
Rocky Enterprise Linux 9.2 Manual Pages on command 'dhcp-eval.5'

$ man dhcp-eval.5

dhcp-eval(5) File Formats Manual dhcp-eval(5)

NAME

 dhcp-eval - ISC DHCP conditional evaluation

DESCRIPTION

 The Internet Systems Consortium DHCP client and server both provide the ability to perform

 conditional behavior depending on the contents of packets they receive. The syntax for

 specifying this conditional behaviour is documented here.

REFERENCE: CONDITIONAL BEHAVIOUR

 Conditional behaviour may be specified using the if statement and the else or elsif

 statements or the switch and case statements. A conditional statement can appear anywhere

 that a regular statement (e.g., an option statement) can appear, and can enclose one or

 more such statements.

 CONDITIONAL BEHAVIOUR: IF

 A typical conditional if statement in a server might be:

 if option dhcp-user-class = "accounting" {

 max-lease-time 17600;

 option domain-name "accounting.example.org";

 option domain-name-servers ns1.accounting.example.org,

 ns2.accounting.example.org;

 } elsif option dhcp-user-class = "sales" {

 max-lease-time 17600;

 option domain-name "sales.example.org";

 option domain-name-servers ns1.sales.example.org, Page 1/10

 ns2.sales.example.org;

 } elsif option dhcp-user-class = "engineering" {

 max-lease-time 17600;

 option domain-name "engineering.example.org";

 option domain-name-servers ns1.engineering.example.org,

 ns2.engineering.example.org;

 } else {

 max-lease-time 600;

 option domain-name "misc.example.org";

 option domain-name-servers ns1.misc.example.org,

 ns2.misc.example.org;

 }

 On the client side, an example of conditional evaluation might be:

 # example.org filters DNS at its firewall, so we have to use their DNS

 # servers when we connect to their network. If we are not at

 # example.org, prefer our own DNS server.

 if not option domain-name = "example.org" {

 prepend domain-name-servers 127.0.0.1;

 }

 The if statement and the elsif continuation statement both take boolean expressions as

 their arguments. That is, they take expressions that, when evaluated, produce a boolean

 result. If the expression evaluates to true, then the statements enclosed in braces fol?

 lowing the if statement are executed, and all subsequent elsif and else clauses are

 skipped. Otherwise, each subsequent elsif clause's expression is checked, until an elsif

 clause is encountered whose test evaluates to true. If such a clause is found, the state?

 ments in braces following it are executed, and then any subsequent elsif and else clauses

 are skipped. If all the if and elsif clauses are checked but none of their expressions

 evaluate true, then if there is an else clause, the statements enclosed in braces follow?

 ing the else are evaluated. Boolean expressions that evaluate to null are treated as

 false in conditionals.

 CONDITIONAL BEHAVIOUR: SWITCH

 The above example can be rewritten using a switch construct as well.

 switch (option dhcp-user-class) { Page 2/10

 case "accounting":

 max-lease-time 17600;

 option domain-name "accounting.example.org";

 option domain-name-servers ns1.accounting.example.org,

 ns2.accounting.example.org;

 case "sales":

 max-lease-time 17600;

 option domain-name "sales.example.org";

 option domain-name-servers ns1.sales.example.org,

 ns2.sales.example.org;

 break;

 case "engineering":

 max-lease-time 17600;

 option domain-name "engineering.example.org";

 option domain-name-servers ns1.engineering.example.org,

 ns2.engineering.example.org;

 break;

 default:

 max-lease-time 600;

 option domain-name "misc.example.org";

 option domain-name-servers ns1.misc.example.org,

 ns2.misc.example.org;

 break;

 }

 The switch statement and the case statements can both be data expressions or numeric ex?

 pressions. Within a switch statement they all must be the same type. The server evalu?

 ates the expression from the switch statement and then it evaluates the expressions from

 the case statements until it finds a match.

 If it finds a match it starts executing statements from that case until the next break

 statement. If it doesn't find a match it starts from the default statement and again pro?

 ceeds to the next break statement. If there is no match and no default it does nothing.

BOOLEAN EXPRESSIONS

 The following is the current list of boolean expressions that are supported by the DHCP Page 3/10

 distribution.

 data-expression-1 = data-expression-2

 The = operator compares the values of two data expressions, returning true if they are

 the same, false if they are not. If either the left-hand side or the right-hand side

 are null, the result is also null.

 data-expression-1 ~= data-expression-2 data-expression-1 ~~ data-expression-2

 The ~= and ~~ operators (not available on all systems) perform extended regex(7) match?

 ing of the values of two data expressions, returning true if data-expression-1 matches

 against the regular expression evaluated by data-expression-2, or false if it does not

 match or encounters some error. If either the left-hand side or the right-hand side are

 null or empty strings, the result is also false. The ~~ operator differs from the ~=

 operator in that it is case-insensitive.

 boolean-expression-1 and boolean-expression-2

 The and operator evaluates to true if the boolean expression on the left-hand side and

 the boolean expression on the right-hand side both evaluate to true. Otherwise, it

 evaluates to false. If either the expression on the left-hand side or the expression on

 the right-hand side are null, the result is null.

 boolean-expression-1 or boolean-expression-2

 The or operator evaluates to true if either the boolean expression on the left-hand side

 or the boolean expression on the right-hand side evaluate to true. Otherwise, it evalu?

 ates to false. If either the expression on the left-hand side or the expression on the

 right-hand side are null, the result is null.

 not boolean-expression

 The not operator evaluates to true if boolean-expression evaluates to false, and returns

 false if boolean-expression evaluates to true. If boolean-expression evaluates to null,

 the result is also null.

 exists option-name

 The exists expression returns true if the specified option exists in the incoming DHCP

 packet being processed.

 known

 The known expression returns true if the client whose request is currently being pro?

 cessed is known - that is, if there's a host declaration for it.

 static Page 4/10

 The static expression returns true if the lease assigned to the client whose request is

 currently being processed is derived from a static address assignment.

DATA EXPRESSIONS

 Several of the boolean expressions above depend on the results of evaluating data expres?

 sions. A list of these expressions is provided here.

 substring (data-expr, offset, length)

 The substring operator evaluates the data expression and returns the substring of the

 result of that evaluation that starts offset bytes from the beginning, continuing for

 length bytes. Offset and length are both numeric expressions. If data-expr, offset or

 length evaluate to null, then the result is also null. If offset is greater than or

 equal to the length of the evaluated data, then a zero-length data string is returned.

 If length is greater then the remaining length of the evaluated data after offset, then

 a data string containing all data from offset to the end of the evaluated data is re?

 turned.

 suffix (data-expr, length)

 The suffix operator evaluates data-expr and returns the last length bytes of the result

 of that evaluation. Length is a numeric expression. If data-expr or length evaluate to

 null, then the result is also null. If suffix evaluates to a number greater than the

 length of the evaluated data, then the evaluated data is returned.

 lcase (data-expr)

 The lcase function returns the result of evaluating data-expr converted to lower case.

 If data-expr evaluates to null, then the result is also null.

 ucase (data-expr)

 The ucase function returns the result of evaluating data-expr converted to upper case.

 If data-expr evaluates to null, then the result is also null.

 option option-name

 The option operator returns the contents of the specified option in the packet to which

 the server is responding.

 config-option option-name

 The config-option operator returns the value for the specified option that the DHCP

 client or server has been configured to send.

 gethostname()

 The gethostname() function returns a data string whose contents are a character string, Page 5/10

 the results of calling gethostname() on the local system with a size limit of 255 bytes

 (not including NULL terminator). This can be used for example to configure dhclient to

 send the local hostname without knowing the local hostname at the time dhclient.conf is

 written.

 hardware

 The hardware operator returns a data string whose first element is the type of network

 interface indicated in packet being considered, and whose subsequent elements are

 client's link-layer address. If there is no packet, or if the RFC2131 hlen field is in?

 valid, then the result is null. Hardware types include ethernet (1), token-ring (6),

 and fddi (8). Hardware types are specified by the IETF, and details on how the type

 numbers are defined can be found in RFC2131 (in the ISC DHCP distribution, this is in?

 cluded in the doc/ subdirectory).

 packet (offset, length)

 The packet operator returns the specified portion of the packet being considered, or

 null in contexts where no packet is being considered. Offset and length are applied to

 the contents packet as in the substring operator.

 string

 A string, enclosed in quotes, may be specified as a data expression, and returns the

 text between the quotes, encoded in ASCII. The backslash ('\') character is treated

 specially, as in C programming: '\t' means TAB, '\r' means carriage return, '\n' means

 newline, and '\b' means bell. Any octal value can be specified with '\nnn', where nnn

 is any positive octal number less than 0400. Any hexadecimal value can be specified

 with '\xnn', where nn is any positive hexadecimal number less than or equal to 0xff.

 colon-separated hexadecimal list

 A list of hexadecimal octet values, separated by colons, may be specified as a data ex?

 pression.

 concat (data-expr1, ..., data-exprN)

 The expressions are evaluated, and the results of each evaluation are concatenated in

 the sequence that the subexpressions are listed. If any subexpression evaluates to

 null, the result of the concatenation is null.

 reverse (numeric-expr1, data-expr2)

 The two expressions are evaluated, and then the result of evaluating the data expression

 is reversed in place, using hunks of the size specified in the numeric expression. For Page 6/10

 example, if the numeric expression evaluates to four, and the data expression evaluates

 to twelve bytes of data, then the reverse expression will evaluate to twelve bytes of

 data, consisting of the last four bytes of the input data, followed by the middle four

 bytes, followed by the first four bytes.

 leased-address

 In any context where the client whose request is being processed has been assigned an IP

 address, this data expression returns that IP address. In any context where the client

 whose request is being processed has not been assigned an ip address, if this data ex?

 pression is found in executable statements executed on that client's behalf, a log mes?

 sage indicating "there is no lease associated with this client" is syslogged to the de?

 bug level (this is considered dhcpd.conf debugging information).

 binary-to-ascii (numeric-expr1, numeric-expr2, data-expr1, data-expr2)

 Converts the result of evaluating data-expr2 into a text string containing one number

 for each element of the result of evaluating data-expr2. Each number is separated from

 the other by the result of evaluating data-expr1. The result of evaluating numeric-

 expr1 specifies the base (2 through 16) into which the numbers should be converted. The

 result of evaluating numeric-expr2 specifies the width in bits of each number, which may

 be either 8, 16 or 32.

 As an example of the preceding three types of expressions, to produce the name of a PTR

 record for the IP address being assigned to a client, one could write the following ex?

 pression:

 concat (binary-to-ascii (10, 8, ".",

 reverse (1, leased-address)),

 ".in-addr.arpa.");

 encode-int (numeric-expr, width)

 Numeric-expr is evaluated and encoded as a data string of the specified width, in net?

 work byte order (most significant byte first). If the numeric expression evaluates to

 the null value, the result is also null.

 pick-first-value (data-expr1 [... exprn])

 The pick-first-value function takes any number of data expressions as its arguments.

 Each expression is evaluated, starting with the first in the list, until an expression

 is found that does not evaluate to a null value. That expression is returned, and none

 of the subsequent expressions are evaluated. If all expressions evaluate to a null Page 7/10

 value, the null value is returned.

 host-decl-name

 The host-decl-name function returns the name of the host declaration that matched the

 client whose request is currently being processed, if any. If no host declaration

 matched, the result is the null value.

NUMERIC EXPRESSIONS

 Numeric expressions are expressions that evaluate to an integer. In general, the maximum

 size of such an integer should not be assumed to be representable in fewer than 32 bits,

 but the precision of such integers may be more than 32 bits.

 In addition to the following operators several standard math functions are available.

 They are:

 operation symbol

 add +

 subtract -

 divide /

 multiply *

 modulus %

 bitwise and &

 bitwise or |

 bitwise xor ^

 extract-int (data-expr, width)

 The extract-int operator extracts an integer value in network byte order from the result

 of evaluating the specified data expression. Width is the width in bits of the integer

 to extract. Currently, the only supported widths are 8, 16 and 32. If the evaluation

 of the data expression doesn't provide sufficient bits to extract an integer of the

 specified size, the null value is returned.

 lease-time

 The duration of the current lease - that is, the difference between the current time and

 the time that the lease expires.

 number

 Any number between zero and the maximum representable size may be specified as a numeric

 expression.

 client-state Page 8/10

 The current state of the client instance being processed. This is only useful in DHCP

 client configuration files. Possible values are:

 ? Booting - DHCP client is in the INIT state, and does not yet have an IP address. The

 next message transmitted will be a DHCPDISCOVER, which will be broadcast.

 ? Reboot - DHCP client is in the INIT-REBOOT state. It has an IP address, but is not

 yet using it. The next message to be transmitted will be a DHCPREQUEST, which will be

 broadcast. If no response is heard, the client will bind to its address and move to

 the BOUND state.

 ? Select - DHCP client is in the SELECTING state - it has received at least one DHCPOF?

 FER message, but is waiting to see if it may receive other DHCPOFFER messages from

 other servers. No messages are sent in the SELECTING state.

 ? Request - DHCP client is in the REQUESTING state - it has received at least one

 DHCPOFFER message, and has chosen which one it will request. The next message to be

 sent will be a DHCPREQUEST message, which will be broadcast.

 ? Bound - DHCP client is in the BOUND state - it has an IP address. No messages are

 transmitted in this state.

 ? Renew - DHCP client is in the RENEWING state - it has an IP address, and is trying to

 contact the server to renew it. The next message to be sent will be a DHCPREQUEST

 message, which will be unicast directly to the server.

 ? Rebind - DHCP client is in the REBINDING state - it has an IP address, and is trying

 to contact any server to renew it. The next message to be sent will be a DHCPREQUEST,

 which will be broadcast.

REFERENCE: ACTION EXPRESSIONS

 log (priority, data-expr)

 Logging statements may be used to send information to the standard logging channels. A

 logging statement includes an optional priority (fatal, error, info, or debug), and a

 data expression.

 Logging statements take only a single data expression argument, so if you want to output

 multiple data values, you will need to use the concat operator to concatenate them.

 execute (command-path [, data-expr1, ... data-exprN]);

 The execute statement runs an external command. The first argument is a string literal

 containing the name or path of the command to run. The other arguments, if present, are

 either string literals or data- expressions which evaluate to text strings, to be passed Page 9/10

 as command-line arguments to the command.

 execute is synchronous; the program will block until the external command being run has

 finished. Please note that lengthy program execution (for example, in an "on commit" in

 dhcpd.conf) may result in bad performance and timeouts. Only external applications with

 very short execution times are suitable for use.

 Passing user-supplied data to an external application might be dangerous. Make sure the

 external application checks input buffers for validity. Non-printable ASCII characters

 will be converted into dhcpd.conf language octal escapes ("\nnn"), make sure your exter?

 nal command handles them as such.

 It is possible to use the execute statement in any context, not only on events. If you

 put it in a regular scope in the configuration file you will execute that command every

 time a scope is evaluated.

 parse-vendor-option;

 The parse-vendor-option statement attempts to parse a vendor option (code 43). It is

 only useful while processing a packet on the server and requires that the administrator

 has already used the vendor-option-space statement to select a valid vendor space.

 This functionality may be used if the server needs to take different actions depending

 on the values the client placed in the vendor option and the sub-options are not at

 fixed locations. It is handled as an action to allow an administrator to examine the

 incoming options and choose the correct vendor space.

REFERENCE: DYNAMIC DNS UPDATES

 See the dhcpd.conf and dhclient.conf man pages for more information about DDNS.

SEE ALSO

 dhcpd.conf(5), dhcpd.leases(5), dhclient.conf(5), dhcp-options(5), dhcpd(8), dhclient(8),

 RFC2132, RFC2131.

AUTHOR

 Information about Internet Systems Consortium can be found at https://www.isc.org.

 dhcp-eval(5)

Page 10/10

