
Rocky Enterprise Linux 9.2 Manual Pages on command 'capset.2'

$ man capset.2

CAPGET(2) Linux Programmer's Manual CAPGET(2)

NAME

 capget, capset - set/get capabilities of thread(s)

SYNOPSIS

 #include <sys/capability.h>

 int capget(cap_user_header_t hdrp, cap_user_data_t datap);

 int capset(cap_user_header_t hdrp, const cap_user_data_t datap);

DESCRIPTION

 These two system calls are the raw kernel interface for getting and setting thread capa?

 bilities. Not only are these system calls specific to Linux, but the kernel API is likely

 to change and use of these system calls (in particular the format of the cap_user_*_t

 types) is subject to extension with each kernel revision, but old programs will keep work?

 ing.

 The portable interfaces are cap_set_proc(3) and cap_get_proc(3); if possible, you should

 use those interfaces in applications.

 Current details

 Now that you have been warned, some current kernel details. The structures are defined as

 follows.

 #define _LINUX_CAPABILITY_VERSION_1 0x19980330

 #define _LINUX_CAPABILITY_U32S_1 1

 /* V2 added in Linux 2.6.25; deprecated */

 #define _LINUX_CAPABILITY_VERSION_2 0x20071026

 #define _LINUX_CAPABILITY_U32S_2 2 Page 1/4

 /* V3 added in Linux 2.6.26 */

 #define _LINUX_CAPABILITY_VERSION_3 0x20080522

 #define _LINUX_CAPABILITY_U32S_3 2

 typedef struct __user_cap_header_struct {

 __u32 version;

 int pid;

 } *cap_user_header_t;

 typedef struct __user_cap_data_struct {

 __u32 effective;

 __u32 permitted;

 __u32 inheritable;

 } *cap_user_data_t;

 The effective, permitted, and inheritable fields are bit masks of the capabilities defined

 in capabilities(7). Note that the CAP_* values are bit indexes and need to be bit-shifted

 before ORing into the bit fields. To define the structures for passing to the system

 call, you have to use the struct __user_cap_header_struct and struct

 __user_cap_data_struct names because the typedefs are only pointers.

 Kernels prior to 2.6.25 prefer 32-bit capabilities with version _LINUX_CAPABILITY_VER?

 SION_1. Linux 2.6.25 added 64-bit capability sets, with version _LINUX_CAPABILITY_VER?

 SION_2. There was, however, an API glitch, and Linux 2.6.26 added _LINUX_CAPABILITY_VER?

 SION_3 to fix the problem.

 Note that 64-bit capabilities use datap[0] and datap[1], whereas 32-bit capabilities use

 only datap[0].

 On kernels that support file capabilities (VFS capabilities support), these system calls

 behave slightly differently. This support was added as an option in Linux 2.6.24, and be?

 came fixed (nonoptional) in Linux 2.6.33.

 For capget() calls, one can probe the capabilities of any process by specifying its

 process ID with the hdrp->pid field value.

 For details on the data, see capabilities(7).

 With VFS capabilities support

 VFS capabilities employ a file extended attribute (see xattr(7)) to allow capabilities to

 be attached to executables. This privilege model obsoletes kernel support for one process

 asynchronously setting the capabilities of another. That is, on kernels that have VFS ca? Page 2/4

 pabilities support, when calling capset(), the only permitted values for hdrp->pid are 0

 or, equivalently, the value returned by gettid(2).

 Without VFS capabilities support

 On older kernels that do not provide VFS capabilities support capset() can, if the caller

 has the CAP_SETPCAP capability, be used to change not only the caller's own capabilities,

 but also the capabilities of other threads. The call operates on the capabilities of the

 thread specified by the pid field of hdrp when that is nonzero, or on the capabilities of

 the calling thread if pid is 0. If pid refers to a single-threaded process, then pid can

 be specified as a traditional process ID; operating on a thread of a multithreaded process

 requires a thread ID of the type returned by gettid(2). For capset(), pid can also be:

 -1, meaning perform the change on all threads except the caller and init(1); or a value

 less than -1, in which case the change is applied to all members of the process group

 whose ID is -pid.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

 The calls fail with the error EINVAL, and set the version field of hdrp to the kernel pre?

 ferred value of _LINUX_CAPABILITY_VERSION_? when an unsupported version value is speci?

 fied. In this way, one can probe what the current preferred capability revision is.

ERRORS

 EFAULT Bad memory address. hdrp must not be NULL. datap may be NULL only when the user

 is trying to determine the preferred capability version format supported by the

 kernel.

 EINVAL One of the arguments was invalid.

 EPERM An attempt was made to add a capability to the permitted set, or to set a capabil?

 ity in the effective set that is not in the permitted set.

 EPERM An attempt was made to add a capability to the inheritable set, and either:

 * that capability was not in the caller's bounding set; or

 * the capability was not in the caller's permitted set and the caller lacked the

 CAP_SETPCAP capability in its effective set.

 EPERM The caller attempted to use capset() to modify the capabilities of a thread other

 than itself, but lacked sufficient privilege. For kernels supporting VFS capabili?

 ties, this is never permitted. For kernels lacking VFS support, the CAP_SETPCAP

 capability is required. (A bug in kernels before 2.6.11 meant that this error Page 3/4

 could also occur if a thread without this capability tried to change its own capa?

 bilities by specifying the pid field as a nonzero value (i.e., the value returned

 by getpid(2)) instead of 0.)

 ESRCH No such thread.

CONFORMING TO

 These system calls are Linux-specific.

NOTES

 The portable interface to the capability querying and setting functions is provided by the

 libcap library and is available here:

 ?http://git.kernel.org/cgit/linux/kernel/git/morgan/libcap.git?

SEE ALSO

 clone(2), gettid(2), capabilities(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-02-09 CAPGET(2)

Page 4/4

