
Linux Ubuntu 22.4.5 Manual Pages on command 'dh_python2.1'

$ man dh_python2.1

DH_PYTHON2(1) DH_PYTHON2(1)

NAME

 dh_python2 - calculates Python dependencies, adds maintainer scripts to byte com?

 pile files, etc.

SYNOPSIS

 dh_python2 -p PACKAGE [-V [X.Y][-][A.B]] DIR_OR_FILE [-X REGEXPR]

DESCRIPTION

 QUICK GUIDE FOR MAINTAINERS

 ? if necessary, describe supported Python versions via X-Python-Version field in

 debian/control,

 ? build-depend on python or python-all or python-all-dev (>= 2.6.6-3~),

 ? build module/application using its standard build system, remember to build

 extensions for all supported Python versions (loop over pyversions -vr),

 ? install files to the standard locations, add --install-layout=deb to

 setup.py's install command if your package is using distutils,

 ? add python2 to dh's --with option, or:

 ? include /usr/share/cdbs/1/class/python-distutils.mk in debian/rules and depend

 on cdbs (>= 0.4.90), or:

 ? call dh_python2 in the binary-* target,

 ? add ${python:Depends} to Depends

 NOTES

 In order to support more than one Python version in the same binary package,
Page 1/5

 dh_python2 (unlike dh_pycentral and dh_pysupport) creates symlinks to all supported

 Python versions at build time. It means binNMU (or sourceful upload in case of ar?

 chitecture independent packages) is required once a list of supported Python ver?

 sion is changed. It's faster and more robust than its competitors, though.

 dependencies

 dh_python2 tries to translate Python dependencies from requires.txt file to Debian

 dependencies. Use debian/pydist-overrides or --no-guessing-deps option to override

 it if the guess is incorrect. If you want dh_python2 to generate more strict depen?

 dencies (f.e. to avoid ABI problems) create debian/python-foo.pydist file. See

 /usr/share/doc/python-doc/README.PyDist (provided by python-doc package) for more

 information. If the pydist file contains PEP386 flag or set of (uscan like) rules,

 dh_python2 will make the dependency versioned (version requirements are ignored by

 default).

 namespace feature

 dh_python2 parses Egg's namespace_packages.txt files (in addition to --namespace

 command line argument(s)) and drops empty __init__.py files from binary package.

 pycompile will regenerate them at install time and pyclean will remove them at

 uninstall time (if they're no longer used in installed packages). It's still a good

 idea to provide __init__.py file in one of binary packages (even if all other pack?

 ages use this feature).

 private dirs

 /usr/share/foo, /usr/share/games/foo, /usr/lib/foo and /usr/lib/games/foo private

 directories are scanned for Python files by default (where foo is binary package

 name). If your package is shipping Python files in some other directory, add an?

 other dh_python2 call in debian/rules with directory name as an argument - you can

 use different set of options in this call. If you need to change options (f.e. a

 list of supported Python versions) for a private directory that is checked by de?

 fault, invoke dh_python2 with --skip-private option and add another call with a

 path to this directory and new options.

 debug packages

 In binary packages which name ends with -dbg, all files in

 /usr/lib/python2.X/{site,dist}-packages/ directory that have extensions different

 than so or h are removed by default. Use --no-dbg-cleaning option to disable this Page 2/5

 feature.

 pyinstall files

 Files listed in debian/pkg.pyinstall file will be installed as public modules for

 all requested Python versions (dh_install doesn't know about python's site- vs.

 dist-packages issue).

 Syntax: path/to/file [VERSION_RANGE] [NAMESPACE]

 debian directory is automatically removed from the path, so you can place your

 files in debian/ directory and install them from this location (if you want to in?

 stall them in "debian" namespace, set NAMESPACE to debian). If NAMESPACE is set,

 all listed files will be installed in .../dist-packages/NAMESPACE/ directory.

 Examples:

 ? foo.py installs .../dist-packages/foo.py for all supported Python versions

 ? foo/bar.py 2.6- installs .../dist-packages/foo/bar.py for versions >= 2.6

 ? foo/bar.py spam installs .../dist-packages/spam/bar.py

 ? debian/*.py spam.egg 2.5 installs .../python2.5/site-pack?

 ages/spam/egg/*.py files

 pyremove files

 If you want to remove some files installed by build system (from all supported

 Python versions or only from a subset of these versions), add them to de?

 bian/pkg.pyremove file.

 Examples:

 ? *.pth removes .pth files from .../dist-packages/

 ? bar/baz.py 2.5 removes .../python2.5/site-packages/bar/baz.py

 overriding supported / default Python versions

 If you want to override system's list of supported Python versions or the default

 one (f.e. to build a package that includes symlinks for older version of Python or

 compile .py files only for given interpreter version), you can do that via

 DEBPYTHON_SUPPORTED and/or DEBPYTHON_DEFAULT env. variables.

 Example: 2.5,2.7 limits the list of supported Python versions to Python 2.5 and

 Python 2.7.

OPTIONS

 --version

 show program's version number and exit Page 3/5

 -h, --help

 show help message and exit

 --no-guessing-versions

 disable guessing other supported Python versions

 --no-guessing-deps

 disable guessing dependencies

 --no-dbg-cleaning

 do not remove any files from debug packages

 --no-shebang-rewrite

 do not rewrite shebangs

 --skip-private

 don't check private directories

 -v, --verbose

 turn verbose mode on

 -i, --indep

 act on architecture independent packages

 -a, --arch

 act on architecture dependent packages

 -q, --quiet

 be quiet

 -p PACKAGE, --package=PACKAGE

 act on the package named PACKAGE

 -N NO_PACKAGE, --no-package=NO_PACKAGE

 do not act on the specified package

 -V VRANGE

 specify list of supported Python versions. See pycompile(1) for examples

 -X REGEXPR, --exclude=REGEXPR

 exclude items that match given REGEXPR. You may use this option multiple

 times to build up a list of things to exclude.

 --compile-all

 compile all files from given private directory in postinst/rtupdate not just

 the ones provided by the package (i.e. do not pass the --package parameter

 to pycompile/pyclean) Page 4/5

 --depends=DEPENDS

 translate given requirements into Debian dependencies and add them to

 ${python:Depends}. Use it for missing items in requires.txt

 --recommends=RECOMMENDS

 translate given requirements into Debian dependencies and add them to

 ${python:Recommends}

 --suggests=SUGGESTS

 translate given requirements into Debian dependencies and add them to

 ${python:Suggests}

 --namespace

 use this option (multiple time if necessary) if namespace_packages.txt is

 not complete

 --ignore-namespace

 ignore Egg's namespace declaration and --namespace option. This option will

 disable removing (and recreating at install time) empty __init__.py files.

 Removing namespace_packages.txt from egg-info directory has the same effect.

 --clean-pycentral

 generate maintainer script that will remove byte code generated by

 python-central helper

 --shebang=COMMAND

 use given command as shebang in scripts

 --ignore-shebangs

 do not translate shebangs into Debian dependencies

SEE ALSO

 ? /usr/share/doc/python/python-policy.txt.gz

 ? /usr/share/doc/python-doc/README.PyDist (python-doc package)

 ? pycompile(1), pyclean(1)

 ? dh_python3(1), py3compile(1), py3clean(1)

 ? Wiki page about converting package to dh_python2:

 http://wiki.debian.org/Python/TransitionToDHPython2

AUTHOR

 Piotr O?arowski, 2012-2013

 DH_PYTHON2(1) Page 5/5

