
Linux Ubuntu 22.4.5 Manual Pages on command 'docker-container-cp.1'

$ man docker-container-cp.1

DOCKER(1) Docker User Manuals DOCKER(1)

NAME

 docker-container-cp - Copy files/folders between a container and the local filesys?

 tem

SYNOPSIS

 docker container cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH|- docker cp [OP?

 TIONS] SRC_PATH|- CONTAINER:DEST_PATH

DESCRIPTION

 The docker container cp utility copies the contents of SRC_PATH to the DEST_PATH.

 You can copy from the container's file system to the local machine or the reverse,

 from the local filesystem to the container. If - is specified for either the

 SRC_PATH or DEST_PATH, you can also stream a tar archive from STDIN or to STDOUT.

 The CONTAINER can be a running or stopped container. The SRC_PATH or DEST_PATH can

 be a file or directory.

 The docker container cp command assumes container paths are relative to the con?

 tainer's / (root) directory. This means supplying the initial forward slash is op?

 tional; The command sees compassionate_darwin:/tmp/foo/myfile.txt and compassion?

 ate_darwin:tmp/foo/myfile.txt as identical. Local machine paths can be an absolute

 or relative value. The command interprets a local machine's relative paths as rela?

 tive to the current working directory where docker container cp is run.

 The cp command behaves like the Unix cp -a command in that directories are copied

 recursively with permissions preserved if possible. Ownership is set to the user
Page 1/5

 and primary group at the destination. For example, files copied to a container are

 created with UID:GID of the root user. Files copied to the local machine are cre?

 ated with the UID:GID of the user which invoked the docker container cp command.

 If you specify the -L option, docker container cp follows any symbolic link in the

 SRC_PATH. docker container cp does not create parent directories for DEST_PATH if

 they do not exist.

 Assuming a path separator of /, a first argument of SRC_PATH and second argument of

 DEST_PATH, the behavior is as follows:

 ? SRC_PATH specifies a file

 ? DEST_PATH does not exist

 ? the file is saved to a file created at DEST_PATH

 ? DEST_PATH does not exist and ends with /

 ? Error condition: the destination directory must exist.

 ? DEST_PATH exists and is a file

 ? the destination is overwritten with the source file's contents

 ? DEST_PATH exists and is a directory

 ? the file is copied into this directory using the basename from

 SRC_PATH

 ? SRC_PATH specifies a directory

 ? DEST_PATH does not exist

 ? DEST_PATH is created as a directory and the contents of the source di?

 rectory are copied into this directory

 ? DEST_PATH exists and is a file

 ? Error condition: cannot copy a directory to a file

 ? DEST_PATH exists and is a directory

 ? SRC_PATH does not end with /. (that is: slash followed by dot)

 ? the source directory is copied into this directory

 ? SRC_PATH does end with /. (that is: slash followed by dot)

 ? the content of the source directory is copied into this directory

 The command requires SRC_PATH and DEST_PATH to exist according to the above rules.

 If SRC_PATH is local and is a symbolic link, the symbolic link, not the target, is

 copied by default. To copy the link target and not the link, specify the -L option.

 A colon (:) is used as a delimiter between CONTAINER and its path. You can also use Page 2/5

 : when specifying paths to a SRC_PATH or DEST_PATH on a local machine, for example

 file:name.txt. If you use a : in a local machine path, you must be explicit with a

 relative or absolute path, for example:

 `/path/to/file:name.txt` or `./file:name.txt`

 It is not possible to copy certain system files such as resources under /proc,

 /sys, /dev, tmpfs, and mounts created by the user in the container. However, you

 can still copy such files by manually running tar in docker exec. For example

 (consider SRC_PATH and DEST_PATH are directories):

 $ docker exec foo tar Ccf $(dirname SRC_PATH) - $(basename SRC_PATH) | tar Cxf DEST_PATH -

 or

 $ tar Ccf $(dirname SRC_PATH) - $(basename SRC_PATH) | docker exec -i foo tar Cxf DEST_PATH -

 Using - as the SRC_PATH streams the contents of STDIN as a tar archive. The com?

 mand extracts the content of the tar to the DEST_PATH in container's filesystem. In

 this case, DEST_PATH must specify a directory. Using - as the DEST_PATH streams the

 contents of the resource as a tar archive to STDOUT.

EXAMPLES

 Suppose a container has finished producing some output as a file it saves to some?

 where in its filesystem. This could be the output of a build job or some other com?

 putation. You can copy these outputs from the container to a location on your local

 host.

 If you want to copy the /tmp/foo directory from a container to the existing /tmp

 directory on your host. If you run docker container cp in your ~ (home) directory

 on the local host:

 $ docker container cp compassionate_darwin:tmp/foo /tmp

 Docker creates a /tmp/foo directory on your host. Alternatively, you can omit the

 leading slash in the command. If you execute this command from your home directory:

 $ docker container cp compassionate_darwin:tmp/foo tmp

 If ~/tmp does not exist, Docker will create it and copy the contents of /tmp/foo

 from the container into this new directory. If ~/tmp already exists as a directory,

 then Docker will copy the contents of /tmp/foo from the container into a directory

 at ~/tmp/foo.

 When copying a single file to an existing LOCALPATH, the docker container cp com?

 mand will either overwrite the contents of LOCALPATH if it is a file or place it Page 3/5

 into LOCALPATH if it is a directory, overwriting an existing file of the same name

 if one exists. For example, this command:

 $ docker container cp sharp_ptolemy:/tmp/foo/myfile.txt /test

 If /test does not exist on the local machine, it will be created as a file with the

 contents of /tmp/foo/myfile.txt from the container. If /test exists as a file, it

 will be overwritten. Lastly, if /test exists as a directory, the file will be

 copied to /test/myfile.txt.

 Next, suppose you want to copy a file or folder into a container. For example, this

 could be a configuration file or some other input to a long running computation

 that you would like to place into a created container before it starts. This is

 useful because it does not require the configuration file or other input to exist

 in the container image.

 If you have a file, config.yml, in the current directory on your local host and

 wish to copy it to an existing directory at /etc/my-app.d in a container, this com?

 mand can be used:

 $ docker container cp config.yml myappcontainer:/etc/my-app.d

 If you have several files in a local directory /config which you need to copy to a

 directory /etc/my-app.d in a container:

 $ docker container cp /config/. myappcontainer:/etc/my-app.d

 The above command will copy the contents of the local /config directory into the

 directory /etc/my-app.d in the container.

 Finally, if you want to copy a symbolic link into a container, you typically want

 to copy the linked target and not the link itself. To copy the target, use the -L

 option, for example:

 $ ln -s /tmp/somefile /tmp/somefile.ln

 $ docker container cp -L /tmp/somefile.ln myappcontainer:/tmp/

 This command copies content of the local /tmp/somefile into the file /tmp/some?

 file.ln in the container. Without -L option, the /tmp/somefile.ln preserves its

 symbolic link but not its content.

OPTIONS

 -a, --archive[=false] Archive mode (copy all uid/gid information)

 -L, --follow-link[=false] Always follow symbol link in SRC_PATH

 -h, --help[=false] help for cp Page 4/5

SEE ALSO

 docker-container(1)

Docker Community Feb 2022 DOCKER(1)

Page 5/5

