url>

 Lists the files contained in the most current backup or backup at time. The

 information will be extracted from the signature files, not the archive data

 itself. Thus the whole archive does not have to be downloaded, but on the other

 hand if the archive has been deleted or corrupted, this command will not detect it.

 restore [--file-to-restore <relpath>] [--time <time>] <url> <target_folder>

 You can restore the full monty or selected folders/files from a specific time. Use

 the relative path as it is printed by list-current-files. Usually not needed as

 duplicity enters restore mode when it detects that the URL comes before the local

 folder.

 remove-older-than <time> [--force] <url>

 Delete all backup sets older than the given time. Old backup sets will not be

 deleted if backup sets newer than time depend on them. See the TIME FORMATS

 section for more information. Note, this action cannot be combined with backup or

 other actions, such as cleanup. Note also that --force will be needed to delete

 the files instead of just listing them.

 remove-all-but-n-full <count> [--force] <url>

 Delete all backups sets that are older than the count:th last full backup (in other

 words, keep the last count full backups and associated incremental sets). count

 must be larger than zero. A value of 1 means that only the single most recent

 backup chain will be kept. Note that --force will be needed to delete the files

 instead of just listing them.

 remove-all-inc-of-but-n-full <count> [--force] <url>

 Delete incremental sets of all backups sets that are older than the count:th last

 full backup (in other words, keep only old full backups and not their increments).

 count must be larger than zero. A value of 1 means that only the single most recent

 backup chain will be kept intact. Note that --force will be needed to delete the

 files instead of just listing them.

 cleanup [--force] <url>

 Delete the extraneous duplicity files on the given backend. Non-duplicity files,

 or files in complete data sets will not be deleted. This should only be necessary Page 4/41

 after a duplicity session fails or is aborted prematurely. Note that --force will

 be needed to delete the files instead of just listing them.

 replicate [--time time] <source_url> <target_url>

 Replicate backup sets from source to target backend. Files will be (re)-encrypted

 and (re)-compressed depending on normal backend options. Signatures and volumes

 will not get recomputed, thus options like --volsize or --max-blocksize have no

 effect. When --time time is given, only backup sets older than time will be

 replicated.

OPTIONS

 --allow-source-mismatch

 Do not abort on attempts to use the same archive dir or remote backend to back up

 different directories. duplicity will tell you if you need this switch.

 --archive-dir path

 The archive directory. NOTE: This option changed in 0.6.0. The archive directory

 is now necessary in order to manage persistence for current and future

 enhancements. As such, this option is now used only to change the location of the

 archive directory. The archive directory should not be deleted, or duplicity will

 have to recreate it from the remote repository (which may require decrypting the

 backup contents).

 When backing up or restoring, this option specifies that the local archive

 directory is to be created in path. If the archive directory is not specified, the

 default will be to create the archive directory in ~/.cache/duplicity/.

 The archive directory can be shared between backups to multiple targets, because a

 subdirectory of the archive dir is used for individual backups (see --name).

 The combination of archive directory and backup name must be unique in order to

 separate the data of different backups.

 The interaction between the --archive-dir and the --name options allows for four

 possible combinations for the location of the archive dir:

 1. neither specified (default)

 ~/.cache/duplicity/hash-of-url

 2. --archive-dir=/arch, no --name

 /arch/hash-of-url

 3. no --archive-dir, --name=foo Page 5/41

 ~/.cache/duplicity/foo

 4. --archive-dir=/arch, --name=foo

 /arch/foo

 --asynchronous-upload

 (EXPERIMENTAL) Perform file uploads asynchronously in the background, with respect

 to volume creation. This means that duplicity can upload a volume while, at the

 same time, preparing the next volume for upload. The intended end-result is a

 faster backup, because the local CPU and your bandwidth can be more consistently

 utilized. Use of this option implies additional need for disk space in the

 temporary storage location; rather than needing to store only one volume at a time,

 enough storage space is required to store two volumes.

 --backend-retry-delay number

 Specifies the number of seconds that duplicity waits after an error has occured

 before attempting to repeat the operation.

 --cf-backend backend

 Allows the explicit selection of a cloudfiles backend. Defaults to pyrax.

 Alternatively you might choose cloudfiles.

 --b2-hide-files

 Causes Duplicity to hide files in B2 instead of deleting them. Useful in

 combination with B2's lifecycle rules.

 --compare-data

 Enable data comparison of regular files on action verify. This conducts a verify as

 described above to verify the integrity of the backup archives, but additionally

 compares restored files to those in target_directory. Duplicity will not replace

 any files in target_directory. Duplicity will exit with a non-zero error level if

 the files do not correctly verify or if any files from the archive differ from

 those in target_directory. On verbosity level 4 or higher, it will log a message

 for each file that differs from its equivalent in target_directory.

 --copy-links

 Resolve symlinks during backup. Enabling this will resolve & back up the symlink's

 file/folder data instead of the symlink itself, potentially increasing the size of

 the backup.

 --dry-run Page 6/41

 Calculate what would be done, but do not perform any backend actions

 --encrypt-key key-id

 When backing up, encrypt to the given public key, instead of using symmetric

 (traditional) encryption. Can be specified multiple times. The key-id can be

 given in any of the formats supported by GnuPG; see gpg(1), section "HOW TO SPECIFY

 A USER ID" for details.

 --encrypt-secret-keyring filename

 This option can only be used with --encrypt-key, and changes the path to the secret

 keyring for the encrypt key to filename This keyring is not used when creating a

 backup. If not specified, the default secret keyring is used which is usually

 located at .gnupg/secring.gpg

 --encrypt-sign-key key-id

 Convenience parameter. Same as --encrypt-key key-id --sign-key key-id.

 --exclude shell_pattern

 Exclude the file or files matched by shell_pattern. If a directory is matched,

 then files under that directory will also be matched. See the FILE SELECTION

 section for more information.

 --exclude-device-files

 Exclude all device files. This can be useful for security/permissions reasons or

 if duplicity is not handling device files correctly.

 --exclude-filelist filename

 Excludes the files listed in filename, with each line of the filelist interpreted

 according to the same rules as --include and --exclude. See the FILE SELECTION

 section for more information.

 --exclude-if-present filename

 Exclude directories if filename is present. Allows the user to specify folders that

 they do not wish to backup by adding a specified file (e.g. ".nobackup") instead of

 maintaining a comprehensive exclude/include list.

 --exclude-older-than time

 Exclude any files whose modification date is earlier than the specified time. This

 can be used to produce a partial backup that contains only recently changed files.

 See the TIME FORMATS section for more information.

 --exclude-other-filesystems Page 7/41

 Exclude files on file systems (identified by device number) other than the file

 system the root of the source directory is on.

 --exclude-regexp regexp

 Exclude files matching the given regexp. Unlike the --exclude option, this option

 does not match files in a directory it matches. See the FILE SELECTION section for

 more information.

 --file-prefix, --file-prefix-manifest, --file-prefix-archive, --file-prefix-signature

 Adds a prefix to all files, manifest files, archive files, and/or signature files.

 The same set of prefixes must be passed in on backup and restore.

 If both global and type-specific prefixes are set, global prefix will go before

 type-specific prefixes.

 See also A NOTE ON FILENAME PREFIXES

 --file-to-restore path

 This option may be given in restore mode, causing only path to be restored instead

 of the entire contents of the backup archive. path should be given relative to the

 root of the directory backed up.

 --full-if-older-than time

 Perform a full backup if an incremental backup is requested, but the latest full

 backup in the collection is older than the given time. See the TIME FORMATS

 section for more information.

 --force

 Proceed even if data loss might result. Duplicity will let the user know when this

 option is required.

 --ftp-passive

 Use passive (PASV) data connections. The default is to use passive, but to

 fallback to regular if the passive connection fails or times out.

 --ftp-regular

 Use regular (PORT) data connections.

 --gio Use the GIO backend and interpret any URLs as GIO would.

 --hidden-encrypt-key key-id

 Same as --encrypt-key, but it hides user's key id from encrypted file. It uses the

 gpg's --hidden-recipient command to obfuscate the owner of the backup. On restore,

 gpg will automatically try all available secret keys in order to decrypt the Page 8/41

 backup. See gpg(1) for more details.

 --ignore-errors

 Try to ignore certain errors if they happen. This option is only intended to allow

 the restoration of a backup in the face of certain problems that would otherwise

 cause the backup to fail. It is not ever recommended to use this option unless you

 have a situation where you are trying to restore from backup and it is failing

 because of an issue which you want duplicity to ignore. Even then, depending on the

 issue, this option may not have an effect.

 Please note that while ignored errors will be logged, there will be no summary at

 the end of the operation to tell you what was ignored, if anything. If this is used

 for emergency restoration of data, it is recommended that you run the backup in

 such a way that you can revisit the backup log (look for lines containing the

 string IGNORED_ERROR).

 If you ever have to use this option for reasons that are not understood or

 understood but not your own responsibility, please contact duplicity maintainers.

 The need to use this option under production circumstances would normally be

 considered a bug.

 --imap-full-address email_address

 The full email address of the user name when logging into an imap server. If not

 supplied just the user name part of the email address is used.

 --imap-mailbox option

 Allows you to specify a different mailbox. The default is "INBOX". Other

 languages may require a different mailbox than the default.

 --gpg-binary file_path

 Allows you to force duplicity to use file_path as gpg command line binary. Can be

 an absolute or relative file path or a file name. Default value is 'gpg'. The

 binary will be localized via the PATH environment variable.

 --gpg-options options

 Allows you to pass options to gpg encryption. The options list should be of the

 form "--opt1 --opt2=parm" where the string is quoted and the only spaces allowed

 are between options.

 --include shell_pattern

 Similar to --exclude but include matched files instead. Unlike --exclude, this Page 9/41

 option will also match parent directories of matched files (although not

 necessarily their contents). See the FILE SELECTION section for more information.

 --include-filelist filename

 Like --exclude-filelist, but include the listed files instead. See the FILE

 SELECTION section for more information.

 --include-regexp regexp

 Include files matching the regular expression regexp. Only files explicitly

 matched by regexp will be included by this option. See the FILE SELECTION section

 for more information.

 --log-fd number

 Write specially-formatted versions of output messages to the specified file

 descriptor. The format used is designed to be easily consumable by other programs.

 --log-file filename

 Write specially-formatted versions of output messages to the specified file. The

 format used is designed to be easily consumable by other programs.

 --max-blocksize number

 determines the number of the blocks examined for changes during the diff process.

 For files < 1MB the blocksize is a constant of 512. For files over 1MB the size is

 given by:

 file_blocksize = int((file_len / (2000 * 512)) * 512)

 return min(file_blocksize, config.max_blocksize)

 where config.max_blocksize defaults to 2048. If you specify a larger

 max_blocksize, your difftar files will be larger, but your sigtar files will be

 smaller. If you specify a smaller max_blocksize, the reverse occurs. The --max-

 blocksize option should be in multiples of 512.

 --name symbolicname

 Set the symbolic name of the backup being operated on. The intent is to use a

 separate name for each logically distinct backup. For example, someone may use

 "home_daily_s3" for the daily backup of a home directory to Amazon S3. The

 structure of the name is up to the user, it is only important that the names be

 distinct. The symbolic name is currently only used to affect the expansion of

 --archive-dir , but may be used for additional features in the future. Users

 running more than one distinct backup are encouraged to use this option. Page 10/41

 If not specified, the default value is a hash of the backend URL.

 --no-compression

 Do not use GZip to compress files on remote system.

 --no-encryption

 Do not use GnuPG to encrypt files on remote system.

 --no-print-statistics

 By default duplicity will print statistics about the current session after a

 successful backup. This switch disables that behavior.

 --null-separator

 Use nulls (\0) instead of newlines (\n) as line separators, which may help when

 dealing with filenames containing newlines. This affects the expected format of

 the files specified by the --{include|exclude}-filelist switches as well as the

 format of the directory statistics file.

 --numeric-owner

 On restore always use the numeric uid/gid from the archive and not the archived

 user/group names, which is the default behaviour. Recommended for restoring from

 live cds which might have the users with identical names but different uids/gids.

 --do-not-restore-ownership

 Ignores the uid/gid from the archive and keeps the current user's one. Recommended

 for restoring data to mounted filesystem which do not support Unix ownership or

 when root privileges are not available.

 --num-retries number

 Number of retries to make on errors before giving up.

 --old-filenames

 Use the old filename format (incompatible with Windows/Samba) rather than the new

 filename format.

 --par2-options options

 Verbatim options to pass to par2.

 --par2-redundancy percent

 Adjust the level of redundancy in percent for Par2 recovery files (default 10%).

 --progress

 When selected, duplicity will output the current upload progress and estimated

 upload time. To annotate changes, it will perform a first dry-run before a full or Page 11/41

 incremental, and then runs the real operation estimating the real upload progress.

 --progress-rate number

 Sets the update rate at which duplicity will output the upload progress messages

 (requires --progress option). Default is to print the status each 3 seconds.

 --rename <original path> <new path>

 Treats the path orig in the backup as if it were the path new. Can be passed

 multiple times. An example:

 duplicity restore --rename Documents/metal Music/metal

 sftp://uid@other.host/some_dir /home/me

 --rsync-options options

 Allows you to pass options to the rsync backend. The options list should be of the

 form "opt1=parm1 opt2=parm2" where the option string is quoted and the only spaces

 allowed are between options. The option string will be passed verbatim to rsync,

 after any internally generated option designating the remote port to use. Here is a

 possibly useful example:

 duplicity --rsync-options="--partial-dir=.rsync-partial" /home/me

 rsync://uid@other.host/some_dir

 --s3-european-buckets

 When using the Amazon S3 backend, create buckets in Europe instead of the default

 (requires --s3-use-new-style). Also see the EUROPEAN S3 BUCKETS section.

 This option does not apply when using the newer boto3 backend, which does not

 create buckets.

 See also A NOTE ON AMAZON S3 below.

 --s3-unencrypted-connection

 Don't use SSL for connections to S3.

 This may be much faster, at some cost to confidentiality.

 With this option, anyone who can observe traffic between your computer and S3 will

 be able to tell: that you are using Duplicity, the name of the bucket, your AWS

 Access Key ID, the increment dates and the amount of data in each increment.

 This option affects only the connection, not the GPG encryption of the backup

 increment files. Unless that is disabled, an observer will not be able to see the

 file names or contents.

 This option is not available when using the newer boto3 backend. Page 12/41

 See also A NOTE ON AMAZON S3 below.

 --s3-use-new-style

 When operating on Amazon S3 buckets, use new-style subdomain bucket addressing.

 This is now the preferred method to access Amazon S3, but is not backwards

 compatible if your bucket name contains upper-case characters or other characters

 that are not valid in a hostname.

 This option has no effect when using the newer boto3 backend, which will always use

 new style subdomain bucket naming.

 See also A NOTE ON AMAZON S3 below.

 --s3-use-rrs

 Store volumes using Reduced Redundancy Storage when uploading to Amazon S3. This

 will lower the cost of storage but also lower the durability of stored volumes to

 99.99% instead the 99.999999999% durability offered by Standard Storage on S3.

 --s3-use-ia

 Store volumes using Standard - Infrequent Access when uploading to Amazon S3. This

 storage class has a lower storage cost but a higher per-request cost, and the

 storage cost is calculated against a 30-day storage minimum. According to Amazon,

 this storage is ideal for long-term file storage, backups, and disaster recovery.

 --s3-use-onezone-ia

 Store volumes using One Zone - Infrequent Access when uploading to Amazon S3. This

 storage is similar to Standard - Infrequent Access, but only stores object data in

 one Availability Zone.

 --s3-use-glacier

 Store volumes using Glacier S3 when uploading to Amazon S3. This storage class has

 a lower cost of storage but a higher per-request cost along with delays of up to 12

 hours from the time of retrieval request. This storage cost is calculated against a

 90-day storage minimum. According to Amazon this storage is ideal for data

 archiving and long-term backup offering 99.999999999% durability. To restore a

 backup you will have to manually migrate all data stored on AWS Glacier back to

 Standard S3 and wait for AWS to complete the migration. Notice: Duplicity will

 store the manifest.gpg files from full and incremental backups on AWS S3 standard

 storage to allow quick retrieval for later incremental backups, all other data is

 stored in S3 Glacier. Page 13/41

 --s3-use-deep-archive

 Store volumes using Glacier Deep Archive S3 when uploading to Amazon S3. This

 storage class has a lower cost of storage but a higher per-request cost along with

 delays of up to 48 hours from the time of retrieval request. This storage cost is

 calculated against a 180-day storage minimum. According to Amazon this storage is

 ideal for data archiving and long-term backup offering 99.999999999% durability.

 To restore a backup you will have to manually migrate all data stored on AWS

 Glacier Deep Archive back to Standard S3 and wait for AWS to complete the

 migration. Notice: Duplicity will store the manifest.gpg files from full and

 incremental backups on AWS S3 standard storage to allow quick retrieval for later

 incremental backups, all other data is stored in S3 Glacier Deep Archive.

 Glacier Deep Archive is only available when using the newer boto3 backend.

 --s3-use-multiprocessing

 Allow multipart volumne uploads to S3 through multiprocessing. This option requires

 Python 2.6 and can be used to make uploads to S3 more efficient. If enabled, files

 duplicity uploads to S3 will be split into chunks and uploaded in parallel. Useful

 if you want to saturate your bandwidth or if large files are failing during upload.

 This has no effect when using the newer boto3 backend. Boto3 always attempts to

 multiprocessing when it is believed it will be more efficient.

 See also A NOTE ON AMAZON S3 below.

 --s3-use-server-side-encryption

 Allow use of server side encryption in S3

 --s3-multipart-chunk-size

 Chunk size (in MB) used for S3 multipart uploads. Make this smaller than --volsize

 to maximize the use of your bandwidth. For example, a chunk size of 10MB with a

 volsize of 30MB will result in 3 chunks per volume upload.

 See also A NOTE ON AMAZON S3 below.

 --s3-multipart-max-procs

 Specify the maximum number of processes to spawn when performing a multipart upload

 to S3. By default, this will choose the number of processors detected on your

 system (e.g. 4 for a 4-core system). You can adjust this number as required to

 ensure you don't overload your system while maximizing the use of your bandwidth.

 This has no effect when using the newer boto3 backend. Page 14/41

 See also A NOTE ON AMAZON S3 below.

 --s3-multipart-max-timeout

 You can control the maximum time (in seconds) a multipart upload can spend on

 uploading a single chunk to S3. This may be useful if you find your system hanging

 on multipart uploads or if you'd like to control the time variance when uploading

 to S3 to ensure you kill connections to slow S3 endpoints.

 This has no effect when using the newer boto3 backend.

 See also A NOTE ON AMAZON S3 below.

 --s3-region-name

 Specifies the region of the S3 storage.

 This is currently only used in the newer boto3 backend.

 --s3-endpoint-url

 Specifies the endpoint URL of the S3 storage.

 This is currently only used in the newer boto3 backend.

 --azure-blob-tier

 Standard storage tier used for backup files (Hot|Cool|Archive).

 --azure-max-single-put-size

 Specify the number of the largest supported upload size where the Azure library

 makes only one put call. If the content size is known and below this value the

 Azure library will only perform one put request to upload one block. The number is

 expected to be in bytes.

 --azure-max-block-size

 Specify the number for the block size used by the Azure library to upload blobs if

 it is split into multiple blocks. The maximum block size the service supports is

 104857600 (100MiB) and the default is 4194304 (4MiB)

 --azure-max-connections

 Specify the number of maximum connections to transfer one blob to Azure blob size

 exceeds 64MB. The default values is 2.

 --scp-command command

 (only ssh pexpect backend with --use-scp enabled) The command will be used instead

 of "scp" to send or receive files. To list and delete existing files, the sftp

 command is used.

 See also A NOTE ON SSH BACKENDS section SSH pexpect backend. Page 15/41

 --sftp-command command

 (only ssh pexpect backend) The command will be used instead of "sftp".

 See also A NOTE ON SSH BACKENDS section SSH pexpect backend.

 --short-filenames

 If this option is specified, the names of the files duplicity writes will be

 shorter (about 30 chars) but less understandable. This may be useful when backing

 up to MacOS or another OS or FS that doesn't support long filenames.

 --sign-key key-id

 This option can be used when backing up, restoring or verifying. When backing up,

 all backup files will be signed with keyid key. When restoring, duplicity will

 signal an error if any remote file is not signed with the given key-id. The key-id

 can be given in any of the formats supported by GnuPG; see gpg(1), section "HOW TO

 SPECIFY A USER ID" for details. Should be specified only once because currently

 only one signing key is supported. Last entry overrides all other entries.

 See also A NOTE ON SYMMETRIC ENCRYPTION AND SIGNING

 --ssh-askpass

 Tells the ssh backend to prompt the user for the remote system password, if it was

 not defined in target url and no FTP_PASSWORD env var is set. This password is

 also used for passphrase-protected ssh keys.

 --ssh-options options

 Allows you to pass options to the ssh backend. Can be specified multiple times or

 as a space separated options list. The options list should be of the form

 "-oOpt1='parm1' -oOpt2='parm2'" where the option string is quoted and the only

 spaces allowed are between options. The option string will be passed verbatim to

 both scp and sftp, whose command line syntax differs slightly hence the options

 should therefore be given in the long option format described in ssh_config(5).

 example of a list:

 duplicity --ssh-options="-oProtocol=2 -oIdentityFile='/my/backup/id'" /home/me

 scp://user@host/some_dir

 example with multiple parameters:

 duplicity --ssh-options="-oProtocol=2" --ssh-

 options="-oIdentityFile='/my/backup/id'" /home/me scp://user@host/some_dir

 NOTE: The ssh paramiko backend currently supports only the -i or -oIdentityFile or Page 16/41

 -oUserKnownHostsFile or -oGlobalKnownHostsFile settings. If needed provide more

 host specific options via ssh_config file.

 --ssl-cacert-file file

 (only webdav & lftp backend) Provide a cacert file for ssl certificate

 verification.

 See also A NOTE ON SSL CERTIFICATE VERIFICATION.

 --ssl-cacert-path path/to/certs/

 (only webdav backend and python 2.7.9+ OR lftp+webdavs and a recent lftp) Provide a

 path to a folder containing cacert files for ssl certificate verification.

 See also A NOTE ON SSL CERTIFICATE VERIFICATION.

 --ssl-no-check-certificate

 (only webdav & lftp backend) Disable ssl certificate verification.

 See also A NOTE ON SSL CERTIFICATE VERIFICATION.

 --swift-storage-policy

 Use this storage policy when operating on Swift containers.

 See also A NOTE ON SWIFT (OPENSTACK OBJECT STORAGE) ACCESS.

 --metadata-sync-mode mode

 This option defaults to 'partial', but you can set it to 'full'

 Use 'partial' to avoid syncing metadata for backup chains that you are not going to

 use. This saves time when restoring for the first time, and lets you restore an

 old backup that was encrypted with a different passphrase by supplying only the

 target passphrase.

 Use 'full' to sync metadata for all backup chains on the remote.

 --tempdir directory

 Use this existing directory for duplicity temporary files instead of the system

 default, which is usually the /tmp directory. This option supersedes any

 environment variable.

 See also ENVIRONMENT VARIABLES.

 -ttime, --time time, --restore-time time

 Specify the time from which to restore or list files.

 --time-separator char

 Use char as the time separator in filenames instead of colon (":").

 --timeout seconds Page 17/41

 Use seconds as the socket timeout value if duplicity begins to timeout during

 network operations. The default is 30 seconds.

 --use-agent

 If this option is specified, then --use-agent is passed to the GnuPG encryption

 process and it will try to connect to gpg-agent before it asks for a passphrase for

 --encrypt-key or --sign-key if needed.

 Note: Contrary to previous versions of duplicity, this option will also be honored

 by GnuPG 2 and newer versions. If GnuPG 2 is in use, duplicity passes the option

 --pinentry-mode=loopback to the the gpg process unless --use-agent is specified on

 the duplicity command line. This has the effect that GnuPG 2 uses the agent only if

 --use-agent is given, just like GnuPG 1.

 --verbosity level, -vlevel

 Specify output verbosity level (log level). Named levels and corresponding values

 are 0 Error, 2 Warning, 4 Notice (default), 8 Info, 9 Debug (noisiest).

 level may also be

 a character: e, w, n, i, d

 a word: error, warning, notice, info, debug

 The options -v4, -vn and -vnotice are functionally equivalent, as are the

 mixed/upper-case versions -vN, -vNotice and -vNOTICE.

 --version

 Print duplicity's version and quit.

 --volsize number

 Change the volume size to number MB. Default is 200MB.

ENVIRONMENT VARIABLES

 TMPDIR, TEMP, TMP

 In decreasing order of importance, specifies the directory to use for temporary

 files (inherited from Python's tempfile module). Eventually the option --tempdir

 supercedes any of these.

 FTP_PASSWORD

 Supported by most backends which are password capable. More secure than setting it

 in the backend url (which might be readable in the operating systems process

 listing to other users on the same machine).

 PASSPHRASE Page 18/41

 This passphrase is passed to GnuPG. If this is not set, the user will be prompted

 for the passphrase.

 SIGN_PASSPHRASE

 The passphrase to be used for --sign-key. If ommitted and sign key is also one of

 the keys to encrypt against PASSPHRASE will be reused instead. Otherwise, if

 passphrase is needed but not set the user will be prompted for it.

 Other environment variables may be used to configure specific backends. See the

 notes for the particular backend.

URL FORMAT

 Duplicity uses the URL format (as standard as possible) to define data locations. The

 generic format for a URL is:

 scheme://[user[:password]@]host[:port]/[/]path

 It is not recommended to expose the password on the command line since it could be

 revealed to anyone with permissions to do process listings, it is permitted however.

 Consider setting the environment variable FTP_PASSWORD instead, which is used by most, if

 not all backends, regardless of it's name.

 In protocols that support it, the path may be preceded by a single slash, '/path', to

 represent a relative path to the target home directory, or preceded by a double slash,

 '//path', to represent an absolute filesystem path.

 Note:

 Scheme (protocol) access may be provided by more than one backend. In case the

 default backend is buggy or simply not working in a specific case it might be worth

 trying an alternative implementation. Alternative backends can be selected by

 prefixing the scheme with the name of the alternative backend e.g. ncftp+ftp://

 and are mentioned below the scheme's syntax summary.

 Formats of each of the URL schemes follow:

 Amazon Drive Backend

 ad://some_dir

 See also A NOTE ON AMAZON DRIVE

 Azure

 azure://container-name

 See also A NOTE ON AZURE ACCESS

 B2 Page 19/41

 b2://account_id[:application_key]@bucket_name/[folder/]

 Box

 box:///some_dir[?config=path_to_config]

 See also A NOTE ON BOX ACCESS

 Cloud Files (Rackspace)

 cf+http://container_name

 See also A NOTE ON CLOUD FILES ACCESS

 Dropbox

 dpbx:///some_dir

 Make sure to read A NOTE ON DROPBOX ACCESS first!

 Local file path

 file://[relative|/absolute]/local/path

 FISH (Files transferred over Shell protocol) over ssh

 fish://user[:pwd]@other.host[:port]/[relative|/absolute]_path

 FTP

 ftp[s]://user[:password]@other.host[:port]/some_dir

 NOTE: use lftp+, ncftp+ prefixes to enforce a specific backend, default is

 lftp+ftp://...

 Google Docs

 gdocs://user[:password]@other.host/some_dir

 NOTE: use pydrive+, gdata+ prefixes to enforce a specific backend, default is

 pydrive+gdocs://...

 Google Cloud Storage

 gs://bucket[/prefix]

 HSI

 hsi://user[:password]@other.host/some_dir

 hubiC

 cf+hubic://container_name

 See also A NOTE ON HUBIC

 IMAP email storage

 imap[s]://user[:password]@host.com[/from_address_prefix]

 See also A NOTE ON IMAP

 MEGA.nz cloud storage (only works for accounts created prior to November 2018, uses Page 20/41

 "megatools")

 mega://user[:password]@mega.nz/some_dir

 NOTE: if not given in the URL, relies on password being stored within $HOME/.megarc

 (as used by the "megatools" utilities)

 MEGA.nz cloud storage (works for all MEGA accounts, uses "MEGAcmd" tools)

 megav2://user[:password]@mega.nz/some_dir

 megav3://user[:password]@mega.nz/some_dir[?no_logout=1] (For latest MEGAcmd)

 NOTE: despite "MEGAcmd" no longer uses a configuration file, for convenience

 storing the user password this backend searches it in the $HOME/.megav2rc file

 (same syntax as the old $HOME/.megarc)

 [Login]

 Username = MEGA_USERNAME

 Password = MEGA_PASSWORD

 OneDrive Backend

 onedrive://some_dir

 Par2 Wrapper Backend

 par2+scheme://[user[:password]@]host[:port]/[/]path

 See also A NOTE ON PAR2 WRAPPER BACKEND

 Rclone Backend

 rclone://remote:/some_dir

 See also A NOTE ON RCLONE BACKEND

 Rsync via daemon

 rsync://user[:password]@host.com[:port]::[/]module/some_dir

 Rsync over ssh (only key auth)

 rsync://user@host.com[:port]/[relative|/absolute]_path

 S3 storage (Amazon)

 s3://host[:port]/bucket_name[/prefix]

 s3+http://bucket_name[/prefix]

 defaults to the legacy boto backend based on boto v2 (last update 2018/07)

 alternatively try the newer boto3+s3://bucket_name[/prefix]

 For details see A NOTE ON AMAZON S3 and see also A NOTE ON EUROPEAN S3 BUCKETS

 below.

 SCP/SFTP access Page 21/41

 scp://.. or

 sftp://user[:pwd]@other.host[:port]/[relative|/absolute]_path

 defaults are paramiko+scp:// and paramiko+sftp://

 alternatively try pexpect+scp://, pexpect+sftp://, lftp+sftp://

 See also --ssh-askpass, --ssh-options and A NOTE ON SSH BACKENDS.

 Swift (Openstack)

 swift://container_name[/prefix]

 See also A NOTE ON SWIFT (OPENSTACK OBJECT STORAGE) ACCESS

 Public Cloud Archive (OVH)

 pca://container_name[/prefix]

 See also A NOTE ON PCA ACCESS

 Tahoe-LAFS

 tahoe://alias/directory

 WebDAV

 webdav[s]://user[:password]@other.host[:port]/some_dir

 alternatively try lftp+webdav[s]://

 pydrive

 pydrive://<service account' email address>@developer.gserviceaccount.com/some_dir

 See also A NOTE ON PYDRIVE BACKEND below.

 gdrive

 gdrive://<service account' email address>@developer.gserviceaccount.com/some_dir

 See also A NOTE ON GDRIVE BACKEND below.

 multi

 multi:///path/to/config.json

 See also A NOTE ON MULTI BACKEND below.

 MediaFire

 mf://user[:password]@mediafire.com/some_dir

 See also A NOTE ON MEDIAFIRE BACKEND below.

TIME FORMATS

 duplicity uses time strings in two places. Firstly, many of the files duplicity creates

 will have the time in their filenames in the w3 datetime format as described in a w3 note

 at http://www.w3.org/TR/NOTE-datetime. Basically they look like

 "2001-07-15T04:09:38-07:00", which means what it looks like. The "-07:00" section means Page 22/41

 the time zone is 7 hours behind UTC.

 Secondly, the -t, --time, and --restore-time options take a time string, which can be

 given in any of several formats:

 1. the string "now" (refers to the current time)

 2. a sequences of digits, like "123456890" (indicating the time in seconds after the

 epoch)

 3. A string like "2002-01-25T07:00:00+02:00" in datetime format

 4. An interval, which is a number followed by one of the characters s, m, h, D, W, M,

 or Y (indicating seconds, minutes, hours, days, weeks, months, or years

 respectively), or a series of such pairs. In this case the string refers to the

 time that preceded the current time by the length of the interval. For instance,

 "1h78m" indicates the time that was one hour and 78 minutes ago. The calendar here

 is unsophisticated: a month is always 30 days, a year is always 365 days, and a day

 is always 86400 seconds.

 5. A date format of the form YYYY/MM/DD, YYYY-MM-DD, MM/DD/YYYY, or MM-DD-YYYY, which

 indicates midnight on the day in question, relative to the current time zone

 settings. For instance, "2002/3/5", "03-05-2002", and "2002-3-05" all mean March

 5th, 2002.

FILE SELECTION

 When duplicity is run, it searches through the given source directory and backs up all the

 files specified by the file selection system. The file selection system comprises a

 number of file selection conditions, which are set using one of the following command line

 options:

 --exclude

 --exclude-device-files

 --exclude-if-present

 --exclude-filelist

 --exclude-regexp

 --include

 --include-filelist

 --include-regexp

 Each file selection condition either matches or doesn't match a given file. A given file

 is excluded by the file selection system exactly when the first matching file selection Page 23/41

 condition specifies that the file be excluded; otherwise the file is included.

 For instance,

 duplicity --include /usr --exclude /usr /usr scp://user@host/backup

 is exactly the same as

 duplicity /usr scp://user@host/backup

 because the include and exclude directives match exactly the same files, and the --include

 comes first, giving it precedence. Similarly,

 duplicity --include /usr/local/bin --exclude /usr/local /usr scp://user@host/backup

 would backup the /usr/local/bin directory (and its contents), but not /usr/local/doc.

 The include, exclude, include-filelist, and exclude-filelist options accept some extended

 shell globbing patterns. These patterns can contain *, **, ?, and [...] (character

 ranges). As in a normal shell, * can be expanded to any string of characters not

 containing "/", ? expands to any character except "/", and [...] expands to a single

 character of those characters specified (ranges are acceptable). The new special pattern,

 **, expands to any string of characters whether or not it contains "/". Furthermore, if

 the pattern starts with "ignorecase:" (case insensitive), then this prefix will be removed

 and any character in the string can be replaced with an upper- or lowercase version of

 itself.

 Remember that you may need to quote these characters when typing them into a shell, so the

 shell does not interpret the globbing patterns before duplicity sees them.

 The --exclude pattern option matches a file if:

 1. pattern can be expanded into the file's filename, or

 2. the file is inside a directory matched by the option.

 Conversely, the --include pattern matches a file if:

 1. pattern can be expanded into the file's filename, or

 2. the file is inside a directory matched by the option, or

 3. the file is a directory which contains a file matched by the option.

 For example,

 --exclude /usr/local

 matches e.g. /usr/local, /usr/local/lib, and /usr/local/lib/netscape. It is the same as

 --exclude /usr/local --exclude '/usr/local/**'.

 On the other hand

 --include /usr/local Page 24/41

 specifies that /usr, /usr/local, /usr/local/lib, and /usr/local/lib/netscape (but not

 /usr/doc) all be backed up. Thus you don't have to worry about including parent

 directories to make sure that included subdirectories have somewhere to go.

 Finally,

 --include ignorecase:'/usr/[a-z0-9]foo/*/**.py'

 would match a file like /usR/5fOO/hello/there/world.py. If it did match anything, it

 would also match /usr. If there is no existing file that the given pattern can be

 expanded into, the option will not match /usr alone.

 The --include-filelist, and --exclude-filelist, options also introduce file selection

 conditions. They direct duplicity to read in a text file (either ASCII or UTF-8), each

 line of which is a file specification, and to include or exclude the matching files.

 Lines are separated by newlines or nulls, depending on whether the --null-separator switch

 was given. Each line in the filelist will be interpreted as a globbing pattern the way

 --include and --exclude options are interpreted, except that lines starting with "+ " are

 interpreted as include directives, even if found in a filelist referenced by --exclude-

 filelist. Similarly, lines starting with "- " exclude files even if they are found within

 an include filelist.

 For example, if file "list.txt" contains the lines:

 /usr/local

 - /usr/local/doc

 /usr/local/bin

 + /var

 - /var

 then --include-filelist list.txt would include /usr, /usr/local, and /usr/local/bin. It

 would exclude /usr/local/doc, /usr/local/doc/python, etc. It would also include

 /usr/local/man, as this is included within /user/local. Finally, it is undefined what

 happens with /var. A single file list should not contain conflicting file specifications.

 Each line in the filelist will also be interpreted as a globbing pattern the way --include

 and --exclude options are interpreted. For instance, if the file "list.txt" contains the

 lines:

 dir/foo

 + dir/bar

 - ** Page 25/41

 Then --include-filelist list.txt would be exactly the same as specifying --include dir/foo

 --include dir/bar --exclude ** on the command line.

 Finally, the --include-regexp and --exclude-regexp options allow files to be included and

 excluded if their filenames match a python regular expression. Regular expression syntax

 is too complicated to explain here, but is covered in Python's library reference. Unlike

 the --include and --exclude options, the regular expression options don't match files

 containing or contained in matched files. So for instance

 --include '[0-9]{7}(?!foo)'

 matches any files whose full pathnames contain 7 consecutive digits which aren't followed

 by 'foo'. However, it wouldn't match /home even if /home/ben/1234567 existed.

A NOTE ON AMAZON DRIVE

 1. The API Keys used for Amazon Drive have not been granted production limits. Amazon

 do not say what the development limits are and are not replying to to requests to

 whitelist duplicity. A related tool, acd_cli, was demoted to development limits,

 but continues to work fine except for cases of excessive usage. If you experience

 throttling and similar issues with Amazon Drive using this backend, please report

 them to the mailing list.

 2. If you previously used the acd+acdcli backend, it is strongly recommended to update

 to the ad backend instead, since it interfaces directly with Amazon Drive. You will

 need to setup the OAuth once again, but can otherwise keep your backups and config.

A NOTE ON AMAZON S3

 When backing up to Amazon S3, two backend implementations are available. The schemes "s3"

 and "s3+http" are implemented using the older boto library, which has been deprecated and

 is no longer supported. The "boto3+s3" scheme is based on the newer boto3 library. This

 new backend fixes several known limitations in the older backend, which have crept in as

 Amazon S3 has evolved while the deprecated boto library has not kept up.

 The boto3 backend should behave largely the same as the older S3 backend, but there are

 some differences in the handling of some of the "S3" options. Additionally, there are

 some compatibility differences with the new backed. Because of these reasons, both

 backends have been retained for the time being. See the documentation for specific

 options regarding differences related to each backend.

 The boto3 backend does not support bucket creation. This is a deliberate choice which

 simplifies the code, and side steps problems related to region selection. Additionally, Page 26/41

 it is probably not a good practice to give your backup role bucket creation rights. In

 most cases the role used for backups should probably be limited to specific buckets.

 The boto3 backend only supports newer domain style buckets. Amazon is moving to deprecate

 the older bucket style, so migration is recommended. Use the older s3 backend for

 compatibility with backups stored in buckets using older naming conventions.

 The boto3 backend does not currently support initiating restores from the glacier storage

 class. When restoring a backup from glacier or glacier deep archive, the backup files

 must first be restored out of band. There are multiple options when restoring backups

 from cold storage, which vary in both cost and speed. See Amazon's documentation for

 details.

A NOTE ON AZURE ACCESS

 The Azure backend requires the Microsoft Azure Storage Blobs client library for Python to

 be installed on the system. See REQUIREMENTS.

 It uses the environment variable AZURE_CONNECTION_STRING (required). This string contains

 all necessary information such as Storage Account name and the key for authentication.

 You can find it under Access Keys for the storage account.

 Duplicity will take care to create the container when performing the backup. Do not

 create it manually before.

 A container name (as given as the backup url) must be a valid DNS name, conforming to the

 following naming rules:

 1. Container names must start with a letter or number, and can contain only

 letters, numbers, and the dash (-) character.

 2. Every dash (-) character must be immediately preceded and followed by a

 letter or number; consecutive dashes are not permitted in container names.

 3. All letters in a container name must be lowercase.

 4. Container names must be from 3 through 63 characters long.

 These rules come from Azure; see https://docs.microsoft.com/en-

 us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata

A NOTE ON BOX ACCESS

 The box backend requires boxsdk with jwt support to be installed on the system. See

 REQUIREMENTS.

 It uses the environment variable BOX_CONFIG_PATH (optional). This string contains the

 path to box custom app's config.json. Either this environment variable or the config query Page 27/41

 parameter in the url need to be specified, if both are specified, query paramter takes

 precedence.

 Create a Box custom app

 In order to use box backend, user need to create a box custom app in the box developer

 console (https://app.box.com/developers/console).

 After create a new custom app, please make sure it is configured as follow:

 1. Choose "App Access Only" for "App Access Level"

 2. Check "Write all files and folders stored in Box"

 3. Generate a Public/Private Keypair

 The user also need to grant the created custom app permission in the admin console

 (https://app.box.com/master/custom-apps) by clicking the "+" button and enter the

 client_id which can be found on the custom app's configuration page.

A NOTE ON CLOUD FILES ACCESS

 Pyrax is Rackspace's next-generation Cloud management API, including Cloud Files access.

 The cfpyrax backend requires the pyrax library to be installed on the system. See

 REQUIREMENTS.

 Cloudfiles is Rackspace's now deprecated implementation of OpenStack Object Storage

 protocol. Users wishing to use Duplicity with Rackspace Cloud Files should migrate to the

 new Pyrax plugin to ensure support.

 The backend requires python-cloudfiles to be installed on the system. See REQUIREMENTS.

 It uses three environment variables for authentification: CLOUDFILES_USERNAME (required),

 CLOUDFILES_APIKEY (required), CLOUDFILES_AUTHURL (optional)

 If CLOUDFILES_AUTHURL is unspecified it will default to the value provided by python-

 cloudfiles, which points to rackspace, hence this value must be set in order to use other

 cloud files providers.

A NOTE ON DROPBOX ACCESS

 1. First of all Dropbox backend requires valid authentication token. It should be

 passed via DPBX_ACCESS_TOKEN environment variable.

 To obtain it please create 'Dropbox API' application at:

 https://www.dropbox.com/developers/apps/create

 Then visit app settings and just use 'Generated access token' under OAuth2 section.

 Alternatively you can let duplicity generate access token itself. In such case

 temporary export DPBX_APP_KEY , DPBX_APP_SECRET using values from app settings page Page 28/41

 and run duplicity interactively.

 It will print the URL that you need to open in the browser to obtain OAuth2 token

 for the application. Just follow on-screen instructions and then put generated

 token to DPBX_ACCESS_TOKEN variable. Once done, feel free to unset DPBX_APP_KEY and

 DPBX_APP_SECRET

 2. "some_dir" must already exist in the Dropbox folder. Depending on access token kind

 it may be:

 Full Dropbox: path is absolute and starts from 'Dropbox' root folder.

 App Folder: path is related to application folder. Dropbox client will show

 it in ~/Dropbox/Apps/<app-name>

 3. When using Dropbox for storage, be aware that all files, including the ones in the

 Apps folder, will be synced to all connected computers. You may prefer to use a

 separate Dropbox account specially for the backups, and not connect any computers

 to that account. Alternatively you can configure selective sync on all computers to

 avoid syncing of backup files

A NOTE ON EUROPEAN S3 BUCKETS

 Amazon S3 provides the ability to choose the location of a bucket upon its creation. The

 purpose is to enable the user to choose a location which is better located network

 topologically relative to the user, because it may allow for faster data transfers.

 duplicity will create a new bucket the first time a bucket access is attempted. At this

 point, the bucket will be created in Europe if --s3-european-buckets was given. For

 reasons having to do with how the Amazon S3 service works, this also requires the use of

 the --s3-use-new-style option. This option turns on subdomain based bucket addressing in

 S3. The details are beyond the scope of this man page, but it is important to know that

 your bucket must not contain upper case letters or any other characters that are not valid

 parts of a hostname. Consequently, for reasons of backwards compatibility, use of

 subdomain based bucket addressing is not enabled by default.

 Note that you will need to use --s3-use-new-style for all operations on European buckets;

 not just upon initial creation.

 You only need to use --s3-european-buckets upon initial creation, but you may may use it

 at all times for consistency.

 Further note that when creating a new European bucket, it can take a while before the

 bucket is fully accessible. At the time of this writing it is unclear to what extent this Page 29/41

 is an expected feature of Amazon S3, but in practice you may experience timeouts, socket

 errors or HTTP errors when trying to upload files to your newly created bucket. Give it a

 few minutes and the bucket should function normally.

A NOTE ON FILENAME PREFIXES

 Filename prefixes can be used in multi backend with mirror mode to define affinity rules.

 They can also be used in conjunction with S3 lifecycle rules to transition archive files

 to Glacier, while keeping metadata (signature and manifest files) on S3.

 Duplicity does not require access to archive files except when restoring from backup.

A NOTE ON GOOGLE CLOUD STORAGE

 Support for Google Cloud Storage relies on its Interoperable Access, which must be enabled

 for your account. Once enabled, you can generate Interoperable Storage Access Keys and

 pass them to duplicity via the GS_ACCESS_KEY_ID and GS_SECRET_ACCESS_KEY environment

 variables. Alternatively, you can run gsutil config -a to have the Google Cloud Storage

 utility populate the ~/.boto configuration file.

 Enable Interoperable Access: https://code.google.com/apis/console#:storage

 Create Access Keys: https://code.google.com/apis/console#:storage:legacy

A NOTE ON HUBIC

 The hubic backend requires the pyrax library to be installed on the system. See

 REQUIREMENTS. You will need to set your credentials for hubiC in a file called

 ~/.hubic_credentials, following this pattern:

 [hubic]

 email = your_email

 password = your_password

 client_id = api_client_id

 client_secret = api_secret_key

 redirect_uri = http://localhost/

A NOTE ON IMAP

 An IMAP account can be used as a target for the upload. The userid may be specified and

 the password will be requested.

 The from_address_prefix may be specified (and probably should be). The text will be used

 as the "From" address in the IMAP server. Then on a restore (or list) command the

 from_address_prefix will distinguish between different backups.

A NOTE ON MULTI BACKEND Page 30/41

 The multi backend allows duplicity to combine the storage available in more than one

 backend store (e.g., you can store across a google drive account and a onedrive account to

 get effectively the combined storage available in both). The URL path specifies a JSON

 formated config file containing a list of the backends it will use. The URL may also

 specify "query" parameters to configure overall behavior. Each element of the list must

 have a "url" element, and may also contain an optional "description" and an optional "env"

 list of environment variables used to configure that backend.

 Query Parameters

 Query parameters come after the file URL in standard HTTP format for example:

 multi:///path/to/config.json?mode=mirror&onfail=abort

 multi:///path/to/config.json?mode=stripe&onfail=continue

 multi:///path/to/config.json?onfail=abort&mode=stripe

 multi:///path/to/config.json?onfail=abort

 Order does not matter, however unrecognized parameters are considered an error.

 mode=stripe

 This mode (the default) performs round-robin access to the list of backends. In

 this mode, all backends must be reliable as a loss of one means a loss of one of

 the archive files.

 mode=mirror

 This mode accesses backends as a RAID1-store, storing every file in every backend

 and reading files from the first-successful backend. A loss of any backend should

 result in no failure. Note that backends added later will only get new files and

 may require a manual sync with one of the other operating ones.

 onfail=continue

 This setting (the default) continues all write operations in as best-effort. Any

 failure results in the next backend tried. Failure is reported only when all

 backends fail a given operation with the error result from the last failure.

 onfail=abort

 This setting considers any backend write failure as a terminating condition and

 reports the error. Data reading and listing operations are independent of this and

 will try with the next backend on failure.

 JSON File Example

 [Page 31/41

 {

 "description": "a comment about the backend"

 "url": "abackend://myuser@domain.com/backup",

 "env": [

 {

 "name" : "MYENV",

 "value" : "xyz"

 },

 {

 "name" : "FOO",

 "value" : "bar"

 }

],

 "prefixes": ["prefix1_", "prefix2_"]

 },

 {

 "url": "file:///path/to/dir"

 }

]

A NOTE ON PAR2 WRAPPER BACKEND

 Par2 Wrapper Backend can be used in combination with all other backends to create recovery

 files. Just add par2+ before a regular scheme (e.g. par2+ftp://user@host/dir or

 par2+s3+http://bucket_name). This will create par2 recovery files for each archive and

 upload them all to the wrapped backend.

 Before restoring, archives will be verified. Corrupt archives will be repaired on the fly

 if there are enough recovery blocks available.

 Use --par2-redundancy percent to adjust the size (and redundancy) of recovery files in

 percent.

A NOTE ON PYDRIVE BACKEND

 The pydrive backend requires Python PyDrive package to be installed on the system. See

 REQUIREMENTS.

 There are two ways to use PyDrive: with a regular account or with a "service account".

 With a service account, a separate account is created, that is only accessible with Google Page 32/41

 APIs and not a web login. With a regular account, you can store backups in your normal

 Google Drive.

 To use a service account, go to the Google developers console at

 https://console.developers.google.com. Create a project, and make sure Drive API is

 enabled for the project. Under "APIs and auth", click Create New Client ID, then select

 Service Account with P12 key.

 Download the .p12 key file of the account and convert it to the .pem format:

 openssl pkcs12 -in XXX.p12 -nodes -nocerts > pydriveprivatekey.pem

 The content of .pem file should be passed to GOOGLE_DRIVE_ACCOUNT_KEY environment variable

 for authentification.

 The email address of the account will be used as part of URL. See URL FORMAT above.

 The alternative is to use a regular account. To do this, start as above, but when creating

 a new Client ID, select "Installed application" of type "Other". Create a file with the

 following content, and pass its filename in the GOOGLE_DRIVE_SETTINGS environment

 variable:

 client_config_backend: settings

 client_config:

 client_id: <Client ID from developers' console>

 client_secret: <Client secret from developers' console>

 save_credentials: True

 save_credentials_backend: file

 save_credentials_file: <filename to cache credentials>

 get_refresh_token: True

 In this scenario, the username and host parts of the URL play no role; only the path

 matters. During the first run, you will be prompted to visit an URL in your browser to

 grant access to your drive. Once granted, you will receive a verification code to paste

 back into Duplicity. The credentials are then cached in the file references above for

 future use.

A NOTE ON GDRIVE BACKEND

 GDrive: is a rewritten PyDrive: backend with less dependencies, and a simpler setup - it

 uses the JSON keys downloaded directly from Google Cloud Console.

 Note Google has 2 drive methods, `Shared(previously Team) Drives` and `My Drive`, both can

 be shared but require different addressing Page 33/41

 For a Google Shared Drives folder

 Share Drive ID specified as a query parameter, driveID, in the backend URL. Example:

 gdrive://developer.gserviceaccount.com/target-folder/?driveID=<SHARED DRIVE ID>

 For a Google My Drive based shared folder

 MyDrive folder ID specified as a query parameter, myDriveFolderID, in the backend URL

 Example

 export GOOGLE_SERVICE_ACCOUNT_URL=<serviceaccount-name>@<serviceaccount-

 name>.iam.gserviceaccount.com

 gdrive://${GOOGLE_SERVICE_ACCOUNT_URL}/<target-folder-name-in-

 myDriveFolder>?myDriveFolderID=<google-myDrive-folder-id>

 There are also two ways to authenticate to use GDrive: with a regular account or with a

 "service account". With a service account, a separate account is created, that is only

 accessible with Google APIs and not a web login. With a regular account, you can store

 backups in your normal Google Drive.

 To use a service account, go to the Google developers console at

 https://console.developers.google.com. Create a project, and make sure Drive API is

 enabled for the project. In the "Credentials" section, click "Create credentials", then

 select Service Account with JSON key.

 The GOOGLE_SERVICE_JSON_FILE environment variable needs to contain the path to the JSON

 file on duplicity invocation.

 export GOOGLE_SERVICE_JSON_FILE=<path-to-serviceaccount-credentials.json>

 The alternative is to use a regular account. To do this, start as above, but when creating

 a new Client ID, select "Create OAuth client ID", with application type of "Desktop app".

 Download the client_secret.json file for the new client, and set the

 GOOGLE_CLIENT_SECRET_JSON_FILE environment variable to the path to this file, and

 GOOGLE_CREDENTIALS_FILE to a path to a file where duplicity will keep the authentication

 token - this location must be writable.

 During the first run, you will be prompted to visit an URL in your browser to grant access

 to your drive. Once granted, you will receive a verification code to paste back into

 Duplicity. The credentials are then cached in the file references above for future use.

 As a sanity check, GDrive checks the host and username from the URL against the JSON key,

 and refuses to proceed if the addresses do not match. Either the email (for the service

 accounts) or Client ID (for regular OAuth accounts) must be present in the URL. See URL Page 34/41

 FORMAT above.

A NOTE ON RCLONE BACKEND

 Rclone is a powerful command line program to sync files and directories to and from

 various cloud storage providers.

 Once you have configured an rclone remote via

 rclone config

 and successfully set up a remote (e.g. gdrive for Google Drive), assuming you can list

 your remote files with

 rclone ls gdrive:mydocuments

 you can start your backup with

 duplicity /mydocuments rclone://gdrive:/mydocuments

 Please note the slash after the second colon. Some storage provider will work with or

 without slash after colon, but some other will not. Since duplicity will complain about

 malformed URL if a slash is not present, always put it after the colon, and the backend

 will handle it for you.

A NOTE ON SSH BACKENDS

 The ssh backends support sftp and scp/ssh transport protocols. This is a known user-

 confusing issue as these are fundamentally different. If you plan to access your backend

 via one of those please inform yourself about the requirements for a server to support

 sftp or scp/ssh access. To make it even more confusing the user can choose between

 several ssh backends via a scheme prefix: paramiko+ (default), pexpect+, lftp+... .

 paramiko & pexpect support --use-scp, --ssh-askpass and --ssh-options. Only the pexpect

 backend allows to define --scp-command and --sftp-command.

 SSH paramiko backend (default) is a complete reimplementation of ssh protocols natively in

 python. Advantages are speed and maintainability. Minor disadvantage is that extra

 packages are needed as listed in REQUIREMENTS. In sftp (default) mode all operations are

 done via the according sftp commands. In scp mode (--use-scp) though scp access is used

 for put/get operations but listing is done via ssh remote shell.

 SSH pexpect backend is the legacy ssh backend using the command line ssh binaries via

 pexpect. Older versions used scp for get and put operations and sftp for list and delete

 operations. The current version uses sftp for all four supported operations, unless the

 --use-scp option is used to revert to old behavior.

 SSH lftp backend is simply there because lftp can interact with the ssh cmd line binaries. Page 35/41

 It is meant as a last resort in case the above options fail for some reason.

 Why use sftp instead of scp? The change to sftp was made in order to allow the remote

 system to chroot the backup, thus providing better security and because it does not suffer

 from shell quoting issues like scp. Scp also does not support any kind of file listing,

 so sftp or ssh access will always be needed in addition for this backend mode to work

 properly. Sftp does not have these limitations but needs an sftp service running on the

 backend server, which is sometimes not an option.

A NOTE ON SSL CERTIFICATE VERIFICATION

 Certificate verification as implemented right now [02.2016] only in the webdav and lftp

 backends. older pythons 2.7.8- and older lftp binaries need a file based database of

 certification authority certificates (cacert file).

 Newer python 2.7.9+ and recent lftp versions however support the system default

 certificates (usually in /etc/ssl/certs) and also giving an alternative ca cert folder via

 --ssl-cacert-path.

 The cacert file has to be a PEM formatted text file as currently provided by the CURL

 project. See

 http://curl.haxx.se/docs/caextract.html

 After creating/retrieving a valid cacert file you should copy it to either

 ~/.duplicity/cacert.pem

 ~/duplicity_cacert.pem

 /etc/duplicity/cacert.pem

 Duplicity searches it there in the same order and will fail if it can't find it. You can

 however specify the option --ssl-cacert-file <file> to point duplicity to a copy in a

 different location.

 Finally there is the --ssl-no-check-certificate option to disable certificate verification

 alltogether, in case some ssl library is missing or verification is not wanted. Use it

 with care, as even with self signed servers manually providing the private ca certificate

 is definitely the safer option.

A NOTE ON SWIFT (OPENSTACK OBJECT STORAGE) ACCESS

 Swift is the OpenStack Object Storage service.

 The backend requires python-switclient to be installed on the system. python-

 keystoneclient is also needed to use OpenStack's Keystone Identity service. See

 REQUIREMENTS. Page 36/41

 It uses following environment variables for authentification: SWIFT_USERNAME (required),

 SWIFT_PASSWORD (required), SWIFT_AUTHURL (required), SWIFT_USERID (required, only for IBM

 Bluemix ObjectStorage), SWIFT_TENANTID (required, only for IBM Bluemix ObjectStorage),

 SWIFT_REGIONNAME (required, only for IBM Bluemix ObjectStorage), SWIFT_TENANTNAME

 (optional, the tenant can be included in the username)

 If the user was previously authenticated, the following environment variables can be used

 instead: SWIFT_PREAUTHURL (required), SWIFT_PREAUTHTOKEN (required)

 If SWIFT_AUTHVERSION is unspecified, it will default to version 1.

A NOTE ON PCA ACCESS

 PCA is a long-term data archival solution by OVH. It runs a slightly modified version of

 Openstack Swift introducing latency in the data retrieval process. It is a good pick for

 a multi backend configuration where receiving volumes while an other backend is used to

 store manifests and signatures.

 The backend requires python-switclient to be installed on the system. python-

 keystoneclient is also needed to interact with OpenStack's Keystone Identity service. See

 REQUIREMENTS.

 It uses following environment variables for authentification: PCA_USERNAME (required),

 PCA_PASSWORD (required), PCA_AUTHURL (required), PCA_USERID (optional), PCA_TENANTID

 (optional, but either the tenant name or tenant id must be supplied) PCA_REGIONNAME

 (optional), PCA_TENANTNAME (optional, but either the tenant name or tenant id must be

 supplied)

 If the user was previously authenticated, the following environment variables can be used

 instead: PCA_PREAUTHURL (required), PCA_PREAUTHTOKEN (required)

 If PCA_AUTHVERSION is unspecified, it will default to version 2.

A NOTE ON MEDIAFIRE BACKEND

 This backend requires mediafire python library to be installed on the system. See

 REQUIREMENTS.

 Use URL escaping for username (and password, if provided via command line):

 mf://duplicity%40example.com@mediafire.com/some_folder

 The destination folder will be created for you if it does not exist.

A NOTE ON SYMMETRIC ENCRYPTION AND SIGNING

 Signing and symmetrically encrypt at the same time with the gpg binary on the command

 line, as used within duplicity, is a specifically challenging issue. Tests showed that Page 37/41

 the following combinations proved working.

 1. Setup gpg-agent properly. Use the option --use-agent and enter both passphrases

 (symmetric and sign key) in the gpg-agent's dialog.

 2. Use a PASSPHRASE for symmetric encryption of your choice but the signing key has an

 empty passphrase.

 3. The used PASSPHRASE for symmetric encryption and the passphrase of the signing key are

 identical.

KNOWN ISSUES / BUGS

 Hard links currently unsupported (they will be treated as non-linked regular files).

 Bad signatures will be treated as empty instead of logging appropriate error message.

OPERATION AND DATA FORMATS

 This section describes duplicity's basic operation and the format of its data files. It

 should not be necessary to read this section to use duplicity.

 The files used by duplicity to store backup data are tarfiles in GNU tar format. They can

 be produced independently by rdiffdir(1). For incremental backups, new files are saved

 normally in the tarfile. But when a file changes, instead of storing a complete copy of

 the file, only a diff is stored, as generated by rdiff(1). If a file is deleted, a 0

 length file is stored in the tar. It is possible to restore a duplicity archive

 "manually" by using tar and then cp, rdiff, and rm as necessary. These duplicity archives

 have the extension difftar.

 Both full and incremental backup sets have the same format. In effect, a full backup set

 is an incremental one generated from an empty signature (see below). The files in full

 backup sets will start with duplicity-full while the incremental sets start with

 duplicity-inc. When restoring, duplicity applies patches in order, so deleting, for

 instance, a full backup set may make related incremental backup sets unusable.

 In order to determine which files have been deleted, and to calculate diffs for changed

 files, duplicity needs to process information about previous sessions. It stores this

 information in the form of tarfiles where each entry's data contains the signature (as

 produced by rdiff) of the file instead of the file's contents. These signature sets have

 the extension sigtar.

 Signature files are not required to restore a backup set, but without an up-to-date

 signature, duplicity cannot append an incremental backup to an existing archive.

 To save bandwidth, duplicity generates full signature sets and incremental signature sets. Page 38/41

 A full signature set is generated for each full backup, and an incremental one for each

 incremental backup. These start with duplicity-full-signatures and duplicity-new-

 signatures respectively. These signatures will be stored both locally and remotely. The

 remote signatures will be encrypted if encryption is enabled. The local signatures will

 not be encrypted and stored in the archive dir (see --archive-dir).

REQUIREMENTS

 Duplicity requires a POSIX-like operating system with a python interpreter version 2.6+

 installed. It is best used under GNU/Linux.

 Some backends also require additional components (probably available as packages for your

 specific platform):

 Amazon Drive backend

 python-requests - http://python-requests.org

 python-requests-oauthlib - https://github.com/requests/requests-oauthlib

 azure backend (Azure Storage Blob Service)

 Microsoft Azure Storage Blobs client library for Python -

 https://pypi.org/project/azure-storage-blob/

 boto backend (S3 Amazon Web Services, Google Cloud Storage)

 boto version 2.0+ - http://github.com/boto/boto

 box backend (box.com)

 boxsdk - https://github.com/box/box-python-sdk

 cfpyrax backend (Rackspace Cloud) and hubic backend (hubic.com)

 Rackspace CloudFiles Pyrax API -

 http://docs.rackspace.com/sdks/guide/content/python.html

 dpbx backend (Dropbox)

 Dropbox Python SDK - https://www.dropbox.com/developers/reference/sdk

 gdocs gdata backend (legacy Google Docs backend)

 Google Data APIs Python Client Library - http://code.google.com/p/gdata-python-

 client/

 gdocs pydrive backend(default)

 see pydrive backend

 gio backend (Gnome VFS API)

 PyGObject - http://live.gnome.org/PyGObject

 D-Bus (dbus)- http://www.freedesktop.org/wiki/Software/dbus Page 39/41

 lftp backend (needed for ftp, ftps, fish [over ssh] - also supports sftp, webdav[s])

 LFTP Client - http://lftp.yar.ru/

 MEGA backend (only works for accounts created prior to November 2018) (mega.nz)

 megatools client - https://github.com/megous/megatools

 MEGA v2 and v3 backend (works for all MEGA accounts) (mega.nz)

 MEGAcmd client - https://mega.nz/cmd

 multi backend

 Multi -- store to more than one backend

 (also see A NOTE ON MULTI BACKEND) below.

 ncftp backend (ftp, select via ncftp+ftp://)

 NcFTP - http://www.ncftp.com/

 OneDrive backend (Microsoft OneDrive)

 python-requests-oauthlib - https://github.com/requests/requests-oauthlib

 Par2 Wrapper Backend

 par2cmdline - http://parchive.sourceforge.net/

 pydrive backend

 PyDrive -- a wrapper library of google-api-python-client -

 https://pypi.python.org/pypi/PyDrive

 (also see A NOTE ON PYDRIVE BACKEND) below.

 rclone backend

 rclone - https://rclone.org/

 rsync backend

 rsync client binary - http://rsync.samba.org/

 ssh paramiko backend (default)

 paramiko (SSH2 for python) - http://pypi.python.org/pypi/paramiko (downloads);

 http://github.com/paramiko/paramiko (project page)

 pycrypto (Python Cryptography Toolkit) - http://www.dlitz.net/software/pycrypto/

 ssh pexpect backend

 sftp/scp client binaries OpenSSH - http://www.openssh.com/

 Python pexpect module - http://pexpect.sourceforge.net/pexpect.html

 swift backend (OpenStack Object Storage)

 Python swiftclient module - https://github.com/openstack/python-swiftclient/

 Python keystoneclient module - https://github.com/openstack/python-keystoneclient/ Page 40/41

 webdav backend

 certificate authority database file for ssl certificate verification of HTTPS

 connections - http://curl.haxx.se/docs/caextract.html

 (also see A NOTE ON SSL CERTIFICATE VERIFICATION).

 Python kerberos module for kerberos authentication -

 https://github.com/02strich/pykerberos

 MediaFire backend

 MediaFire Python Open SDK - https://pypi.python.org/pypi/mediafire/

AUTHOR

 Original Author - Ben Escoto <bescoto@stanford.edu>

 Current Maintainer - Kenneth Loafman <kenneth@loafman.com>

 Continuous Contributors

 Edgar Soldin, Mike Terry

 Most backends were contributed individually. Information about their authorship may be

 found in the according file's header.

 Also we'd like to thank everybody posting issues to the mailing list or on launchpad,

 sending in patches or contributing otherwise. Duplicity wouldn't be as stable and useful

 if it weren't for you.

 A special thanks goes to rsync.net, a Cloud Storage provider with explicit support for

 duplicity, for several monetary donations and for providing a special "duplicity friends"

 rate for their offsite backup service. Email info@rsync.net for details.

SEE ALSO

 rdiffdir(1), python(1), rdiff(1), rdiff-backup(1).

Version 0.8.21 November 09, 2021 DUPLICITY(1)

Page 41/41

