
Linux Ubuntu 22.4.5 Manual Pages on command 'dh_pypy.1'

$ man dh_pypy.1

DH_PYPY(1) DH_PYPY(1)

NAME

 dh_pypy - calculates PyPy dependencies, adds maintainer scripts to byte compile

 files, etc.

SYNOPSIS

 dh_pypy -p PACKAGE [-V [X.Y][-][A.B]] DIR [-X REGEXPR]

DESCRIPTION

 QUICK GUIDE FOR MAINTAINERS

 ? build-depend on pypy and dh-python,

 ? add ${pypy:Depends} to Depends

 ? build module/application using its standard build system,

 ? install files to the standard locations,

 ? add pypy to dh's --with option, or:

 ? call dh_pypy in the binary-* target,

 NOTES

 dependencies

 dh_pypy tries to translate Python dependencies from the requires.txt file to Debian

 dependencies. In many cases, this works without any additional configuration be?

 cause dh_pypy comes with a build-in mapping of Python module names to Debian pack?

 ages that is periodically regenerated from the Debian archive. By default, the ver?

 sion information in the Python dependencies is discarded. If you want dh_pypy to

 generate more strict dependencies (e.g. to avoid ABI problems), or if the automatic
Page 1/5

 mapping does not work correctly for your package, you have to provide dh_pypy with

 additional rules for the translation of Python module to Debian package dependen?

 cies.

 For a package pypy-foo that depends on a package pypy-bar, there are two files that

 may provide such rules:

 1. If the pypy-foo source package ships with a debian/pypy-overrides file, this

 file is used by dh_pypy during the build of pypy-foo.

 2. If the pypy-bar source package ships with a debian/pypy-bar.pydist file (and

 uses dh_pypy), this file will be included in the binary package as

 /usr/share/dh-python/dist/pypy/pypy-bar. During the build of pypy-foo, dh_pypy

 will then find and use the file.

 Both files have the same format described in /usr/share/doc/dh-python/README.Py?

 Dist. If all you want is to generate versioned dependencies (and assuming that the

 pypy-bar package provides the pybar Python module), in most cases it will be suffi?

 cient to put the line pybar pypy-bar; PEP386 into either of the above files.

 namespace feature

 dh_pypy parses Egg's namespace_packages.txt files (in addition to --namespace com?

 mand line argument(s)) and drops empty __init__.py files from binary package. pypy?

 compile will regenerate them at install time and pypyclean will remove them at

 uninstall time (if they're no longer used in installed packages). It's still a good

 idea to provide __init__.py file in one of binary packages (even if all other pack?

 ages use this feature).

 private dirs

 /usr/share/foo, /usr/share/games/foo, /usr/lib/foo and /usr/lib/games/foo private

 directories are scanned for Python files by default (where foo is binary package

 name). If your package ships Python files in some other directory, add another

 dh_pypy call in debian/rules with directory name as an argument - you can use dif?

 ferent set of options in this call. If you need to change options for a private di?

 rectory that is checked by default, invoke dh_pypy with --skip-private option and

 add another call with a path to this directory and new options.

 debug packages

 In binary packages which name ends with -dbg, all files in /usr/lib/pypy/dist-pack?

 ages/ directory that have extensions different than so or h are removed by default. Page 2/5

 Use --no-dbg-cleaning option to disable this feature.

 overriding supported / default PyPy versions

 If you want to override system's list of supported PyPy versions or the default one

 (f.e. to build a package that includes symlinks for older version of PyPy or com?

 pile .py files only for given interpreter version), you can do that via

 DEBPYPY_SUPPORTED and/or DEBPYPY_DEFAULT env. variables.

OPTIONS

 --version

 show program's version number and exit

 -h, --help

 show help message and exit

 --no-guessing-deps

 disable guessing dependencies

 --no-dbg-cleaning

 do not remove any files from debug packages

 --no-ext-rename do not add magic tags nor multiarch tuples to extension file names

 --no-shebang-rewrite

 do not rewrite shebangs

 --skip-private

 don't check private directories

 -v, --verbose

 turn verbose mode on

 -i, --indep

 act on architecture independent packages

 -a, --arch

 act on architecture dependent packages

 -q, --quiet

 be quiet

 -p PACKAGE, --package=PACKAGE

 act on the package named PACKAGE

 -N NO_PACKAGE, --no-package=NO_PACKAGE

 do not act on the specified package

 -X REGEXPR, --exclude=REGEXPR Page 3/5

 exclude items that match given REGEXPR. You may use this option multiple

 times to build up a list of things to exclude.

 --compile-all

 compile all files from given private directory in postinst/rtupdate not just

 the ones provided by the package (i.e. do not pass the --package parameter

 to py3compile/py3clean)

 --accept-upstream-versions

 accept upstream versions while translating Python dependencies into Debian

 ones

 --depends=DEPENDS

 translate given requirements into Debian dependencies and add them to

 ${pypy:Depends}. Use it for missing items in requires.txt

 --depends-sections=SECTIONS

 translate requirements from given sections of requres.txt file into Debian

 dependencies and add them to ${pypy:Depends}.

 --recommends=RECOMMENDS

 translate given requirements into Debian dependencies and add them to

 ${pypy:Recommends}

 --recommends-sections=SECTIONS

 translate requirements from given sections of requres.txt file into Debian

 dependencies and add them to ${pypy:Recommends}.

 --suggests=SUGGESTS

 translate given requirements into Debian dependencies and add them to

 ${pypy:Suggests}

 --suggests-sections=SECTIONS

 translate requirements from given sections of requres.txt file into Debian

 dependencies and add them to ${pypy:Suggests}.

 --requires=FILENAME

 translate requirements from given file(s) into Debian dependencies and add

 them to ${pypy:Depends}

 --shebang=COMMAND

 use given command as shebang in scripts

 --ignore-shebangs Page 4/5

 do not translate shebangs into Debian dependencies

SEE ALSO

 ? /usr/share/doc/dh-python/README.PyDist

 ? pybuild(1)

 ? http://deb.li/dhpy - most recent version of this document

AUTHOR

 Piotr O?arowski, 2013

 DH_PYPY(1)

Page 5/5

