
Rocky Enterprise Linux 9.2 Manual Pages on command 'dlclose.3'

$ man dlclose.3

DLOPEN(3) Linux Programmer's Manual DLOPEN(3)

NAME

 dlclose, dlopen, dlmopen - open and close a shared object

SYNOPSIS

 #include <dlfcn.h>

 void *dlopen(const char *filename, int flags);

 int dlclose(void *handle);

 #define _GNU_SOURCE

 #include <dlfcn.h>

 void *dlmopen(Lmid_t lmid, const char *filename, int flags);

 Link with -ldl.

DESCRIPTION

 dlopen()

 The function dlopen() loads the dynamic shared object (shared library) file named by the

 null-terminated string filename and returns an opaque "handle" for the loaded object.

 This handle is employed with other functions in the dlopen API, such as dlsym(3),

 dladdr(3), dlinfo(3), and dlclose().

 If filename is NULL, then the returned handle is for the main program. If filename con?

 tains a slash ("/"), then it is interpreted as a (relative or absolute) pathname. Other?

 wise, the dynamic linker searches for the object as follows (see ld.so(8) for further de?

 tails):

 o (ELF only) If the calling object (i.e., the shared library or executable from which

 dlopen() is called) contains a DT_RPATH tag, and does not contain a DT_RUNPATH tag, Page 1/9

 then the directories listed in the DT_RPATH tag are searched.

 o If, at the time that the program was started, the environment variable LD_LIBRARY_PATH

 was defined to contain a colon-separated list of directories, then these are searched.

 (As a security measure, this variable is ignored for set-user-ID and set-group-ID pro?

 grams.)

 o (ELF only) If the calling object contains a DT_RUNPATH tag, then the directories

 listed in that tag are searched.

 o The cache file /etc/ld.so.cache (maintained by ldconfig(8)) is checked to see whether

 it contains an entry for filename.

 o The directories /lib and /usr/lib are searched (in that order).

 If the object specified by filename has dependencies on other shared objects, then these

 are also automatically loaded by the dynamic linker using the same rules. (This process

 may occur recursively, if those objects in turn have dependencies, and so on.)

 One of the following two values must be included in flags:

 RTLD_LAZY

 Perform lazy binding. Resolve symbols only as the code that references them is ex?

 ecuted. If the symbol is never referenced, then it is never resolved. (Lazy bind?

 ing is performed only for function references; references to variables are always

 immediately bound when the shared object is loaded.) Since glibc 2.1.1, this flag

 is overridden by the effect of the LD_BIND_NOW environment variable.

 RTLD_NOW

 If this value is specified, or the environment variable LD_BIND_NOW is set to a

 nonempty string, all undefined symbols in the shared object are resolved before

 dlopen() returns. If this cannot be done, an error is returned.

 Zero or more of the following values may also be ORed in flags:

 RTLD_GLOBAL

 The symbols defined by this shared object will be made available for symbol resolu?

 tion of subsequently loaded shared objects.

 RTLD_LOCAL

 This is the converse of RTLD_GLOBAL, and the default if neither flag is specified.

 Symbols defined in this shared object are not made available to resolve references

 in subsequently loaded shared objects.

 RTLD_NODELETE (since glibc 2.2) Page 2/9

 Do not unload the shared object during dlclose(). Consequently, the object's

 static and global variables are not reinitialized if the object is reloaded with

 dlopen() at a later time.

 RTLD_NOLOAD (since glibc 2.2)

 Don't load the shared object. This can be used to test if the object is already

 resident (dlopen() returns NULL if it is not, or the object's handle if it is resi?

 dent). This flag can also be used to promote the flags on a shared object that is

 already loaded. For example, a shared object that was previously loaded with

 RTLD_LOCAL can be reopened with RTLD_NOLOAD | RTLD_GLOBAL.

 RTLD_DEEPBIND (since glibc 2.3.4)

 Place the lookup scope of the symbols in this shared object ahead of the global

 scope. This means that a self-contained object will use its own symbols in prefer?

 ence to global symbols with the same name contained in objects that have already

 been loaded.

 If filename is NULL, then the returned handle is for the main program. When given to dl?

 sym(3), this handle causes a search for a symbol in the main program, followed by all

 shared objects loaded at program startup, and then all shared objects loaded by dlopen()

 with the flag RTLD_GLOBAL.

 Symbol references in the shared object are resolved using (in order): symbols in the link

 map of objects loaded for the main program and its dependencies; symbols in shared objects

 (and their dependencies) that were previously opened with dlopen() using the RTLD_GLOBAL

 flag; and definitions in the shared object itself (and any dependencies that were loaded

 for that object).

 Any global symbols in the executable that were placed into its dynamic symbol table by

 ld(1) can also be used to resolve references in a dynamically loaded shared object. Sym?

 bols may be placed in the dynamic symbol table either because the executable was linked

 with the flag "-rdynamic" (or, synonymously, "--export-dynamic"), which causes all of the

 executable's global symbols to be placed in the dynamic symbol table, or because ld(1)

 noted a dependency on a symbol in another object during static linking.

 If the same shared object is opened again with dlopen(), the same object handle is re?

 turned. The dynamic linker maintains reference counts for object handles, so a dynami?

 cally loaded shared object is not deallocated until dlclose() has been called on it as

 many times as dlopen() has succeeded on it. Constructors (see below) are called only when Page 3/9

 the object is actually loaded into memory (i.e., when the reference count increases to 1).

 A subsequent dlopen() call that loads the same shared object with RTLD_NOW may force sym?

 bol resolution for a shared object earlier loaded with RTLD_LAZY. Similarly, an object

 that was previously opened with RTLD_LOCAL can be promoted to RTLD_GLOBAL in a subsequent

 dlopen().

 If dlopen() fails for any reason, it returns NULL.

 dlmopen()

 This function performs the same task as dlopen()?the filename and flags arguments, as well

 as the return value, are the same, except for the differences noted below.

 The dlmopen() function differs from dlopen() primarily in that it accepts an additional

 argument, lmid, that specifies the link-map list (also referred to as a namespace) in

 which the shared object should be loaded. (By comparison, dlopen() adds the dynamically

 loaded shared object to the same namespace as the shared object from which the dlopen()

 call is made.) The Lmid_t type is an opaque handle that refers to a namespace.

 The lmid argument is either the ID of an existing namespace (which can be obtained using

 the dlinfo(3) RTLD_DI_LMID request) or one of the following special values:

 LM_ID_BASE

 Load the shared object in the initial namespace (i.e., the application's name?

 space).

 LM_ID_NEWLM

 Create a new namespace and load the shared object in that namespace. The object

 must have been correctly linked to reference all of the other shared objects that

 it requires, since the new namespace is initially empty.

 If filename is NULL, then the only permitted value for lmid is LM_ID_BASE.

 dlclose()

 The function dlclose() decrements the reference count on the dynamically loaded shared ob?

 ject referred to by handle.

 If the object's reference count drops to zero and no symbols in this object are required

 by other objects, then the object is unloaded after first calling any destructors defined

 for the object. (Symbols in this object might be required in another object because this

 object was opened with the RTLD_GLOBAL flag and one of its symbols satisfied a relocation

 in another object.)

 All shared objects that were automatically loaded when dlopen() was invoked on the object Page 4/9

 referred to by handle are recursively closed in the same manner.

 A successful return from dlclose() does not guarantee that the symbols associated with

 handle are removed from the caller's address space. In addition to references resulting

 from explicit dlopen() calls, a shared object may have been implicitly loaded (and refer?

 ence counted) because of dependencies in other shared objects. Only when all references

 have been released can the shared object be removed from the address space.

RETURN VALUE

 On success, dlopen() and dlmopen() return a non-NULL handle for the loaded object. On er?

 ror (file could not be found, was not readable, had the wrong format, or caused errors

 during loading), these functions return NULL.

 On success, dlclose() returns 0; on error, it returns a nonzero value.

 Errors from these functions can be diagnosed using dlerror(3).

VERSIONS

 dlopen() and dlclose() are present in glibc 2.0 and later. dlmopen() first appeared in

 glibc 2.3.4.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?dlopen(), dlmopen(), dlclose() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 POSIX.1-2001 describes dlclose() and dlopen(). The dlmopen() function is a GNU extension.

 The RTLD_NOLOAD, RTLD_NODELETE, and RTLD_DEEPBIND flags are GNU extensions; the first two

 of these flags are also present on Solaris.

NOTES

 dlmopen() and namespaces

 A link-map list defines an isolated namespace for the resolution of symbols by the dynamic

 linker. Within a namespace, dependent shared objects are implicitly loaded according to

 the usual rules, and symbol references are likewise resolved according to the usual rules,

 but such resolution is confined to the definitions provided by the objects that have been

 (explicitly and implicitly) loaded into the namespace. Page 5/9

 The dlmopen() function permits object-load isolation?the ability to load a shared object

 in a new namespace without exposing the rest of the application to the symbols made avail?

 able by the new object. Note that the use of the RTLD_LOCAL flag is not sufficient for

 this purpose, since it prevents a shared object's symbols from being available to any

 other shared object. In some cases, we may want to make the symbols provided by a dynami?

 cally loaded shared object available to (a subset of) other shared objects without expos?

 ing those symbols to the entire application. This can be achieved by using a separate

 namespace and the RTLD_GLOBAL flag.

 The dlmopen() function also can be used to provide better isolation than the RTLD_LOCAL

 flag. In particular, shared objects loaded with RTLD_LOCAL may be promoted to RTLD_GLOBAL

 if they are dependencies of another shared object loaded with RTLD_GLOBAL. Thus, RTLD_LO?

 CAL is insufficient to isolate a loaded shared object except in the (uncommon) case where

 one has explicit control over all shared object dependencies.

 Possible uses of dlmopen() are plugins where the author of the plugin-loading framework

 can't trust the plugin authors and does not wish any undefined symbols from the plugin

 framework to be resolved to plugin symbols. Another use is to load the same object more

 than once. Without the use of dlmopen(), this would require the creation of distinct

 copies of the shared object file. Using dlmopen(), this can be achieved by loading the

 same shared object file into different namespaces.

 The glibc implementation supports a maximum of 16 namespaces.

 Initialization and finalization functions

 Shared objects may export functions using the __attribute__((constructor)) and __attri?

 bute__((destructor)) function attributes. Constructor functions are executed before

 dlopen() returns, and destructor functions are executed before dlclose() returns. A

 shared object may export multiple constructors and destructors, and priorities can be as?

 sociated with each function to determine the order in which they are executed. See the

 gcc info pages (under "Function attributes") for further information.

 An older method of (partially) achieving the same result is via the use of two special

 symbols recognized by the linker: _init and _fini. If a dynamically loaded shared object

 exports a routine named _init(), then that code is executed after loading a shared object,

 before dlopen() returns. If the shared object exports a routine named _fini(), then that

 routine is called just before the object is unloaded. In this case, one must avoid link?

 ing against the system startup files, which contain default versions of these files; this Page 6/9

 can be done by using the gcc(1) -nostartfiles command-line option.

 Use of _init and _fini is now deprecated in favor of the aforementioned constructors and

 destructors, which among other advantages, permit multiple initialization and finalization

 functions to be defined.

 Since glibc 2.2.3, atexit(3) can be used to register an exit handler that is automatically

 called when a shared object is unloaded.

 History

 These functions are part of the dlopen API, derived from SunOS.

BUGS

 As at glibc 2.24, specifying the RTLD_GLOBAL flag when calling dlmopen() generates an er?

 ror. Furthermore, specifying RTLD_GLOBAL when calling dlopen() results in a program crash

 (SIGSEGV) if the call is made from any object loaded in a namespace other than the initial

 namespace.

EXAMPLES

 The program below loads the (glibc) math library, looks up the address of the cos(3) func?

 tion, and prints the cosine of 2.0. The following is an example of building and running

 the program:

 $ cc dlopen_demo.c -ldl

 $./a.out

 -0.416147

 Program source

 #include <stdio.h>

 #include <stdlib.h>

 #include <dlfcn.h>

 #include <gnu/lib-names.h> /* Defines LIBM_SO (which will be a

 string such as "libm.so.6") */

 int

 main(void)

 {

 void *handle;

 double (*cosine)(double);

 char *error;

 handle = dlopen(LIBM_SO, RTLD_LAZY); Page 7/9

 if (!handle) {

 fprintf(stderr, "%s\n", dlerror());

 exit(EXIT_FAILURE);

 }

 dlerror(); /* Clear any existing error */

 cosine = (double (*)(double)) dlsym(handle, "cos");

 /* According to the ISO C standard, casting between function

 pointers and 'void *', as done above, produces undefined results.

 POSIX.1-2001 and POSIX.1-2008 accepted this state of affairs and

 proposed the following workaround:

 *(void **) (&cosine) = dlsym(handle, "cos");

 This (clumsy) cast conforms with the ISO C standard and will

 avoid any compiler warnings.

 The 2013 Technical Corrigendum 1 to POSIX.1-2008 improved matters

 by requiring that conforming implementations support casting

 'void *' to a function pointer. Nevertheless, some compilers

 (e.g., gcc with the '-pedantic' option) may complain about the

 cast used in this program. */

 error = dlerror();

 if (error != NULL) {

 fprintf(stderr, "%s\n", error);

 exit(EXIT_FAILURE);

 }

 printf("%f\n", (*cosine)(2.0));

 dlclose(handle);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 ld(1), ldd(1), pldd(1), dl_iterate_phdr(3), dladdr(3), dlerror(3), dlinfo(3), dlsym(3),

 rtld-audit(7), ld.so(8), ldconfig(8)

 gcc info pages, ld info pages

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the Page 8/9

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 DLOPEN(3)

Page 9/9

