
Rocky Enterprise Linux 9.2 Manual Pages on command 'containers-signature.5'

$ man containers-signature.5

container-signature(5) format container-signature(5)

Miloslav Trma? March 2017

NAME

 container-signature - Container signature format

DESCRIPTION

 This document describes the format of container signatures, as implemented by the

 github.com/containers/image/signature package.

 Most users should be able to consume these signatures by using the github.com/contain?

 ers/image/signature package (preferably through the higher-level signature.PolicyContext

 interface) without having to care about the details of the format described below. This

 documentation exists primarily for maintainers of the package and to allow independent

 reimplementations.

High-level overview

 The signature provides an end-to-end authenticated claim that a container image has been

 approved by a specific party (e.g. the creator of the image as their work, an automated

 build system as a result of an automated build, a company IT department approving the im?

 age for production) under a specified identity (e.g. an OS base image / specific applica?

 tion, with a specific version).

 A container signature consists of a cryptographic signature which identifies and authenti?

 cates who signed the image, and carries as a signed payload a JSON document. The JSON

 document identifies the image being signed, claims a specific identity of the image and if

 applicable, contains other information about the image.

 The signatures do not modify the container image (the layers, configuration, manifest, ?); Page 1/7

 e.g. their presence does not change the manifest digest used to identify the image in

 docker/distribution servers; rather, the signatures are associated with an immutable im?

 age. An image can have any number of signatures so signature distribution systems SHOULD

 support associating more than one signature with an image.

The cryptographic signature

 As distributed, the container signature is a blob which contains a cryptographic signature

 in an industry-standard format, carrying a signed JSON payload (i.e. the blob contains

 both the JSON document and a signature of the JSON document; it is not a ?detached signa?

 ture? with independent blobs containing the JSON document and a cryptographic signature).

 Currently the only defined cryptographic signature format is an OpenPGP signature (RFC

 4880), but others may be added in the future. (The blob does not contain metadata identi?

 fying the cryptographic signature format. It is expected that most formats are suffi?

 ciently self-describing that this is not necessary and the configured expected public key

 provides another indication of the expected cryptographic signature format. Such metadata

 may be added in the future for newly added cryptographic signature formats, if necessary.)

 Consumers of container signatures SHOULD verify the cryptographic signature against one or

 more trusted public keys (e.g. defined in a policy.json signature verification policy file

 ?containers-policy.json.5.md?) before parsing or processing the JSON payload in any way,

 in particular they SHOULD stop processing the container signature if the cryptographic

 signature verification fails, without even starting to process the JSON payload.

 (Consumers MAY extract identification of the signing key and other metadata from the cryp?

 tographic signature, and the JSON payload, without verifying the signature, if the purpose

 is to allow managing the signature blobs, e.g. to list the authors and image identities of

 signatures associated with a single container image; if so, they SHOULD design the output

 of such processing to minimize the risk of users considering the output trusted or in any

 way usable for making policy decisions about the image.)

 OpenPGP signature verification

 When verifying a cryptographic signature in the OpenPGP format, the consumer MUST verify

 at least the following aspects of the signature (like the github.com/containers/image/sig?

 nature package does):

 ? The blob MUST be a ?Signed Message? as defined RFC 4880 section 11.3. (e.g. it

 MUST NOT be an unsigned ?Literal Message?, or any other non-signature format).

 ? The signature MUST have been made by an expected key trusted for the purpose (and Page 2/7

 the specific container image).

 ? The signature MUST be correctly formed and pass the cryptographic validation.

 ? The signature MUST correctly authenticate the included JSON payload (in particu?

 lar, the parsing of the JSON payload MUST NOT start before the complete payload

 has been cryptographically authenticated).

 ? The signature MUST NOT be expired.

 The consumer SHOULD have tests for its verification code which verify that signatures

 failing any of the above are rejected.

JSON processing and forward compatibility

 The payload of the cryptographic signature is a JSON document (RFC 7159). Consumers

 SHOULD parse it very strictly, refusing any signature which violates the expected format

 (e.g. missing members, incorrect member types) or can be interpreted ambiguously (e.g. a

 duplicated member in a JSON object).

 Any violations of the JSON format or of other requirements in this document MAY be ac?

 cepted if the JSON document can be recognized to have been created by a known-incorrect

 implementation (see optional.creator ?#optionalcreator? below) and if the semantics of the

 invalid document, as created by such an implementation, is clear.

 The top-level value of the JSON document MUST be a JSON object with exactly two members,

 critical and optional, each a JSON object.

 The critical object MUST contain a type member identifying the document as a container

 signature (as defined below ?#criticaltype?) and signature consumers MUST reject signa?

 tures which do not have this member or in which this member does not have the expected

 value.

 To ensure forward compatibility (allowing older signature consumers to correctly accept or

 reject signatures created at a later date, with possible extensions to this format), con?

 sumers MUST reject the signature if the critical object, or any of its subobjects, contain

 any member or data value which is unrecognized, unsupported, invalid, or in any other way

 unexpected. At a minimum, this includes unrecognized members in a JSON object, or incor?

 rect types of expected members.

 For the same reason, consumers SHOULD accept any members with unrecognized names in the

 optional object, and MAY accept signatures where the object member is recognized but un?

 supported, or the value of the member is unsupported. Consumers still SHOULD reject sig?

 natures where a member of an optional object is supported but the value is recognized as Page 3/7

 invalid.

JSON data format

 An example of the full format follows, with detailed description below. To reiterate,

 consumers of the signature SHOULD perform successful cryptographic verification, and MUST

 reject unexpected data in the critical object, or in the top-level object, as described

 above.

 {

 "critical": {

 "type": "atomic container signature",

 "image": {

 "docker-manifest-digest":

"sha256:817a12c32a39bbe394944ba49de563e085f1d3c5266eb8e9723256bc4448680e"

 },

 "identity": {

 "docker-reference": "docker.io/library/busybox:latest"

 }

 },

 "optional": {

 "creator": "some software package v1.0.1-35",

 "timestamp": 1483228800,

 }

 }

 critical

 This MUST be a JSON object which contains data critical to correctly evaluating the valid?

 ity of a signature.

 Consumers MUST reject any signature where the critical object contains any unrecognized,

 unsupported, invalid or in any other way unexpected member or data.

 critical.type

 This MUST be a string with a string value exactly equal to atomic container signature

 (three words, including the spaces).

 Signature consumers MUST reject signatures which do not have this member or this member

 does not have exactly the expected value.

 (The consumers MAY support signatures with a different value of the type member, if any is Page 4/7

 defined in the future; if so, the rest of the JSON document is interpreted according to

 rules defining that value of critical.type, not by this document.)

 critical.image

 This MUST be a JSON object which identifies the container image this signature applies to.

 Consumers MUST reject any signature where the critical.image object contains any unrecog?

 nized, unsupported, invalid or in any other way unexpected member or data.

 (Currently only the docker-manifest-digest way of identifying a container image is de?

 fined; alternatives to this may be defined in the future, but existing consumers are re?

 quired to reject signatures which use formats they do not support.)

 critical.image.docker-manifest-digest

 This MUST be a JSON string, in the github.com/opencontainers/go-digest.Digest string for?

 mat.

 The value of this member MUST match the manifest of the signed container image, as imple?

 mented in the docker/distribution manifest addressing system.

 The consumer of the signature SHOULD verify the manifest digest against a fully verified

 signature before processing the contents of the image manifest in any other way (e.g.

 parsing the manifest further or downloading layers of the image).

 Implementation notes: * A single container image manifest may have several valid manifest

 digest values, using different algorithms. * For ?signed? docker/distribution schema 1

 ?https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-1.md? manifests,

 the manifest digest applies to the payload of the JSON web signature, not to the raw mani?

 fest blob.

 critical.identity

 This MUST be a JSON object which identifies the claimed identity of the image (usually the

 purpose of the image, or the application, along with a version information), as asserted

 by the author of the signature.

 Consumers MUST reject any signature where the critical.identity object contains any unrec?

 ognized, unsupported, invalid or in any other way unexpected member or data.

 (Currently only the docker-reference way of claiming an image identity/purpose is defined;

 alternatives to this may be defined in the future, but existing consumers are required to

 reject signatures which use formats they do not support.)

 critical.identity.docker-reference

 This MUST be a JSON string, in the github.com/docker/distribution/reference string format, Page 5/7

 and using the same normalization semantics (where e.g. busybox:latest is equivalent to

 docker.io/library/busybox:latest). If the normalization semantics allows multiple string

 representations of the claimed identity with equivalent meaning, the critical.iden?

 tity.docker-reference member SHOULD use the fully explicit form (including the full host

 name and namespaces).

 The value of this member MUST match the image identity/purpose expected by the consumer of

 the image signature and the image (again, accounting for the docker/distribution/reference

 normalization semantics).

 In the most common case, this means that the critical.identity.docker-reference value must

 be equal to the docker/distribution reference used to refer to or download the image.

 However, depending on the specific application, users or system administrators may accept

 less specific matches (e.g. ignoring the tag value in the signature when pulling the :lat?

 est tag or when referencing an image by digest), or they may require critical.iden?

 tity.docker-reference values with a completely different namespace to the reference used

 to refer to/download the image (e.g. requiring a critical.identity.docker-reference value

 which identifies the image as coming from a supplier when fetching it from a company-in?

 ternal mirror of approved images). The software performing this verification SHOULD allow

 the users to define such a policy using the policy.json signature verification policy file

 format ?containers-policy.json.5.md?.

 The critical.identity.docker-reference value SHOULD contain either a tag or digest; in

 most cases, it SHOULD use a tag rather than a digest. (See also the default matchRepoDi?

 gestOrExact matching semantics in policy.json ?containers-policy.json.5.md#signedby?.)

 optional

 This MUST be a JSON object.

 Consumers SHOULD accept any members with unrecognized names in the optional object, and

 MAY accept a signature where the object member is recognized but unsupported, or the value

 of the member is valid but unsupported. Consumers still SHOULD reject any signature where

 a member of an optional object is supported but the value is recognized as invalid.

 optional.creator

 If present, this MUST be a JSON string, identifying the name and version of the software

 which has created the signature.

 The contents of this string is not defined in detail; however each implementation creating

 container signatures: Page 6/7

 ? SHOULD define the contents to unambiguously define the software in practice (e.g.

 it SHOULD contain the name of the software, not only the version number)

 ? SHOULD use a build and versioning process which ensures that the contents of this

 string (e.g. an included version number) changes whenever the format or semantics

 of the generated signature changes in any way; it SHOULD not be possible for two

 implementations which use a different format or semantics to have the same op?

 tional.creator value

 ? SHOULD use a format which is reasonably easy to parse in software (perhaps using

 a regexp), and which makes it easy enough to recognize a range of versions of a

 specific implementation (e.g. the version of the implementation SHOULD NOT be

 only a git hash, because they don?t have an easily defined ordering; the string

 should contain a version number, or at least a date of the commit).

 Consumers of container signatures MAY recognize specific values or sets of values of op?

 tional.creator (perhaps augmented with optional.timestamp), and MAY change their process?

 ing of the signature based on these values (usually to accommodate violations of this

 specification in past versions of the signing software which cannot be fixed retroac?

 tively), as long as the semantics of the invalid document, as created by such an implemen?

 tation, is clear.

 If consumers of signatures do change their behavior based on the optional.creator value,

 they SHOULD take care that the way they process the signatures is not inconsistent with

 strictly validating signature consumers. (I.e. it is acceptable for a consumer to accept

 a signature based on a specific optional.creator value if other implementations would com?

 pletely reject the signature, but it would be very undesirable for the two kinds of imple?

 mentations to accept the signature in different and inconsistent situations.)

 optional.timestamp

 If present, this MUST be a JSON number, which is representable as a 64-bit integer, and

 identifies the time when the signature was created as the number of seconds since the UNIX

 epoch (Jan 1 1970 00:00 UTC).

signature Container container-signature(5)

Page 7/7

