
Rocky Enterprise Linux 9.2 Manual Pages on command 'dmidecode.8'

$ man dmidecode.8

DMIDECODE(8) System Manager's Manual DMIDECODE(8)

NAME

 dmidecode - DMI table decoder

SYNOPSIS

 dmidecode [OPTIONS]

DESCRIPTION

 dmidecode is a tool for dumping a computer's DMI (some say SMBIOS) table contents in a hu?

 man-readable format. This table contains a description of the system's hardware compo?

 nents, as well as other useful pieces of information such as serial numbers and BIOS revi?

 sion. Thanks to this table, you can retrieve this information without having to probe for

 the actual hardware. While this is a good point in terms of report speed and safeness,

 this also makes the presented information possibly unreliable.

 The DMI table doesn't only describe what the system is currently made of, it also can re?

 port the possible evolutions (such as the fastest supported CPU or the maximal amount of

 memory supported).

 SMBIOS stands for System Management BIOS, while DMI stands for Desktop Management Inter?

 face. Both standards are tightly related and developed by the DMTF (Desktop Management

 Task Force).

 As you run it, dmidecode will try to locate the DMI table. It will first try to read the

 DMI table from sysfs, and next try reading directly from memory if sysfs access failed.

 If dmidecode succeeds in locating a valid DMI table, it will then parse this table and

 display a list of records like this one:

 Handle 0x0002, DMI type 2, 8 bytes. Base Board Information Page 1/7

 Manufacturer: Intel

 Product Name: C440GX+

 Version: 727281-001

 Serial Number: INCY92700942

 Each record has:

 ? A handle. This is a unique identifier, which allows records to reference each other. For

 example, processor records usually reference cache memory records using their handles.

 ? A type. The SMBIOS specification defines different types of elements a computer can be

 made of. In this example, the type is 2, which means that the record contains "Base

 Board Information".

 ? A size. Each record has a 4-byte header (2 for the handle, 1 for the type, 1 for the

 size), the rest is used by the record data. This value doesn't take text strings into

 account (these are placed at the end of the record), so the actual length of the record

 may be (and is often) greater than the displayed value.

 ? Decoded values. The information presented of course depends on the type of record. Here,

 we learn about the board's manufacturer, model, version and serial number.

OPTIONS

 -d, --dev-mem FILE

 Read memory from device FILE (default: /dev/mem)

 -q, --quiet

 Be less verbose. Unknown, inactive and OEM-specific entries are not displayed.

 Meta-data and handle references are hidden.

 -s, --string KEYWORD

 Only display the value of the DMI string identified by KEYWORD. KEYWORD must be a

 keyword from the following list: bios-vendor, bios-version, bios-release-date,

 bios-revision, firmware-revision, system-manufacturer, system-product-name, system-

 version, system-serial-number, system-uuid, system-sku-number, system-family, base?

 board-manufacturer, baseboard-product-name, baseboard-version, baseboard-serial-

 number, baseboard-asset-tag, chassis-manufacturer, chassis-type, chassis-version,

 chassis-serial-number, chassis-asset-tag, processor-family, processor-manufacturer,

 processor-version, processor-frequency. Each keyword corresponds to a given DMI

 type and a given offset within this entry type. Not all strings may be meaningful

 or even defined on all systems. Some keywords may return more than one result on Page 2/7

 some systems (e.g. processor-version on a multi-processor system). If KEYWORD is

 not provided or not valid, a list of all valid keywords is printed and dmidecode

 exits with an error. This option cannot be used more than once.

 Note: on Linux, most of these strings can alternatively be read directly from

 sysfs, typically from files under /sys/devices/virtual/dmi/id. Most of these files

 are even readable by regular users.

 -t, --type TYPE

 Only display the entries of type TYPE. TYPE can be either a DMI type number, or a

 comma-separated list of type numbers, or a keyword from the following list: bios,

 system, baseboard, chassis, processor, memory, cache, connector, slot. Refer to the

 DMI TYPES section below for details. If this option is used more than once, the

 set of displayed entries will be the union of all the given types. If TYPE is not

 provided or not valid, a list of all valid keywords is printed and dmidecode exits

 with an error.

 -H, --handle HANDLE

 Only display the entry whose handle matches HANDLE. HANDLE is a 16-bit integer.

 -u, --dump

 Do not decode the entries, dump their contents as hexadecimal instead. Note that

 this is still a text output, no binary data will be thrown upon you. The strings

 attached to each entry are displayed as both hexadecimal and ASCII. This option is

 mainly useful for debugging.

 --dump-bin FILE

 Do not decode the entries, instead dump the DMI data to a file in binary form. The

 generated file is suitable to pass to --from-dump later.

 --from-dump FILE

 Read the DMI data from a binary file previously generated using --dump-bin.

 --no-sysfs

 Do not attempt to read DMI data from sysfs files. This is mainly useful for debug?

 ging.

 --oem-string N

 Only display the value of the OEM string number N. The first OEM string has number

 1. With special value "count", return the number of OEM strings instead.

 -h, --help Page 3/7

 Display usage information and exit

 -V, --version

 Display the version and exit

 Options --string, --type, --dump-bin and --oem-string determine the output format and are

 mutually exclusive.

 Please note in case of dmidecode is run on a system with BIOS that boasts new SMBIOS spec?

 ification, which is not supported by the tool yet, it will print out relevant message in

 addition to requested data on the very top of the output. Thus informs the output data is

 not reliable.

DMI TYPES

 The SMBIOS specification defines the following DMI types:

 Type Information

 ??

 0 BIOS

 1 System

 2 Baseboard

 3 Chassis

 4 Processor

 5 Memory Controller

 6 Memory Module

 7 Cache

 8 Port Connector

 9 System Slots

 10 On Board Devices

 11 OEM Strings

 12 System Configuration Options

 13 BIOS Language

 14 Group Associations

 15 System Event Log

 16 Physical Memory Array

 17 Memory Device

 18 32-bit Memory Error

 19 Memory Array Mapped Address Page 4/7

 20 Memory Device Mapped Address

 21 Built-in Pointing Device

 22 Portable Battery

 23 System Reset

 24 Hardware Security

 25 System Power Controls

 26 Voltage Probe

 27 Cooling Device

 28 Temperature Probe

 29 Electrical Current Probe

 30 Out-of-band Remote Access

 31 Boot Integrity Services

 32 System Boot

 33 64-bit Memory Error

 34 Management Device

 35 Management Device Component

 36 Management Device Threshold Data

 37 Memory Channel

 38 IPMI Device

 39 Power Supply

 40 Additional Information

 41 Onboard Devices Extended Information

 42 Management Controller Host Interface

 Additionally, type 126 is used for disabled entries and type 127 is an end-of-table

 marker. Types 128 to 255 are for OEM-specific data. dmidecode will display these entries

 by default, but it can only decode them when the vendors have contributed documentation or

 code for them.

 Keywords can be used instead of type numbers with --type. Each keyword is equivalent to a

 list of type numbers:

 Keyword Types

 ??????????????????????????????

 bios 0, 13

 system 1, 12, 15, 23, 32 Page 5/7

 baseboard 2, 10, 41

 chassis 3

 processor 4

 memory 5, 6, 16, 17

 cache 7

 connector 8

 slot 9

 Keywords are matched case-insensitively. The following command lines are equivalent:

 ? dmidecode --type 0 --type 13

 ? dmidecode --type 0,13

 ? dmidecode --type bios

 ? dmidecode --type BIOS

BINARY DUMP FILE FORMAT

 The binary dump files generated by --dump-bin and read using --from-dump are formatted as

 follows:

 ? The SMBIOS or DMI entry point is located at offset 0x00. It is crafted to hard-code the

 table address at offset 0x20.

 ? The DMI table is located at offset 0x20.

UUID FORMAT

 There is some ambiguity about how to interpret the UUID fields prior to SMBIOS specifica?

 tion version 2.6. There was no mention of byte swapping, and RFC 4122 says that no byte

 swapping should be applied by default. However, SMBIOS specification version 2.6 (and

 later) explicitly states that the first 3 fields of the UUID should be read as little-en?

 dian numbers (byte-swapped). Furthermore, it implies that the same was already true for

 older versions of the specification, even though it was not mentioned. In practice, many

 hardware vendors were not byte-swapping the UUID. So, in order to preserve compatibility,

 it was decided to interpret the UUID fields according to RFC 4122 (no byte swapping) when

 the SMBIOS version is older than 2.6, and to interpret the first 3 fields as little-endian

 (byte-swapped) when the SMBIOS version is 2.6 or later. The Linux kernel follows the same

 logic.

FILES

 /dev/mem

 /sys/firmware/dmi/tables/smbios_entry_point (Linux only) Page 6/7

 /sys/firmware/dmi/tables/DMI (Linux only)

BUGS

 More often than not, information contained in the DMI tables is inaccurate, incomplete or

 simply wrong.

AUTHORS

 Alan Cox, Jean Delvare

SEE ALSO

 biosdecode(8), mem(4), ownership(8), vpddecode(8)

dmidecode January 2019 DMIDECODE(8)

Page 7/7

