PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'docker.1’

$ man docker.1

podman(1)() podman(1)()

NAME
podman - Simple management tool for pods, containers and images

SYNOPSIS
podman [options] command

DESCRIPTION
Podman (Pod Manager) is a fully featured container engine that is a simple daemonless
tool. Podman provides a Docker-CLI comparable command line that eases the transition from
other container engines and allows the management of pods, containers and images. Simply
put: alias docker=podman. Most Podman commands can be run as a regular user, without re?
quiring additional privileges.
Podman uses Buildah(1) internally to create container images. Both tools share image (not
container) storage, hence each can use or manipulate images (but not containers) created
by the other.
Default settings for flags are defined in containers.conf. Most settings for Remote con?
nections use the server's containers.conf, except when documented in man pages.
podman [GLOBAL OPTIONS]

GLOBAL OPTIONS

--cgroup-manager=manager

The CGroup manager to use for container cgroups. Supported values are cgroupfs or systemd.
Default is systemd unless overridden in the containers.conf file.
Note: Setting this flag can cause certain commands to break when called on containers pre?

viously created by the other CGroup manager type. Note: CGroup manager is not supported Page 1/14

in rootless mode when using CGroups Version V1.

--cni-config-dir
Path of the configuration directory for CNI networks. (Default: /etc/cni/net.d)

--connection, -c
Connection to use for remote podman (Default connection is configured in containers.conf)
Remote connections use local containers.conf for default.

--conmon
Path of the conmon binary (Default path is configured in containers.conf)

--events-backend=type
Backend to use for storing events. Allowed values are file, journald, and none. When file
is specified, the events are stored under a subdirectory of the tmpdir location (see --tm?
pdir below).

--help, -h
Print usage statement

--hooks-dir=path
Each *.json file in the path configures a hook for Podman containers. For more details on
the syntax of the JSON files and the semantics of hook injection, see oci-hooks(5). Pod?
man and libpod currently support both the 1.0.0 and 0.1.0 hook schemas, although the 0.1.0
schema is deprecated.
This option may be set multiple times; paths from later options have higher precedence
(oci-hooks(5) discusses directory precedence).
For the annotation conditions, libpod uses any annotations set in the generated OCI con?
figuration.
For the bind-mount conditions, only mounts explicitly requested by the caller via --volume
are considered. Bind mounts that libpod inserts by default (e.g. /dev/shm) are not con?
sidered.
If --hooks-dir is unset for root callers, Podman and libpod will currently default to
l/usr/share/containers/oci/hooks.d and /etc/containers/oci/hooks.d in order of increasing
precedence. Using these defaults is deprecated, and callers should migrate to explicitly
setting --hooks-dir.
Podman and libpod currently support an additional precreate state which is called before
the runtime's create operation. Unlike the other stages, which receive the container

state on their standard input, precreate hooks receive the proposed runtime configuration Page 2/14

on their standard input. They may alter that configuration as they see fit, and write the
altered form to their standard output.
WARNING: the precreate hook lets you do powerful things, such as adding additional mounts
to the runtime configuration. That power also makes it easy to break things. Before re?
porting libpod errors, try running your container with precreate hooks disabled to see if
the problem is due to one of your hooks.
--identity=path
Path to ssh identity file. If the identity file has been encrypted, podman prompts the
user for the passphrase. If no identity file is provided and no user is given, podman de?
faults to the user running the podman command. Podman prompts for the login password on
the remote server.
Identity value resolution precedence:
- command line value
- environment variable CONTAINER_SSHKEY, if CONTAINER_HOST is found
- containers.conf Remote connections use local containers.conf for default.
--log-level=level
Log messages at and above specified level: debug, info, warn, error, fatal or panic (de?
fault: "warn")
--namespace=namespace
Set libpod namespace. Namespaces are used to separate groups of containers and pods in
libpod's state. When namespace is set, created containers and pods will join the given
namespace, and only containers and pods in the given namespace will be visible to Podman.
--network-cmd-path=path
Path to the command binary to use for setting up a network. It is currently only used for
setting up a slirp4netns network. If " is used then the binary is looked up using the
$PATH environment variable.
--remote, -r
Access Podman service will be remote Remote connections use local containers.conf for de?
fault.
--url=value
URL to access Podman service (default from containers.conf, rootless
unix://run/user/$UID/podman/podman.sock or as root unix://run/podman/podman.sock).

? CONTAINER_HOST is of the format <schema>://[<user[:<pass?

Page 3/14

word>]@]<host>[:<port>][<path>]
Details:
- user will default to either root or current running user
- password has no default
- host must be provided and is either the IP or name of the machine hosting the Podman
service
- port defaults to 22
- path defaults to either /run/podman/podman.sock, or /run/user/<uid>/podman/podman.sock
if running rootless.
URL value resolution precedence:
- command line value
- environment variable CONTAINER_HOST
- containers.conf
- unix://run/podman/podman.sock Remote connections use local containers.conf for default.
--root=value
Storage root dir in which data, including images, is stored (default: "/var/lib/contain?
ers/storage" for UID 0, "$HOME/.local/share/containers/storage” for other users). Default
root dir configured in /etc/containers/storage.conf.
Overriding this option will cause the storage-opt settings in /etc/containers/storage.conf
to be ignored. The user must specify additional options via the --storage-opt flag.
--runroot=value
Storage state directory where all state information is stored (default: "/run/contain?
ers/storage" for UID 0, "/run/user/$UID/run" for other users). Default state dir config?
ured in /etc/containers/storage.conf.
--runtime=value
Name of the OCI runtime as specified in containers.conf or absolute path to the OCI com?
patible binary used to run containers.
--runtime-flag=flag
Adds global flags for the container runtime. To list the supported flags, please consult
the manpages of the selected container runtime (runc is the default runtime, the manpage
to consult is runc(8). When the machine is configured for cgroup V2, the default runtime
is crun, the manpage to consult is crun(8).).

Note: Do not pass the leading -- to the flag. To pass the runc flag --log-format json to Page 4/14

podman build, the option given would be --runtime-flag log-format=json.
--storage-driver=value
Storage driver. The default storage driver for UID 0 is configured in /etc/contain?
ers/storage.conf ($HOME/.config/containers/storage.conf in rootless mode), and is vfs for
non-root users when fuse-overlayfs is not available. The STORAGE_DRIVER environment vari?
able overrides the default. The --storage-driver specified driver overrides all.
Overriding this option will cause the storage-opt settings in /etc/containers/storage.conf
to be ignored. The user must specify additional options via the --storage-opt flag.
--storage-opt=value
Storage driver option, Default storage driver options are configured in /etc/contain?
ers/storage.conf ($HOME/.config/containers/storage.conf in rootless mode). The STOR?
AGE_OPTS environment variable overrides the default. The --storage-opt specified options
overrides all. If you specify --storage-opt="", no storage options will be used.
--syslog=truelfalse
Output logging information to syslog as well as the console (default false).
On remote clients, logging is directed to the file $HOME/.config/containers/podman.log.
--tmpdir
Path to the tmp directory, for libpod runtime content.
NOTE --tmpdir is not used for the temporary storage of downloaded images. Use the envi?
ronment variable TMPDIR to change the temporary storage location of downloaded container
images. Podman defaults to use /var/tmp.
--version, -v
Print the version
Environment Variables
Podman can set up environment variables from env of [engine] table in containers.conf.
These variables can be overridden by passing environment variables before the podman com?
mands.
Remote Access
The Podman command can be used with remote services using the --remote flag. Connections
can be made using local unix domain sockets, ssh or directly to tcp sockets. When specify?
ing the podman --remote flag, only the global options --url, --identity, --log-level,
--connection are used.

Connection information can also be managed using the containers.conf file.

Page 5/14

Exit Codes
The exit code from podman gives information about why the container failed to run or why
it exited. When podman commands exit with a non-zero code, the exit codes follow the ch?
root standard, see below:
125 The error is with podman itself
$ podman run --foo busybox; echo $?
Error: unknown flag: --foo
125
126 Executing a contained command and the command cannot be invoked
$ podman run busybox /etc; echo $?
Error: container_linux.go:346: starting container process caused "exec: \"/etc\": permission denied": OCI runtime
error
126
127 Executing a contained command and the command cannot be found
$ podman run busybox foo; echo $?
Error: container_linux.go:346: starting container process caused "exec: \"foo\": exe?
cutable file not found in $PATH": OCI runtime error
127
Exit code contained command exit code
$ podman run busybox /bin/sh -c 'exit 3'; echo $?
3

COMMANDS

PPV 2??72???2??7??7?7??27?7?7?7°

?Command ? Description ?

PPV 2??7?7?????7??7?7??7?7?7?7°

?podman-attach(1) ? Attach to a running container. ?

PPV 2?7?7?7?7????7???7??7?7?7?7

?podman-auto-update(1) ? Auto update containers according ?
? ? to their auto-update policy ?

PP 7??7??727?7?7?77?77?7

?podman-build(1) ? Build a container image using a ?
? ? Containerfile. ?

PPV 277?7???277?7??7?7??7?7?7?7? Page(ﬂ14

?podman-commit(l) ? Create new image based on the ?

? ? changed container. ?

PP 7?7?727?7??77?7?7?77?7

?podman-completion(1) ? Generate shell completion ?
? ? scripts ?

PPV 277?7??7??7?7?7???7??7?7?7?7?

?podman-container(1) ? Manage containers. ?

PPV 2?72??7?27??7???7??77?7??7??7?7?7???7??7?7?7?7

?podman-cp(1) ? Copy files/folders between a ?
? ? container and the local filesys? ?
? ? tem. ?

PPV 7???7?277?7??7??77?7???7??7?7?7?7

?podman-create(1) ? Create a new container. ?

PPV 277?7??7???7?7???7??7?7?7?7

?podman-diff(1) ? Inspect changes on a container ?
? ? or image's filesystem. ?

PPV 7??7??7??7??7?7?77?7

?podman-events(l) ? Monitor Podman events ?

PPV 2?7?7?2???2??7??7?7??7?7?7?7?

?podman-exec(1) ? Execute a command in a running ?

? ? container. ?

PPV 7???7????77?7?7??7?7??7???7??77?7??7?7??7?7???7??7?7?7?7

?podman-export(1) ? Export a container's filesystem ?

? ? contents as a tar archive. ?

PPV 2??7?7?????7??7?7??7?7?7?7°

?podman-generate(1) ? Generate structured data based ?

? ? on containers, pods or volumes. ?

PP 7?7?7?7?777?77?7

?podman-healthcheck(1l) ? Manage healthchecks for contain? ?
? ?ers ?

PPV 72??7?????7?7??7?7??7?7?7?7?

?podman-history(1) ? Show the history of an image. ?

PPV 277?7???277?7??7?7??7?7?7?7?

Page 7/14

?podman-image(1) ? Manage images. ?

PP 72??2??2?7??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

?podman-images(1) ? Listimages in local storage. ?

PPV 72??2??2?77??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

?podman-import(1) ? Import a tarball and save it as ?
? ? a filesystem image. ?

PP 7??77?7?7?7?7?77?7

?podman-info(1) ? Displays Podman related system ?

? ? information. ?

PP 7?7?7?7???7?277?7??7?7?7?7?7??7?7??7?7?7?7

?podman-init(1) ? Initialize one or more contain? ?
? ?ers ?

PP 7??7?7?7?7?7?7?7?77?7

?podman-inspect(1l) ? Display a container, image, vol? ?
? ? ume, network, or pod's configu? ?
? ? ration. ?

PPV 7??7??7??7??7?7?77?7

?podman-kill(1) ? Kill the main process in one or ?

? ? more containers. ?

PPV 7???7????27?7?2??7?27??7???7??77?7??7?7?7?7?7???7??7?7?7?7

?podman-load(1) ? Load image(s) from a tar archive ?

? ? into container storage. ?

PPV 2??72???2??7??7?7??27?7?7?7°

?podman-login(1) ? Login to a container registry. ?

PPV 2??7?7?????7??7?7??7?7?7?7°

?podman-logout(1) ? Logout of a container registry. ?

PPV 2?7?7?7?7????7???7??7?7?7?7

?podman-logs(1) ? Display the logs of one or more ?

? ? containers. ?

PP 7??7??727?7?7?77?77?7

?podman-machine(1) ? Manage Podman's virtual machine ?

PP 7??727?7?7?777?77?7

?podman-manifest(l) ? Create and manipulate manifest ?

Page 8/14

? ? lists and image indexes. ?

PP 72??2??2?7??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

?podman-mount(1) ? Mount a working container's root ?
? ? filesystem. ?

PPV 7??7?7?77?7?77?7?77?7

?podman-network(1l) ? Manage Podman CNI networks. ?

PP 7??77?7?7?7?7?77?7

?podman-pause(1) ? Pause one or more containers. ?

PP 7??7??7?7?7??7?7?77?7

?podman-play(1) ? Play containers, pods or volumes ?
? ? based on a structured input ?
? ? file. ?

PP 7??7?7?7?7?7?7?7?77?7

?podman-pod(1) ? Management tool for groups of ?

? ? containers, called pods. ?

PPV 2?7?7??7?7?7?7?7???7??7?7?7?7°

?podman-port(1) ? List port mappings for a con? ?
? ? tainer. ?

PPV 2?7?7?2???2??7??7?7??7?7?7?7?

?podman-ps(1) ? Prints out information about ?

? ? containers. ?

PPV 7???7????77?7?7??7?7??7???7??77?7??7?7??7?7???7??7?7?7?7

?podman-pull(1) ? Pull an image from a registry. ?

PP 7?72?7?7?77?77?7

?podman-push(1) ? Push an image, manifest list or ?
? ? image index from local storage ?
? ? to elsewhere. ?

PP 7?7?7?7?777?77?7

?podman-rename(1l) ? Rename an existing container. ?

PP 7??7??727?7?7?77?77?7

?podman-restart(l) ? Restart one or more containers. ?

PP 7??727?7?7?777?77?7

?podman-rm(1) ? Remove one or more containers. ?

Page 9/14

PP 7?7?7?77?7?7?7?7?7?77?7

?podman-rmi(1) ? Removes one or more locally ?

? ? stored images. ?

PPV 72??2??2?77??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

?podman-run(1) ? Runa command in a new con? ?
? ? tainer. ?

PP 7??77?7?7?7?7?77?7

?podman-save(1) ? Save image(s) to an archive. ?

PP 7??7??7?7?7??7?7?77?7

?podman-search(1) ? Search a registry for an image. ?

PP 7??7?7?7?7?7?7?7??7?7?77?7

?podman-secret(1) ? Manage podman secrets. ?

PP 7??7?7?7?7?7?7?7?77?7

?podman-start(1) ? Start one or more containers. ?

PP 7??7?7?7?7?7?7?7?77?7

?podman-stats(1) ? Display a live stream of one or ?
? ? more container's resource usage ?

? ? statistics. ?

PPV 2?7?7?2???2??7??7?7??7?7?7?7?

?podman-stop(1) ? Stop one or more running con? ?
? ? tainers. ?

PPV 7???7????77?7?7??7?7??7???7??77?7??7?7??7?7???7??7?7?7?7

?podman-system(1) ? Manage podman. ?

PP 7?72?7?7?77?77?7

?podman-tag(1) ? Add an additional name to a l0? ?
? ? cal image. ?

PPV 2?7?7?7?7????7???7??7?7?7?7

?podman-top(1) ? Display the running processes of ?

? ? a container. ?

PP 7??7??727?7?7?77?77?7

?podman-unmount(l) ? Unmount a working container's ?

? ? root filesystem. ?

PPV 277?7???277?7??7?7??7?7?7?7?

Page 10/14

?podman-unpause(l) ? Unpause one or more containers. ?

PP 72??2??2?7??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

?podman-unshare(l) ? Run a command inside of a modi? ?

? ? fied user namespace. ?

PPV 7??7?7?77?7?77?7?77?7

?podman-untag(1) ? Removes one or more names from a ?

? ? locally-stored image. ?

PPV 2?72??7?27??7???7??77?7??7??7?7?7???7??7?7?7?7

?podman-version(1) ? Display the Podman version in? ?

? ? formation. ?

PP 7??7?7?7?7?7?7?7??7?7?77?7

?podman-volume(l) ? Simple management tool for vol? ?
? ? umes. ?

PPV 277?7??7???7?7???7??7?7?7?7

?podman-wait(1) ? Wait on one or more containers ?
? ? to stop and print their exit ?
? ? codes. ?

PPV 277?7??7??7?7?7???7??7?7?7?7

CONFIGURATION FILES
containers.conf (/usr/share/containers/containers.conf, /etc/containers/containers.conf,
$HOME!/.config/containers/containers.conf)
Podman has builtin defaults for command line options. These defaults can be overridden us?
ing the containers.conf configuration files.
Distributions ship the /usr/share/containers/containers.conf file with their default set?
tings. Administrators can override fields in this file by creating the /etc/contain?
ers/containers.conf file. Users can further modify defaults by creating the $HOME/.con?
fig/containers/containers.conf file. Podman merges its builtin defaults with the specified
fields from these files, if they exist. Fields specified in the users file override the
administrator's file, which overrides the distribution's file, which override the built-in
defaults.
Podman uses builtin defaults if no containers.conf file is found.
If the CONTAINERS CONF environment variable is set, then its value is used for the con?

tainers.conf file rather than the default. Page 11/14

mounts.conf (/usr/share/containers/mounts.conf)
The mounts.conf file specifies volume mount directories that are automatically mounted in?
side containers when executing the podman run or podman start commands. Administrators can
override the defaults file by creating /etc/containers/mounts.conf.
When Podman runs in rootless mode, the file $HOME/.config/containers/mounts.conf will
override the default if it exists. Please refer to containers-mounts.conf(5) for further
details.
policy.json (/etc/containers/policy.json)
Signature verification policy files are used to specify policy, e.g. trusted keys, appli?
cable when deciding whether to accept an image, or individual signatures of that image, as
valid.
registries.conf (/etc/containers/registries.conf, $HOME/.config/containers/reg?
istries.conf)
registries.conf is the configuration file which specifies which container registries
should be consulted when completing image names which do not include a registry or domain
portion.
Non root users of Podman can create the $HOME/.config/containers/registries.conf file to
be used instead of the system defaults.
If the CONTAINERS REGISTRIES CONF environment variable is set, then its value is used for
the registries.conf file rather than the default.
storage.conf (/etc/containers/storage.conf, $HOME!/.config/containers/storage.conf)
storage.conf is the storage configuration file for all tools using containers/storage
The storage configuration file specifies all of the available container storage options
for tools using shared container storage.
When Podman runs in rootless mode, the file $HOME/.config/containers/storage.conf is used
instead of the system defaults.
If the CONTAINERS_STORAGE_CONF environment variable is set, the its value is used for the
storage.conf file rather than the default.

Rootless mode
Podman can also be used as non-root user. When podman runs in rootless mode, a user name?
space is automatically created for the user, defined in /etc/subuid and /etc/subgid.
Containers created by a non-root user are not visible to other users and are not seen or

managed by Podman running as root. Page 12/14

It is required to have multiple uids/gids set for a user. Be sure the user is present in
the files /etc/subuid and /etc/subgid.
If you have a recent version of usermod, you can execute the following commands to add the
ranges to the files

$ sudo usermod --add-subuids 10000-75535 USERNAME

$ sudo usermod --add-subgids 10000-75535 USERNAME
Or just add the content manually.

$ echo USERNAME:10000:65536 >> /etc/subuid

$ echo USERNAME:10000:65536 >> /etc/subgid
See the subuid(5) and subgid(5) man pages for more information.
Images are pulled under XDG_DATA_HOME when specified, otherwise in the home directory of
the user under .local/share/containers/storage.
Currently the slirp4netns package is required to be installed to create a network device,
otherwise rootless containers need to run in the network namespace of the host.
In certain environments like HPC (High Performance Computing), users cannot take advantage
of the additional UIDs and GIDs from the /etc/subuid and /etc/subgid systems. However, in
this environment, rootless Podman can operate with a single UID. To make this work, set
the ignore_chown_errors option in the /etc/containers/storage.conf or in ~/.config/con?
tainers/storage.conf files. This option tells Podman when pulling an image to ignore chown
errors when attempting to change a file in a container image to match the non-root UID in
the image. This means all files get saved as the user's UID. Note this could cause issues
when running the container.

NOTE: Unsupported file systems in rootless mode

The Overlay file system (OverlayFS) is not supported with kernels prior to 5.12.9 in root?
less mode. The fuse-overlayfs package is a tool that provides the functionality of Over?
layFS in user namespace that allows mounting file systems in rootless environments. It is
recommended to install the fuse-overlayfs package. In rootless mode, Podman will automat?
ically use the fuse-overlayfs program as the mount_program if installed, as long as the
$HOME!/.config/containers/storage.conf file was not previously created. If storage.conf
exists in the homedir, add mount_program = "/usr/bin/fuse-overlayfs" under [storage.op?
tions.overlay] to enable this feature.
The Network File System (NFS) and other distributed file systems (for example: Lustre,

Spectrum Scale, the General Parallel File System (GPFS)) are not supported when running in Page 13/14

rootless mode as these file systems do not understand user namespace. However, rootless
Podman can make use of an NFS Homedir by modifying the $HOME/.config/containers/stor?
age.conf to have the graphroot option point to a directory stored on local (Non NFS) stor?
age.
For more information, please refer to the Podman Troubleshooting Page.

SEE ALSO
containers-mounts.conf(5), containers-registries.conf(5), containers-storage.conf(5),
buildah(1), containers.conf(5), oci-hooks(5), containers-policy.json(5), crun(8), runc(8),
subuid(5), subgid(5), slirp4netns(1), conmon(8).

HISTORY
Dec 2016, Originally compiled by Dan Walsh dwalsh@redhat.com ?mailto:dwalsh@redhat.com?

podman(1)()

Page 14/14

