
Rocky Enterprise Linux 9.2 Manual Pages on command 'cryptsetup.8'

$ man cryptsetup.8

CRYPTSETUP(8)                          Maintenance Commands                         CRYPTSETUP(8)

NAME

       cryptsetup - manage plain dm-crypt and LUKS encrypted volumes

SYNOPSIS

       cryptsetup <options> <action> <action args>

DESCRIPTION

       cryptsetup  is  used  to conveniently setup dm-crypt managed device-mapper mappings. These

       include plain dm-crypt volumes and LUKS volumes. The difference is that LUKS uses a  meta?

       data  header and can hence offer more features than plain dm-crypt. On the other hand, the

       header is visible and vulnerable to damage.

       In addition, cryptsetup provides limited support for the use of  loop-AES  volumes,  True?

       Crypt, VeraCrypt and BitLocker compatible volumes.

PLAIN DM-CRYPT OR LUKS?

       Unless  you  understand  the cryptographic background well, use LUKS.  With plain dm-crypt

       there are a number of possible user errors that massively decrease  security.  While  LUKS

       cannot fix them all, it can lessen the impact for many of them.

WARNINGS

       A  lot  of  good information on the risks of using encrypted storage, on handling problems

       and on security aspects can be found in the Cryptsetup FAQ.  Read  it.  Nonetheless,  some

       risks deserve to be mentioned here.

       Backup:  Storage  media die. Encryption has no influence on that.  Backup is mandatory for

       encrypted data as well, if the data has any worth. See the Cryptsetup FAQ  for  advice  on

       how to do a backup of an encrypted volume. Page 1/36



       Character  encoding:  If  you  enter a passphrase with special symbols, the passphrase can

       change depending on character encoding. Keyboard settings can also change, which can  make

       blind  input  hard  or impossible. For example, switching from some ASCII 8-bit variant to

       UTF-8 can lead to a different binary encoding  and  hence  different  passphrase  seen  by

       cryptsetup,  even  if  what  you  see on the terminal is exactly the same. It is therefore

       highly recommended to select passphrase characters only from 7-bit ASCII, as the  encoding

       for 7-bit ASCII stays the same for all ASCII variants and UTF-8.

       LUKS header: If the header of a LUKS volume gets damaged, all data is permanently lost un?

       less you have a header-backup.  If a key-slot is damaged, it can only be restored  from  a

       header-backup  or if another active key-slot with known passphrase is undamaged.  Damaging

       the LUKS header is something people manage to do with surprising frequency. This  risk  is

       the  result  of  a trade-off between security and safety, as LUKS is designed for fast and

       secure wiping by just overwriting header and key-slot area.

       Previously used partitions: If a partition was previously used, it is a very good idea  to

       wipe  filesystem signatures, data, etc. before creating a LUKS or plain dm-crypt container

       on it.  For a quick removal of filesystem signatures, use "wipefs". Take care though  that

       this  may  not remove everything. In particular, MD RAID signatures at the end of a device

       may survive. It also does not remove data. For a full wipe, overwrite the whole  partition

       before container creation. If you do not know how to do that, the cryptsetup FAQ describes

       several options.

BASIC ACTIONS

       The following are valid actions for all supported device types.

       open <device> <name> --type <device_type>

              Opens (creates a mapping with) <name> backed by device <device>.

              Device type can be plain, luks (default), luks1, luks2, loopaes or tcrypt.

              For backward compatibility there are open command aliases:

              create (argument-order <name> <device>): open --type plain

              plainOpen: open --type plain

              luksOpen: open --type luks

              loopaesOpen: open --type loopaes

              tcryptOpen: open --type tcrypt

              bitlkOpen: open --type bitlk

              <options> are type specific and are described below for  individual  device  types. Page 2/36



              For create, the order of the <name> and <device> options is inverted for historical

              reasons, all other aliases use the standard <device> <name> order.

       close <name>

              Removes the existing mapping <name> and wipes the key from kernel memory.

              For backward compatibility there are close  command  aliases:  remove,  plainClose,

              luksClose,  loopaesClose, tcryptClose (all behaves exactly the same, device type is

              determined automatically from active device).

              <options> can be [--deferred] or [--cancel-deferred]

       status <name>

              Reports the status for the mapping <name>.

       resize <name>

              Resizes an active mapping <name>.

              If --size (in 512-bytes sectors) or --device-size are not specified,  the  size  is

              computed  from the underlying device. For LUKS it is the size of the underlying de?

              vice without the area reserved for LUKS header (see data payload offset in luksDump

              command).  For plain crypt device, the whole device size is used.

              Note  that  this  does not change the raw device geometry, it just changes how many

              sectors of the raw device are represented in the mapped device.

              If cryptsetup detected volume key for active device loaded in kernel  keyring  ser?

              vice,  resize  action would first try to retrieve the key using a token and only if

              it failed it'd ask for a passphrase to unlock a keyslot (LUKS) or to derive a  vol?

              ume  key  again  (plain mode).  The kernel keyring is used by default for LUKS2 de?

              vices.

              With LUKS2 device additional <options> can be [--token-id,  --token-only,  --token-

              type,  --key-slot,  --key-file, --keyfile-size, --keyfile-offset, --timeout, --dis?

              able-external-tokens, --disable-locks, --disable-keyring].

       refresh <name>

              Refreshes parameters of active mapping <name>.

              Updates parameters of active device <name> without need to  deactivate  the  device

              (and  umount filesystem). Currently it supports parameters refresh on following de?

              vices: LUKS1, LUKS2 (including authenticated encryption), plain crypt and loopaes.

              Mandatory parameters are identical to those of an open action for respective device

              type. Page 3/36



              You   may   change  following  parameters  on  all  devices  --perf-same_cpu_crypt,

              --perf-submit_from_crypt_cpus, --perf-no_read_workqueue,  --perf-no_write_workqueue

              and --allow-discards.

              Refreshing  device  without any optional parameter will refresh the device with de?

              fault setting (respective to device type).

              LUKS2 only:

              --integrity-no-journal parameter affects only LUKS2 devices with underlying  dm-in?

              tegrity device.

              Adding  option  --persistent  stores  any combination of device parameters above in

              LUKS2 metadata (only after successful refresh operation).

              --disable-keyring parameter refreshes a device with volume key passed  in  dm-crypt

              driver.

       reencrypt <device> or --active-name <name> [<new_name>]

              Run resilient reencryption (LUKS2 device only).

              There are 3 basic modes of operation:

              ? device reencryption (reencrypt)

              ? device encryption (reencrypt --encrypt)

              ? device decryption (reencrypt --decrypt)

              <device> or --active-name <name> is mandatory parameter.

              With  <device> parameter cryptsetup looks up active <device> dm mapping.  If no ac?

              tive mapping is detected, it starts offline reencryption otherwise online reencryp?

              tion takes place.

              Reencryption  process  may  be  safely  interrupted  by  a  user via SIGTERM signal

              (ctrl+c).

              To resume already initialized or interrupted reencryption, just run the  cryptsetup

              reencrypt  command  again to continue the reencryption operation.  Reencryption may

              be resumed with different --resilience or --hotzone-size unless implicit  datashift

              resilience mode is used (reencrypt --encrypt with --reduce-device-size option).

              If  the  reencryption process was interrupted abruptly (reencryption process crash,

              system crash, poweroff) it may require recovery. The recovery is currently run  au?

              tomatically on next activation (action open) when needed.

              Optional  parameter <new_name> takes effect only with --encrypt option and it acti?

              vates device <new_name> immediately after encryption initialization gets  finished. Page 4/36



              That's  useful when device needs to be ready as soon as possible and mounted (used)

              before full data area encryption is completed.

              Action  supports  following  additional  <options>  [--encrypt,  --decrypt,   --de?

              vice-size,  --resilience,  --resilience-hash,  --hotzone-size,  --init-only,  --re?

              sume-only, --reduce-device-size, --master-key-file, --key-size].

PLAIN MODE

       Plain dm-crypt encrypts the device sector-by-sector with a single, non-salted hash of  the

       passphrase.  No  checks  are performed, no metadata is used. There is no formatting opera?

       tion.  When the raw device is mapped (opened), the usual device operations can be used  on

       the  mapped  device,  including  filesystem  creation.   Mapped  devices usually reside in

       /dev/mapper/<name>.

       The following are valid plain device type actions:

       open --type plain <device> <name>

       create <name> <device> (OBSOLETE syntax)

              Opens (creates a mapping with) <name> backed by device <device>.

              <options> can be [--hash, --cipher, --verify-passphrase, --sector-size, --key-file,

              --keyfile-offset, --key-size, --offset, --skip, --size, --readonly, --shared, --al?

              low-discards, --refresh]

              Example: 'cryptsetup open --type plain /dev/sda10 e1' maps the raw encrypted device

              /dev/sda10  to  the  mapped  (decrypted)  device  /dev/mapper/e1, which can then be

              mounted, fsck-ed or have a filesystem created on it.

LUKS EXTENSION

       LUKS, the Linux Unified Key Setup, is a standard for disk encryption.  It adds a standard?

       ized header at the start of the device, a key-slot area directly behind the header and the

       bulk data area behind that. The whole set is called a 'LUKS container'.  The device that a

       LUKS container resides on is called a 'LUKS device'.  For most purposes, both terms can be

       used interchangeably. But note that when the LUKS header is at a nonzero offset in  a  de?

       vice,  then the device is not a LUKS device anymore, but has a LUKS container stored in it

       at an offset.

       LUKS can manage multiple passphrases that can be individually revoked or changed and  that

       can  be  securely  scrubbed from persistent media due to the use of anti-forensic stripes.

       Passphrases are protected against brute-force and dictionary attacks by PBKDF2, which  im?

       plements hash iteration and salting in one function. Page 5/36



       LUKS2  is  a new version of header format that allows additional extensions like different

       PBKDF algorithm or authenticated encryption.  You can format device with LUKS2  header  if

       you  specify  --type  luks2  in luksFormat command.  For activation, the format is already

       recognized automatically.

       Each passphrase, also called a key in this document, is associated  with  one  of  8  key-

       slots.   Key  operations that do not specify a slot affect the first slot that matches the

       supplied passphrase or the first empty slot if a new passphrase is added.

       The <device> parameter can also be specified by a LUKS UUID  in  the  format  UUID=<uuid>.

       Translation to real device name uses symlinks in /dev/disk/by-uuid directory.

       To  specify a detached header, the --header parameter can be used in all LUKS commands and

       always takes precedence over the positional <device> parameter.

       The following are valid LUKS actions:

       luksFormat <device> [<key file>]

              Initializes a LUKS partition and sets the initial passphrase (for key-slot 0),  ei?

              ther  via prompting or via <key file>. Note that if the second argument is present,

              then the passphrase is taken from the file given there, without the need to use the

              --key-file  option.  Also note that for both forms of reading the passphrase from a

              file you can give '-' as file name, which results in the passphrase being read from

              stdin and the safety-question being skipped.

              You cannot call luksFormat on a device or filesystem that is mapped or in use, e.g.

              mounted filesysem, used in LVM, active RAID member etc.  The device  or  filesystem

              has to be un-mounted in order to call luksFormat.

              To use LUKS2, specify --type luks2.

              <options>  can  be  [--hash, --cipher, --verify-passphrase, --key-size, --key-slot,

              --key-file (takes precedence  over  optional  second  argument),  --keyfile-offset,

              --keyfile-size,    --use-random   |   --use-urandom,   --uuid,   --master-key-file,

              --iter-time,  --header,  --pbkdf-force-iterations,   --force-password,   --disable-

              locks].

              For  LUKS2,  additional  <options> can be [--integrity, --integrity-no-wipe, --sec?

              tor-size, --label, --subsystem, --pbkdf, --pbkdf-memory,  --pbkdf-parallel,  --dis?

              able-locks,    --disable-keyring,   --luks2-metadata-size,   --luks2-keyslots-size,

              --keyslot-cipher, --keyslot-key-size].

              WARNING: Doing a luksFormat on an existing LUKS container will make  all  data  the Page 6/36



              old container permanently irretrievable unless you have a header backup.

       open --type luks <device> <name>

       luksOpen <device> <name> (old syntax)

              Opens  the LUKS device <device> and sets up a mapping <name> after successful veri?

              fication of the supplied passphrase.

              First, the passphrase is searched in LUKS tokens. If it's not found  in  any  token

              and  also the passphrase is not supplied via --key-file, the command prompts for it

              interactively.

              <options>  can  be  [--key-file,  --keyfile-offset,   --keyfile-size,   --readonly,

              --test-passphrase, --allow-discards, --header, --key-slot, --master-key-file, --to?

              ken-id, --token-only, --token-type,  --disable-external-tokens,  --disable-keyring,

              --disable-locks, --type, --refresh, --serialize-memory-hard-pbkdf].

       luksSuspend <name>

              Suspends  an active device (all IO operations will block and accesses to the device

              will wait indefinitely) and wipes the encryption key from kernel memory. Needs ker?

              nel 2.6.19 or later.

              After this operation you have to use luksResume to reinstate the encryption key and

              unblock the device or close to remove the mapped device.

              WARNING: never suspend the device on which the cryptsetup binary resides.

              <options> can be [--header, --disable-locks].

       luksResume <name>

              Resumes a suspended device and reinstates the  encryption  key.   Prompts  interac?

              tively for a passphrase if --key-file is not given.

              <options>  can  be [--key-file, --keyfile-size, --header, --disable-keyring, --dis?

              able-locks, --type]

       luksAddKey <device> [<key file with new key>]

              Adds a new passphrase. An existing passphrase must be supplied interactively or via

              --key-file.   The new passphrase to be added can be specified interactively or read

              from the file given as positional argument.

              NOTE: with --unbound option the action  creates  new  unbound  LUKS2  keyslot.  The

              keyslot cannot be used for device activation.  If you don't pass new key via --mas?

              ter-key-file option, new random key is generated. Existing passphrase for  any  ac?

              tive keyslot is not required. Page 7/36



              <options>  can be [--key-file, --keyfile-offset, --keyfile-size, --new-keyfile-off?

              set, --new-keyfile-size, --key-slot, --master-key-file, --force-password, --header,

              --disable-locks, --iter-time, --pbkdf, --pbkdf-force-iterations, --unbound, --type,

              --keyslot-cipher, --keyslot-key-size].

       luksRemoveKey <device> [<key file with passphrase to be removed>]

              Removes the supplied passphrase from the LUKS device. The passphrase to be  removed

              can be specified interactively, as the positional argument or via --key-file.

              <options>  can  be  [--key-file, --keyfile-offset, --keyfile-size, --header, --dis?

              able-locks, --type]

              WARNING: If you read the passphrase from stdin (without further  argument  or  with

              '-'  as  an argument to --key-file), batch-mode (-q) will be implicitly switched on

              and no warning will be given when you remove the last remaining passphrase  from  a

              LUKS  container.  Removing the last passphrase makes the LUKS container permanently

              inaccessible.

       luksChangeKey <device> [<new key file>]

              Changes an existing passphrase. The passphrase to be changed must be  supplied  in?

              teractively or via --key-file.  The new passphrase can be supplied interactively or

              in a file given as positional argument.

              If a key-slot is specified (via --key-slot), the passphrase for that key-slot  must

              be  given  and the new passphrase will overwrite the specified key-slot. If no key-

              slot is specified and there is still a free key-slot, then the new passphrase  will

              be  put  into  a free key-slot before the key-slot containing the old passphrase is

              purged. If there is no free key-slot, then the key-slot with the old passphrase  is

              overwritten directly.

              WARNING:  If  a  key-slot is overwritten, a media failure during this operation can

              cause the overwrite to fail after the old passphrase has been wiped  and  make  the

              LUKS container inaccessible.

              <options>  can be [--key-file, --keyfile-offset, --keyfile-size, --new-keyfile-off?

              set,   --iter-time,    --pbkdf,    --pbkdf-force-iterations,    --new-keyfile-size,

              --key-slot,  --force-password, --header, --disable-locks, --type, --keyslot-cipher,

              --keyslot-key-size].

       luksConvertKey <device>

              Converts an existing LUKS2 keyslot to new  pbkdf  parameters.  The  passphrase  for Page 8/36



              keyslot  to  be  converted  must be supplied interactively or via --key-file. If no

              --pbkdf parameters are specified LUKS2 default pbkdf values will apply.

              If a keyslot is specified (via --key-slot), the passphrase for that keyslot must be

              given.  If  no keyslot is specified and there is still a free keyslot, then the new

              parameters will be put into a free keyslot before the keyslot  containing  the  old

              parameters  is  purged.  If there is no free keyslot, then the keyslot with the old

              parameters is overwritten directly.

              WARNING: If a keyslot is overwritten, a media failure  during  this  operation  can

              cause  the  overwrite to fail after the old parameters have been wiped and make the

              LUKS container inaccessible.

              <options>  can  be  [--key-file,  --keyfile-offset,   --keyfile-size,   --key-slot,

              --header,    --disable-locks,   --iter-time,   --pbkdf,   --pbkdf-force-iterations,

              --pbkdf-memory, --pbkdf-parallel, --keyslot-cipher, --keyslot-key-size].

       luksKillSlot <device> <key slot number>

              Wipe the key-slot number <key slot> from the LUKS device. Except running in  batch-

              mode  (-q)  a  remaining  passphrase  must be supplied, either interactively or via

              --key-file.  This command can remove the last remaining key-slot, but  requires  an

              interactive  confirmation  when doing so. Removing the last passphrase makes a LUKS

              container permanently inaccessible.

              <options> can be [--key-file, --keyfile-offset,  --keyfile-size,  --header,  --dis?

              able-locks, --type].

              WARNING:  If  you  read the passphrase from stdin (without further argument or with

              '-' as an argument to --key-file), batch-mode (-q) will be implicitly  switched  on

              and  no  warning will be given when you remove the last remaining passphrase from a

              LUKS container. Removing the last passphrase makes the LUKS  container  permanently

              inaccessible.

              NOTE:  If there is no passphrase provided (on stdin or through --key-file argument)

              and batch-mode (-q) is active, the key-slot is removed without any other warning.

       erase <device>

       luksErase <device>

              Erase all keyslots and make the LUKS container permanently  inaccessible.   You  do

              not need to provide any password for this operation.

              WARNING: This operation is irreversible. Page 9/36



       luksUUID <device>

              Print the UUID of a LUKS device.

              Set new UUID if --uuid option is specified.

       isLuks <device>

              Returns  true, if <device> is a LUKS device, false otherwise.  Use option -v to get

              human-readable feedback. 'Command successful.'  means the device is a LUKS device.

              By specifying --type you may query for specific LUKS version.

       luksDump <device>

              Dump the header information of a LUKS device.

              If the --dump-master-key option is used, the LUKS device master key is  dumped  in?

              stead  of  the  keyslot info. Together with --master-key-file option, master key is

              dumped to a file instead of standard output. Beware that the master key  cannot  be

              changed without reencryption and can be used to decrypt the data stored in the LUKS

              container without a passphrase and even without the LUKS header. This means that if

              the  master key is compromised, the whole device has to be erased or reencrypted to

              prevent further access. Use this option carefully.

              To dump the master key, a passphrase has to be supplied,  either  interactively  or

              via --key-file.

              To  dump  unbound key (LUKS2 format only), --unbound parameter, specific --key-slot

              id  and  proper  passphrase  has  to  be  supplied,  either  interactively  or  via

              --key-file.  Optional --master-key-file parameter enables unbound keyslot dump to a

              file.

              To dump LUKS2 JSON  metadata  (without  basic  heade  information  like  UUID)  use

              --dump-json-metadata option.

              <options>  can  be  [--dump-master-key,  --dump-json-metadata,  --key-file,  --key?

              file-offset, --keyfile-size, --header, --disable-locks, --master-key-file,  --type,

              --unbound, --key-slot].

              WARNING:  If  --dump-master-key  is  used  with  --key-file  and  the  argument  to

              --key-file is '-', no validation question will be asked and no warning given.

       luksHeaderBackup <device> --header-backup-file <file>

              Stores a binary backup of the LUKS header and keyslot area.

              Note: Using '-' as filename writes the header backup to a file named '-'.

              WARNING: This backup file and a passphrase valid at the time of backup  allows  de? Page 10/36



              cryption of the LUKS data area, even if the passphrase was later changed or removed

              from the LUKS device. Also note that with a header backup you lose the  ability  to

              securely wipe the LUKS device by just overwriting the header and key-slots. You ei?

              ther need to securely erase all header backups in addition  or  overwrite  the  en?

              crypted  data  area as well.  The second option is less secure, as some sectors can

              survive, e.g. due to defect management.

       luksHeaderRestore <device> --header-backup-file <file>

              Restores a binary backup of the LUKS header and keyslot  area  from  the  specified

              file.

              Note: Using '-' as filename reads the header backup from a file named '-'.

              WARNING: Header and keyslots will be replaced, only the passphrases from the backup

              will work afterward.

              This command requires that the master key size and data offset of the  LUKS  header

              already on the device and of the header backup match. Alternatively, if there is no

              LUKS header on the device, the backup will also be written to it.

       token <add|remove|import|export> <device>

              Action add creates new keyring token to enable auto-activation of the device.   For

              the  auto-activation,  the  passphrase must be stored in keyring with the specified

              description. Usually, the passphrase should  be  stored  in  user  or  user-session

              keyring.  The token command is supported only for LUKS2.

              For adding new keyring token, option --key-description is mandatory.  Also, new to?

              ken is assigned to key slot specified with --key-slot option or to all  active  key

              slots in the case --key-slot option is omitted.

              To  remove  existing token, specify the token ID which should be removed with --to?

              ken-id option.

              WARNING: The action token remove removes any token type, not just keyring type from

              token slot specified by --token-id option.

              Action  import  can  store  arbitrary  valid  token json in LUKS2 header. It may be

              passed via standard input or via file passed in --json-file option. If you  specify

              --key-slot then successfully imported token is also assigned to the key slot.

              Action  export  writes requested token json to a file passed with --json-file or to

              standard output.

              <options> can  be  [--header,  --token-id,  --key-slot,  --key-description,  --dis? Page 11/36



              able-external-tokens, --disable-locks, --disable-keyring, --json-file].

       convert <device> --type <format>

              Converts  the  device between LUKS1 and LUKS2 format (if possible).  The conversion

              will not be performed if there is an additional LUKS2 feature or LUKS1  has  unsup?

              ported header size.

              Conversion  (both  directions) must be performed on inactive device. There must not

              be active dm-crypt mapping established for LUKS header requested for conversion.

              --type option is mandatory with following accepted values: luks1 or luks2.

              WARNING: The convert action can destroy the LUKS header in the case of a crash dur?

              ing  conversion  or  if a media error occurs.  Always create a header backup before

              performing this operation!

              <options> can be [--header, --type].

       config <device>

              Set permanent configuration options (store to LUKS header).  The config command  is

              supported only for LUKS2.

              The  permanent  options  can be --priority to set priority (normal, prefer, ignore)

              for keyslot (specified by --key-slot) or --label and --subsystem.

              <options> can be [--priority, --label, --subsystem, --key-slot, --header].

loop-AES EXTENSION

       cryptsetup supports mapping loop-AES encrypted partition using a compatibility mode.

       open --type loopaes <device> <name> --key-file <keyfile>

       loopaesOpen <device> <name> --key-file <keyfile>  (old syntax)

              Opens the loop-AES <device> and sets up a mapping <name>.

              If the key file is encrypted with GnuPG, then you have to use --key-file=- and  de?

              crypt it before use, e.g. like this:

              gpg --decrypt <keyfile> | cryptsetup loopaesOpen --key-file=- <device> <name>

              WARNING:  The  loop-AES  extension  cannot use the direct input of key file on real

              terminal because the keys are separated by end-of-line and only part of the  multi-

              key file would be read.

              If you need it in script, just use the pipe redirection:

              echo $keyfile | cryptsetup loopaesOpen --key-file=- <device> <name>

              Use --keyfile-size to specify the proper key length if needed.

              Use  --offset to specify device offset. Note that the units need to be specified in Page 12/36



              number of 512 byte sectors.

              Use --skip to specify the IV offset. If the original device used an offset and  but

              did  not  use  it in IV sector calculations, you have to explicitly use --skip 0 in

              addition to the offset parameter.

              Use --hash to override the default hash function for passphrase hashing  (otherwise

              it is detected according to key size).

              <options>  can  be  [--key-file,  --key-size, --offset, --skip, --hash, --readonly,

              --allow-discards, --refresh].

       See also section 7 of the FAQ and http://loop-aes.sourceforge.net for more information re?

       garding loop-AES.

TCRYPT (TrueCrypt-compatible and VeraCrypt) EXTENSION

       cryptsetup  supports mapping of TrueCrypt, tcplay or VeraCrypt encrypted partition using a

       native Linux kernel API.  Header formatting and TCRYPT header  change  is  not  supported,

       cryptsetup never changes TCRYPT header on-device.

       TCRYPT extension requires kernel userspace crypto API to be available (introduced in Linux

       kernel 2.6.38).  If you are configuring kernel yourself, enable "User-space interface  for

       symmetric  key cipher algorithms" in "Cryptographic API" section (CRYPTO_USER_API_SKCIPHER

       .config option).

       Because TCRYPT header is encrypted, you have to always provide valid passphrase  and  key?

       files.

       Cryptsetup should recognize all header variants, except legacy cipher chains using LRW en?

       cryption mode with 64 bits encryption block (namely Blowfish in LRW  mode  is  not  recog?

       nized, this is limitation of kernel crypto API).

       VeraCrypt  is just extension of TrueCrypt header with increased iteration count so unlock?

       ing can take quite a lot of time (in comparison with TCRYPT device).

       To open a VeraCrypt device with a custom Personal Iteration Multiplier  (PIM)  value,  use

       either  the  --veracrypt-pim=<PIM> option to directly specify the PIM on the command- line

       or use --veracrypt-query-pim to be prompted for the PIM.

       The PIM value affects the number of iterations applied during key derivation. Please refer

       to   https://www.veracrypt.fr/en/Personal%20Iterations%20Multiplier%20%28PIM%29.html   for

       more detailed information.

       If you need to disable VeraCrypt device support, use --disable-veracrypt option.

       NOTE: Activation with tcryptOpen is supported only for cipher chains using LRW or XTS  en? Page 13/36



       cryption modes.

       The  tcryptDump  command should work for all recognized TCRYPT devices and doesn't require

       superuser privilege.

       To map system device (device with boot loader where the whole  encrypted  system  resides)

       use --tcrypt-system option.  You can use partition device as the parameter (parameter must

       be real partition device, not an image in a file), then only this partition is mapped.

       If you have the whole TCRYPT device as a file image and you want to map multiple partition

       encrypted  with  system  encryption,  please create loopback mapping with partitions first

       (losetup -P, see losetup(8) man page for more info), and use loop partition as the  device

       parameter.

       If  you  use the whole base device as a parameter, one device for the whole system encryp?

       tion is mapped. This mode is available only for backward compatibility with  older  crypt?

       setup versions which mapped TCRYPT system encryption using the whole device.

       To use hidden header (and map hidden device, if available), use --tcrypt-hidden option.

       To explicitly use backup (secondary) header, use --tcrypt-backup option.

       NOTE:  There is no protection for a hidden volume if the outer volume is mounted. The rea?

       son is that if there were any protection, it would require some metadata  describing  what

       to protect in the outer volume and the hidden volume would become detectable.

       open --type tcrypt <device> <name>

       tcryptOpen <device> <name>  (old syntax)

              Opens the TCRYPT (a TrueCrypt-compatible) <device> and sets up a mapping <name>.

              <options>  can  be  [--key-file, --tcrypt-hidden, --tcrypt-system, --tcrypt-backup,

              --readonly,  --test-passphrase,   --allow-discards,   --disable-veracrypt,   --ver?

              acrypt-pim, --veracrypt-query-pim, --header, --cipher, --hash].

              The  keyfile parameter allows a combination of file content with the passphrase and

              can be repeated. Note that using keyfiles is compatible with TCRYPT and is  differ?

              ent from LUKS keyfile logic.

              If  --PBKDF2  variants  with  the specified hash algorithms are checked. This could

              speed up unlocking the device (but also it reveals some information about the  con?

              tainer).

              If  you  use --header in combination with hidden or system options, the header file

              must contain specific headers on the same positions as the original encrypted  con?

              tainer. Page 14/36



              WARNING:  Option  --allow-discards  cannot be combined with option --tcrypt-hidden.

              For normal mapping, it can cause the destruction of hidden  volume  (hidden  volume

              appears as unused space for outer volume so this space can be discarded).

       tcryptDump <device>

              Dump the header information of a TCRYPT device.

              If the --dump-master-key option is used, the TCRYPT device master key is dumped in?

              stead of TCRYPT header info. Beware that the master  key  (or  concatenated  master

              keys  if cipher chain is used) can be used to decrypt the data stored in the TCRYPT

              container without a passphrase.  This means that if the master key is  compromised,

              the  whole device has to be erased to prevent further access. Use this option care?

              fully.

              <options> can be [--dump-master-key, --key-file, --tcrypt-hidden,  --tcrypt-system,

              --tcrypt-backup, --cipher, --hash].

              The  keyfile parameter allows a combination of file content with the passphrase and

              can be repeated.

       See also https://en.wikipedia.org/wiki/TrueCrypt for more information regarding TrueCrypt.

       Please note that cryptsetup does not use TrueCrypt code, please report  all  problems  re?

       lated to this compatibility extension to the cryptsetup project.

BITLK (Windows BitLocker-compatible) EXTENSION (EXPERIMENTAL)

       cryptsetup  supports  mapping of BitLocker and BitLocker to Go encrypted partition using a

       native Linux kernel API.  Header formatting and BITLK header changes  are  not  supported,

       cryptsetup never changes BITLK header on-device.

       WARNING: This extension is EXPERIMENTAL.

       BITLK  extension  requires  kernel  userspace  crypto API to be available (for details see

       TCRYPT section).

       Cryptsetup should recognize all BITLK header variants, except legacy header used  in  Win?

       dows  Vista  systems  and partially decrypted BitLocker devices.  Activation of legacy de?

       vices encrypted in CBC mode requires at least Linux kernel version 5.3 and for devices us?

       ing Elephant diffuser kernel 5.6.

       The bitlkDump command should work for all recognized BITLK devices and doesn't require su?

       peruser privilege.

       For unlocking with the open a password or a recovery passphrase or a startup key  must  be

       provided. Page 15/36



       Additionally unlocking using master key is supported. You must provide BitLocker Full Vol?

       ume Encryption Key (FVEK) using the --master-key-file option. The key  must  be  decrypted

       and  without  the  header  (only 128/256/512 bits of key data depending on used cipher and

       mode).

       Other unlocking methods (TPM, SmartCard) are not supported.

       open --type bitlk <device> <name>

       bitlkOpen <device> <name>  (old syntax)

              Opens the BITLK (a BitLocker-compatible) <device> and sets up a mapping <name>.

              <options>  can  be  [--key-file,  --readonly,  --test-passphrase,  --allow-discards

              --master-key-file].

       bitlkDump <device>

              Dump the header information of a BITLK device.

              <options> can be [--dump-master-key --master-key-file].

       Please  note  that  cryptsetup  does not use any Windows BitLocker code, please report all

       problems related to this compatibility extension to the cryptsetup project.

MISCELLANEOUS

       repair <device>

              Tries to repair the device metadata if possible. Currently supported only for  LUKS

              device type.

              This  command  is useful to fix some known benign LUKS metadata header corruptions.

              Only basic corruptions of unused keyslot are fixable. This command will only change

              the  LUKS  header,  not  any  key-slot data. You may enforce LUKS version by adding

              --type option.

              It also repairs (upgrades) LUKS2 reencryption metadata by  adding  metadata  digest

              that protects it against malicious changes.

              If  LUKS2  reencryption was interrupted in the middle of writting reencryption seg?

              ment the repair command can be used to perform reencryption recovery so that  reen?

              cryption can continue later.

              WARNING:  Always  create a binary backup of the original header before calling this

              command.

       benchmark <options>

              Benchmarks ciphers and KDF (key derivation function).  Without parameters, it tries

              to measure few common configurations. Page 16/36



              To  benchmark  other  ciphers or modes, you need to specify --cipher and --key-size

              options or --hash for KDF test.

              NOTE: This benchmark is using memory only and is only informative.  You cannot  di?

              rectly predict real storage encryption speed from it.

              For  testing  block ciphers, this benchmark requires kernel userspace crypto API to

              be available (introduced in Linux kernel 2.6.38).  If you  are  configuring  kernel

              yourself,  enable  "User-space  interface  for  symmetric key cipher algorithms" in

              "Cryptographic API" section (CRYPTO_USER_API_SKCIPHER .config option).

              <options> can be [--cipher, --key-size, --hash].

OPTIONS

       --verbose, -v

              Print more information on command execution.

       --debug or --debug-json

              Run in debug mode with full diagnostic logs. Debug output lines are always prefixed

              by  '#'.   If  --debug-json  is  used,  additional  LUKS2  JSON data structures are

              printed.

       --type <device-type>

              Specifies required device type, for more info read BASIC ACTIONS section.

       --hash, -h <hash-spec>

              Specifies the passphrase hash for open (for plain and loopaes device types).

              Specifies the hash used in the LUKS key setup scheme  and  volume  key  digest  for

              luksFormat.  The specified hash is used as hash-parameter for PBKDF2 and for the AF

              splitter.

              The specified hash name is passed to the  compiled-in  crypto  backend.   Different

              backends  may  support  different  hashes.  For luksFormat, the hash algorithm must

              provide at least 160 bits of output, which excludes, e.g., MD5. Do not use  a  non-

              crypto hash like "crc32" as this breaks security.

              Values  compatible  with  old version of cryptsetup are "ripemd160" for open --type

              plain and "sha1" for luksFormat.

              Use cryptsetup --help to show the defaults.

       --cipher, -c <cipher-spec>

              Set the cipher specification string.

              cryptsetup --help shows the compiled-in defaults.  The current default in the  dis? Page 17/36



              tributed sources is "aes-cbc-essiv:sha256" for plain dm-crypt and "aes-xts-plain64"

              for LUKS.

              If a hash is part of the cipher specification, then it is used as part  of  the  IV

              generation.  For example, ESSIV needs a hash function, while "plain64" does not and

              hence none is specified.

              For XTS mode you can optionally set a key size of 512 bits with the -s option.  Key

              size for XTS mode is twice that for other modes for the same security level.

              XTS  mode  requires  kernel  2.6.24  or later and plain64 requires kernel 2.6.33 or

              later. More information can be found in the FAQ.

       --verify-passphrase, -y

              When interactively asking for a passphrase, ask for it twice and complain  if  both

              inputs do not match. Advised when creating a regular mapping for the first time, or

              when running luksFormat. Ignored on input from file or stdin.

       --key-file, -d name

              Read the passphrase from file.

              If the name given is "-", then the passphrase will be read  from  stdin.   In  this

              case, reading will not stop at newline characters.

              With  LUKS, passphrases supplied via --key-file are always the existing passphrases

              requested by a command, except in the case of luksFormat where --key-file is equiv?

              alent to the positional key file argument.

              If  you want to set a new passphrase via key file, you have to use a positional ar?

              gument to luksAddKey.

              See section NOTES ON PASSPHRASE PROCESSING for more information.

       --keyfile-offset value

              Skip value bytes at the beginning of the key file.  Works with  all  commands  that

              accept key files.

       --keyfile-size, -l value

              Read  a maximum of value bytes from the key file.  The default is to read the whole

              file up to the compiled-in maximum that can be queried with --help. Supplying  more

              data than the compiled-in maximum aborts the operation.

              This option is useful to cut trailing newlines, for example. If --keyfile-offset is

              also given, the size count starts after the offset.  Works with all  commands  that

              accept key files. Page 18/36



       --new-keyfile-offset value

              Skip  value bytes at the start when adding a new passphrase from key file with luk?

              sAddKey.

       --new-keyfile-size  value

              Read a maximum of value bytes when adding a new passphrase from key file with  luk?

              sAddKey.   The  default  is  to  read  the whole file up to the compiled-in maximum

              length that can be queried with --help.  Supplying more than the compiled in  maxi?

              mum  aborts the operation.  When --new-keyfile-offset is also given, reading starts

              after the offset.

       --master-key-file

              Use a master key stored in a file.

              For luksFormat this allows creating a LUKS header with this specific master key. If

              the  master key was taken from an existing LUKS header and all other parameters are

              the same, then the new header decrypts the data encrypted with the header the  mas?

              ter key was taken from.

              Action  luksDump together with --dump-master-key option: The volume (master) key is

              stored in a file instead of being printed out to standard output.

              WARNING: If you create your own master key, you need to make sure to do  it  right.

              Otherwise,  you  can  end  up with a low-entropy or otherwise partially predictable

              master key which will compromise security.

              For luksAddKey this allows adding a new passphrase without having to know an exist?

              ing one.

              For open this allows one to open the LUKS device without giving a passphrase.

       --dump-json-metadata

              For  luksDump (LUKS2 only) this option prints content of LUKS2 header JSON metadata

              area.

       --dump-master-key

              For luksDump this option includes the master key in the displayed information.  Use

              with care, as the master key can be used to bypass the passphrases, see also option

              --master-key-file.

       --json-file

              Read token json from a file or write token to it. See token action for more  infor?

              mation.  --json-file=- reads json from standard input or writes it to standard out? Page 19/36



              put respectively.

       --use-random

       --use-urandom

              For luksFormat these options define which kernel random number  generator  will  be

              used to create the master key (which is a long-term key).

              See  NOTES  ON RANDOM NUMBER GENERATORS for more information. Use cryptsetup --help

              to show the compiled-in default random number generator.

              WARNING: In a low-entropy situation (e.g. in an embedded system),  both  selections

              are  problematic.  Using /dev/urandom can lead to weak keys.  Using /dev/random can

              block a long time, potentially forever, if not enough entropy can be  harvested  by

              the kernel.

       --key-slot, -S <0-N>

              For LUKS operations that add key material, this options allows you to specify which

              key slot is selected for the new key.  This option can be used for luksFormat,  and

              luksAddKey.

              In  addition,  for  open,  this  option  selects a specific key-slot to compare the

              passphrase against.  If the given passphrase would only match a different key-slot,

              the operation fails.

              Maximum  number  of  key  slots depends on LUKS version. LUKS1 can have up to 8 key

              slots. LUKS2 can have up to 32 key slots based on key slot area size and key  size,

              but a valid key slot ID can always be between 0 and 31 for LUKS2.

       --key-size, -s <bits>

              Sets  key  size  in bits. The argument has to be a multiple of 8. The possible key-

              sizes are limited by the cipher and mode used.

              See /proc/crypto for more information. Note that key-size in /proc/crypto is stated

              in bytes.

              This  option  can  be used for open --type plain or luksFormat.  All other LUKS ac?

              tions will use the key-size specified in the LUKS header.  Use cryptsetup --help to

              show the compiled-in defaults.

       --size, -b <number of 512 byte sectors>

              Set  the  size of the device in sectors of 512 bytes.  This option is only relevant

              for the open and resize actions.

       --offset, -o <number of 512 byte sectors> Page 20/36



              Start offset in the backend device in 512-byte sectors.  This option is only  rele?

              vant  for the open action with plain or loopaes device types or for LUKS devices in

              luksFormat.

              For LUKS, the --offset option sets the data offset (payload)  of  data  device  and

              must  be be aligned to 4096-byte sectors (must be multiple of 8).  This option can?

              not be combined with --align-payload option.

       --skip, -p <number of 512 byte sectors>

              Start offset used in IV calculation in 512-byte sectors (how many  sectors  of  the

              encrypted  data  to  skip  at the beginning).  This option is only relevant for the

              open action with plain or loopaes device types.

              Hence, if --offset n, and --skip s, sector n (the first sector of the encrypted de?

              vice) will get a sector number of s for the IV calculation.

       --device-size size[units]

              Instead of real device size, use specified value.

              With  reencrypt action it means that only specified area (from the start of the de?

              vice to the specified size) will be reencrypted.

              With resize action it sets new size of the device.

              If no unit suffix is specified, the size is in bytes.

              Unit suffix can be S for 512 byte sectors, K/M/G/T (or KiB,MiB,GiB,TiB)  for  units

              with 1024 base or KB/MB/GB/TB for 1000 base (SI scale).

              WARNING: This is destructive operation when used with reencrypt command.

       --readonly, -r

              set up a read-only mapping.

       --shared

              Creates  an additional mapping for one common ciphertext device. Arbitrary mappings

              are supported.  This option is only relevant for the open --type plain action.  Use

              --offset, --size and --skip to specify the mapped area.

       --pbkdf <PBKDF spec>

              Set Password-Based Key Derivation Function (PBKDF) algorithm for LUKS keyslot.  The

              PBKDF can be: pbkdf2 (for PBKDF2 according to RFC2898), argon2i for Argon2i or  ar?

              gon2id for Argon2id (see https://www.cryptolux.org/index.php/Argon2 for more info).

              For  LUKS1,  only  PBKDF2  is  accepted  (no need to use this option).  The default

              PBKDF2 for LUKS2 is set during compilation time  and  is  available  in  cryptsetup Page 21/36



              --help output.

              A  PBKDF  is used for increasing dictionary and brute-force attack cost for keyslot

              passwords. The parameters can be time, memory and parallel cost.

              For PBKDF2, only time cost (number of iterations) applies.  For  Argon2i/id,  there

              is also memory cost (memory required during the process of key derivation) and par?

              allel cost (number of threads that run in parallel during the key derivation.

              Note that increasing memory cost also increases time, so the final parameter values

              are   measured  by  a  benchmark.  The  benchmark  tries  to  find  iteration  time

              (--iter-time) with required memory cost --pbkdf-memory. If it is not possible,  the

              memory  cost  is decreased as well.  The parallel cost --pbkdf-parallel is constant

              and is checked against available CPU cores.

              You can see all PBKDF parameters for particular LUKS2 keyslot  with  luksDump  com?

              mand.

              NOTE:  If  you  do not want to use benchmark and want to specify all parameters di?

              rectly, use  --pbkdf-force-iterations  with  --pbkdf-memory  and  --pbkdf-parallel.

              This  will  override  the values without benchmarking.  Note it can cause extremely

              long unlocking time. Use only in specific cases, for example, if you know that  the

              formatted device will be used on some small embedded system.

              MINIMAL  AND  MAXIMAL  PBKDF COSTS: For PBKDF2, the minimum iteration count is 1000

              and maximum is 4294967295 (maximum for 32bit unsigned integer).  Memory and  paral?

              lel costs are unused for PBKDF2.  For Argon2i and Argon2id, minimum iteration count

              (CPU cost) is 4 and maximum is 4294967295 (maximum  for  32bit  unsigned  integer).

              Minimum  memory  cost is 32 KiB and maximum is 4 GiB. (Limited by addresable memory

              on some CPU platforms.)  If the memory cost parameter is benchmarked (not specified

              by a parameter) it is always in range from 64 MiB to 1 GiB.  The parallel cost min?

              imum is 1 and maximum 4 (if enough CPUs cores are available, otherwise  it  is  de?

              creased).

       --iter-time, -i <number of milliseconds>

              The  number of milliseconds to spend with PBKDF passphrase processing.  This option

              is only relevant for LUKS operations that set or change passphrases, such as  luks?

              Format or luksAddKey.  Specifying 0 as parameter selects the compiled-in default.

       --pbkdf-memory <number>

              Set  the  memory  cost  for PBKDF (for Argon2i/id the number represents kilobytes). Page 22/36



              Note that it is maximal value, PBKDF benchmark or available physical memory can de?

              crease it.  This option is not available for PBKDF2.

       --pbkdf-parallel <number>

              Set the parallel cost for PBKDF (number of threads, up to 4).  Note that it is max?

              imal value, it is decreased automatically if CPU online count is lower.   This  op?

              tion is not available for PBKDF2.

       --pbkdf-force-iterations <num>

              Avoid  PBKDF benchmark and set time cost (iterations) directly.  It can be used for

              LUKS/LUKS2 device only.  See --pbkdf option for more info.

       --batch-mode, -q

              Suppresses all confirmation questions. Use with care!

              If the -y option is not specified, this option also  switches  off  the  passphrase

              verification for luksFormat.

       --progress-frequency <seconds>

              Print separate line every <seconds> with wipe progress.

       --timeout, -t <number of seconds>

              The  number  of seconds to wait before timeout on passphrase input via terminal. It

              is relevant every time a passphrase is asked, for example for open,  luksFormat  or

              luksAddKey.  It has no effect if used in conjunction with --key-file.

              This option is useful when the system should not stall if the user does not input a

              passphrase, e.g. during boot. The default is a value of 0 seconds, which  means  to

              wait forever.

       --tries, -T

              How  often  the  input of the passphrase shall be retried.  This option is relevant

              every time a passphrase is asked, for example for open, luksFormat  or  luksAddKey.

              The default is 3 tries.

       --align-payload <number of 512 byte sectors>

              Align payload at a boundary of value 512-byte sectors.  This option is relevant for

              luksFormat.

              If not specified, cryptsetup tries to use the topology info provided by the  kernel

              for  the  underlying device to get the optimal alignment.  If not available (or the

              calculated value is a multiple of the default) data is by default aligned to a 1MiB

              boundary (i.e. 2048 512-byte sectors). Page 23/36



              For  a  detached  LUKS header, this option specifies the offset on the data device.

              See also the --header option.

              WARNING: This option is DEPRECATED and has often unexpected impact to the data off?

              set  and keyslot area size (for LUKS2) due to the complex rounding.  For fixed data

              device offset use --offset option instead.

       --uuid=UUID

              Use the provided UUID for the luksFormat command instead of generating a  new  one.

              Changes the existing UUID when used with the luksUUID command.

              The    UUID    must    be    provided   in   the   standard   UUID   format,   e.g.

              12345678-1234-1234-1234-123456789abc.

       --allow-discards

              Allow the use of discard (TRIM) requests for the device.  This option is only rele?

              vant  for  open action.  This is also not supported for LUKS2 devices with data in?

              tegrity protection.

              WARNING: This command can have a negative  security  impact  because  it  can  make

              filesystem-level  operations  visible on the physical device. For example, informa?

              tion leaking filesystem type, used space, etc. may be extractable from the physical

              device if the discarded blocks can be located later. If in doubt, do not use it.

              A kernel version of 3.1 or later is needed. For earlier kernels, this option is ig?

              nored.

       --perf-same_cpu_crypt

              Perform encryption using the same cpu that IO was submitted on.  The default is  to

              use  an unbound workqueue so that encryption work is automatically balanced between

              available CPUs.  This option is only relevant for open action.

              NOTE: This option is available only for low-level dm-crypt performance tuning,  use

              only if you need a change to default dm-crypt behaviour. Needs kernel 4.0 or later.

       --perf-submit_from_crypt_cpus

              Disable  offloading  writes  to a separate thread after encryption.  There are some

              situations where offloading write bios from the  encryption  threads  to  a  single

              thread degrades performance significantly.  The default is to offload write bios to

              the same thread.  This option is only relevant for open action.

              NOTE: This option is available only for low-level dm-crypt performance tuning,  use

              only if you need a change to default dm-crypt behaviour. Needs kernel 4.0 or later. Page 24/36



       --perf-no_read_workqueue, --perf-no_write_workqueue

              Bypass  dm-crypt  internal  workqueue  and  process  read  or  write  requests syn?

              chronously.  This option is only relevant for open action.

              NOTE: These options are available only for low-level dm-crypt  performance  tuning,

              use  only  if  you need a change to default dm-crypt behaviour. Needs kernel 5.9 or

              later.

       --test-passphrase

              Do not activate the device, just verify passphrase.  This option is  only  relevant

              for open action (the device mapping name is not mandatory if this option is used).

       --header <device or file storing the LUKS header>

              Use a detached (separated) metadata device or file where the LUKS header is stored.

              This option allows one to store ciphertext and LUKS header on different devices.

              This option is only relevant for LUKS devices and can be used with the  luksFormat,

              open, luksSuspend, luksResume, status and resize commands.

              For luksFormat with a file name as the argument to --header, the file will be auto?

              matically created if it does not exist.  See the cryptsetup  FAQ  for  header  size

              calculation.

              For  other  commands that change the LUKS header (e.g. luksAddKey), specify the de?

              vice or file with the LUKS header directly as the LUKS device.

              If used with luksFormat, the --align-payload option is  taken  as  absolute  sector

              alignment on ciphertext device and can be zero.

              WARNING: There is no check whether the ciphertext device specified actually belongs

              to the header given. In fact, you can specify an arbitrary device as the ciphertext

              device for open with the --header option. Use with care.

       --header-backup-file <file>

              Specify file with header backup for luksHeaderBackup or luksHeaderRestore actions.

       --force-password

              Do not use password quality checking for new LUKS passwords.

              This option applies only to luksFormat, luksAddKey and luksChangeKey and is ignored

              if cryptsetup is built without password quality checking support.

              For more info about password  quality  check,  see  the  manual  page  for  pwqual?

              ity.conf(5) and passwdqc.conf(5).

       --deferred Page 25/36



              Defers device removal in close command until the last user closes it.

       --cancel-deferred

              Removes a previously configured deferred device removal in close command.

       --disable-external-tokens

              Disable loading of plugins for external LUKS2 tokens.

       --disable-locks

              Disable  lock protection for metadata on disk.  This option is valid only for LUKS2

              and ignored for other formats.

              WARNING: Do not use this option unless you run cryptsetup in a restricted  environ?

              ment where locking is impossible to perform (where /run directory cannot be used).

       --disable-keyring

              Do not load volume key in kernel keyring and store it directly in the dm-crypt tar?

              get instead.  This option is supported only for the LUKS2 format.

       --key-description <text>

              Set key description in keyring for use with token command.

       --priority <normal|prefer|ignore>

              Set a priority for LUKS2 keyslot.  The prefer priority marked slots are  tried  be?

              fore  normal priority.  The ignored priority means, that slot is never used, if not

              explicitly requested by --key-slot option.

       --token-id

              Specify what token to use in actions token, open or resize.  If omitted, all avail?

              able tokens will be checked before proceeding further with passphrase prompt.

       --token-only

              Do  not proceed further with action (any of token, open or resize) if token activa?

              tion failed. Without the option, action asks for passphrase to proceed further.

       --token-type

              Restrict tokens eligible for operation to specific token type (name). Mostly useful

              when no --token-id is specified.

       --sector-size <bytes>

              Set  sector size for use with disk encryption. It must be power of two and in range

              512 - 4096 bytes. This option is available only in the LUKS2 or plain modes.

              The default for plain mode is 512 bytes. For LUKS2 devices it's established  during

              luksFormat  operation  based on parameters provided by underlying data device.  For Page 26/36



              native 4K block devices it's 4096 bytes. For 4K/512e (4K physical sector size  with

              512  bytes  emulation)  it's  4096 bytes. For drives reporting only 512 bytes block

              size it remains 512 bytes. If data device is regular file put  in  filesystem  it's

              4096 bytes.

              Note that if sector size is higher than underlying device hardware sector and there

              is not integrity protection that uses data journal, using this option can  increase

              risk on incomplete sector writes during a power fail.

              If used together with --integrity option and dm-integrity journal, the atomicity of

              writes is guaranteed in all cases (but it cost write performance - data has  to  be

              written twice).

              Increasing  sector size from 512 bytes to 4096 bytes can provide better performance

              on most of the modern storage devices and also with some  hw  encryption  accelera?

              tors.

       --iv-large-sectors

              Count  Initialization  Vector  (IV)  in  larger sector size (if set) instead of 512

              bytes sectors. This option can be used only for open command and  plain  encryption

              type.

              NOTE: This option does not have any performance or security impact, use it only for

              accessing incompatible existing disk images from other systems  that  require  this

              option.

       --persistent

              If used with LUKS2 devices and activation commands like open or refresh, the speci?

              fied activation flags are persistently written into metadata and used next time au?

              tomatically  even  for  normal activation.  (No need to use cryptab or other system

              configuration files.)

              If you need to remove a persistent flag, use --persistent without the flag you want

              to remove (e.g. to disable persistently stored discard flag, use --persistent with?

              out --allow-discards).

              Only   --allow-discards,   --perf-same_cpu_crypt,    --perf-submit_from_crypt_cpus,

              --perf-no_read_workqueue,  --perf-no_write_workqueue and --integrity-no-journal can

              be stored persistently.

       --refresh

              Refreshes an active device with new set of parameters. See action refresh  descrip? Page 27/36



              tion for more details.

       --label <LABEL>

              --subsystem  <SUBSYSTEM>  Set label and subsystem description for LUKS2 device, can

              be used in config and format actions.  The label and subsystem are optional  fields

              and  can  be  later  used  in  udev scripts for triggering user actions once device

              marked by these labels is detected.

       --integrity <integrity algorithm>

              Specify integrity algorithm to be used for authenticated disk encryption in LUKS2.

              WARNING: This extension is EXPERIMENTAL and  requires  dm-integrity  kernel  target

              (available  since  kernel version 4.12).  For native AEAD modes, also enable "User-

              space interface for AEAD cipher algorithms" in "Cryptographic  API"  section  (CON?

              FIG_CRYPTO_USER_API_AEAD .config option).

              For more info, see AUTHENTICATED DISK ENCRYPTION section.

       --luks2-metadata-size <size>

              This  option  can  be used to enlarge the LUKS2 metadata (JSON) area.  The size in?

              cludes 4096 bytes for binary metadata (usable JSON area is smaller  of  the  binary

              area).   According to LUKS2 specification, only these values are valid: 16, 32, 64,

              128, 256, 512, 1024, 2048 and 4096 kB The <size> can be specified with unit  suffix

              (for example 128k).

       --luks2-keyslots-size <size>

              This  option can be used to set specific size of the LUKS2 binary keyslot area (key

              material is encrypted there). The value must be aligned to multiple of  4096  bytes

              with maximum size 128MB.  The <size> can be specified with unit suffix (for example

              128k).

       --keyslot-cipher <cipher-spec>

              This option can be used to set specific cipher encryption  for  the  LUKS2  keyslot

              area.

       --keyslot-key-size <bits>

              This option can be used to set specific key size for the LUKS2 keyslot area.

       --integrity-no-journal

              Activate  device with integrity protection without using data journal (direct write

              of data and integrity tags).  Note that without journal power fail can  cause  non-

              atomic  write  and data corruption.  Use only if journalling is performed on a dif? Page 28/36



              ferent storage layer.

       --integrity-no-wipe

              Skip wiping of device authentication (integrity) tags. If you skip this step,  sec?

              tors will report invalid integrity tag until an application write to the sector.

              NOTE:  Even  some writes to the device can fail if the write is not aligned to page

              size and page-cache initiates read of a sector with invalid integrity tag.

       --unbound

              Creates new or dumps existing LUKS2 unbound keyslot. See luksAddKey or luksDump ac?

              tions for more details.

       --tcrypt-hidden

              --tcrypt-system --tcrypt-backup Specify which TrueCrypt on-disk header will be used

              to open the device.  See TCRYPT section for more info.

       --veracrypt

              This option is ignored as VeraCrypt compatible mode is supported by default.

       --disable-veracrypt

              This option can be used to disable VeraCrypt compatible mode  (only  TrueCrypt  de?

              vices are recognized). Only for TCRYPT extension. See TCRYPT section for more info.

       --veracrypt-pim

              --veracrypt-query-pim  Use  a  custom  Personal Iteration Multiplier (PIM) for Ver?

              aCrypt device.  See TCRYPT section for more info.

       --serialize-memory-hard-pbkdf

              Use a global lock to serialize unlocking of keyslots using memory-hard PBKDF.

              NOTE: This is (ugly) workaround for a specific situation when multiple devices  are

              activated in parallel and system instead of reporting out of memory starts uncondi?

              tionally stop processes using out-of-memory killer.

              DO NOT USE this switch until you are implementing boot  environment  with  parallel

              devices activation!

       --encrypt

              Initialize (and run) device encryption (reencrypt action parameter)

       --decrypt

              Initialize (and run) device decryption (reencrypt action parameter)

       --init-only

              Initialize reencryption (any variant) operation in LUKS2 metadata only and exit. If Page 29/36



              any reencrypt operation is  already  initialized  in  metadata,  the  command  with

              --init-only parameter fails.

       --resume-only

              Resume reencryption (any variant) operation already described in LUKS2 metadata. If

              no reencrypt operation is initialized, the  command  with  --resume-only  parameter

              fails.  Useful for resuming reencrypt operation without accidentally triggering new

              reencryption operation.

       --resilience <mode>

              Reencryption resilience mode can be one of checksum, journal or none.

              checksum: default mode, where individual checksums of  ciphertext  hotzone  sectors

              are  stored,  so  the  recovery process can detect which sectors were already reen?

              crypted.  It requires that the device sector write is atomic.

              journal: the hotzone is journaled in the binary  area  (so  the  data  are  written

              twice).

              none: performance mode. There is no protection and the only way it's safe to inter?

              rupt the reencryption is similar to old offline reencryption utility. (ctrl+c).

              The option is ignored if reencryption with datashift mode is in progress.

       --resilience-hash <hash>

              The hash algorithm used with "--resilience checksum" only.   The  default  hash  is

              sha256. With other resilience modes, the hash parameter is ignored.

       --hotzone-size <size>

              This  option  can  be  used  to set an upper limit on the size of reencryption area

              (hotzone).  The <size> can be specified with unit suffix (for  example  50M).  Note

              that actual hotzone size may be less than specified <size> due to other limitations

              (free space in keyslots area or available memory).

       --reduce-device-size <size>

              Initialize LUKS2 reencryption with data device size reduction (currently only --en?

              crypt variant is supported).

              Last  <size>  sectors  of <device> will be used to properly initialize device reen?

              cryption.  That means any data at last <size> sectors will be lost.

              It could be useful if you added some space to underlying partition or logical  vol?

              ume (so last <size> sectors contains no data).

              Recommended  minimal  size  is  twice  the  default LUKS2 header size (--reduce-de? Page 30/36



              vice-size 32M) for --encrypt use case. Be sure  to  have  enough  (at  least  --re?

              duce-device-size value      of free space at the end of <device>).

              WARNING:  This is a destructive operation and cannot be reverted.  Use with extreme

              care - accidentally overwritten filesystems are usually unrecoverable.

       --version

              Show the program version.

       --usage

              Show short option help.

       --help, -?

              Show help text and default parameters.

EXAMPLE

       Example 1: Create LUKS 2 container on block device /dev/sdX.

              sudo cryptsetup --type luks2 luksFormat /dev/sdX

       Example 2: Add an additional passphrase to key slot 5.

              sudo cryptsetup luksAddKey --key-slot 5 /dev/sdX

       Example 3: Create LUKS header backup and save it to file.

              sudo cryptsetup luksHeaderBackup /dev/sdX --header-backup-file /var/tmp/NameOfBack?

              upFile

       Example 4: Open LUKS container on /dev/sdX and map it to sdX_crypt.

              sudo cryptsetup open /dev/sdX sdX_crypt

       WARNING: The command in example 5 will erase all key slots.

              Your  cannot use your luks container afterwards anymore unless you have a backup to

              restore.

       Example 5: Erase all key slots on /dev/sdX.

              sudo cryptsetup erase /dev/sdX

       Example 6: Restore LUKS header from backup file.

              sudo cryptsetup luksHeaderRestore  /dev/sdX  --header-backup-file  /var/tmp/NameOf?

              BackupFile

RETURN CODES

       Cryptsetup returns 0 on success and a non-zero value on error.

       Error  codes are: 1 wrong parameters, 2 no permission (bad passphrase), 3 out of memory, 4

       wrong device specified, 5 device already exists or device is busy.

NOTES ON PASSPHRASE PROCESSING FOR PLAIN MODE Page 31/36



       Note that no iterated hashing or salting is done in plain mode.  If hashing is done, it is

       a  single direct hash. This means that low-entropy passphrases are easy to attack in plain

       mode.

       From a terminal: The passphrase is read until the first newline,  i.e.  '\n'.   The  input

       without  the  newline  character  is processed with the default hash or the hash specified

       with --hash.  The hash result will be truncated to the key size of the used cipher, or the

       size specified with -s.

       From  stdin:  Reading  will  continue  until a newline (or until the maximum input size is

       reached), with the trailing newline stripped. The maximum input size  is  defined  by  the

       same  compiled-in  default  as  for the maximum key file size and can be overwritten using

       --keyfile-size option.

       The data read will be hashed with the default hash or the hash specified with --hash.  The

       hash  result  will  be truncated to the key size of the used cipher, or the size specified

       with -s.

       Note that if --key-file=- is used for reading the key from stdin,  trailing  newlines  are

       not stripped from the input.

       If  "plain"  is used as argument to --hash, the input data will not be hashed. Instead, it

       will be zero padded (if shorter than the key size) or truncated (if longer  than  the  key

       size) and used directly as the binary key. This is useful for directly specifying a binary

       key.  No warning will be given if the amount of data read from stdin is less than the  key

       size.

       From a key file: It will be truncated to the key size of the used cipher or the size given

       by -s and directly used as a binary key.

       WARNING: The --hash argument is being ignored.  The --hash option is usable only for stdin

       input in plain mode.

       If  the key file is shorter than the key, cryptsetup will quit with an error.  The maximum

       input size is defined by the same compiled-in default as for the maximum key file size and

       can be overwritten using --keyfile-size option.

NOTES ON PASSPHRASE PROCESSING FOR LUKS

       LUKS uses PBKDF2 to protect against dictionary attacks and to give some protection to low-

       entropy passphrases (see RFC 2898 and the cryptsetup FAQ).

       From a terminal: The passphrase is read until the first  newline  and  then  processed  by

       PBKDF2 without the newline character. Page 32/36



       From stdin: LUKS will read passphrases from stdin up to the first newline character or the

       compiled-in maximum key file length. If --keyfile-size is given, it is ignored.

       From key file: The complete keyfile is read up to the compiled-in  maximum  size.  Newline

       characters do not terminate the input. The --keyfile-size option can be used to limit what

       is read.

       Passphrase processing: Whenever a passphrase is added to a LUKS header (luksAddKey,  luks?

       Format),  the user may specify how much the time the passphrase processing should consume.

       The time is used to determine the iteration count for PBKDF2 and higher times  will  offer

       better  protection for low-entropy passphrases, but open will take longer to complete. For

       passphrases that have entropy higher than the used key length, higher iteration times will

       not increase security.

       The default setting of one or two seconds is sufficient for most practical cases. The only

       exception is a low-entropy passphrase used on a device with a slow CPU, as this  will  re?

       sult in a low iteration count. On a slow device, it may be advisable to increase the iter?

       ation time using the --iter-time option in order to obtain a higher iteration count.  This

       does slow down all later luksOpen operations accordingly.

INCOHERENT BEHAVIOR FOR INVALID PASSPHRASES/KEYS

       LUKS  checks  for a valid passphrase when an encrypted partition is unlocked. The behavior

       of plain dm-crypt is different.  It will always decrypt with the passphrase given. If  the

       given passphrase is wrong, the device mapped by plain dm-crypt will essentially still con?

       tain encrypted data and will be unreadable.

NOTES ON SUPPORTED CIPHERS, MODES, HASHES AND KEY SIZES

       The available combinations of ciphers, modes, hashes and key sizes depend on  kernel  sup?

       port.  See /proc/crypto for a list of available options. You might need to load additional

       kernel crypto modules in order to get more options.

       For the --hash option, if the crypto backend is libgcrypt, then all  algorithms  supported

       by  the  gcrypt  library are available.  For other crypto backends, some algorithms may be

       missing.

NOTES ON PASSPHRASES

       Mathematics can't be bribed. Make sure you keep your passphrases safe.  There  are  a  few

       nice tricks for constructing a fallback, when suddenly out of the blue, your brain refuses

       to cooperate.  These fallbacks need LUKS, as it's only possible with LUKS to have multiple

       passphrases. Still, if your attacker model does not prevent it, storing your passphrase in Page 33/36



       a sealed envelope somewhere may be a good idea as well.

NOTES ON RANDOM NUMBER GENERATORS

       Random Number Generators (RNG) used in cryptsetup are always the kernel RNGs  without  any

       modifications or additions to data stream produced.

       There  are  two  types  of  randomness  cryptsetup/LUKS needs. One type (which always uses

       /dev/urandom) is used for salts, the AF splitter and for wiping deleted keyslots.

       The second type is used for  the  volume  (master)  key.  You  can  switch  between  using

       /dev/random  and  /dev/urandom   here,  see  --use-random and --use-urandom options. Using

       /dev/random on a system without enough entropy sources can cause luksFormat to block until

       the requested amount of random data is gathered. In a low-entropy situation (embedded sys?

       tem), this can take a very long time and potentially forever.  At  the  same  time,  using

       /dev/urandom  in  a low-entropy situation will produce low-quality keys. This is a serious

       problem, but solving it is out of scope for a mere man-page.  See urandom(4) for more  in?

       formation.

AUTHENTICATED DISK ENCRYPTION (EXPERIMENTAL)

       Since Linux kernel version 4.12 dm-crypt supports authenticated disk encryption.

       Normal  disk  encryption modes are length-preserving (plaintext sector is of the same size

       as a ciphertext sector) and can provide only confidentiality protection, but  not  crypto?

       graphically sound data integrity protection.

       Authenticated modes require additional space per-sector for authentication tag and use Au?

       thenticated Encryption with Additional Data (AEAD) algorithms.

       If you configure LUKS2 device with data integrity protection, there will be an  underlying

       dm-integrity  device, which provides additional per-sector metadata space and also provide

       data journal protection to ensure atomicity of data and metadata  update.   Because  there

       must be additional space for metadata and journal, the available space for the device will

       be smaller than for length-preserving modes.

       The dm-crypt device then resides on top of such a dm-integrity device.  All activation and

       deactivation  of  this  device stack is performed by cryptsetup, there is no difference in

       using luksOpen for integrity protected devices.  If you want to format LUKS2  device  with

       data integrity protection, use --integrity option.

       Since  dm-integrity doesn't support discards (TRIM), dm-crypt device on top of it inherits

       this, so integrity protection mode doesn't support discards either.

       Some integrity modes requires two independent keys (key for encryption and for authentica? Page 34/36



       tion). Both these keys are stored in one LUKS keyslot.

       WARNING: All support for authenticated modes is experimental and there are only some modes

       available for now. Note that there are a very few authenticated encryption algorithms that

       are suitable for disk encryption. You also cannot use CRC32 or any other non-cryptographic

       checksums (other than the special integrity mode "none"). If for some reason you  want  to

       have  integrity control without using authentication mode, then you should separately con?

       figure dm-integrity independently of LUKS2.

NOTES ON LOOPBACK DEVICE USE

       Cryptsetup is usually used directly on a block device (disk partition or LVM volume). How?

       ever, if the device argument is a file, cryptsetup tries to allocate a loopback device and

       map it into this file. This mode requires Linux kernel 2.6.25 or more  recent  which  sup?

       ports the loop autoclear flag (loop device is cleared on the last close automatically). Of

       course, you can always map a file to a loop-device manually. See the cryptsetup FAQ for an

       example.

       When  device  mapping  is  active, you can see the loop backing file in the status command

       output. Also see losetup(8).

LUKS2 header locking

       The LUKS2 on-disk metadata is updated in several steps and to achieve  proper  atomic  up?

       date, there is a locking mechanism.  For an image in file, code uses flock(2) system call.

       For a block device, lock is performed over a special file stored in  a  locking  directory

       (by  default  /run/lock/cryptsetup).   The  locking  directory  should be created with the

       proper security context by the distribution during the boot-up  phase.   Only  LUKS2  uses

       locks, other formats do not use this mechanism.

DEPRECATED ACTIONS

       The  reload  action is no longer supported.  Please use dmsetup(8) if you need to directly

       manipulate with the device mapping table.

       The luksDelKey was replaced with luksKillSlot.

REPORTING BUGS

       Report bugs, including ones in the documentation, on the cryptsetup mailing list  at  <dm-

       crypt@saout.de>  or  in the 'Issues' section on LUKS website.  Please attach the output of

       the failed command with the --debug option added.

AUTHORS

       cryptsetup originally written by Jana Saout <jana@saout.de> Page 35/36



       The LUKS extensions and original man page were written by Clemens  Fruhwirth  <clemens@en?

       dorphin.org>.

       Man page extensions by Milan Broz <gmazyland@gmail.com>.

       Man page rewrite and extension by Arno Wagner <arno@wagner.name>.

COPYRIGHT

       Copyright ? 2004 Jana Saout

       Copyright ? 2004-2006 Clemens Fruhwirth

       Copyright ? 2012-2014 Arno Wagner

       Copyright ? 2009-2021 Red Hat, Inc.

       Copyright ? 2009-2021 Milan Broz

       This  is  free software; see the source for copying conditions.  There is NO warranty; not

       even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO

       The LUKS website at https://gitlab.com/cryptsetup/cryptsetup/

       The cryptsetup FAQ, contained in the  distribution  package  and  online  at  https://git?

       lab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions

       The cryptsetup mailing list and list archive, see FAQ entry 1.6.

       The  LUKS  version  1  on-disk format specification available at https://gitlab.com/crypt?

       setup/cryptsetup/wikis/Specification  and  LUKS  version  2  at  https://gitlab.com/crypt?

       setup/LUKS2-docs.

cryptsetup                                 January 2021                             CRYPTSETUP(8)

Page 36/36


