
Rocky Enterprise Linux 9.2 Manual Pages on command 'dpkg-buildflags.1'

$ man dpkg-buildflags.1

dpkg-buildflags(1) dpkg suite dpkg-buildflags(1)

NAME

 dpkg-buildflags - returns build flags to use during package build

SYNOPSIS

 dpkg-buildflags [option...] [command]

DESCRIPTION

 dpkg-buildflags is a tool to retrieve compilation flags to use during build of Debian

 packages.

 The default flags are defined by the vendor but they can be extended/overridden in several

 ways:

 1. system-wide with /etc/dpkg/buildflags.conf;

 2. for the current user with $XDG_CONFIG_HOME/dpkg/buildflags.conf where $XDG_CONFIG_HOME

 defaults to $HOME/.config;

 3. temporarily by the user with environment variables (see section ENVIRONMENT);

 4. dynamically by the package maintainer with environment variables set via debian/rules

 (see section ENVIRONMENT).

 The configuration files can contain four types of directives:

 SET flag value

 Override the flag named flag to have the value value.

 STRIP flag value

 Strip from the flag named flag all the build flags listed in value.

 APPEND flag value

 Extend the flag named flag by appending the options given in value. A space is Page 1/13

 prepended to the appended value if the flag's current value is non-empty.

 PREPEND flag value

 Extend the flag named flag by prepending the options given in value. A space is

 appended to the prepended value if the flag's current value is non-empty.

 The configuration files can contain comments on lines starting with a hash (#). Empty

 lines are also ignored.

COMMANDS

 --dump

 Print to standard output all compilation flags and their values. It prints one flag

 per line separated from its value by an equal sign (?flag=value?). This is the default

 action.

 --list

 Print the list of flags supported by the current vendor (one per line). See the

 SUPPORTED FLAGS section for more information about them.

 --status

 Display any information that can be useful to explain the behaviour of dpkg-buildflags

 (since dpkg 1.16.5): relevant environment variables, current vendor, state of all

 feature flags. Also print the resulting compiler flags with their origin.

 This is intended to be run from debian/rules, so that the build log keeps a clear

 trace of the build flags used. This can be useful to diagnose problems related to

 them.

 --export=format

 Print to standard output commands that can be used to export all the compilation flags

 for some particular tool. If the format value is not given, sh is assumed. Only

 compilation flags starting with an upper case character are included, others are

 assumed to not be suitable for the environment. Supported formats:

 sh Shell commands to set and export all the compilation flags in the environment. The

 flag values are quoted so the output is ready for evaluation by a shell.

 cmdline

 Arguments to pass to a build program's command line to use all the compilation

 flags (since dpkg 1.17.0). The flag values are quoted in shell syntax.

 configure

 This is a legacy alias for cmdline. Page 2/13

 make

 Make directives to set and export all the compilation flags in the environment.

 Output can be written to a Makefile fragment and evaluated using an include

 directive.

 --get flag

 Print the value of the flag on standard output. Exits with 0 if the flag is known

 otherwise exits with 1.

 --origin flag

 Print the origin of the value that is returned by --get. Exits with 0 if the flag is

 known otherwise exits with 1. The origin can be one of the following values:

 vendor

 the original flag set by the vendor is returned;

 system

 the flag is set/modified by a system-wide configuration;

 user

 the flag is set/modified by a user-specific configuration;

 env the flag is set/modified by an environment-specific configuration.

 --query

 Print any information that can be useful to explain the behaviour of the program:

 current vendor, relevant environment variables, feature areas, state of all feature

 flags, and the compiler flags with their origin (since dpkg 1.19.0).

 For example:

 Vendor: Debian

 Environment:

 DEB_CFLAGS_SET=-O0 -Wall

 Area: qa

 Features:

 bug=no

 canary=no

 Area: reproducible

 Features:

 timeless=no

 Flag: CFLAGS Page 3/13

 Value: -O0 -Wall

 Origin: env

 Flag: CPPFLAGS

 Value: -D_FORTIFY_SOURCE=2

 Origin: vendor

 --query-features area

 Print the features enabled for a given area (since dpkg 1.16.2). The only currently

 recognized areas on Debian and derivatives are future, qa, reproducible, sanitize and

 hardening, see the FEATURE AREAS section for more details. Exits with 0 if the area

 is known otherwise exits with 1.

 The output is in RFC822 format, with one section per feature. For example:

 Feature: pie

 Enabled: yes

 Feature: stackprotector

 Enabled: yes

 --help

 Show the usage message and exit.

 --version

 Show the version and exit.

SUPPORTED FLAGS

 ASFLAGS

 Options for the assembler. Default value: empty. Since dpkg 1.21.0.

 CFLAGS

 Options for the C compiler. The default value set by the vendor includes -g and the

 default optimization level (-O2 usually, or -O0 if the DEB_BUILD_OPTIONS environment

 variable defines noopt).

 CPPFLAGS

 Options for the C preprocessor. Default value: empty.

 CXXFLAGS

 Options for the C++ compiler. Same as CFLAGS.

 OBJCFLAGS

 Options for the Objective C compiler. Same as CFLAGS.

 OBJCXXFLAGS Page 4/13

 Options for the Objective C++ compiler. Same as CXXFLAGS.

 GCJFLAGS

 Options for the GNU Java compiler (gcj). A subset of CFLAGS.

 DFLAGS

 Options for the D compiler (ldc or gdc). Since dpkg 1.20.6.

 FFLAGS

 Options for the Fortran 77 compiler. A subset of CFLAGS.

 FCFLAGS

 Options for the Fortran 9x compiler. Same as FFLAGS.

 LDFLAGS

 Options passed to the compiler when linking executables or shared objects (if the

 linker is called directly, then -Wl and , have to be stripped from these options).

 Default value: empty.

 New flags might be added in the future if the need arises (for example to support other

 languages).

FEATURE AREAS

 Each area feature can be enabled and disabled in the DEB_BUILD_OPTIONS and

 DEB_BUILD_MAINT_OPTIONS environment variable's area value with the ?+? and ?-? modifier.

 For example, to enable the hardening ?pie? feature and disable the ?fortify? feature you

 can do this in debian/rules:

 export DEB_BUILD_MAINT_OPTIONS=hardening=+pie,-fortify

 The special feature all (valid in any area) can be used to enable or disable all area

 features at the same time. Thus disabling everything in the hardening area and enabling

 only ?format? and ?fortify? can be achieved with:

 export DEB_BUILD_MAINT_OPTIONS=hardening=-all,+format,+fortify

 future

 Several compile-time options (detailed below) can be used to enable features that should

 be enabled by default, but cannot due to backwards compatibility reasons.

 lfs This setting (disabled by default) enables Large File Support on 32-bit architectures

 where their ABI does not include LFS by default, by adding -D_LARGEFILE_SOURCE

 -D_FILE_OFFSET_BITS=64 to CPPFLAGS.

 qa

 Several compile-time options (detailed below) can be used to help detect problems in the Page 5/13

 source code or build system.

 bug This setting (disabled by default) adds any warning option that reliably detects

 problematic source code. The warnings are fatal. The only currently supported flags

 are CFLAGS and CXXFLAGS with flags set to -Werror=array-bounds, -Werror=clobbered,

 -Werror=implicit-function-declaration and -Werror=volatile-register-var.

 canary

 This setting (disabled by default) adds dummy canary options to the build flags, so

 that the build logs can be checked for how the build flags propagate and to allow

 finding any omission of normal build flag settings. The only currently supported

 flags are CPPFLAGS, CFLAGS, OBJCFLAGS, CXXFLAGS and OBJCXXFLAGS with flags set to

 -D__DEB_CANARY_flag_random-id__, and LDFLAGS set to -Wl,-z,deb-canary-random-id.

 optimize

 Several compile-time options (detailed below) can be used to help optimize a resulting

 binary (since dpkg 1.21.0). Note: enabling all these options can result in unreproducible

 binary artifacts.

 lto This setting (since dpkg 1.21.0; disabled by default) enables Link Time Optimization

 by adding -flto=auto -ffat-lto-objects to CFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS,

 GCJFLAGS, FFLAGS, FCFLAGS and LDFLAGS.

 optimize

 Several compile-time options (detailed below) can be used to help optimize a resulting

 binary (since dpkg 1.21.0). Note: enabling all these options can result in unreproducible

 binary artifacts.

 lto This setting (since dpkg 1.21.0; disabled by default) enables Link Time Optimization

 by adding -flto=auto -ffat-lto-objects to CFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS,

 GCJFLAGS, FFLAGS and FCFLAGS.

 sanitize

 Several compile-time options (detailed below) can be used to help sanitize a resulting

 binary against memory corruptions, memory leaks, use after free, threading data races and

 undefined behavior bugs. Note: these options should not be used for production builds as

 they can reduce reliability for conformant code, reduce security or even functionality.

 address

 This setting (disabled by default) adds -fsanitize=address to LDFLAGS and

 -fsanitize=address -fno-omit-frame-pointer to CFLAGS and CXXFLAGS. Page 6/13

 thread

 This setting (disabled by default) adds -fsanitize=thread to CFLAGS, CXXFLAGS and

 LDFLAGS.

 leak

 This setting (disabled by default) adds -fsanitize=leak to LDFLAGS. It gets

 automatically disabled if either the address or the thread features are enabled, as

 they imply it.

 undefined

 This setting (disabled by default) adds -fsanitize=undefined to CFLAGS, CXXFLAGS and

 LDFLAGS.

 hardening

 Several compile-time options (detailed below) can be used to help harden a resulting

 binary against memory corruption attacks, or provide additional warning messages during

 compilation. Except as noted below, these are enabled by default for architectures that

 support them.

 format

 This setting (enabled by default) adds -Wformat -Werror=format-security to CFLAGS,

 CXXFLAGS, OBJCFLAGS and OBJCXXFLAGS. This will warn about improper format string

 uses, and will fail when format functions are used in a way that represent possible

 security problems. At present, this warns about calls to printf and scanf functions

 where the format string is not a string literal and there are no format arguments, as

 in printf(foo); instead of printf("%s", foo); This may be a security hole if the

 format string came from untrusted input and contains ?%n?.

 fortify

 This setting (enabled by default) adds -D_FORTIFY_SOURCE=2 to CPPFLAGS. During code

 generation the compiler knows a great deal of information about buffer sizes (where

 possible), and attempts to replace insecure unlimited length buffer function calls

 with length-limited ones. This is especially useful for old, crufty code.

 Additionally, format strings in writable memory that contain ?%n? are blocked. If an

 application depends on such a format string, it will need to be worked around.

 Note that for this option to have any effect, the source must also be compiled with

 -O1 or higher. If the environment variable DEB_BUILD_OPTIONS contains noopt, then

 fortify support will be disabled, due to new warnings being issued by glibc 2.16 and Page 7/13

 later.

 stackprotector

 This setting (enabled by default if stackprotectorstrong is not in use) adds

 -fstack-protector --param=ssp-buffer-size=4 to CFLAGS, CXXFLAGS, OBJCFLAGS,

 OBJCXXFLAGS, GCJFLAGS, FFLAGS and FCFLAGS. This adds safety checks against stack

 overwrites. This renders many potential code injection attacks into aborting

 situations. In the best case this turns code injection vulnerabilities into denial of

 service or into non-issues (depending on the application).

 This feature requires linking against glibc (or another provider of __stack_chk_fail),

 so needs to be disabled when building with -nostdlib or -ffreestanding or similar.

 stackprotectorstrong

 This setting (enabled by default) adds -fstack-protector-strong to CFLAGS, CXXFLAGS,

 OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS, FFLAGS and FCFLAGS. This is a stronger variant of

 stackprotector, but without significant performance penalties.

 Disabling stackprotector will also disable this setting.

 This feature has the same requirements as stackprotector, and in addition also

 requires gcc 4.9 and later.

 relro

 This setting (enabled by default) adds -Wl,-z,relro to LDFLAGS. During program load,

 several ELF memory sections need to be written to by the linker. This flags the loader

 to turn these sections read-only before turning over control to the program. Most

 notably this prevents GOT overwrite attacks. If this option is disabled, bindnow will

 become disabled as well.

 bindnow

 This setting (disabled by default) adds -Wl,-z,now to LDFLAGS. During program load,

 all dynamic symbols are resolved, allowing for the entire PLT to be marked read-only

 (due to relro above). The option cannot become enabled if relro is not enabled.

 pie This setting (with no global default since dpkg 1.18.23, as it is enabled by default

 now by gcc on the amd64, arm64, armel, armhf, hurd-i386, i386, kfreebsd-amd64,

 kfreebsd-i386, mips, mipsel, mips64el, powerpc, ppc64, ppc64el, riscv64, s390x, sparc

 and sparc64 Debian architectures) adds the required options to enable or disable PIE

 via gcc specs files, if needed, depending on whether gcc injects on that architecture

 the flags by itself or not. When the setting is enabled and gcc injects the flags, it Page 8/13

 adds nothing. When the setting is enabled and gcc does not inject the flags, it adds

 -fPIE (via /usr/share/dpkg/pie-compiler.specs) to CFLAGS, CXXFLAGS, OBJCFLAGS,

 OBJCXXFLAGS, GCJFLAGS, FFLAGS and FCFLAGS, and -fPIE -pie (via

 /usr/share/dpkg/pie-link.specs) to LDFLAGS. When the setting is disabled and gcc

 injects the flags, it adds -fno-PIE (via /usr/share/dpkg/no-pie-compile.specs) to

 CFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS, FFLAGS and FCFLAGS, and -fno-PIE

 -no-pie (via /usr/share/dpkg/no-pie-link.specs) to LDFLAGS.

 Position Independent Executable are needed to take advantage of Address Space Layout

 Randomization, supported by some kernel versions. While ASLR can already be enforced

 for data areas in the stack and heap (brk and mmap), the code areas must be compiled

 as position-independent. Shared libraries already do this (-fPIC), so they gain ASLR

 automatically, but binary .text regions need to be build PIE to gain ASLR. When this

 happens, ROP (Return Oriented Programming) attacks are much harder since there are no

 static locations to bounce off of during a memory corruption attack.

 PIE is not compatible with -fPIC, so in general care must be taken when building

 shared objects. But because the PIE flags emitted get injected via gcc specs files, it

 should always be safe to unconditionally set them regardless of the object type being

 compiled or linked.

 Static libraries can be used by programs or other shared libraries. Depending on the

 flags used to compile all the objects within a static library, these libraries will be

 usable by different sets of objects:

 none

 Cannot be linked into a PIE program, nor a shared library.

 -fPIE

 Can be linked into any program, but not a shared library (recommended).

 -fPIC

 Can be linked into any program and shared library.

 If there is a need to set these flags manually, bypassing the gcc specs injection,

 there are several things to take into account. Unconditionally and explicitly passing

 -fPIE, -fpie or -pie to a build-system using libtool is safe as these flags will get

 stripped when building shared libraries. Otherwise on projects that build both

 programs and shared libraries you might need to make sure that when building the

 shared libraries -fPIC is always passed last (so that it overrides any previous -PIE) Page 9/13

 to compilation flags such as CFLAGS, and -shared is passed last (so that it overrides

 any previous -pie) to linking flags such as LDFLAGS. Note: This should not be needed

 with the default gcc specs machinery.

 Additionally, since PIE is implemented via a general register, some register starved

 architectures (but not including i386 anymore since optimizations implemented in gcc

 >= 5) can see performance losses of up to 15% in very text-segment-heavy application

 workloads; most workloads see less than 1%. Architectures with more general registers

 (e.g. amd64) do not see as high a worst-case penalty.

 reproducible

 The compile-time options detailed below can be used to help improve build reproducibility

 or provide additional warning messages during compilation. Except as noted below, these

 are enabled by default for architectures that support them.

 timeless

 This setting (enabled by default) adds -Wdate-time to CPPFLAGS. This will cause

 warnings when the __TIME__, __DATE__ and __TIMESTAMP__ macros are used.

 fixfilepath

 This setting (enabled by default) adds -ffile-prefix-map=BUILDPATH=. to CFLAGS,

 CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS, FFLAGS and FCFLAGS where BUILDPATH is set

 to the top-level directory of the package being built. This has the effect of

 removing the build path from any generated file.

 If both fixdebugpath and fixfilepath are set, this option takes precedence, because it

 is a superset of the former.

 fixdebugpath

 This setting (enabled by default) adds -fdebug-prefix-map=BUILDPATH=. to CFLAGS,

 CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS, FFLAGS and FCFLAGS where BUILDPATH is set

 to the top-level directory of the package being built. This has the effect of

 removing the build path from any generated debug symbols.

ENVIRONMENT

 There are 2 sets of environment variables doing the same operations, the first one

 (DEB_flag_op) should never be used within debian/rules. It's meant for any user that wants

 to rebuild the source package with different build flags. The second set

 (DEB_flag_MAINT_op) should only be used in debian/rules by package maintainers to change

 the resulting build flags. Page 10/13

 DEB_flag_SET

 DEB_flag_MAINT_SET

 This variable can be used to force the value returned for the given flag.

 DEB_flag_STRIP

 DEB_flag_MAINT_STRIP

 This variable can be used to provide a space separated list of options that will be

 stripped from the set of flags returned for the given flag.

 DEB_flag_APPEND

 DEB_flag_MAINT_APPEND

 This variable can be used to append supplementary options to the value returned for

 the given flag.

 DEB_flag_PREPEND

 DEB_flag_MAINT_PREPEND

 This variable can be used to prepend supplementary options to the value returned for

 the given flag.

 DEB_BUILD_OPTIONS

 DEB_BUILD_MAINT_OPTIONS

 These variables can be used by a user or maintainer to disable/enable various area

 features that affect build flags. The DEB_BUILD_MAINT_OPTIONS variable overrides any

 setting in the DEB_BUILD_OPTIONS feature areas. See the FEATURE AREAS section for

 details.

 DEB_VENDOR

 This setting defines the current vendor. If not set, it will discover the current

 vendor by reading /etc/dpkg/origins/default.

 DEB_BUILD_PATH

 This variable sets the build path (since dpkg 1.18.8) to use in features such as

 fixdebugpath so that they can be controlled by the caller. This variable is currently

 Debian and derivatives-specific.

 DPKG_COLORS

 Sets the color mode (since dpkg 1.18.5). The currently accepted values are: auto

 (default), always and never.

 DPKG_NLS

 If set, it will be used to decide whether to activate Native Language Support, also Page 11/13

 known as internationalization (or i18n) support (since dpkg 1.19.0). The accepted

 values are: 0 and 1 (default).

FILES

 Configuration files

 /etc/dpkg/buildflags.conf

 System wide configuration file.

 $XDG_CONFIG_HOME/dpkg/buildflags.conf or

 $HOME/.config/dpkg/buildflags.conf

 User configuration file.

 Packaging support

 /usr/share/dpkg/buildflags.mk

 Makefile snippet that will load (and optionally export) all flags supported by dpkg-

 buildflags into variables (since dpkg 1.16.1).

EXAMPLES

 To pass build flags to a build command in a Makefile:

 $(MAKE) $(shell dpkg-buildflags --export=cmdline)

 ./configure $(shell dpkg-buildflags --export=cmdline)

 To set build flags in a shell script or shell fragment, eval can be used to interpret the

 output and to export the flags in the environment:

 eval "$(dpkg-buildflags --export=sh)" && make

 or to set the positional parameters to pass to a command:

 eval "set -- $(dpkg-buildflags --export=cmdline)"

 for dir in a b c; do (cd $dir && ./configure "$@" && make); done

 Usage in debian/rules

 You should call dpkg-buildflags or include buildflags.mk from the debian/rules file to

 obtain the needed build flags to pass to the build system. Note that older versions of

 dpkg-buildpackage (before dpkg 1.16.1) exported these flags automatically. However, you

 should not rely on this, since this breaks manual invocation of debian/rules.

 For packages with autoconf-like build systems, you can pass the relevant options to

 configure or make(1) directly, as shown above.

 For other build systems, or when you need more fine-grained control about which flags are

 passed where, you can use --get. Or you can include buildflags.mk instead, which takes

 care of calling dpkg-buildflags and storing the build flags in make variables. Page 12/13

 If you want to export all buildflags into the environment (where they can be picked up by

 your build system):

 DPKG_EXPORT_BUILDFLAGS = 1

 include /usr/share/dpkg/buildflags.mk

 For some extra control over what is exported, you can manually export the variables (as

 none are exported by default):

 include /usr/share/dpkg/buildflags.mk

 export CPPFLAGS CFLAGS LDFLAGS

 And you can of course pass the flags to commands manually:

 include /usr/share/dpkg/buildflags.mk

 build-arch:

 $(CC) -o hello hello.c $(CPPFLAGS) $(CFLAGS) $(LDFLAGS)

1.21.1 2024-02-23 dpkg-buildflags(1)

Page 13/13

