
Rocky Enterprise Linux 9.2 Manual Pages on command 'capsh.1'

$ man capsh.1

CAPSH(1) User Commands CAPSH(1)

NAME

 capsh - capability shell wrapper

SYNOPSIS

 capsh [OPTION]...

DESCRIPTION

 Linux capability support and use can be explored and constrained with this tool. This tool

 provides a handy wrapper for certain types of capability testing and environment creation.

 It also provides some debugging features useful for summarizing capability state.

OPTIONS

 capsh takes a number of optional arguments, acting on them in the order they are provided.

 They are as follows:

 --help Display the list of commands supported by capsh.

 --print

 Display prevailing capability and related state.

 -- [args]

 Execute /bin/bash with trailing arguments. Note, you can use -c 'command to exe?

 cute' for specific commands.

 == Execute capsh again with the remaining arguments. Useful for testing exec() behav?

 ior.

 --caps=cap-set

 Set the prevailing process capabilities to those specified by cap-set. Where cap-

 set is a text-representation of capability state as per cap_from_text(3). Page 1/5

 --drop=cap-list

 Remove the listed capabilities from the prevailing bounding set. The capabilities

 are a comma-separated list of capabilities as recognized by the cap_from_name(3)

 function. Use of this feature requires that capsh is operating with CAP_SETPCAP in

 its effective set.

 --inh=cap-list

 Set the inheritable set of capabilities for the current process to equal those pro?

 vided in the comma separated list. For this action to succeed, the prevailing

 process should already have each of these capabilities in the union of the current

 inheritable and permitted capability sets, or capsh should be operating with

 CAP_SETPCAP in its effective set.

 --user=username

 Assume the identity of the named user. That is, look up the user's UID and GID with

 getpwuid(3) and their group memberships with getgrouplist(3) and set them all using

 cap_setuid(3) and cap_setgroups(3). Following this command, the effective capabil?

 ities will be cleared, but the permitted set will not be, so the running program is

 still privileged.

 --modes

 Lists all of the libcap modes supported by --mode.

 --mode=<mode>

 Force the program into a cap_set_mode(3) security mode. This is a set of securebits

 and prevailing capability arrangement recommended for its pre-determined security

 stance.

 --inmode=<mode>

 Confirm that the prevailing mode is that specified in <mode>, or exit with a status

 1.

 --uid=id

 Force all UID values to equal id using the setuid(2) system call. This argument may

 require explicit preparation of the effective set.

 --cap-uid=<uid>

 use the cap_setuid(3) function to set the UID of the current process. This performs

 all preparations for setting the UID without dropping capabilities in the process.

 Following this command the prevailing effective capabilities will be lowered. Page 2/5

 --is-uid=<id>

 Exit with status 1 unless the current UID equals <id>.

 --gid=<id>

 Force all GID values to equal id using the setgid(2) system call.

 --is-gid=<id>

 Exit with status 1 unless the current GIQ equals <id>.

 --groups=<gid-list>

 Set the supplementary groups to the numerical list provided. The groups are set

 with the setgroups(2) system call. See --user for a more convenient way of doing

 this.

 --keep=<0|1>

 In a non-pure capability mode, the kernel provides liberal privilege to the super-

 user. However, it is normally the case that when the super-user changes UID to some

 lesser user, then capabilities are dropped. For these situations, the kernel can

 permit the process to retain its capabilities after a setuid(2) system call. This

 feature is known as keep-caps support. The way to activate it using this program is

 with this argument. Setting the value to 1 will cause keep-caps to be active. Set?

 ting it to 0 will cause keep-caps to deactivate for the current process. In all

 cases, keep-caps is deactivated when an exec() is performed. See --secbits for ways

 to disable this feature.

 --secbits=N

 Set the security-bits for the program. This is done using the prctl(2) PR_SET_SE?

 CUREBITS operation. The list of supported bits and their meaning can be found in

 the <sys/secbits.h> header file. The program will list these bits via the --print

 command. The argument is expressed as a numeric bitmask, in any of the formats

 permitted by strtoul(3).

 --chroot=path

 Execute the chroot(2) system call with the new root-directory (/) equal to path.

 This operation requires CAP_SYS_CHROOT to be in effect.

 --forkfor=sec

 This command causes the program to fork a child process for so many seconds. The

 child will sleep that long and then exit with status 0. The purpose of this command

 is to support exploring the way processes are killable in the face of capability Page 3/5

 changes. See the --killit command. Only one fork can be active at a time.

 --killit=sig

 This commands causes a --forkfor child to be kill(2)d with the specified signal.

 The command then waits for the child to exit. If the exit status does not match

 the signal being used to kill it, the capsh program exits with status 1.

 --decode=N

 This is a convenience feature. If you look at /proc/1/status there are some capa?

 bility related fields of the following form:

 CapInh: 0000000000000000

 CapPrm: 0000003fffffffff

 CapEff: 0000003fffffffff

 CapBnd: 0000003fffffffff

 CapAmb: 0000000000000000

 This option provides a quick way to decode a capability vector represented in this

 hexadecimal form. Here's an example that decodes the two lowest capability bits:

 $ capsh --decode=3

 0x0000000000000003=cap_chown,cap_dac_override

 --supports=xxx

 As the kernel evolves, more capabilities are added. This option can be used to ver?

 ify the existence of a capability on the system. For example, --supports=cap_syslog

 will cause capsh to promptly exit with a status of 1 when run on kernel 2.6.27.

 However, when run on kernel 2.6.38 it will silently succeed.

 --has-p=xxx

 Exit with status 1 unless the permitted vector has capability xxx raised.

 --has-ambient

 Performs a check to see if the running kernel supports ambient capabilities. If

 not, capsh exits with status 1.

 --has-a=xxx

 Exit with status 1 unless the ambient vector has capability xxx raised.

 --addamb=xxx

 Adds the specified ambient capability to the running process.

 --delamb=xxx

 Removes the specified ambient capability from the running process. Page 4/5

 --noamb

 Drops all ambient capabilities from the running process.

EXIT STATUS

 Following successful execution, capsh exits with status 0. Following an error, capsh imme?

 diately exits with status 1.

AUTHOR

 Written by Andrew G. Morgan <morgan@kernel.org>.

REPORTING BUGS

 Please report bugs via:

 https://bugzilla.kernel.org/buglist.cgi?component=libcap&list_id=1047723&prod?

 uct=Tools&resolution=---

SEE ALSO

 libcap(3), getcap(8), setcap(8) and capabilities(7).

libcap 2 2020-01-07 CAPSH(1)

Page 5/5

