
Linux Ubuntu 22.4.5 Manual Pages on command 'clock_settime.3'

$ man clock_settime.3

CLOCK_GETRES(2) Linux Programmer's Manual CLOCK_GETRES(2)

NAME

 clock_getres, clock_gettime, clock_settime - clock and time functions

SYNOPSIS

 #include <time.h>

 int clock_getres(clockid_t clk_id, struct timespec *res);

 int clock_gettime(clockid_t clk_id, struct timespec *tp);

 int clock_settime(clockid_t clk_id, const struct timespec *tp);

 Link with -lrt (only for glibc versions before 2.17).

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 clock_getres(), clock_gettime(), clock_settime():

 _POSIX_C_SOURCE >= 199309L

DESCRIPTION

 The function clock_getres() finds the resolution (precision) of the specified clock

 clk_id, and, if res is non-NULL, stores it in the struct timespec pointed to by

 res. The resolution of clocks depends on the implementation and cannot be config?

 ured by a particular process. If the time value pointed to by the argument tp of

 clock_settime() is not a multiple of res, then it is truncated to a multiple of

 res.

 The functions clock_gettime() and clock_settime() retrieve and set the time of the

 specified clock clk_id.

 The res and tp arguments are timespec structures, as specified in <time.h>:
Page 1/5

 struct timespec {

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 };

 The clk_id argument is the identifier of the particular clock on which to act. A

 clock may be system-wide and hence visible for all processes, or per-process if it

 measures time only within a single process.

 All implementations support the system-wide real-time clock, which is identified by

 CLOCK_REALTIME. Its time represents seconds and nanoseconds since the Epoch. When

 its time is changed, timers for a relative interval are unaffected, but timers for

 an absolute point in time are affected.

 More clocks may be implemented. The interpretation of the corresponding time val?

 ues and the effect on timers is unspecified.

 Sufficiently recent versions of glibc and the Linux kernel support the following

 clocks:

 CLOCK_REALTIME

 System-wide clock that measures real (i.e., wall-clock) time. Setting this

 clock requires appropriate privileges. This clock is affected by discontin?

 uous jumps in the system time (e.g., if the system administrator manually

 changes the clock), and by the incremental adjustments performed by adj?

 time(3) and NTP.

 CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)

 A faster but less precise version of CLOCK_REALTIME. Use when you need very

 fast, but not fine-grained timestamps. Requires per-architecture support,

 and probably also architecture support for this flag in the vdso(7).

 CLOCK_MONOTONIC

 Clock that cannot be set and represents monotonic time since?as described by

 POSIX?"some unspecified point in the past". On Linux, that point corre?

 sponds to the number of seconds that the system has been running since it

 was booted.

 The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the sys?

 tem time (e.g., if the system administrator manually changes the clock), but

 is affected by the incremental adjustments performed by adjtime(3) and NTP. Page 2/5

 This clock does not count time that the system is suspended.

 CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)

 A faster but less precise version of CLOCK_MONOTONIC. Use when you need

 very fast, but not fine-grained timestamps. Requires per-architecture sup?

 port, and probably also architecture support for this flag in the vdso(7).

 CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)

 Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time

 that is not subject to NTP adjustments or the incremental adjustments per?

 formed by adjtime(3). This clock does not count time that the system is

 suspended.

 CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)

 Identical to CLOCK_MONOTONIC, except it also includes any time that the sys?

 tem is suspended. This allows applications to get a suspend-aware monotonic

 clock without having to deal with the complications of CLOCK_REALTIME, which

 may have discontinuities if the time is changed using settimeofday(2) or

 similar.

 CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)

 Per-process CPU-time clock (measures CPU time consumed by all threads in the

 process).

 CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)

 Thread-specific CPU-time clock.

RETURN VALUE

 clock_gettime(), clock_settime(), and clock_getres() return 0 for success, or -1

 for failure (in which case errno is set appropriately).

ERRORS

 EFAULT tp points outside the accessible address space.

 EINVAL The clk_id specified is not supported on this system.

 EINVAL (clock_settime()): tp.tv_sec is negative or tp.tv_nsec is outside the range

 [0..999,999,999].

 EINVAL (since Linux 4.3)

 A call to clock_settime() with a clk_id of CLOCK_REALTIME attempted to set

 the time to a value less than the current value of the CLOCK_MONOTONIC

 clock. Page 3/5

 EPERM clock_settime() does not have permission to set the clock indicated.

VERSIONS

 These system calls first appeared in Linux 2.6.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?clock_getres(), clock_gettime(), ? Thread safety ? MT-Safe ?

 ?clock_settime() ? ? ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SUSv2.

AVAILABILITY

 On POSIX systems on which these functions are available, the symbol _POSIX_TIMERS

 is defined in <unistd.h> to a value greater than 0. The symbols _POSIX_MONO?

 TONIC_CLOCK, _POSIX_CPUTIME, _POSIX_THREAD_CPUTIME indicate that CLOCK_MONOTONIC,

 CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID are available. (See also

 sysconf(3).)

NOTES

 POSIX.1 specifies the following:

 Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have

 no effect on threads that are blocked waiting for a relative time service

 based upon this clock, including the nanosleep() function; nor on the expi?

 ration of relative timers based upon this clock. Consequently, these time

 services shall expire when the requested relative interval elapses, indepen?

 dently of the new or old value of the clock.

 C library/kernel differences

 On some architectures, an implementation of clock_gettime() is provided in the

 vdso(7).

 Historical note for SMP systems

 Before Linux added kernel support for CLOCK_PROCESS_CPUTIME_ID and

 CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many platforms using Page 4/5

 timer registers from the CPUs (TSC on i386, AR.ITC on Itanium). These registers

 may differ between CPUs and as a consequence these clocks may return bogus results

 if a process is migrated to another CPU.

 If the CPUs in an SMP system have different clock sources, then there is no way to

 maintain a correlation between the timer registers since each CPU will run at a

 slightly different frequency. If that is the case, then clock_getcpuclockid(0)

 will return ENOENT to signify this condition. The two clocks will then be useful

 only if it can be ensured that a process stays on a certain CPU.

 The processors in an SMP system do not start all at exactly the same time and

 therefore the timer registers are typically running at an offset. Some architec?

 tures include code that attempts to limit these offsets on bootup. However, the

 code cannot guarantee to accurately tune the offsets. Glibc contains no provisions

 to deal with these offsets (unlike the Linux Kernel). Typically these offsets are

 small and therefore the effects may be negligible in most cases.

 Since glibc 2.4, the wrapper functions for the system calls described in this page

 avoid the abovementioned problems by employing the kernel implementation of

 CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID, on systems that provide such

 an implementation (i.e., Linux 2.6.12 and later).

BUGS

 According to POSIX.1-2001, a process with "appropriate privileges" may set the

 CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID clocks using clock_settime().

 On Linux, these clocks are not settable (i.e., no process has "appropriate privi?

 leges").

SEE ALSO

 date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3), clock_getcpu?

 clockid(3), ctime(3), ftime(3), pthread_getcpuclockid(3), sysconf(3), time(7),

 vdso(7), hwclock(8)

COLOPHON

 This page is part of release 5.05 of the Linux man-pages project. A description of

 the project, information about reporting bugs, and the latest version of this page,

 can be found at https://www.kernel.org/doc/man-pages/.

 2019-03-06 CLOCK_GETRES(2)

Page 5/5

