
Rocky Enterprise Linux 9.2 Manual Pages on command 'dbus-daemon.1'

$ man dbus-daemon.1

DBUS-DAEMON(1)                            User Commands                            DBUS-DAEMON(1)

NAME

       dbus-daemon - Message bus daemon

SYNOPSIS

       dbus-daemon

       dbus-daemon [--version] [--session] [--system] [--config-file=FILE]

                   [--print-address [=DESCRIPTOR]] [--print-pid [=DESCRIPTOR]] [--fork]

                   [--nosyslog] [--syslog] [--syslog-only]

DESCRIPTION

       dbus-daemon is the D-Bus message bus daemon. See http://www.freedesktop.org/software/dbus/

       for more information about the big picture. D-Bus is first a library that provides

       one-to-one communication between any two applications; dbus-daemon is an application that

       uses this library to implement a message bus daemon. Multiple programs connect to the

       message bus daemon and can exchange messages with one another.

       There are two standard message bus instances: the systemwide message bus (installed on

       many systems as the "messagebus" init service) and the per-user-login-session message bus

       (started each time a user logs in).  dbus-daemon is used for both of these instances, but

       with a different configuration file.

       The --session option is equivalent to "--config-file=/usr/share/dbus-1/session.conf" and

       the --system option is equivalent to "--config-file=/usr/share/dbus-1/system.conf". By

       creating additional configuration files and using the --config-file option, additional

       special-purpose message bus daemons could be created.

       The systemwide daemon is normally launched by an init script, standardly called simply Page 1/20



       "messagebus".

       The systemwide daemon is largely used for broadcasting system events, such as changes to

       the printer queue, or adding/removing devices.

       The per-session daemon is used for various interprocess communication among desktop

       applications (however, it is not tied to X or the GUI in any way).

       SIGHUP will cause the D-Bus daemon to PARTIALLY reload its configuration file and to flush

       its user/group information caches. Some configuration changes would require kicking all

       apps off the bus; so they will only take effect if you restart the daemon. Policy changes

       should take effect with SIGHUP.

OPTIONS

       The following options are supported:

       --config-file=FILE

           Use the given configuration file.

       --fork

           Force the message bus to fork and become a daemon, even if the configuration file does

           not specify that it should. In most contexts the configuration file already gets this

           right, though. This option is not supported on Windows.

       --nofork

           Force the message bus not to fork and become a daemon, even if the configuration file

           specifies that it should. On Windows, the dbus-daemon never forks, so this option is

           allowed but does nothing.

       --print-address[=DESCRIPTOR]

           Print the address of the message bus to standard output, or to the given file

           descriptor. This is used by programs that launch the message bus.

       --print-pid[=DESCRIPTOR]

           Print the process ID of the message bus to standard output, or to the given file

           descriptor. This is used by programs that launch the message bus.

       --session

           Use the standard configuration file for the per-login-session message bus.

       --system

           Use the standard configuration file for the systemwide message bus.

       --version

           Print the version of the daemon. Page 2/20



       --introspect

           Print the introspection information for all D-Bus internal interfaces.

       --address[=ADDRESS]

           Set the address to listen on. This option overrides the address configured in the

           configuration file via the <listen> directive. See the documentation of that directive

           for more details.

       --systemd-activation

           Enable systemd-style service activation. Only useful in conjunction with the systemd

           system and session manager on Linux.

       --nopidfile

           Don't write a PID file even if one is configured in the configuration files.

       --syslog

           Force the message bus to use the system log for messages, in addition to writing to

           standard error, even if the configuration file does not specify that it should. On

           Unix, this uses the syslog; on Windows, this uses OutputDebugString().

       --syslog-only

           Force the message bus to use the system log for messages, and not duplicate them to

           standard error. On Unix, this uses the syslog; on Windows, this uses

           OutputDebugString().

       --nosyslog

           Force the message bus to use only standard error for messages, even if the

           configuration file specifies that it should use the system log.

CONFIGURATION FILE

       A message bus daemon has a configuration file that specializes it for a particular

       application. For example, one configuration file might set up the message bus to be a

       systemwide message bus, while another might set it up to be a per-user-login-session bus.

       The configuration file also establishes resource limits, security parameters, and so

       forth.

       The configuration file is not part of any interoperability specification and its backward

       compatibility is not guaranteed; this document is documentation, not specification.

       The standard systemwide and per-session message bus setups are configured in the files

       "/usr/share/dbus-1/system.conf" and "/usr/share/dbus-1/session.conf". These files normally

       <include> a system-local.conf or session-local.conf in /etc/dbus-1; you can put local Page 3/20



       overrides in those files to avoid modifying the primary configuration files.

       The configuration file is an XML document. It must have the following doctype declaration:

              <!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-Bus Bus Configuration 1.0//EN"

               "http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

       The following elements may be present in the configuration file.

       ?   <busconfig>

       Root element.

       ?   <type>

       The well-known type of the message bus. Currently known values are "system" and "session";

       if other values are set, they should be either added to the D-Bus specification, or

       namespaced. The last <type> element "wins" (previous values are ignored). This element

       only controls which message bus specific environment variables are set in activated

       clients. Most of the policy that distinguishes a session bus from the system bus is

       controlled from the other elements in the configuration file.

       If the well-known type of the message bus is "session", then the DBUS_STARTER_BUS_TYPE

       environment variable will be set to "session" and the DBUS_SESSION_BUS_ADDRESS environment

       variable will be set to the address of the session bus. Likewise, if the type of the

       message bus is "system", then the DBUS_STARTER_BUS_TYPE environment variable will be set

       to "system" and the DBUS_SYSTEM_BUS_ADDRESS environment variable will be set to the

       address of the system bus (which is normally well known anyway).

       Example: <type>session</type>

       ?   <include>

       Include a file <include>filename.conf</include> at this point. If the filename is

       relative, it is located relative to the configuration file doing the including.

       <include> has an optional attribute "ignore_missing=(yes|no)" which defaults to "no" if

       not provided. This attribute controls whether it's a fatal error for the included file to

       be absent.

       ?   <includedir>

       Include all files in <includedir>foo.d</includedir> at this point. Files in the directory

       are included in undefined order. Only files ending in ".conf" are included.

       This is intended to allow extension of the system bus by particular packages. For example,

       if CUPS wants to be able to send out notification of printer queue changes, it could

       install a file to /usr/share/dbus-1/system.d or /etc/dbus-1/system.d that allowed all apps Page 4/20



       to receive this message and allowed the printer daemon user to send it.

       ?   <user>

       The user account the daemon should run as, as either a username or a UID. If the daemon

       cannot change to this UID on startup, it will exit. If this element is not present, the

       daemon will not change or care about its UID.

       The last <user> entry in the file "wins", the others are ignored.

       The user is changed after the bus has completed initialization. So sockets etc. will be

       created before changing user, but no data will be read from clients before changing user.

       This means that sockets and PID files can be created in a location that requires root

       privileges for writing.

       ?   <fork>

       If present, the bus daemon becomes a real daemon (forks into the background, etc.). This

       is generally used rather than the --fork command line option.

       ?   <keep_umask>

       If present, the bus daemon keeps its original umask when forking. This may be useful to

       avoid affecting the behavior of child processes.

       ?   <syslog>

       If present, the bus daemon will log to syslog. The --syslog, --syslog-only and --nosyslog

       command-line options take precedence over this setting.

       ?   <pidfile>

       If present, the bus daemon will write its pid to the specified file. The --nopidfile

       command-line option takes precedence over this setting.

       ?   <allow_anonymous>

       If present, connections that authenticated using the ANONYMOUS mechanism will be

       authorized to connect. This option has no practical effect unless the ANONYMOUS mechanism

       has also been enabled using the <auth> element, described below.

       Using this directive in the configuration of the well-known system bus or the well-known

       session bus will make that bus insecure and should never be done. Similarly, on custom bus

       types, using this directive will usually make the custom bus insecure, unless its

       configuration has been specifically designed to prevent anonymous users from causing

       damage or escalating privileges.

       ?   <listen>

       Add an address that the bus should listen on. The address is in the standard D-Bus format Page 5/20



       that contains a transport name plus possible parameters/options.

       On platforms other than Windows, unix-based transports (unix, systemd, launchd) are the

       default for both the well-known system bus and the well-known session bus, and are

       strongly recommended.

       On Windows, unix-based transports are not available, so TCP-based transports must be used.

       Similar to remote X11, the tcp and nonce-tcp transports have no integrity or

       confidentiality protection, so they should normally only be used across the local loopback

       interface, for example using an address like tcp:host=127.0.0.1 or

       nonce-tcp:host=localhost. In particular, configuring the well-known system bus or the

       well-known session bus to listen on a non-loopback TCP address is insecure.

       Developers are sometimes tempted to use remote TCP as a debugging tool. However, if this

       functionality is left enabled in finished products, the result will be dangerously

       insecure. Instead of using remote TCP, developers should relay connections via Secure

       Shell or a similar protocol[1].

       Remote TCP connections were historically sometimes used to share a single session bus

       between login sessions of the same user on different machines within a trusted local area

       network, in conjunction with unencrypted remote X11, a NFS-shared home directory and NIS

       (YP) authentication. This is insecure against an attacker on the same LAN and should be

       considered strongly deprecated; more specifically, it is insecure in the same ways and for

       the same reasons as unencrypted remote X11 and NFSv2/NFSv3. The D-Bus maintainers

       recommend using a separate session bus per (user, machine) pair, only accessible from

       within that machine.

       Example: <listen>unix:path=/tmp/foo</listen>

       Example: <listen>tcp:host=localhost,port=1234</listen>

       If there are multiple <listen> elements, then the bus listens on multiple addresses. The

       bus will pass its address to started services or other interested parties with the last

       address given in <listen> first. That is, apps will try to connect to the last <listen>

       address first.

       tcp sockets can accept IPv4 addresses, IPv6 addresses or hostnames. If a hostname resolves

       to multiple addresses, the server will bind to all of them. The family=ipv4 or family=ipv6

       options can be used to force it to bind to a subset of addresses

       Example: <listen>tcp:host=localhost,port=0,family=ipv4</listen>

       A special case is using a port number of zero (or omitting the port), which means to Page 6/20



       choose an available port selected by the operating system. The port number chosen can be

       obtained with the --print-address command line parameter and will be present in other

       cases where the server reports its own address, such as when DBUS_SESSION_BUS_ADDRESS is

       set.

       Example: <listen>tcp:host=localhost,port=0</listen>

       tcp/nonce-tcp addresses also allow a bind=hostname option, used in a listenable address to

       configure the interface on which the server will listen: either the hostname is the IP

       address of one of the local machine's interfaces (most commonly 127.0.0.1), a DNS name

       that resolves to one of those IP addresses, '0.0.0.0' to listen on all IPv4 interfaces

       simultaneously, or '::' to listen on all IPv4 and IPv6 interfaces simultaneously (if

       supported by the OS). If not specified, the default is the same value as "host".

       Example: <listen>tcp:host=localhost,bind=0.0.0.0,port=0</listen>

       ?   <auth>

       Lists permitted authorization mechanisms. If this element doesn't exist, then all known

       mechanisms are allowed. If there are multiple <auth> elements, all the listed mechanisms

       are allowed. The order in which mechanisms are listed is not meaningful.

       On non-Windows operating systems, allowing only the EXTERNAL authentication mechanism is

       strongly recommended. This is the default for the well-known system bus and for the

       well-known session bus.

       Example: <auth>EXTERNAL</auth>

       Example: <auth>DBUS_COOKIE_SHA1</auth>

       ?   <servicedir>

       Adds a directory to search for .service files, which tell the dbus-daemon how to start a

       program to provide a particular well-known bus name. See the D-Bus Specification for more

       details about the contents of .service files.

       If a particular service is found in more than one <servicedir>, the first directory listed

       in the configuration file takes precedence. If two service files providing the same

       well-known bus name are found in the same directory, it is arbitrary which one will be

       chosen (this can only happen if at least one of the service files does not have the

       recommended name, which is its well-known bus name followed by ".service").

       ?   <standard_session_servicedirs/>

       <standard_session_servicedirs/> requests a standard set of session service directories.

       Its effect is similar to specifying a series of <servicedir/> elements for each of the Page 7/20



       data directories, in the order given here. It is not exactly equivalent, because there is

       currently no way to disable directory monitoring or enforce strict service file naming for

       a <servicedir/>.

       As with <servicedir/> elements, if a particular service is found in more than one service

       directory, the first directory takes precedence. If two service files providing the same

       well-known bus name are found in the same directory, it is arbitrary which one will be

       chosen (this can only happen if at least one of the service files does not have the

       recommended name, which is its well-known bus name followed by ".service").

       On Unix, the standard session service directories are:

       ?   $XDG_RUNTIME_DIR/dbus-1/services, if XDG_RUNTIME_DIR is set (see the XDG Base

           Directory Specification for details of XDG_RUNTIME_DIR): this location is suitable for

           transient services created at runtime by systemd generators (see

           systemd.generator(7)), session managers or other session infrastructure. It is an

           extension provided by the reference implementation of dbus-daemon, and is not

           standardized in the D-Bus Specification.

           Unlike the other standard session service directories, this directory enforces strict

           naming for the service files: the filename must be exactly the well-known bus name of

           the service, followed by ".service".

           Also unlike the other standard session service directories, this directory is never

           monitored with inotify(7) or similar APIs. Programs that create service files in this

           directory while a dbus-daemon is running are expected to call the dbus-daemon's

           ReloadConfig() method after they have made changes.

       ?   $XDG_DATA_HOME/dbus-1/services, where XDG_DATA_HOME defaults to ~/.local/share (see

           the XDG Base Directory Specification): this location is specified by the D-Bus

           Specification, and is suitable for per-user, locally-installed software.

       ?   directory/dbus-1/services for each directory in XDG_DATA_DIRS, where XDG_DATA_DIRS

           defaults to /usr/local/share:/usr/share (see the XDG Base Directory Specification):

           these locations are specified by the D-Bus Specification. The defaults are suitable

           for software installed locally by a system administrator (/usr/local/share) or for

           software installed from operating system packages (/usr/share). Per-user or

           system-wide configuration that sets the XDG_DATA_DIRS environment variable can extend

           this search path to cover installations in other locations, for example

           ~/.local/share/flatpak/exports/share/ and /var/lib/flatpak/exports/share/ when Page 8/20



           flatpak(1) is used.

       ?   ${datadir}/dbus-1/services for the ${datadir} that was specified when dbus was

           compiled, typically /usr/share: this location is an extension provided by the

           reference dbus-daemon implementation, and is suitable for software stacks installed

           alongside dbus-daemon.

       The "XDG Base Directory Specification" can be found at

       http://freedesktop.org/wiki/Standards/basedir-spec if it hasn't moved, otherwise try your

       favorite search engine.

       On Windows, the standard session service directories are:

       ?   %CommonProgramFiles%/dbus-1/services if %CommonProgramFiles% is set: this location is

           suitable for system-wide installed software packages

       ?   A share/dbus-1/services directory found in the same directory hierarchy (prefix) as

           the dbus-daemon: this location is suitable for software stacks installed alongside

           dbus-daemon

       The <standard_session_servicedirs/> option is only relevant to the per-user-session bus

       daemon defined in /etc/dbus-1/session.conf. Putting it in any other configuration file

       would probably be nonsense.

       ?   <standard_system_servicedirs/>

       <standard_system_servicedirs/> specifies the standard system-wide activation directories

       that should be searched for service files. As with session services, the first directory

       listed has highest precedence.

       On Unix, the standard session service directories are:

       ?   /usr/local/share/dbus-1/system-services: this location is specified by the D-Bus

           Specification, and is suitable for software installed locally by the system

           administrator

       ?   /usr/share/dbus-1/system-services: this location is specified by the D-Bus

           Specification, and is suitable for software installed by operating system packages

       ?   ${datadir}/dbus-1/system-services for the ${datadir} that was specified when dbus was

           compiled, typically /usr/share: this location is an extension provided by the

           reference dbus-daemon implementation, and is suitable for software stacks installed

           alongside dbus-daemon

       ?   /lib/dbus-1/system-services: this location is specified by the D-Bus Specification,

           and was intended for software installed by operating system packages and used during Page 9/20



           early boot (but it should be considered deprecated, because the reference dbus-daemon

           is not designed to be available during early boot)

       On Windows, there is no standard system bus, so there are no standard system bus

       directories either.

       The <standard_system_servicedirs/> option is only relevant to the per-system bus daemon

       defined in /usr/share/dbus-1/system.conf. Putting it in any other configuration file would

       probably be nonsense.

       ?   <servicehelper/>

       <servicehelper/> specifies the setuid helper that is used to launch system daemons with an

       alternate user. Typically this should be the dbus-daemon-launch-helper executable in

       located in libexec.

       The <servicehelper/> option is only relevant to the per-system bus daemon defined in

       /usr/share/dbus-1/system.conf. Putting it in any other configuration file would probably

       be nonsense.

       ?   <limit>

       <limit> establishes a resource limit. For example:

             <limit name="max_message_size">64</limit>

             <limit name="max_completed_connections">512</limit>

       The name attribute is mandatory. Available limit names are:

                 "max_incoming_bytes"         : total size in bytes of messages

                                                incoming from a single connection

                 "max_incoming_unix_fds"      : total number of unix fds of messages

                                                incoming from a single connection

                 "max_outgoing_bytes"         : total size in bytes of messages

                                                queued up for a single connection

                 "max_outgoing_unix_fds"      : total number of unix fds of messages

                                                queued up for a single connection

                 "max_message_size"           : max size of a single message in

                                                bytes

                 "max_message_unix_fds"       : max unix fds of a single message

                 "service_start_timeout"      : milliseconds (thousandths) until

                                                a started service has to connect

                 "auth_timeout"               : milliseconds (thousandths) a Page 10/20



                                                connection is given to

                                                authenticate

                 "pending_fd_timeout"         : milliseconds (thousandths) a

                                                fd is given to be transmitted to

                                                dbus-daemon before disconnecting the

                                                connection

                 "max_completed_connections"  : max number of authenticated connections

                 "max_incomplete_connections" : max number of unauthenticated

                                                connections

                 "max_connections_per_user"   : max number of completed connections from

                                                the same user

                 "max_pending_service_starts" : max number of service launches in

                                                progress at the same time

                 "max_names_per_connection"   : max number of names a single

                                                connection can own

                 "max_match_rules_per_connection": max number of match rules for a single

                                                   connection

                 "max_replies_per_connection" : max number of pending method

                                                replies per connection

                                                (number of calls-in-progress)

                 "reply_timeout"              : milliseconds (thousandths)

                                                until a method call times out

       The max incoming/outgoing queue sizes allow a new message to be queued if one byte remains

       below the max. So you can in fact exceed the max by max_message_size.

       max_completed_connections divided by max_connections_per_user is the number of users that

       can work together to denial-of-service all other users by using up all connections on the

       systemwide bus.

       Limits are normally only of interest on the systemwide bus, not the user session buses.

       ?   <policy>

       The <policy> element defines a security policy to be applied to a particular set of

       connections to the bus. A policy is made up of <allow> and <deny> elements. Policies are

       normally used with the systemwide bus; they are analogous to a firewall in that they allow

       expected traffic and prevent unexpected traffic. Page 11/20



       Currently, the system bus has a default-deny policy for sending method calls and owning

       bus names, and a default-allow policy for receiving messages, sending signals, and sending

       a single success or error reply for each method call that does not have the NO_REPLY flag.

       Sending more than the expected number of replies is not allowed.

       In general, it is best to keep system services as small, targeted programs which run in

       their own process and provide a single bus name. Then, all that is needed is an <allow>

       rule for the "own" permission to let the process claim the bus name, and a

       "send_destination" rule to allow traffic from some or all uids to your service.

       The <policy> element has one of four attributes:

             context="(default|mandatory)"

             at_console="(true|false)"

             user="username or userid"

             group="group name or gid"

       Policies are applied to a connection as follows:

              - all context="default" policies are applied

              - all group="connection's user's group" policies are applied

                in undefined order

              - all user="connection's auth user" policies are applied

                in undefined order

              - all at_console="true" policies are applied

              - all at_console="false" policies are applied

              - all context="mandatory" policies are applied

       Policies applied later will override those applied earlier, when the policies overlap.

       Multiple policies with the same user/group/context are applied in the order they appear in

       the config file.

       <deny>

           <allow>

       A <deny> element appears below a <policy> element and prohibits some action. The <allow>

       element makes an exception to previous <deny> statements, and works just like <deny> but

       with the inverse meaning.

       The possible attributes of these elements are:

              send_interface="interface_name" | "*"

              send_member="method_or_signal_name" | "*" Page 12/20



              send_error="error_name" | "*"

              send_broadcast="true" | "false"

              send_destination="name" | "*"

              send_type="method_call" | "method_return" | "signal" | "error" | "*"

              send_path="/path/name" | "*"

              receive_interface="interface_name" | "*"

              receive_member="method_or_signal_name" | "*"

              receive_error="error_name" | "*"

              receive_sender="name" | "*"

              receive_type="method_call" | "method_return" | "signal" | "error" | "*"

              receive_path="/path/name" | "*"

              send_requested_reply="true" | "false"

              receive_requested_reply="true" | "false"

              eavesdrop="true" | "false"

              own="name" | "*"

              own_prefix="name"

              user="username" | "*"

              group="groupname" | "*"

       Examples:

              <deny send_destination="org.freedesktop.Service" send_interface="org.freedesktop.System"

send_member="Reboot"/>

              <deny send_destination="org.freedesktop.System"/>

              <deny receive_sender="org.freedesktop.System"/>

              <deny user="john"/>

              <deny group="enemies"/>

       The <deny> element's attributes determine whether the deny "matches" a particular action.

       If it matches, the action is denied (unless later rules in the config file allow it).

       Rules with one or more of the send_* family of attributes are checked in order when a

       connection attempts to send a message. The last rule that matches the message determines

       whether it may be sent. The well-known session bus normally allows sending any message.

       The well-known system bus normally allows sending any signal, selected method calls to the

       dbus-daemon, and exactly one reply to each previously-sent method call (either success or

       an error). Either of these can be overridden by configuration; on the system bus, services Page 13/20



       that will receive method calls must install configuration that allows them to do so,

       usually via rules of the form <policy context="default"><allow

       send_destination="..."/><policy>.

       Rules with one or more of the receive_* family of attributes, or with the eavesdrop

       attribute and no others, are checked for each recipient of a message (there might be more

       than one recipient if the message is a broadcast or a connection is eavesdropping). The

       last rule that matches the message determines whether it may be received. The well-known

       session bus normally allows receiving any message, including eavesdropping. The well-known

       system bus normally allows receiving any message that was not eavesdropped (any unicast

       message addressed to the recipient, and any broadcast message).

       The eavesdrop, min_fds and max_fds attributes are modifiers that can be applied to either

       send_* or receive_* rules, and are documented below.

       send_destination and receive_sender rules mean that messages may not be sent to or

       received from the *owner* of the given name, not that they may not be sent *to that name*.

       That is, if a connection owns services A, B, C, and sending to A is denied, sending to B

       or C will not work either. As a special case, send_destination="*" matches any message

       (whether it has a destination specified or not), and receive_sender="*" similarly matches

       any message.

       Rules with send_broadcast="true" match signal messages with no destination (broadcasts).

       Rules with send_broadcast="false" are the inverse: they match any unicast destination

       (unicast signals, together with all method calls, replies and errors) but do not match

       messages with no destination (broadcasts). This is not the same as send_destination="*",

       which matches any sent message, regardless of whether it has a destination or not.

       The other send_* and receive_* attributes are purely textual/by-value matches against the

       given field in the message header, except that for the attributes where it is allowed, *

       matches any message (whether it has the relevant header field or not). For example,

       send_interface="*" matches any sent message, even if it does not contain an interface

       header field. More complex glob matching such as foo.bar.*  is not allowed.

       "Eavesdropping" occurs when an application receives a message that was explicitly

       addressed to a name the application does not own, or is a reply to such a message.

       Eavesdropping thus only applies to messages that are addressed to services and replies to

       such messages (i.e. it does not apply to signals).

       For <allow>, eavesdrop="true" indicates that the rule matches even when eavesdropping. Page 14/20



       eavesdrop="false" is the default and means that the rule only allows messages to go to

       their specified recipient. For <deny>, eavesdrop="true" indicates that the rule matches

       only when eavesdropping. eavesdrop="false" is the default for <deny> also, but here it

       means that the rule applies always, even when not eavesdropping. The eavesdrop attribute

       can only be combined with send and receive rules (with send_* and receive_* attributes).

       The [send|receive]_requested_reply attribute works similarly to the eavesdrop attribute.

       It controls whether the <deny> or <allow> matches a reply that is expected (corresponds to

       a previous method call message). This attribute only makes sense for reply messages

       (errors and method returns), and is ignored for other message types.

       For <allow>, [send|receive]_requested_reply="true" is the default and indicates that only

       requested replies are allowed by the rule. [send|receive]_requested_reply="false" means

       that the rule allows any reply even if unexpected.

       For <deny>, [send|receive]_requested_reply="false" is the default but indicates that the

       rule matches only when the reply was not requested. [send|receive]_requested_reply="true"

       indicates that the rule applies always, regardless of pending reply state.

       The min_fds and max_fds attributes modify either send_* or receive_* rules. A rule with

       the min_fds attribute only matches messages if they have at least that many Unix file

       descriptors attached. Conversely, a rule with the max_fds attribute only matches messages

       if they have no more than that many file descriptors attached. In practice, rules with

       these attributes will most commonly take the form <allow send_destination="..."

       max_fds="0"/>, <deny send_destination="..." min_fds="1"/> or <deny receive_sender="*"

       min_fds="1"/>.

       Rules with the user or group attribute are checked when a new connection to the message

       bus is established, and control whether the connection can continue. Each of these

       attributes cannot be combined with any other attribute. As a special case, both user="*"

       and group="*" match any connection. If there are no rules of this form, the default is to

       allow connections from the same user ID that owns the dbus-daemon process. The well-known

       session bus normally uses that default behaviour, while the well-known system bus normally

       allows any connection.

       Rules with the own or own_prefix attribute are checked when a connection attempts to own a

       well-known bus names. As a special case, own="*" matches any well-known bus name. The

       well-known session bus normally allows any connection to own any name, while the

       well-known system bus normally does not allow any connection to own any name, except where Page 15/20



       allowed by further configuration. System services that will own a name must install

       configuration that allows them to do so, usually via rules of the form <policy

       user="some-system-user"><allow own="..."/></policy>.

       <allow own_prefix="a.b"/> allows you to own the name "a.b" or any name whose first

       dot-separated elements are "a.b": in particular, you can own "a.b.c" or "a.b.c.d", but not

       "a.bc" or "a.c". This is useful when services like Telepathy and ReserveDevice define a

       meaning for subtrees of well-known names, such as

       org.freedesktop.Telepathy.ConnectionManager.(anything) and

       org.freedesktop.ReserveDevice1.(anything).

       It does not make sense to deny a user or group inside a <policy> for a user or group;

       user/group denials can only be inside context="default" or context="mandatory" policies.

       A single <deny> rule may specify combinations of attributes such as send_destination and

       send_interface and send_type. In this case, the denial applies only if both attributes

       match the message being denied. e.g. <deny send_interface="foo.bar"

       send_destination="foo.blah"/> would deny messages with the given interface AND the given

       bus name. To get an OR effect you specify multiple <deny> rules.

       You can't include both send_ and receive_ attributes on the same rule, since "whether the

       message can be sent" and "whether it can be received" are evaluated separately.

       Be careful with send_interface/receive_interface, because the interface field in messages

       is optional. In particular, do NOT specify <deny send_interface="org.foo.Bar"/>! This will

       cause no-interface messages to be blocked for all services, which is almost certainly not

       what you intended. Always use rules of the form: <deny send_interface="org.foo.Bar"

       send_destination="org.foo.Service"/>

       ?   <selinux>

       The <selinux> element contains settings related to Security Enhanced Linux. More details

       below.

       ?   <associate>

       An <associate> element appears below an <selinux> element and creates a mapping. Right now

       only one kind of association is possible:

              <associate own="org.freedesktop.Foobar" context="foo_t"/>

       This means that if a connection asks to own the name "org.freedesktop.Foobar" then the

       source context will be the context of the connection and the target context will be

       "foo_t" - see the short discussion of SELinux below. Page 16/20



       Note, the context here is the target context when requesting a name, NOT the context of

       the connection owning the name.

       There's currently no way to set a default for owning any name, if we add this syntax it

       will look like:

              <associate own="*" context="foo_t"/>

       If you find a reason this is useful, let the developers know. Right now the default will

       be the security context of the bus itself.

       If two <associate> elements specify the same name, the element appearing later in the

       configuration file will be used.

       ?   <apparmor>

       The <apparmor> element is used to configure AppArmor mediation on the bus. It can contain

       one attribute that specifies the mediation mode:

              <apparmor mode="(enabled|disabled|required)"/>

       The default mode is "enabled". In "enabled" mode, AppArmor mediation will be performed if

       AppArmor support is available in the kernel. If it is not available, dbus-daemon will

       start but AppArmor mediation will not occur. In "disabled" mode, AppArmor mediation is

       disabled. In "required" mode, AppArmor mediation will be enabled if AppArmor support is

       available, otherwise dbus-daemon will refuse to start.

       The AppArmor mediation mode of the bus cannot be changed after the bus starts. Modifying

       the mode in the configuration file and sending a SIGHUP signal to the daemon has no effect

       on the mediation mode.

SELINUX

       See http://www.nsa.gov/selinux/ for full details on SELinux. Some useful excerpts:

       Every subject (process) and object (e.g. file, socket, IPC object, etc) in the system is

       assigned a collection of security attributes, known as a security context. A security

       context contains all of the security attributes associated with a particular subject or

       object that are relevant to the security policy.

       In order to better encapsulate security contexts and to provide greater efficiency, the

       policy enforcement code of SELinux typically handles security identifiers (SIDs) rather

       than security contexts. A SID is an integer that is mapped by the security server to a

       security context at runtime.

       When a security decision is required, the policy enforcement code passes a pair of SIDs

       (typically the SID of a subject and the SID of an object, but sometimes a pair of subject Page 17/20



       SIDs or a pair of object SIDs), and an object security class to the security server. The

       object security class indicates the kind of object, e.g. a process, a regular file, a

       directory, a TCP socket, etc.

       Access decisions specify whether or not a permission is granted for a given pair of SIDs

       and class. Each object class has a set of associated permissions defined to control

       operations on objects with that class.

       D-Bus performs SELinux security checks in two places.

       First, any time a message is routed from one connection to another connection, the bus

       daemon will check permissions with the security context of the first connection as source,

       security context of the second connection as target, object class "dbus" and requested

       permission "send_msg".

       If a security context is not available for a connection (impossible when using UNIX domain

       sockets), then the target context used is the context of the bus daemon itself. There is

       currently no way to change this default, because we're assuming that only UNIX domain

       sockets will be used to connect to the systemwide bus. If this changes, we'll probably add

       a way to set the default connection context.

       Second, any time a connection asks to own a name, the bus daemon will check permissions

       with the security context of the connection as source, the security context specified for

       the name in the config file as target, object class "dbus" and requested permission

       "acquire_svc".

       The security context for a bus name is specified with the <associate> element described

       earlier in this document. If a name has no security context associated in the

       configuration file, the security context of the bus daemon itself will be used.

APPARMOR

       The AppArmor confinement context is stored when applications connect to the bus. The

       confinement context consists of a label and a confinement mode. When a security decision

       is required, the daemon uses the confinement context to query the AppArmor policy to

       determine if the action should be allowed or denied and if the action should be audited.

       The daemon performs AppArmor security checks in three places.

       First, any time a message is routed from one connection to another connection, the bus

       daemon will check permissions with the label of the first connection as source, label

       and/or connection name of the second connection as target, along with the bus name, the

       path name, the interface name, and the member name. Reply messages, such as method_return Page 18/20



       and error messages, are implicitly allowed if they are in response to a message that has

       already been allowed.

       Second, any time a connection asks to own a name, the bus daemon will check permissions

       with the label of the connection as source, the requested name as target, along with the

       bus name.

       Third, any time a connection attempts to eavesdrop, the bus daemon will check permissions

       with the label of the connection as the source, along with the bus name.

       AppArmor rules for bus mediation are not stored in the bus configuration files. They are

       stored in the application's AppArmor profile. Please see apparmor.d(5) for more details.

DEBUGGING

       If you're trying to figure out where your messages are going or why you aren't getting

       messages, there are several things you can try.

       Remember that the system bus is heavily locked down and if you haven't installed a

       security policy file to allow your message through, it won't work. For the session bus,

       this is not a concern.

       The simplest way to figure out what's happening on the bus is to run the dbus-monitor

       program, which comes with the D-Bus package. You can also send test messages with

       dbus-send. These programs have their own man pages.

       If you want to know what the daemon itself is doing, you might consider running a separate

       copy of the daemon to test against. This will allow you to put the daemon under a

       debugger, or run it with verbose output, without messing up your real session and system

       daemons.

       To run a separate test copy of the daemon, for example you might open a terminal and type:

             DBUS_VERBOSE=1 dbus-daemon --session --print-address

       The test daemon address will be printed when the daemon starts. You will need to

       copy-and-paste this address and use it as the value of the DBUS_SESSION_BUS_ADDRESS

       environment variable when you launch the applications you want to test. This will cause

       those applications to connect to your test bus instead of the DBUS_SESSION_BUS_ADDRESS of

       your real session bus.

       DBUS_VERBOSE=1 will have NO EFFECT unless your copy of D-Bus was compiled with verbose

       mode enabled. This is not recommended in production builds due to performance impact. You

       may need to rebuild D-Bus if your copy was not built with debugging in mind. (DBUS_VERBOSE

       also affects the D-Bus library and thus applications using D-Bus; it may be useful to see Page 19/20



       verbose output on both the client side and from the daemon.)

       If you want to get fancy, you can create a custom bus configuration for your test bus (see

       the session.conf and system.conf files that define the two default configurations for

       example). This would allow you to specify a different directory for .service files, for

       example.

AUTHOR

       See http://www.freedesktop.org/software/dbus/doc/AUTHORS

BUGS

       Please send bug reports to the D-Bus mailing list or bug tracker, see

       http://www.freedesktop.org/software/dbus/

NOTES

        1. relay connections via Secure Shell or a similar protocol

           https://lists.freedesktop.org/archives/dbus/2018-April/017447.html

D-Bus 1.12.20                                                                      DBUS-DAEMON(1)

Page 20/20


