
Rocky Enterprise Linux 9.2 Manual Pages on command 'dpkg-shlibdeps.1'

$ man dpkg-shlibdeps.1

dpkg-shlibdeps(1) dpkg suite dpkg-shlibdeps(1)

NAME

 dpkg-shlibdeps - generate shared library substvar dependencies

SYNOPSIS

 dpkg-shlibdeps [option...] [-e] executable [option...]

DESCRIPTION

 dpkg-shlibdeps calculates shared library dependencies for executables named in its

 arguments. The dependencies are added to the substitution variables file debian/substvars

 as variable names shlibs:dependency-field where dependency-field is a dependency field

 name. Any other variables starting with shlibs: are removed from the file.

 dpkg-shlibdeps has two possible sources of information to generate dependency information.

 Either symbols files or shlibs files. For each binary that dpkg-shlibdeps analyzes, it

 finds out the list of libraries that it's linked with. Then, for each library, it looks

 up either the symbols file, or the shlibs file (if the former doesn't exist or if

 debian/shlibs.local contains the relevant dependency). Both files are supposed to be

 provided by the library package and should thus be available as

 /var/lib/dpkg/info/package.symbols or /var/lib/dpkg/info/package.shlibs. The package name

 is identified in two steps: find the library file on the system (looking in the same

 directories that ld.so would use), then use dpkg -S library-file to lookup the package

 providing the library.

 Symbols files

 Symbols files contain finer-grained dependency information by providing the minimum

 dependency for each symbol that the library exports. The script tries to find a symbols Page 1/8

 file associated to a library package in the following places (first match is used):

 debian/*/DEBIAN/symbols

 Shared library information generated by the current build process that also invoked

 dpkg-shlibdeps. They are generated by dpkg-gensymbols(1). They are only used if the

 library is found in a package's build tree. The symbols file in that build tree takes

 precedence over symbols files from other binary packages.

 /etc/dpkg/symbols/package.symbols.arch

 /etc/dpkg/symbols/package.symbols

 Per-system overriding shared library dependency information. arch is the architecture

 of the current system (obtained by dpkg-architecture -qDEB_HOST_ARCH).

 Output from ?dpkg-query --control-path package symbols?

 Package-provided shared library dependency information. Unless overridden by

 --admindir, those files are located in /var/lib/dpkg.

 While scanning the symbols used by all binaries, dpkg-shlibdeps remembers the (biggest)

 minimal version needed for each library. At the end of the process, it is able to write

 out the minimal dependency for every library used (provided that the information of the

 symbols files are accurate).

 As a safe-guard measure, a symbols file can provide a Build-Depends-Package meta-

 information field and dpkg-shlibdeps will extract the minimal version required by the

 corresponding package in the Build-Depends field and use this version if it's higher than

 the minimal version computed by scanning symbols.

 Shlibs files

 Shlibs files associate directly a library to a dependency (without looking at the

 symbols). It's thus often stronger than really needed but very safe and easy to handle.

 The dependencies for a library are looked up in several places. The first file providing

 information for the library of interest is used:

 debian/shlibs.local

 Package-local overriding shared library dependency information.

 /etc/dpkg/shlibs.override

 Per-system overriding shared library dependency information.

 debian/*/DEBIAN/shlibs

 Shared library information generated by the current build process that also invoked

 dpkg-shlibdeps. They are only used if the library is found in a package's build tree. Page 2/8

 The shlibs file in that build tree takes precedence over shlibs files from other

 binary packages.

 Output from ?dpkg-query --control-path package shlibs?

 Package-provided shared library dependency information. Unless overridden by

 --admindir, those files are located in /var/lib/dpkg.

 /etc/dpkg/shlibs.default

 Per-system default shared library dependency information.

 The extracted dependencies are then directly used (except if they are filtered out because

 they have been identified as duplicate, or as weaker than another dependency).

OPTIONS

 dpkg-shlibdeps interprets non-option arguments as executable names, just as if they'd been

 supplied as -eexecutable.

 -eexecutable

 Include dependencies appropriate for the shared libraries required by executable.

 This option can be used multiple times.

 -ldirectory

 Prepend directory to the list of directories to search for private shared libraries

 (since dpkg 1.17.0). This option can be used multiple times.

 Note: Use this option instead of setting LD_LIBRARY_PATH, as that environment variable

 is used to control the run-time linker and abusing it to set the shared library paths

 at build-time can be problematic when cross-compiling for example.

 -ddependency-field

 Add dependencies to be added to the control file dependency field dependency-field.

 (The dependencies for this field are placed in the variable shlibs:dependency-field.)

 The -ddependency-field option takes effect for all executables after the option, until

 the next -ddependency-field. The default dependency-field is Depends.

 If the same dependency entry (or set of alternatives) appears in more than one of the

 recognized dependency field names Pre-Depends, Depends, Recommends, Enhances or

 Suggests then dpkg-shlibdeps will automatically remove the dependency from all fields

 except the one representing the most important dependencies.

 -pvarname-prefix

 Start substitution variables with varname-prefix: instead of shlibs:. Likewise, any

 existing substitution variables starting with varname-prefix: (rather than shlibs:) Page 3/8

 are removed from the substitution variables file.

 -O[filename]

 Print substitution variable settings to standard output (or filename if specified,

 since dpkg 1.17.2), rather than being added to the substitution variables file

 (debian/substvars by default).

 -ttype

 Prefer shared library dependency information tagged for the given package type. If no

 tagged information is available, falls back to untagged information. The default

 package type is deb. Shared library dependency information is tagged for a given type

 by prefixing it with the name of the type, a colon, and whitespace.

 -Llocal-shlibs-file

 Read overriding shared library dependency information from local-shlibs-file instead

 of debian/shlibs.local.

 -Tsubstvars-file

 Write substitution variables in substvars-file; the default is debian/substvars.

 -v Enable verbose mode (since dpkg 1.14.8). Numerous messages are displayed to explain

 what dpkg-shlibdeps does.

 -xpackage

 Exclude the package from the generated dependencies (since dpkg 1.14.8). This is

 useful to avoid self-dependencies for packages which provide ELF binaries (executables

 or library plugins) using a library contained in the same package. This option can be

 used multiple times to exclude several packages.

 -Spackage-build-dir

 Look into package-build-dir first when trying to find a library (since dpkg 1.14.15).

 This is useful when the source package builds multiple flavors of the same library and

 you want to ensure that you get the dependency from a given binary package. You can

 use this option multiple times: directories will be tried in the same order before

 directories of other binary packages.

 -Ipackage-build-dir

 Ignore package-build-dir when looking for shlibs, symbols, and shared library files

 (since dpkg 1.18.5). You can use this option multiple times.

 --ignore-missing-info

 Do not fail if dependency information can't be found for a shared library (since dpkg Page 4/8

 1.14.8). Usage of this option is discouraged, all libraries should provide dependency

 information (either with shlibs files, or with symbols files) even if they are not yet

 used by other packages.

 --warnings=value

 value is a bit field defining the set of warnings that can be emitted by dpkg-

 shlibdeps (since dpkg 1.14.17). Bit 0 (value=1) enables the warning ?symbol sym used

 by binary found in none of the libraries?, bit 1 (value=2) enables the warning

 ?package could avoid a useless dependency? and bit 2 (value=4) enables the warning

 ?binary should not be linked against library?. The default value is 3: the first two

 warnings are active by default, the last one is not. Set value to 7 if you want all

 warnings to be active.

 --admindir=dir

 Change the location of the dpkg database (since dpkg 1.14.0). The default location is

 /var/lib/dpkg.

 -?, --help

 Show the usage message and exit.

 --version

 Show the version and exit.

ENVIRONMENT

 DPKG_COLORS

 Sets the color mode (since dpkg 1.18.5). The currently accepted values are: auto

 (default), always and never.

 DPKG_NLS

 If set, it will be used to decide whether to activate Native Language Support, also

 known as internationalization (or i18n) support (since dpkg 1.19.0). The accepted

 values are: 0 and 1 (default).

DIAGNOSTICS

 Warnings

 Since dpkg-shlibdeps analyzes the set of symbols used by each binary of the generated

 package, it is able to emit warnings in several cases. They inform you of things that can

 be improved in the package. In most cases, those improvements concern the upstream sources

 directly. By order of decreasing importance, here are the various warnings that you can

 encounter: Page 5/8

 symbol sym used by binary found in none of the libraries.

 The indicated symbol has not been found in the libraries linked with the binary. The

 binary is most likely a library and it needs to be linked with an additional library

 during the build process (option -llibrary of the linker).

 binary contains an unresolvable reference to symbol sym: it's probably a plugin

 The indicated symbol has not been found in the libraries linked with the binary. The

 binary is most likely a plugin and the symbol is probably provided by the program that

 loads this plugin. In theory a plugin doesn't have any SONAME but this binary does

 have one and as such it could not be clearly identified as such. However the fact that

 the binary is stored in a non-public directory is a strong indication that's it's not

 a normal shared library. If the binary is really a plugin, then disregard this

 warning. But there's always the possibility that it's a real library and that programs

 linking to it are using an RPATH so that the dynamic loader finds it. In that case,

 the library is broken and needs to be fixed.

 package could avoid a useless dependency if binary was not linked against library (it uses

 none of the library's symbols)

 None of the binaries that are linked with library use any of the symbols provided by

 the library. By fixing all the binaries, you would avoid the dependency associated to

 this library (unless the same dependency is also generated by another library that is

 really used).

 package could avoid a useless dependency if binaries were not linked against library (they

 use none of the library's symbols)

 Exactly the same as the above warning, but for multiple binaries.

 binary should not be linked against library (it uses none of the library's symbols)

 The binary is linked to a library that it doesn't need. It's not a problem but some

 small performance improvements in binary load time can be obtained by not linking this

 library to this binary. This warning checks the same information as the previous one

 but does it for each binary instead of doing the check globally on all binaries

 analyzed.

 Errors

 dpkg-shlibdeps will fail if it can't find a public library used by a binary or if this

 library has no associated dependency information (either shlibs file or symbols file). A

 public library has a SONAME and is versioned (libsomething.so.X). A private library (like Page 6/8

 a plugin) should not have a SONAME and doesn't need to be versioned.

 couldn't find library library-soname needed by binary (its RPATH is 'rpath')

 The binary uses a library called library-soname but dpkg-shlibdeps has been unable to

 find the library. dpkg-shlibdeps creates a list of directories to check as following:

 directories listed in the RPATH of the binary, directories added by the -l option,

 directories listed in the LD_LIBRARY_PATH environment variable, cross multiarch

 directories (ex. /lib/arm64-linux-gnu, /usr/lib/arm64-linux-gnu), standard public

 directories (/lib, /usr/lib), directories listed in /etc/ld.so.conf, and obsolete

 multilib directories (/lib32, /usr/lib32, /lib64, /usr/lib64). Then it checks those

 directories in the package's build tree of the binary being analyzed, in the packages'

 build trees indicated with the -S command-line option, in other packages' build trees

 that contains a DEBIAN/shlibs or DEBIAN/symbols file and finally in the root

 directory. If the library is not found in any of those directories, then you get this

 error.

 If the library not found is in a private directory of the same package, then you want

 to add the directory with -l. If it's in another binary package being built, you want

 to make sure that the shlibs/symbols file of this package is already created and that

 -l contains the appropriate directory if it also is in a private directory.

 no dependency information found for library-file (used by binary).

 The library needed by binary has been found by dpkg-shlibdeps in library-file but

 dpkg-shlibdeps has been unable to find any dependency information for that library. To

 find out the dependency, it has tried to map the library to a Debian package with the

 help of dpkg -S library-file. Then it checked the corresponding shlibs and symbols

 files in /var/lib/dpkg/info/, and in the various package's build trees

 (debian/*/DEBIAN/).

 This failure can be caused by a bad or missing shlibs or symbols file in the package

 of the library. It might also happen if the library is built within the same source

 package and if the shlibs files has not yet been created (in which case you must fix

 debian/rules to create the shlibs before calling dpkg-shlibdeps). Bad RPATH can also

 lead to the library being found under a non-canonical name (example:

 /usr/lib/openoffice.org/../lib/libssl.so.0.9.8 instead of /usr/lib/libssl.so.0.9.8)

 that's not associated to any package, dpkg-shlibdeps tries to work around this by

 trying to fallback on a canonical name (using realpath(3)) but it might not always Page 7/8

 work. It's always best to clean up the RPATH of the binary to avoid problems.

 Calling dpkg-shlibdeps in verbose mode (-v) will provide much more information about

 where it tried to find the dependency information. This might be useful if you don't

 understand why it's giving you this error.

SEE ALSO

 deb-shlibs(5), deb-symbols(5), dpkg-gensymbols(1).

1.21.1 2024-02-23 dpkg-shlibdeps(1)

Page 8/8

