
Rocky Enterprise Linux 9.2 Manual Pages on command 'chown.2'

$ man chown.2

CHOWN(2) Linux Programmer's Manual CHOWN(2)

NAME

 chown, fchown, lchown, fchownat - change ownership of a file

SYNOPSIS

 #include <unistd.h>

 int chown(const char *pathname, uid_t owner, gid_t group);

 int fchown(int fd, uid_t owner, gid_t group);

 int lchown(const char *pathname, uid_t owner, gid_t group);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <unistd.h>

 int fchownat(int dirfd, const char *pathname,

 uid_t owner, gid_t group, int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fchown(), lchown():

 /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

 || _XOPEN_SOURCE >= 500

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 fchownat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION Page 1/6

 These system calls change the owner and group of a file. The chown(), fchown(), and

 lchown() system calls differ only in how the file is specified:

 * chown() changes the ownership of the file specified by pathname, which is dereferenced

 if it is a symbolic link.

 * fchown() changes the ownership of the file referred to by the open file descriptor fd.

 * lchown() is like chown(), but does not dereference symbolic links.

 Only a privileged process (Linux: one with the CAP_CHOWN capability) may change the owner

 of a file. The owner of a file may change the group of the file to any group of which

 that owner is a member. A privileged process (Linux: with CAP_CHOWN) may change the group

 arbitrarily.

 If the owner or group is specified as -1, then that ID is not changed.

 When the owner or group of an executable file is changed by an unprivileged user, the

 S_ISUID and S_ISGID mode bits are cleared. POSIX does not specify whether this also

 should happen when root does the chown(); the Linux behavior depends on the kernel ver?

 sion, and since Linux 2.2.13, root is treated like other users. In case of a non-group-

 executable file (i.e., one for which the S_IXGRP bit is not set) the S_ISGID bit indicates

 mandatory locking, and is not cleared by a chown().

 When the owner or group of an executable file is changed (by any user), all capability

 sets for the file are cleared.

 fchownat()

 The fchownat() system call operates in exactly the same way as chown(), except for the

 differences described here.

 If the pathname given in pathname is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor dirfd (rather than relative to the current

 working directory of the calling process, as is done by chown() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is inter?

 preted relative to the current working directory of the calling process (like chown()).

 If pathname is absolute, then dirfd is ignored.

 The flags argument is a bit mask created by ORing together 0 or more of the following val?

 ues;

 AT_EMPTY_PATH (since Linux 2.6.39)

 If pathname is an empty string, operate on the file referred to by dirfd (which may

 have been obtained using the open(2) O_PATH flag). In this case, dirfd can refer Page 2/6

 to any type of file, not just a directory. If dirfd is AT_FDCWD, the call operates

 on the current working directory. This flag is Linux-specific; define _GNU_SOURCE

 to obtain its definition.

 AT_SYMLINK_NOFOLLOW

 If pathname is a symbolic link, do not dereference it: instead operate on the link

 itself, like lchown(). (By default, fchownat() dereferences symbolic links, like

 chown().)

 See openat(2) for an explanation of the need for fchownat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 Depending on the filesystem, errors other than those listed below can be returned.

 The more general errors for chown() are listed below.

 EACCES Search permission is denied on a component of the path prefix. (See also path_res?

 olution(7).)

 EFAULT pathname points outside your accessible address space.

 ELOOP Too many symbolic links were encountered in resolving pathname.

 ENAMETOOLONG

 pathname is too long.

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR

 A component of the path prefix is not a directory.

 EPERM The calling process did not have the required permissions (see above) to change

 owner and/or group.

 EPERM The file is marked immutable or append-only. (See ioctl_iflags(2).)

 EROFS The named file resides on a read-only filesystem.

 The general errors for fchown() are listed below:

 EBADF fd is not a valid open file descriptor.

 EIO A low-level I/O error occurred while modifying the inode.

 ENOENT See above.

 EPERM See above.

 EROFS See above. Page 3/6

 The same errors that occur for chown() can also occur for fchownat(). The following addi?

 tional errors can occur for fchownat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL Invalid flag specified in flags.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to a file other than

 a directory.

VERSIONS

 fchownat() was added to Linux in kernel 2.6.16; library support was added to glibc in ver?

 sion 2.4.

CONFORMING TO

 chown(), fchown(), lchown(): 4.4BSD, SVr4, POSIX.1-2001, POSIX.1-2008.

 The 4.4BSD version can be used only by the superuser (that is, ordinary users cannot give

 away files).

 fchownat(): POSIX.1-2008.

NOTES

 Ownership of new files

 When a new file is created (by, for example, open(2) or mkdir(2)), its owner is made the

 same as the filesystem user ID of the creating process. The group of the file depends on

 a range of factors, including the type of filesystem, the options used to mount the

 filesystem, and whether or not the set-group-ID mode bit is enabled on the parent direc?

 tory. If the filesystem supports the -o grpid (or, synonymously -o bsdgroups) and -o no?

 grpid (or, synonymously -o sysvgroups) mount(8) options, then the rules are as follows:

 * If the filesystem is mounted with -o grpid, then the group of a new file is made the

 same as that of the parent directory.

 * If the filesystem is mounted with -o nogrpid and the set-group-ID bit is disabled on the

 parent directory, then the group of a new file is made the same as the process's

 filesystem GID.

 * If the filesystem is mounted with -o nogrpid and the set-group-ID bit is enabled on the

 parent directory, then the group of a new file is made the same as that of the parent

 directory.

 As at Linux 4.12, the -o grpid and -o nogrpid mount options are supported by ext2, ext3,

 ext4, and XFS. Filesystems that don't support these mount options follow the -o nogrpid Page 4/6

 rules.

 Glibc notes

 On older kernels where fchownat() is unavailable, the glibc wrapper function falls back to

 the use of chown() and lchown(). When pathname is a relative pathname, glibc constructs a

 pathname based on the symbolic link in /proc/self/fd that corresponds to the dirfd argu?

 ment.

 NFS

 The chown() semantics are deliberately violated on NFS filesystems which have UID mapping

 enabled. Additionally, the semantics of all system calls which access the file contents

 are violated, because chown() may cause immediate access revocation on already open files.

 Client side caching may lead to a delay between the time where ownership have been changed

 to allow access for a user and the time where the file can actually be accessed by the

 user on other clients.

 Historical details

 The original Linux chown(), fchown(), and lchown() system calls supported only 16-bit user

 and group IDs. Subsequently, Linux 2.4 added chown32(), fchown32(), and lchown32(), sup?

 porting 32-bit IDs. The glibc chown(), fchown(), and lchown() wrapper functions transpar?

 ently deal with the variations across kernel versions.

 In versions of Linux prior to 2.1.81 (and distinct from 2.1.46), chown() did not follow

 symbolic links. Since Linux 2.1.81, chown() does follow symbolic links, and there is a

 new system call lchown() that does not follow symbolic links. Since Linux 2.1.86, this

 new call (that has the same semantics as the old chown()) has got the same syscall number,

 and chown() got the newly introduced number.

EXAMPLES

 The following program changes the ownership of the file named in its second command-line

 argument to the value specified in its first command-line argument. The new owner can be

 specified either as a numeric user ID, or as a username (which is converted to a user ID

 by using getpwnam(3) to perform a lookup in the system password file).

 Program source

 #include <pwd.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h> Page 5/6

 int

 main(int argc, char *argv[])

 {

 uid_t uid;

 struct passwd *pwd;

 char *endptr;

 if (argc != 3 || argv[1][0] == '\0') {

 fprintf(stderr, "%s <owner> <file>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 uid = strtol(argv[1], &endptr, 10); /* Allow a numeric string */

 if (*endptr != '\0') { /* Was not pure numeric string */

 pwd = getpwnam(argv[1]); /* Try getting UID for username */

 if (pwd == NULL) {

 perror("getpwnam");

 exit(EXIT_FAILURE);

 }

 uid = pwd->pw_uid;

 }

 if (chown(argv[2], uid, -1) == -1) {

 perror("chown");

 exit(EXIT_FAILURE);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 CHOWN(2)

Page 6/6

