
Rocky Enterprise Linux 9.2 Manual Pages on command 'dlinfo.3'

$ man dlinfo.3

DLINFO(3) Linux Programmer's Manual DLINFO(3)

NAME

 dlinfo - obtain information about a dynamically loaded object

SYNOPSIS

 #define _GNU_SOURCE

 #include <link.h>

 #include <dlfcn.h>

 int dlinfo(void *handle, int request, void *info);

 Link with -ldl.

DESCRIPTION

 The dlinfo() function obtains information about the dynamically loaded object referred to

 by handle (typically obtained by an earlier call to dlopen(3) or dlmopen(3)). The request

 argument specifies which information is to be returned. The info argument is a pointer to

 a buffer used to store information returned by the call; the type of this argument depends

 on request.

 The following values are supported for request (with the corresponding type for info shown

 in parentheses):

 RTLD_DI_LMID (Lmid_t *)

 Obtain the ID of the link-map list (namespace) in which handle is loaded.

 RTLD_DI_LINKMAP (struct link_map **)

 Obtain a pointer to the link_map structure corresponding to handle. The info argu?

 ment points to a pointer to a link_map structure, defined in <link.h> as:

 struct link_map { Page 1/6

 ElfW(Addr) l_addr; /* Difference between the

 address in the ELF file and

 the address in memory */

 char *l_name; /* Absolute pathname where

 object was found */

 ElfW(Dyn) *l_ld; /* Dynamic section of the

 shared object */

 struct link_map *l_next, *l_prev;

 /* Chain of loaded objects */

 /* Plus additional fields private to the

 implementation */

 };

 RTLD_DI_ORIGIN (char *)

 Copy the pathname of the origin of the shared object corresponding to handle to the

 location pointed to by info.

 RTLD_DI_SERINFO (Dl_serinfo *)

 Obtain the library search paths for the shared object referred to by handle. The

 info argument is a pointer to a Dl_serinfo that contains the search paths. Because

 the number of search paths may vary, the size of the structure pointed to by info

 can vary. The RTLD_DI_SERINFOSIZE request described below allows applications to

 size the buffer suitably. The caller must perform the following steps:

 1. Use a RTLD_DI_SERINFOSIZE request to populate a Dl_serinfo structure with the

 size (dls_size) of the structure needed for the subsequent RTLD_DI_SERINFO re?

 quest.

 2. Allocate a Dl_serinfo buffer of the correct size (dls_size).

 3. Use a further RTLD_DI_SERINFOSIZE request to populate the dls_size and dls_cnt

 fields of the buffer allocated in the previous step.

 4. Use a RTLD_DI_SERINFO to obtain the library search paths.

 The Dl_serinfo structure is defined as follows:

 typedef struct {

 size_t dls_size; /* Size in bytes of

 the whole buffer */

 unsigned int dls_cnt; /* Number of elements Page 2/6

 in 'dls_serpath' */

 Dl_serpath dls_serpath[1]; /* Actually longer,

 'dls_cnt' elements */

 } Dl_serinfo;

 Each of the dls_serpath elements in the above structure is a structure of the fol?

 lowing form:

 typedef struct {

 char *dls_name; /* Name of library search

 path directory */

 unsigned int dls_flags; /* Indicates where this

 directory came from */

 } Dl_serpath;

 The dls_flags field is currently unused, and always contains zero.

 RTLD_DI_SERINFOSIZE (Dl_serinfo *)

 Populate the dls_size and dls_cnt fields of the Dl_serinfo structure pointed to by

 info with values suitable for allocating a buffer for use in a subsequent

 RTLD_DI_SERINFO request.

 RTLD_DI_TLS_MODID (size_t *, since glibc 2.4)

 Obtain the module ID of this shared object's TLS (thread-local storage) segment, as

 used in TLS relocations. If this object does not define a TLS segment, zero is

 placed in *info.

 RTLD_DI_TLS_DATA (void **, since glibc 2.4)

 Obtain a pointer to the calling thread's TLS block corresponding to this shared ob?

 ject's TLS segment. If this object does not define a PT_TLS segment, or if the

 calling thread has not allocated a block for it, NULL is placed in *info.

RETURN VALUE

 On success, dlinfo() returns 0. On failure, it returns -1; the cause of the error can be

 diagnosed using dlerror(3).

VERSIONS

 dlinfo() first appeared in glibc 2.3.3.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ?????????????????????????????????????? Page 3/6

 ?Interface ? Attribute ? Value ?

 ??????????????????????????????????????

 ?dlinfo() ? Thread safety ? MT-Safe ?

 ??????????????????????????????????????

CONFORMING TO

 This function is a nonstandard GNU extension.

NOTES

 This function derives from the Solaris function of the same name and also appears on some

 other systems. The sets of requests supported by the various implementations overlaps

 only partially.

EXAMPLES

 The program below opens a shared objects using dlopen(3) and then uses the RTLD_DI_SERIN?

 FOSIZE and RTLD_DI_SERINFO requests to obtain the library search path list for the li?

 brary. Here is an example of what we might see when running the program:

 $./a.out /lib64/libm.so.6

 dls_serpath[0].dls_name = /lib64

 dls_serpath[1].dls_name = /usr/lib64

 Program source

 #define _GNU_SOURCE

 #include <dlfcn.h>

 #include <link.h>

 #include <stdio.h>

 #include <stdlib.h>

 int

 main(int argc, char *argv[])

 {

 void *handle;

 Dl_serinfo serinfo;

 Dl_serinfo *sip;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <libpath>\n", argv[0]);

 exit(EXIT_FAILURE);

 } Page 4/6

 /* Obtain a handle for shared object specified on command line */

 handle = dlopen(argv[1], RTLD_NOW);

 if (handle == NULL) {

 fprintf(stderr, "dlopen() failed: %s\n", dlerror());

 exit(EXIT_FAILURE);

 }

 /* Discover the size of the buffer that we must pass to

 RTLD_DI_SERINFO */

 if (dlinfo(handle, RTLD_DI_SERINFOSIZE, &serinfo) == -1) {

 fprintf(stderr, "RTLD_DI_SERINFOSIZE failed: %s\n", dlerror());

 exit(EXIT_FAILURE);

 }

 /* Allocate the buffer for use with RTLD_DI_SERINFO */

 sip = malloc(serinfo.dls_size);

 if (sip == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 /* Initialize the 'dls_size' and 'dls_cnt' fields in the newly

 allocated buffer */

 if (dlinfo(handle, RTLD_DI_SERINFOSIZE, sip) == -1) {

 fprintf(stderr, "RTLD_DI_SERINFOSIZE failed: %s\n", dlerror());

 exit(EXIT_FAILURE);

 }

 /* Fetch and print library search list */

 if (dlinfo(handle, RTLD_DI_SERINFO, sip) == -1) {

 fprintf(stderr, "RTLD_DI_SERINFO failed: %s\n", dlerror());

 exit(EXIT_FAILURE);

 }

 for (int j = 0; j < serinfo.dls_cnt; j++)

 printf("dls_serpath[%d].dls_name = %s\n",

 j, sip->dls_serpath[j].dls_name);

 exit(EXIT_SUCCESS); Page 5/6

 }

SEE ALSO

 dl_iterate_phdr(3), dladdr(3), dlerror(3), dlopen(3), dlsym(3), ld.so(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 DLINFO(3)

Page 6/6

