
Rocky Enterprise Linux 9.2 Manual Pages on command 'clock_getres.2'

$ man clock_getres.2

CLOCK_GETRES(2)                     Linux Programmer's Manual                     CLOCK_GETRES(2)

NAME

       clock_getres, clock_gettime, clock_settime - clock and time functions

SYNOPSIS

       #include <time.h>

       int clock_getres(clockid_t clockid, struct timespec *res);

       int clock_gettime(clockid_t clockid, struct timespec *tp);

       int clock_settime(clockid_t clockid, const struct timespec *tp);

       Link with -lrt (only for glibc versions before 2.17).

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       clock_getres(), clock_gettime(), clock_settime():

              _POSIX_C_SOURCE >= 199309L

DESCRIPTION

       The  function  clock_getres()  finds  the  resolution  (precision)  of the specified clock

       clockid, and, if res is non-NULL, stores it in the struct timespec pointed to by res.  The

       resolution  of clocks depends on the implementation and cannot be configured by a particu?

       lar process.  If the time value pointed to by the argument tp of clock_settime() is not  a

       multiple of res, then it is truncated to a multiple of res.

       The  functions clock_gettime() and clock_settime() retrieve and set the time of the speci?

       fied clock clockid.

       The res and tp arguments are timespec structures, as specified in <time.h>:

           struct timespec {

               time_t   tv_sec;        /* seconds */ Page 1/8



               long     tv_nsec;       /* nanoseconds */

           };

       The clockid argument is the identifier of the particular clock on which to act.   A  clock

       may be system-wide and hence visible for all processes, or per-process if it measures time

       only within a single process.

       All implementations support the  system-wide  real-time  clock,  which  is  identified  by

       CLOCK_REALTIME.   Its  time  represents seconds and nanoseconds since the Epoch.  When its

       time is changed, timers for a relative interval are unaffected, but timers for an absolute

       point in time are affected.

       More  clocks  may be implemented.  The interpretation of the corresponding time values and

       the effect on timers is unspecified.

       Sufficiently recent versions of glibc and the Linux kernel support the following clocks:

       CLOCK_REALTIME

              A settable system-wide clock that measures real (i.e., wall-clock)  time.   Setting

              this  clock requires appropriate privileges.  This clock is affected by discontinu?

              ous jumps in the system time (e.g., if the system  administrator  manually  changes

              the clock), and by the incremental adjustments performed by adjtime(3) and NTP.

       CLOCK_REALTIME_ALARM (since Linux 3.0; Linux-specific)

              Like CLOCK_REALTIME, but not settable.  See timer_create(2) for further details.

       CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)

              A  faster  but less precise version of CLOCK_REALTIME.  This clock is not settable.

              Use when you need very fast, but not fine-grained timestamps.  Requires  per-archi?

              tecture  support,  and  probably  also  architecture  support  for this flag in the

              vdso(7).

       CLOCK_TAI (since Linux 3.10; Linux-specific)

              A nonsettable system-wide clock derived from wall-clock time but ignoring leap sec?

              onds.  This clock does not experience discontinuities and backwards jumps caused by

              NTP inserting leap seconds as CLOCK_REALTIME does.

              The acronym TAI refers to International Atomic Time.

       CLOCK_MONOTONIC

              A nonsettable system-wide clock that represents monotonic time  since?as  described

              by POSIX?"some unspecified point in the past".  On Linux, that point corresponds to

              the number of seconds that the system has been running since it was booted. Page 2/8



              The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the system time

              (e.g.,  if the system administrator manually changes the clock), but is affected by

              the incremental adjustments performed by adjtime(3) and NTP.  This clock  does  not

              count  time  that  the system is suspended.  All CLOCK_MONOTONIC variants guarantee

              that the time returned by consecutive calls will not go backwards,  but  successive

              calls  may?depending on the architecture?return identical (not-increased) time val?

              ues.

       CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)

              A faster but less precise version of CLOCK_MONOTONIC.  Use when you need very fast,

              but  not  fine-grained timestamps.  Requires per-architecture support, and probably

              also architecture support for this flag in the vdso(7).

       CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)

              Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based  time  that

              is  not subject to NTP adjustments or the incremental adjustments performed by adj?

              time(3).  This clock does not count time that the system is suspended.

       CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)

              A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,  except  that

              it  also  includes any time that the system is suspended.  This allows applications

              to get a suspend-aware monotonic clock without having to deal  with  the  complica?

              tions  of CLOCK_REALTIME, which may have discontinuities if the time is changed us?

              ing settimeofday(2) or similar.

       CLOCK_BOOTTIME_ALARM (since Linux 3.0; Linux-specific)

              Like CLOCK_BOOTTIME.  See timer_create(2) for further details.

       CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)

              This is a clock that measures CPU time consumed by this  process  (i.e.,  CPU  time

              consumed by all threads in the process).  On Linux, this clock is not settable.

       CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)

              This  is  a  clock  that measures CPU time consumed by this thread.  On Linux, this

              clock is not settable.

       Linux also implements dynamic clock instances as described below.

   Dynamic clocks

       In addition to the hard-coded System-V style clock IDs described above,  Linux  also  sup?

       ports  POSIX  clock operations on certain character devices.  Such devices are called "dy? Page 3/8



       namic" clocks, and are supported since Linux 2.6.39.

       Using the appropriate macros, open file descriptors may be converted into  clock  IDs  and

       passed  to  clock_gettime(), clock_settime(), and clock_adjtime(2).  The following example

       shows how to convert a file descriptor into a dynamic clock ID.

           #define CLOCKFD 3

           #define FD_TO_CLOCKID(fd)   ((~(clockid_t) (fd) << 3) | CLOCKFD)

           #define CLOCKID_TO_FD(clk)  ((unsigned int) ~((clk) >> 3))

           struct timespec ts;

           clockid_t clkid;

           int fd;

           fd = open("/dev/ptp0", O_RDWR);

           clkid = FD_TO_CLOCKID(fd);

           clock_gettime(clkid, &ts);

RETURN VALUE

       clock_gettime(), clock_settime(), and clock_getres() return 0 for success, or -1 for fail?

       ure (in which case errno is set appropriately).

ERRORS

       EACCES clock_settime()  does  not have write permission for the dynamic POSIX clock device

              indicated.

       EFAULT tp points outside the accessible address space.

       EINVAL The clockid specified is invalid for one of two reasons.  Either the System-V style

              hard  coded  positive value is out of range, or the dynamic clock ID does not refer

              to a valid instance of a clock object.

       EINVAL (clock_settime()): tp.tv_sec  is  negative  or  tp.tv_nsec  is  outside  the  range

              [0..999,999,999].

       EINVAL The clockid specified in a call to clock_settime() is not a settable clock.

       EINVAL (since Linux 4.3)

              A  call  to  clock_settime()  with a clockid of CLOCK_REALTIME attempted to set the

              time to a value less than the current value of the CLOCK_MONOTONIC clock.

       ENODEV The hot-pluggable device (like USB for example) represented by a dynamic clk_id has

              disappeared after its character device was opened.

       ENOTSUP

              The operation is not supported by the dynamic POSIX clock device specified. Page 4/8



       EPERM  clock_settime() does not have permission to set the clock indicated.

VERSIONS

       These system calls first appeared in Linux 2.6.

ATTRIBUTES

       For an explanation of the terms used in this section, see attributes(7).

       ?????????????????????????????????????????????????????????????

       ?Interface                        ? Attribute     ? Value   ?

       ?????????????????????????????????????????????????????????????

       ?clock_getres(), clock_gettime(), ? Thread safety ? MT-Safe ?

       ?clock_settime()                  ?               ?         ?

       ?????????????????????????????????????????????????????????????

CONFORMING TO

       POSIX.1-2001, POSIX.1-2008, SUSv2.

       On POSIX systems on which these functions are available, the symbol _POSIX_TIMERS  is  de?

       fined  in  <unistd.h>  to  a  value  greater  than 0.  The symbols _POSIX_MONOTONIC_CLOCK,

       _POSIX_CPUTIME,      _POSIX_THREAD_CPUTIME      indicate       that       CLOCK_MONOTONIC,

       CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID are available.  (See also sysconf(3).)

NOTES

       POSIX.1 specifies the following:

              Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no ef?

              fect on threads that are blocked waiting for a relative  time  service  based  upon

              this  clock,  including the nanosleep() function; nor on the expiration of relative

              timers based upon this clock.  Consequently, these time services shall expire  when

              the  requested  relative interval elapses, independently of the new or old value of

              the clock.

       According  to  POSIX.1-2001,  a  process  with  "appropriate  privileges"  may   set   the

       CLOCK_PROCESS_CPUTIME_ID  and  CLOCK_THREAD_CPUTIME_ID  clocks  using clock_settime().  On

       Linux, these clocks are not settable (i.e., no process has "appropriate privileges").

   C library/kernel differences

       On some architectures, an implementation of clock_gettime() is provided in the vdso(7).

   Historical note for SMP systems

       Before    Linux    added    kernel    support     for     CLOCK_PROCESS_CPUTIME_ID     and

       CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many platforms using timer reg? Page 5/8



       isters from the CPUs (TSC on i386, AR.ITC on Itanium).  These registers may differ between

       CPUs  and  as a consequence these clocks may return bogus results if a process is migrated

       to another CPU.

       If the CPUs in an SMP system have different clock sources, then there is no way  to  main?

       tain  a correlation between the timer registers since each CPU will run at a slightly dif?

       ferent frequency.  If that is the case, then clock_getcpuclockid(0) will return ENOENT  to

       signify this condition.  The two clocks will then be useful only if it can be ensured that

       a process stays on a certain CPU.

       The processors in an SMP system do not start all at exactly the same  time  and  therefore

       the  timer  registers are typically running at an offset.  Some architectures include code

       that attempts to limit these offsets on bootup.  However, the code cannot guarantee to ac?

       curately  tune  the offsets.  Glibc contains no provisions to deal with these offsets (un?

       like the Linux Kernel).  Typically these offsets are small and therefore the  effects  may

       be negligible in most cases.

       Since  glibc  2.4, the wrapper functions for the system calls described in this page avoid

       the   abovementioned   problems   by    employing    the    kernel    implementation    of

       CLOCK_PROCESS_CPUTIME_ID  and CLOCK_THREAD_CPUTIME_ID, on systems that provide such an im?

       plementation (i.e., Linux 2.6.12 and later).

EXAMPLES

       The program below demonstrates the use of clock_gettime() and clock_getres() with  various

       clocks.  This is an example of what we might see when running the program:

           $ ./clock_times x

           CLOCK_REALTIME : 1585985459.446 (18356 days +  7h 30m 59s)

                resolution:          0.000000001

           CLOCK_TAI      : 1585985496.447 (18356 days +  7h 31m 36s)

                resolution:          0.000000001

           CLOCK_MONOTONIC:      52395.722 (14h 33m 15s)

                resolution:          0.000000001

           CLOCK_BOOTTIME :      72691.019 (20h 11m 31s)

                resolution:          0.000000001

   Program source

       /* clock_times.c

          Licensed under GNU General Public License v2 or later. Page 6/8



       */

       #define _XOPEN_SOURCE 600

       #include <time.h>

       #include <stdint.h>

       #include <stdio.h>

       #include <stdlib.h>

       #include <stdbool.h>

       #include <unistd.h>

       #define SECS_IN_DAY (24 * 60 * 60)

       static void

       displayClock(clockid_t clock, const char *name, bool showRes)

       {

           struct timespec ts;

           if (clock_gettime(clock, &ts) == -1) {

               perror("clock_gettime");

               exit(EXIT_FAILURE);

           }

           printf("%-15s: %10jd.%03ld (", name,

                   (intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

           long days = ts.tv_sec / SECS_IN_DAY;

           if (days > 0)

               printf("%ld days + ", days);

           printf("%2dh %2dm %2ds",

                   (int) (ts.tv_sec % SECS_IN_DAY) / 3600,

                   (int) (ts.tv_sec % 3600) / 60,

                   (int) ts.tv_sec % 60);

           printf(")\n");

           if (clock_getres(clock, &ts) == -1) {

               perror("clock_getres");

               exit(EXIT_FAILURE);

           }

           if (showRes)

               printf("     resolution: %10jd.%09ld\n", Page 7/8



                       (intmax_t) ts.tv_sec, ts.tv_nsec);

       }

       int

       main(int argc, char *argv[])

       {

           bool showRes = argc > 1;

           displayClock(CLOCK_REALTIME, "CLOCK_REALTIME", showRes);

       #ifdef CLOCK_TAI

           displayClock(CLOCK_TAI, "CLOCK_TAI", showRes);

       #endif

           displayClock(CLOCK_MONOTONIC, "CLOCK_MONOTONIC", showRes);

       #ifdef CLOCK_BOOTTIME

           displayClock(CLOCK_BOOTTIME, "CLOCK_BOOTTIME", showRes);

       #endif

           exit(EXIT_SUCCESS);

       }

SEE ALSO

       date(1),  gettimeofday(2),  settimeofday(2),  time(2), adjtime(3), clock_getcpuclockid(3),

       ctime(3), ftime(3),  pthread_getcpuclockid(3),  sysconf(3),  time(7),  time_namespaces(7),

       vdso(7), hwclock(8)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A description of the

       project, information about reporting bugs, and the latest version of  this  page,  can  be

       found at https://www.kernel.org/doc/man-pages/.

                                            2020-12-21                            CLOCK_GETRES(2)

Page 8/8


