
Rocky Enterprise Linux 9.2 Manual Pages on command 'capabilities.7'

$ man capabilities.7

CAPABILITIES(7) Linux Programmer's Manual CAPABILITIES(7)

NAME

 capabilities - overview of Linux capabilities

DESCRIPTION

 For the purpose of performing permission checks, traditional UNIX implementations distin?

 guish two categories of processes: privileged processes (whose effective user ID is 0, re?

 ferred to as superuser or root), and unprivileged processes (whose effective UID is non?

 zero). Privileged processes bypass all kernel permission checks, while unprivileged pro?

 cesses are subject to full permission checking based on the process's credentials (usu?

 ally: effective UID, effective GID, and supplementary group list).

 Starting with kernel 2.2, Linux divides the privileges traditionally associated with supe?

 ruser into distinct units, known as capabilities, which can be independently enabled and

 disabled. Capabilities are a per-thread attribute.

 Capabilities list

 The following list shows the capabilities implemented on Linux, and the operations or be?

 haviors that each capability permits:

 CAP_AUDIT_CONTROL (since Linux 2.6.11)

 Enable and disable kernel auditing; change auditing filter rules; retrieve auditing

 status and filtering rules.

 CAP_AUDIT_READ (since Linux 3.16)

 Allow reading the audit log via a multicast netlink socket.

 CAP_AUDIT_WRITE (since Linux 2.6.11)

 Write records to kernel auditing log. Page 1/23

 CAP_BLOCK_SUSPEND (since Linux 3.5)

 Employ features that can block system suspend (epoll(7) EPOLLWAKEUP,

 /proc/sys/wake_lock).

 CAP_BPF (since Linux 5.8)

 Employ privileged BPF operations; see bpf(2) and bpf-helpers(7).

 This capability was added in Linux 5.8 to separate out BPF functionality from the

 overloaded CAP_SYS_ADMIN capability.

 CAP_CHECKPOINT_RESTORE (since Linux 5.9)

 * Update /proc/sys/kernel/ns_last_pid (see pid_namespaces(7));

 * employ the set_tid feature of clone3(2);

 * read the contents of the symbolic links in /proc/[pid]/map_files for other pro?

 cesses.

 This capability was added in Linux 5.9 to separate out checkpoint/restore function?

 ality from the overloaded CAP_SYS_ADMIN capability.

 CAP_CHOWN

 Make arbitrary changes to file UIDs and GIDs (see chown(2)).

 CAP_DAC_OVERRIDE

 Bypass file read, write, and execute permission checks. (DAC is an abbreviation of

 "discretionary access control".)

 CAP_DAC_READ_SEARCH

 * Bypass file read permission checks and directory read and execute permission

 checks;

 * invoke open_by_handle_at(2);

 * use the linkat(2) AT_EMPTY_PATH flag to create a link to a file referred to by a

 file descriptor.

 CAP_FOWNER

 * Bypass permission checks on operations that normally require the filesystem UID

 of the process to match the UID of the file (e.g., chmod(2), utime(2)), excluding

 those operations covered by CAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH;

 * set inode flags (see ioctl_iflags(2)) on arbitrary files;

 * set Access Control Lists (ACLs) on arbitrary files;

 * ignore directory sticky bit on file deletion;

 * modify user extended attributes on sticky directory owned by any user; Page 2/23

 * specify O_NOATIME for arbitrary files in open(2) and fcntl(2).

 CAP_FSETID

 * Don't clear set-user-ID and set-group-ID mode bits when a file is modified;

 * set the set-group-ID bit for a file whose GID does not match the filesystem or

 any of the supplementary GIDs of the calling process.

 CAP_IPC_LOCK

 Lock memory (mlock(2), mlockall(2), mmap(2), shmctl(2)).

 CAP_IPC_OWNER

 Bypass permission checks for operations on System V IPC objects.

 CAP_KILL

 Bypass permission checks for sending signals (see kill(2)). This includes use of

 the ioctl(2) KDSIGACCEPT operation.

 CAP_LEASE (since Linux 2.4)

 Establish leases on arbitrary files (see fcntl(2)).

 CAP_LINUX_IMMUTABLE

 Set the FS_APPEND_FL and FS_IMMUTABLE_FL inode flags (see ioctl_iflags(2)).

 CAP_MAC_ADMIN (since Linux 2.6.25)

 Allow MAC configuration or state changes. Implemented for the Smack Linux Security

 Module (LSM).

 CAP_MAC_OVERRIDE (since Linux 2.6.25)

 Override Mandatory Access Control (MAC). Implemented for the Smack LSM.

 CAP_MKNOD (since Linux 2.4)

 Create special files using mknod(2).

 CAP_NET_ADMIN

 Perform various network-related operations:

 * interface configuration;

 * administration of IP firewall, masquerading, and accounting;

 * modify routing tables;

 * bind to any address for transparent proxying;

 * set type-of-service (TOS);

 * clear driver statistics;

 * set promiscuous mode;

 * enabling multicasting; Page 3/23

 * use setsockopt(2) to set the following socket options: SO_DEBUG, SO_MARK, SO_PRI?

 ORITY (for a priority outside the range 0 to 6), SO_RCVBUFFORCE, and SO_SNDBUF?

 FORCE.

 CAP_NET_BIND_SERVICE

 Bind a socket to Internet domain privileged ports (port numbers less than 1024).

 CAP_NET_BROADCAST

 (Unused) Make socket broadcasts, and listen to multicasts.

 CAP_NET_RAW

 * Use RAW and PACKET sockets;

 * bind to any address for transparent proxying.

 CAP_PERFMON (since Linux 5.8)

 Employ various performance-monitoring mechanisms, including:

 * call perf_event_open(2);

 * employ various BPF operations that have performance implications.

 This capability was added in Linux 5.8 to separate out performance monitoring func?

 tionality from the overloaded CAP_SYS_ADMIN capability. See also the kernel source

 file Documentation/admin-guide/perf-security.rst.

 CAP_SETGID

 * Make arbitrary manipulations of process GIDs and supplementary GID list;

 * forge GID when passing socket credentials via UNIX domain sockets;

 * write a group ID mapping in a user namespace (see user_namespaces(7)).

 CAP_SETFCAP (since Linux 2.6.24)

 Set arbitrary capabilities on a file.

 CAP_SETPCAP

 If file capabilities are supported (i.e., since Linux 2.6.24): add any capability

 from the calling thread's bounding set to its inheritable set; drop capabilities

 from the bounding set (via prctl(2) PR_CAPBSET_DROP); make changes to the se?

 curebits flags.

 If file capabilities are not supported (i.e., kernels before Linux 2.6.24): grant

 or remove any capability in the caller's permitted capability set to or from any

 other process. (This property of CAP_SETPCAP is not available when the kernel is

 configured to support file capabilities, since CAP_SETPCAP has entirely different

 semantics for such kernels.) Page 4/23

 CAP_SETUID

 * Make arbitrary manipulations of process UIDs (setuid(2), setreuid(2), setre?

 suid(2), setfsuid(2));

 * forge UID when passing socket credentials via UNIX domain sockets;

 * write a user ID mapping in a user namespace (see user_namespaces(7)).

 CAP_SYS_ADMIN

 Note: this capability is overloaded; see Notes to kernel developers, below.

 * Perform a range of system administration operations including: quotactl(2),

 mount(2), umount(2), pivot_root(2), swapon(2), swapoff(2), sethostname(2), and

 setdomainname(2);

 * perform privileged syslog(2) operations (since Linux 2.6.37, CAP_SYSLOG should be

 used to permit such operations);

 * perform VM86_REQUEST_IRQ vm86(2) command;

 * access the same checkpoint/restore functionality that is governed by CAP_CHECK?

 POINT_RESTORE (but the latter, weaker capability is preferred for accessing that

 functionality).

 * perform the same BPF operations as are governed by CAP_BPF (but the latter,

 weaker capability is preferred for accessing that functionality).

 * employ the same performance monitoring mechanisms as are governed by CAP_PERFMON

 (but the latter, weaker capability is preferred for accessing that functional?

 ity).

 * perform IPC_SET and IPC_RMID operations on arbitrary System V IPC objects;

 * override RLIMIT_NPROC resource limit;

 * perform operations on trusted and security extended attributes (see xattr(7));

 * use lookup_dcookie(2);

 * use ioprio_set(2) to assign IOPRIO_CLASS_RT and (before Linux 2.6.25) IO?

 PRIO_CLASS_IDLE I/O scheduling classes;

 * forge PID when passing socket credentials via UNIX domain sockets;

 * exceed /proc/sys/fs/file-max, the system-wide limit on the number of open files,

 in system calls that open files (e.g., accept(2), execve(2), open(2), pipe(2));

 * employ CLONE_* flags that create new namespaces with clone(2) and unshare(2)

 (but, since Linux 3.8, creating user namespaces does not require any capability);

 * access privileged perf event information; Page 5/23

 * call setns(2) (requires CAP_SYS_ADMIN in the target namespace);

 * call fanotify_init(2);

 * perform privileged KEYCTL_CHOWN and KEYCTL_SETPERM keyctl(2) operations;

 * perform madvise(2) MADV_HWPOISON operation;

 * employ the TIOCSTI ioctl(2) to insert characters into the input queue of a termi?

 nal other than the caller's controlling terminal;

 * employ the obsolete nfsservctl(2) system call;

 * employ the obsolete bdflush(2) system call;

 * perform various privileged block-device ioctl(2) operations;

 * perform various privileged filesystem ioctl(2) operations;

 * perform privileged ioctl(2) operations on the /dev/random device (see random(4));

 * install a seccomp(2) filter without first having to set the no_new_privs thread

 attribute;

 * modify allow/deny rules for device control groups;

 * employ the ptrace(2) PTRACE_SECCOMP_GET_FILTER operation to dump tracee's seccomp

 filters;

 * employ the ptrace(2) PTRACE_SETOPTIONS operation to suspend the tracee's seccomp

 protections (i.e., the PTRACE_O_SUSPEND_SECCOMP flag);

 * perform administrative operations on many device drivers;

 * modify autogroup nice values by writing to /proc/[pid]/autogroup (see sched(7)).

 CAP_SYS_BOOT

 Use reboot(2) and kexec_load(2).

 CAP_SYS_CHROOT

 * Use chroot(2);

 * change mount namespaces using setns(2).

 CAP_SYS_MODULE

 * Load and unload kernel modules (see init_module(2) and delete_module(2));

 * in kernels before 2.6.25: drop capabilities from the system-wide capability

 bounding set.

 CAP_SYS_NICE

 * Lower the process nice value (nice(2), setpriority(2)) and change the nice value

 for arbitrary processes;

 * set real-time scheduling policies for calling process, and set scheduling poli? Page 6/23

 cies and priorities for arbitrary processes (sched_setscheduler(2), sched_set?

 param(2), sched_setattr(2));

 * set CPU affinity for arbitrary processes (sched_setaffinity(2));

 * set I/O scheduling class and priority for arbitrary processes (ioprio_set(2));

 * apply migrate_pages(2) to arbitrary processes and allow processes to be migrated

 to arbitrary nodes;

 * apply move_pages(2) to arbitrary processes;

 * use the MPOL_MF_MOVE_ALL flag with mbind(2) and move_pages(2).

 CAP_SYS_PACCT

 Use acct(2).

 CAP_SYS_PTRACE

 * Trace arbitrary processes using ptrace(2);

 * apply get_robust_list(2) to arbitrary processes;

 * transfer data to or from the memory of arbitrary processes using

 process_vm_readv(2) and process_vm_writev(2);

 * inspect processes using kcmp(2).

 CAP_SYS_RAWIO

 * Perform I/O port operations (iopl(2) and ioperm(2));

 * access /proc/kcore;

 * employ the FIBMAP ioctl(2) operation;

 * open devices for accessing x86 model-specific registers (MSRs, see msr(4));

 * update /proc/sys/vm/mmap_min_addr;

 * create memory mappings at addresses below the value specified by

 /proc/sys/vm/mmap_min_addr;

 * map files in /proc/bus/pci;

 * open /dev/mem and /dev/kmem;

 * perform various SCSI device commands;

 * perform certain operations on hpsa(4) and cciss(4) devices;

 * perform a range of device-specific operations on other devices.

 CAP_SYS_RESOURCE

 * Use reserved space on ext2 filesystems;

 * make ioctl(2) calls controlling ext3 journaling;

 * override disk quota limits; Page 7/23

 * increase resource limits (see setrlimit(2));

 * override RLIMIT_NPROC resource limit;

 * override maximum number of consoles on console allocation;

 * override maximum number of keymaps;

 * allow more than 64hz interrupts from the real-time clock;

 * raise msg_qbytes limit for a System V message queue above the limit in

 /proc/sys/kernel/msgmnb (see msgop(2) and msgctl(2));

 * allow the RLIMIT_NOFILE resource limit on the number of "in-flight" file descrip?

 tors to be bypassed when passing file descriptors to another process via a UNIX

 domain socket (see unix(7));

 * override the /proc/sys/fs/pipe-size-max limit when setting the capacity of a pipe

 using the F_SETPIPE_SZ fcntl(2) command;

 * use F_SETPIPE_SZ to increase the capacity of a pipe above the limit specified by

 /proc/sys/fs/pipe-max-size;

 * override /proc/sys/fs/mqueue/queues_max, /proc/sys/fs/mqueue/msg_max, and

 /proc/sys/fs/mqueue/msgsize_max limits when creating POSIX message queues (see

 mq_overview(7));

 * employ the prctl(2) PR_SET_MM operation;

 * set /proc/[pid]/oom_score_adj to a value lower than the value last set by a

 process with CAP_SYS_RESOURCE.

 CAP_SYS_TIME

 Set system clock (settimeofday(2), stime(2), adjtimex(2)); set real-time (hardware)

 clock.

 CAP_SYS_TTY_CONFIG

 Use vhangup(2); employ various privileged ioctl(2) operations on virtual terminals.

 CAP_SYSLOG (since Linux 2.6.37)

 * Perform privileged syslog(2) operations. See syslog(2) for information on which

 operations require privilege.

 * View kernel addresses exposed via /proc and other interfaces when /proc/sys/ker?

 nel/kptr_restrict has the value 1. (See the discussion of the kptr_restrict in

 proc(5).)

 CAP_WAKE_ALARM (since Linux 3.0)

 Trigger something that will wake up the system (set CLOCK_REALTIME_ALARM and Page 8/23

 CLOCK_BOOTTIME_ALARM timers).

 Past and current implementation

 A full implementation of capabilities requires that:

 1. For all privileged operations, the kernel must check whether the thread has the re?

 quired capability in its effective set.

 2. The kernel must provide system calls allowing a thread's capability sets to be changed

 and retrieved.

 3. The filesystem must support attaching capabilities to an executable file, so that a

 process gains those capabilities when the file is executed.

 Before kernel 2.6.24, only the first two of these requirements are met; since kernel

 2.6.24, all three requirements are met.

 Notes to kernel developers

 When adding a new kernel feature that should be governed by a capability, consider the

 following points.

 * The goal of capabilities is divide the power of superuser into pieces, such that if a

 program that has one or more capabilities is compromised, its power to do damage to the

 system would be less than the same program running with root privilege.

 * You have the choice of either creating a new capability for your new feature, or asso?

 ciating the feature with one of the existing capabilities. In order to keep the set of

 capabilities to a manageable size, the latter option is preferable, unless there are

 compelling reasons to take the former option. (There is also a technical limit: the

 size of capability sets is currently limited to 64 bits.)

 * To determine which existing capability might best be associated with your new feature,

 review the list of capabilities above in order to find a "silo" into which your new

 feature best fits. One approach to take is to determine if there are other features

 requiring capabilities that will always be used along with the new feature. If the new

 feature is useless without these other features, you should use the same capability as

 the other features.

 * Don't choose CAP_SYS_ADMIN if you can possibly avoid it! A vast proportion of existing

 capability checks are associated with this capability (see the partial list above). It

 can plausibly be called "the new root", since on the one hand, it confers a wide range

 of powers, and on the other hand, its broad scope means that this is the capability

 that is required by many privileged programs. Don't make the problem worse. The only Page 9/23

 new features that should be associated with CAP_SYS_ADMIN are ones that closely match

 existing uses in that silo.

 * If you have determined that it really is necessary to create a new capability for your

 feature, don't make or name it as a "single-use" capability. Thus, for example, the

 addition of the highly specific CAP_SYS_PACCT was probably a mistake. Instead, try to

 identify and name your new capability as a broader silo into which other related future

 use cases might fit.

 Thread capability sets

 Each thread has the following capability sets containing zero or more of the above capa?

 bilities:

 Permitted

 This is a limiting superset for the effective capabilities that the thread may as?

 sume. It is also a limiting superset for the capabilities that may be added to the

 inheritable set by a thread that does not have the CAP_SETPCAP capability in its

 effective set.

 If a thread drops a capability from its permitted set, it can never reacquire that

 capability (unless it execve(2)s either a set-user-ID-root program, or a program

 whose associated file capabilities grant that capability).

 Inheritable

 This is a set of capabilities preserved across an execve(2). Inheritable capabili?

 ties remain inheritable when executing any program, and inheritable capabilities

 are added to the permitted set when executing a program that has the corresponding

 bits set in the file inheritable set.

 Because inheritable capabilities are not generally preserved across execve(2) when

 running as a non-root user, applications that wish to run helper programs with ele?

 vated capabilities should consider using ambient capabilities, described below.

 Effective

 This is the set of capabilities used by the kernel to perform permission checks for

 the thread.

 Bounding (per-thread since Linux 2.6.25)

 The capability bounding set is a mechanism that can be used to limit the capabili?

 ties that are gained during execve(2).

 Since Linux 2.6.25, this is a per-thread capability set. In older kernels, the ca? Page 10/23

 pability bounding set was a system wide attribute shared by all threads on the sys?

 tem.

 For more details on the capability bounding set, see below.

 Ambient (since Linux 4.3)

 This is a set of capabilities that are preserved across an execve(2) of a program

 that is not privileged. The ambient capability set obeys the invariant that no ca?

 pability can ever be ambient if it is not both permitted and inheritable.

 The ambient capability set can be directly modified using prctl(2). Ambient capa?

 bilities are automatically lowered if either of the corresponding permitted or in?

 heritable capabilities is lowered.

 Executing a program that changes UID or GID due to the set-user-ID or set-group-ID

 bits or executing a program that has any file capabilities set will clear the ambi?

 ent set. Ambient capabilities are added to the permitted set and assigned to the

 effective set when execve(2) is called. If ambient capabilities cause a process's

 permitted and effective capabilities to increase during an execve(2), this does not

 trigger the secure-execution mode described in ld.so(8).

 A child created via fork(2) inherits copies of its parent's capability sets. See below

 for a discussion of the treatment of capabilities during execve(2).

 Using capset(2), a thread may manipulate its own capability sets (see below).

 Since Linux 3.2, the file /proc/sys/kernel/cap_last_cap exposes the numerical value of the

 highest capability supported by the running kernel; this can be used to determine the

 highest bit that may be set in a capability set.

 File capabilities

 Since kernel 2.6.24, the kernel supports associating capability sets with an executable

 file using setcap(8). The file capability sets are stored in an extended attribute (see

 setxattr(2) and xattr(7)) named security.capability. Writing to this extended attribute

 requires the CAP_SETFCAP capability. The file capability sets, in conjunction with the

 capability sets of the thread, determine the capabilities of a thread after an execve(2).

 The three file capability sets are:

 Permitted (formerly known as forced):

 These capabilities are automatically permitted to the thread, regardless of the

 thread's inheritable capabilities.

 Inheritable (formerly known as allowed): Page 11/23

 This set is ANDed with the thread's inheritable set to determine which inheritable

 capabilities are enabled in the permitted set of the thread after the execve(2).

 Effective:

 This is not a set, but rather just a single bit. If this bit is set, then during

 an execve(2) all of the new permitted capabilities for the thread are also raised

 in the effective set. If this bit is not set, then after an execve(2), none of the

 new permitted capabilities is in the new effective set.

 Enabling the file effective capability bit implies that any file permitted or in?

 heritable capability that causes a thread to acquire the corresponding permitted

 capability during an execve(2) (see the transformation rules described below) will

 also acquire that capability in its effective set. Therefore, when assigning capa?

 bilities to a file (setcap(8), cap_set_file(3), cap_set_fd(3)), if we specify the

 effective flag as being enabled for any capability, then the effective flag must

 also be specified as enabled for all other capabilities for which the corresponding

 permitted or inheritable flags is enabled.

 File capability extended attribute versioning

 To allow extensibility, the kernel supports a scheme to encode a version number inside the

 security.capability extended attribute that is used to implement file capabilities. These

 version numbers are internal to the implementation, and not directly visible to user-space

 applications. To date, the following versions are supported:

 VFS_CAP_REVISION_1

 This was the original file capability implementation, which supported 32-bit masks

 for file capabilities.

 VFS_CAP_REVISION_2 (since Linux 2.6.25)

 This version allows for file capability masks that are 64 bits in size, and was

 necessary as the number of supported capabilities grew beyond 32. The kernel

 transparently continues to support the execution of files that have 32-bit version

 1 capability masks, but when adding capabilities to files that did not previously

 have capabilities, or modifying the capabilities of existing files, it automati?

 cally uses the version 2 scheme (or possibly the version 3 scheme, as described be?

 low).

 VFS_CAP_REVISION_3 (since Linux 4.14)

 Version 3 file capabilities are provided to support namespaced file capabilities Page 12/23

 (described below).

 As with version 2 file capabilities, version 3 capability masks are 64 bits in

 size. But in addition, the root user ID of namespace is encoded in the secu?

 rity.capability extended attribute. (A namespace's root user ID is the value that

 user ID 0 inside that namespace maps to in the initial user namespace.)

 Version 3 file capabilities are designed to coexist with version 2 capabilities;

 that is, on a modern Linux system, there may be some files with version 2 capabili?

 ties while others have version 3 capabilities.

 Before Linux 4.14, the only kind of file capability extended attribute that could be at?

 tached to a file was a VFS_CAP_REVISION_2 attribute. Since Linux 4.14, the version of the

 security.capability extended attribute that is attached to a file depends on the circum?

 stances in which the attribute was created.

 Starting with Linux 4.14, a security.capability extended attribute is automatically cre?

 ated as (or converted to) a version 3 (VFS_CAP_REVISION_3) attribute if both of the fol?

 lowing are true:

 (1) The thread writing the attribute resides in a noninitial user namespace. (More pre?

 cisely: the thread resides in a user namespace other than the one from which the un?

 derlying filesystem was mounted.)

 (2) The thread has the CAP_SETFCAP capability over the file inode, meaning that (a) the

 thread has the CAP_SETFCAP capability in its own user namespace; and (b) the UID and

 GID of the file inode have mappings in the writer's user namespace.

 When a VFS_CAP_REVISION_3 security.capability extended attribute is created, the root user

 ID of the creating thread's user namespace is saved in the extended attribute.

 By contrast, creating or modifying a security.capability extended attribute from a privi?

 leged (CAP_SETFCAP) thread that resides in the namespace where the underlying filesystem

 was mounted (this normally means the initial user namespace) automatically results in the

 creation of a version 2 (VFS_CAP_REVISION_2) attribute.

 Note that the creation of a version 3 security.capability extended attribute is automatic.

 That is to say, when a user-space application writes (setxattr(2)) a security.capability

 attribute in the version 2 format, the kernel will automatically create a version 3 attri?

 bute if the attribute is created in the circumstances described above. Correspondingly,

 when a version 3 security.capability attribute is retrieved (getxattr(2)) by a process

 that resides inside a user namespace that was created by the root user ID (or a descendant Page 13/23

 of that user namespace), the returned attribute is (automatically) simplified to appear as

 a version 2 attribute (i.e., the returned value is the size of a version 2 attribute and

 does not include the root user ID). These automatic translations mean that no changes are

 required to user-space tools (e.g., setcap(1) and getcap(1)) in order for those tools to

 be used to create and retrieve version 3 security.capability attributes.

 Note that a file can have either a version 2 or a version 3 security.capability extended

 attribute associated with it, but not both: creation or modification of the security.capa?

 bility extended attribute will automatically modify the version according to the circum?

 stances in which the extended attribute is created or modified.

 Transformation of capabilities during execve()

 During an execve(2), the kernel calculates the new capabilities of the process using the

 following algorithm:

 P'(ambient) = (file is privileged) ? 0 : P(ambient)

 P'(permitted) = (P(inheritable) & F(inheritable)) |

 (F(permitted) & P(bounding)) | P'(ambient)

 P'(effective) = F(effective) ? P'(permitted) : P'(ambient)

 P'(inheritable) = P(inheritable) [i.e., unchanged]

 P'(bounding) = P(bounding) [i.e., unchanged]

 where:

 P() denotes the value of a thread capability set before the execve(2)

 P'() denotes the value of a thread capability set after the execve(2)

 F() denotes a file capability set

 Note the following details relating to the above capability transformation rules:

 * The ambient capability set is present only since Linux 4.3. When determining the

 transformation of the ambient set during execve(2), a privileged file is one that has

 capabilities or has the set-user-ID or set-group-ID bit set.

 * Prior to Linux 2.6.25, the bounding set was a system-wide attribute shared by all

 threads. That system-wide value was employed to calculate the new permitted set during

 execve(2) in the same manner as shown above for P(bounding).

 Note: during the capability transitions described above, file capabilities may be ignored

 (treated as empty) for the same reasons that the set-user-ID and set-group-ID bits are ig?

 nored; see execve(2). File capabilities are similarly ignored if the kernel was booted

 with the no_file_caps option. Page 14/23

 Note: according to the rules above, if a process with nonzero user IDs performs an ex?

 ecve(2) then any capabilities that are present in its permitted and effective sets will be

 cleared. For the treatment of capabilities when a process with a user ID of zero performs

 an execve(2), see below under Capabilities and execution of programs by root.

 Safety checking for capability-dumb binaries

 A capability-dumb binary is an application that has been marked to have file capabilities,

 but has not been converted to use the libcap(3) API to manipulate its capabilities. (In

 other words, this is a traditional set-user-ID-root program that has been switched to use

 file capabilities, but whose code has not been modified to understand capabilities.) For

 such applications, the effective capability bit is set on the file, so that the file per?

 mitted capabilities are automatically enabled in the process effective set when executing

 the file. The kernel recognizes a file which has the effective capability bit set as ca?

 pability-dumb for the purpose of the check described here.

 When executing a capability-dumb binary, the kernel checks if the process obtained all

 permitted capabilities that were specified in the file permitted set, after the capability

 transformations described above have been performed. (The typical reason why this might

 not occur is that the capability bounding set masked out some of the capabilities in the

 file permitted set.) If the process did not obtain the full set of file permitted capa?

 bilities, then execve(2) fails with the error EPERM. This prevents possible security

 risks that could arise when a capability-dumb application is executed with less privilege

 that it needs. Note that, by definition, the application could not itself recognize this

 problem, since it does not employ the libcap(3) API.

 Capabilities and execution of programs by root

 In order to mirror traditional UNIX semantics, the kernel performs special treatment of

 file capabilities when a process with UID 0 (root) executes a program and when a set-user-

 ID-root program is executed.

 After having performed any changes to the process effective ID that were triggered by the

 set-user-ID mode bit of the binary?e.g., switching the effective user ID to 0 (root) be?

 cause a set-user-ID-root program was executed?the kernel calculates the file capability

 sets as follows:

 1. If the real or effective user ID of the process is 0 (root), then the file inheritable

 and permitted sets are ignored; instead they are notionally considered to be all ones

 (i.e., all capabilities enabled). (There is one exception to this behavior, described Page 15/23

 below in Set-user-ID-root programs that have file capabilities.)

 2. If the effective user ID of the process is 0 (root) or the file effective bit is in

 fact enabled, then the file effective bit is notionally defined to be one (enabled).

 These notional values for the file's capability sets are then used as described above to

 calculate the transformation of the process's capabilities during execve(2).

 Thus, when a process with nonzero UIDs execve(2)s a set-user-ID-root program that does not

 have capabilities attached, or when a process whose real and effective UIDs are zero ex?

 ecve(2)s a program, the calculation of the process's new permitted capabilities simplifies

 to:

 P'(permitted) = P(inheritable) | P(bounding)

 P'(effective) = P'(permitted)

 Consequently, the process gains all capabilities in its permitted and effective capability

 sets, except those masked out by the capability bounding set. (In the calculation of

 P'(permitted), the P'(ambient) term can be simplified away because it is by definition a

 proper subset of P(inheritable).)

 The special treatments of user ID 0 (root) described in this subsection can be disabled

 using the securebits mechanism described below.

 Set-user-ID-root programs that have file capabilities

 There is one exception to the behavior described under Capabilities and execution of pro?

 grams by root. If (a) the binary that is being executed has capabilities attached and (b)

 the real user ID of the process is not 0 (root) and (c) the effective user ID of the

 process is 0 (root), then the file capability bits are honored (i.e., they are not notion?

 ally considered to be all ones). The usual way in which this situation can arise is when

 executing a set-UID-root program that also has file capabilities. When such a program is

 executed, the process gains just the capabilities granted by the program (i.e., not all

 capabilities, as would occur when executing a set-user-ID-root program that does not have

 any associated file capabilities).

 Note that one can assign empty capability sets to a program file, and thus it is possible

 to create a set-user-ID-root program that changes the effective and saved set-user-ID of

 the process that executes the program to 0, but confers no capabilities to that process.

 Capability bounding set

 The capability bounding set is a security mechanism that can be used to limit the capabil?

 ities that can be gained during an execve(2). The bounding set is used in the following Page 16/23

 ways:

 * During an execve(2), the capability bounding set is ANDed with the file permitted capa?

 bility set, and the result of this operation is assigned to the thread's permitted capa?

 bility set. The capability bounding set thus places a limit on the permitted capabili?

 ties that may be granted by an executable file.

 * (Since Linux 2.6.25) The capability bounding set acts as a limiting superset for the ca?

 pabilities that a thread can add to its inheritable set using capset(2). This means

 that if a capability is not in the bounding set, then a thread can't add this capability

 to its inheritable set, even if it was in its permitted capabilities, and thereby cannot

 have this capability preserved in its permitted set when it execve(2)s a file that has

 the capability in its inheritable set.

 Note that the bounding set masks the file permitted capabilities, but not the inheritable

 capabilities. If a thread maintains a capability in its inheritable set that is not in

 its bounding set, then it can still gain that capability in its permitted set by executing

 a file that has the capability in its inheritable set.

 Depending on the kernel version, the capability bounding set is either a system-wide at?

 tribute, or a per-process attribute.

 Capability bounding set from Linux 2.6.25 onward

 From Linux 2.6.25, the capability bounding set is a per-thread attribute. (The system-

 wide capability bounding set described below no longer exists.)

 The bounding set is inherited at fork(2) from the thread's parent, and is preserved across

 an execve(2).

 A thread may remove capabilities from its capability bounding set using the prctl(2)

 PR_CAPBSET_DROP operation, provided it has the CAP_SETPCAP capability. Once a capability

 has been dropped from the bounding set, it cannot be restored to that set. A thread can

 determine if a capability is in its bounding set using the prctl(2) PR_CAPBSET_READ opera?

 tion.

 Removing capabilities from the bounding set is supported only if file capabilities are

 compiled into the kernel. In kernels before Linux 2.6.33, file capabilities were an op?

 tional feature configurable via the CONFIG_SECURITY_FILE_CAPABILITIES option. Since Linux

 2.6.33, the configuration option has been removed and file capabilities are always part of

 the kernel. When file capabilities are compiled into the kernel, the init process (the

 ancestor of all processes) begins with a full bounding set. If file capabilities are not Page 17/23

 compiled into the kernel, then init begins with a full bounding set minus CAP_SETPCAP, be?

 cause this capability has a different meaning when there are no file capabilities.

 Removing a capability from the bounding set does not remove it from the thread's inherita?

 ble set. However it does prevent the capability from being added back into the thread's

 inheritable set in the future.

 Capability bounding set prior to Linux 2.6.25

 In kernels before 2.6.25, the capability bounding set is a system-wide attribute that af?

 fects all threads on the system. The bounding set is accessible via the file

 /proc/sys/kernel/cap-bound. (Confusingly, this bit mask parameter is expressed as a

 signed decimal number in /proc/sys/kernel/cap-bound.)

 Only the init process may set capabilities in the capability bounding set; other than

 that, the superuser (more precisely: a process with the CAP_SYS_MODULE capability) may

 only clear capabilities from this set.

 On a standard system the capability bounding set always masks out the CAP_SETPCAP capabil?

 ity. To remove this restriction (dangerous!), modify the definition of CAP_INIT_EFF_SET

 in include/linux/capability.h and rebuild the kernel.

 The system-wide capability bounding set feature was added to Linux starting with kernel

 version 2.2.11.

 Effect of user ID changes on capabilities

 To preserve the traditional semantics for transitions between 0 and nonzero user IDs, the

 kernel makes the following changes to a thread's capability sets on changes to the

 thread's real, effective, saved set, and filesystem user IDs (using setuid(2), setre?

 suid(2), or similar):

 1. If one or more of the real, effective or saved set user IDs was previously 0, and as a

 result of the UID changes all of these IDs have a nonzero value, then all capabilities

 are cleared from the permitted, effective, and ambient capability sets.

 2. If the effective user ID is changed from 0 to nonzero, then all capabilities are

 cleared from the effective set.

 3. If the effective user ID is changed from nonzero to 0, then the permitted set is copied

 to the effective set.

 4. If the filesystem user ID is changed from 0 to nonzero (see setfsuid(2)), then the fol?

 lowing capabilities are cleared from the effective set: CAP_CHOWN, CAP_DAC_OVERRIDE,

 CAP_DAC_READ_SEARCH, CAP_FOWNER, CAP_FSETID, CAP_LINUX_IMMUTABLE (since Linux 2.6.30),Page 18/23

 CAP_MAC_OVERRIDE, and CAP_MKNOD (since Linux 2.6.30). If the filesystem UID is changed

 from nonzero to 0, then any of these capabilities that are enabled in the permitted set

 are enabled in the effective set.

 If a thread that has a 0 value for one or more of its user IDs wants to prevent its per?

 mitted capability set being cleared when it resets all of its user IDs to nonzero values,

 it can do so using the SECBIT_KEEP_CAPS securebits flag described below.

 Programmatically adjusting capability sets

 A thread can retrieve and change its permitted, effective, and inheritable capability sets

 using the capget(2) and capset(2) system calls. However, the use of cap_get_proc(3) and

 cap_set_proc(3), both provided in the libcap package, is preferred for this purpose. The

 following rules govern changes to the thread capability sets:

 1. If the caller does not have the CAP_SETPCAP capability, the new inheritable set must be

 a subset of the combination of the existing inheritable and permitted sets.

 2. (Since Linux 2.6.25) The new inheritable set must be a subset of the combination of the

 existing inheritable set and the capability bounding set.

 3. The new permitted set must be a subset of the existing permitted set (i.e., it is not

 possible to acquire permitted capabilities that the thread does not currently have).

 4. The new effective set must be a subset of the new permitted set.

 The securebits flags: establishing a capabilities-only environment

 Starting with kernel 2.6.26, and with a kernel in which file capabilities are enabled,

 Linux implements a set of per-thread securebits flags that can be used to disable special

 handling of capabilities for UID 0 (root). These flags are as follows:

 SECBIT_KEEP_CAPS

 Setting this flag allows a thread that has one or more 0 UIDs to retain capabili?

 ties in its permitted set when it switches all of its UIDs to nonzero values. If

 this flag is not set, then such a UID switch causes the thread to lose all permit?

 ted capabilities. This flag is always cleared on an execve(2).

 Note that even with the SECBIT_KEEP_CAPS flag set, the effective capabilities of a

 thread are cleared when it switches its effective UID to a nonzero value. However,

 if the thread has set this flag and its effective UID is already nonzero, and the

 thread subsequently switches all other UIDs to nonzero values, then the effective

 capabilities will not be cleared.

 The setting of the SECBIT_KEEP_CAPS flag is ignored if the SECBIT_NO_SETUID_FIXUP Page 19/23

 flag is set. (The latter flag provides a superset of the effect of the former

 flag.)

 This flag provides the same functionality as the older prctl(2) PR_SET_KEEPCAPS op?

 eration.

 SECBIT_NO_SETUID_FIXUP

 Setting this flag stops the kernel from adjusting the process's permitted, effec?

 tive, and ambient capability sets when the thread's effective and filesystem UIDs

 are switched between zero and nonzero values. (See the subsection Effect of user

 ID changes on capabilities.)

 SECBIT_NOROOT

 If this bit is set, then the kernel does not grant capabilities when a set-user-ID-

 root program is executed, or when a process with an effective or real UID of 0

 calls execve(2). (See the subsection Capabilities and execution of programs by

 root.)

 SECBIT_NO_CAP_AMBIENT_RAISE

 Setting this flag disallows raising ambient capabilities via the prctl(2)

 PR_CAP_AMBIENT_RAISE operation.

 Each of the above "base" flags has a companion "locked" flag. Setting any of the "locked"

 flags is irreversible, and has the effect of preventing further changes to the correspond?

 ing "base" flag. The locked flags are: SECBIT_KEEP_CAPS_LOCKED, SECBIT_NO_SE?

 TUID_FIXUP_LOCKED, SECBIT_NOROOT_LOCKED, and SECBIT_NO_CAP_AMBIENT_RAISE_LOCKED.

 The securebits flags can be modified and retrieved using the prctl(2) PR_SET_SECUREBITS

 and PR_GET_SECUREBITS operations. The CAP_SETPCAP capability is required to modify the

 flags. Note that the SECBIT_* constants are available only after including the <linux/se?

 curebits.h> header file.

 The securebits flags are inherited by child processes. During an execve(2), all of the

 flags are preserved, except SECBIT_KEEP_CAPS which is always cleared.

 An application can use the following call to lock itself, and all of its descendants, into

 an environment where the only way of gaining capabilities is by executing a program with

 associated file capabilities:

 prctl(PR_SET_SECUREBITS,

 /* SECBIT_KEEP_CAPS off */

 SECBIT_KEEP_CAPS_LOCKED | Page 20/23

 SECBIT_NO_SETUID_FIXUP |

 SECBIT_NO_SETUID_FIXUP_LOCKED |

 SECBIT_NOROOT |

 SECBIT_NOROOT_LOCKED);

 /* Setting/locking SECBIT_NO_CAP_AMBIENT_RAISE

 is not required */

 Per-user-namespace "set-user-ID-root" programs

 A set-user-ID program whose UID matches the UID that created a user namespace will confer

 capabilities in the process's permitted and effective sets when executed by any process

 inside that namespace or any descendant user namespace.

 The rules about the transformation of the process's capabilities during the execve(2) are

 exactly as described in the subsections Transformation of capabilities during execve() and

 Capabilities and execution of programs by root, with the difference that, in the latter

 subsection, "root" is the UID of the creator of the user namespace.

 Namespaced file capabilities

 Traditional (i.e., version 2) file capabilities associate only a set of capability masks

 with a binary executable file. When a process executes a binary with such capabilities,

 it gains the associated capabilities (within its user namespace) as per the rules de?

 scribed above in "Transformation of capabilities during execve()".

 Because version 2 file capabilities confer capabilities to the executing process regard?

 less of which user namespace it resides in, only privileged processes are permitted to as?

 sociate capabilities with a file. Here, "privileged" means a process that has the

 CAP_SETFCAP capability in the user namespace where the filesystem was mounted (normally

 the initial user namespace). This limitation renders file capabilities useless for cer?

 tain use cases. For example, in user-namespaced containers, it can be desirable to be

 able to create a binary that confers capabilities only to processes executed inside that

 container, but not to processes that are executed outside the container.

 Linux 4.14 added so-called namespaced file capabilities to support such use cases. Names?

 paced file capabilities are recorded as version 3 (i.e., VFS_CAP_REVISION_3) security.ca?

 pability extended attributes. Such an attribute is automatically created in the circum?

 stances described above under "File capability extended attribute versioning". When a

 version 3 security.capability extended attribute is created, the kernel records not just

 the capability masks in the extended attribute, but also the namespace root user ID. Page 21/23

 As with a binary that has VFS_CAP_REVISION_2 file capabilities, a binary with VFS_CAP_RE?

 VISION_3 file capabilities confers capabilities to a process during execve(). However,

 capabilities are conferred only if the binary is executed by a process that resides in a

 user namespace whose UID 0 maps to the root user ID that is saved in the extended attri?

 bute, or when executed by a process that resides in a descendant of such a namespace.

 Interaction with user namespaces

 For further information on the interaction of capabilities and user namespaces, see

 user_namespaces(7).

CONFORMING TO

 No standards govern capabilities, but the Linux capability implementation is based on the

 withdrawn POSIX.1e draft standard; see ?https://archive.org/details/posix_1003.1e-990310?.

NOTES

 When attempting to strace(1) binaries that have capabilities (or set-user-ID-root bina?

 ries), you may find the -u <username> option useful. Something like:

 $ sudo strace -o trace.log -u ceci ./myprivprog

 From kernel 2.5.27 to kernel 2.6.26, capabilities were an optional kernel component, and

 could be enabled/disabled via the CONFIG_SECURITY_CAPABILITIES kernel configuration op?

 tion.

 The /proc/[pid]/task/TID/status file can be used to view the capability sets of a thread.

 The /proc/[pid]/status file shows the capability sets of a process's main thread. Before

 Linux 3.8, nonexistent capabilities were shown as being enabled (1) in these sets. Since

 Linux 3.8, all nonexistent capabilities (above CAP_LAST_CAP) are shown as disabled (0).

 The libcap package provides a suite of routines for setting and getting capabilities that

 is more comfortable and less likely to change than the interface provided by capset(2) and

 capget(2). This package also provides the setcap(8) and getcap(8) programs. It can be

 found at

 ?https://git.kernel.org/pub/scm/libs/libcap/libcap.git/refs/?.

 Before kernel 2.6.24, and from kernel 2.6.24 to kernel 2.6.32 if file capabilities are not

 enabled, a thread with the CAP_SETPCAP capability can manipulate the capabilities of

 threads other than itself. However, this is only theoretically possible, since no thread

 ever has CAP_SETPCAP in either of these cases:

 * In the pre-2.6.25 implementation the system-wide capability bounding set, /proc/sys/ker?

 nel/cap-bound, always masks out the CAP_SETPCAP capability, and this can not be changed Page 22/23

 without modifying the kernel source and rebuilding the kernel.

 * If file capabilities are disabled (i.e., the kernel CONFIG_SECURITY_FILE_CAPABILITIES

 option is disabled), then init starts out with the CAP_SETPCAP capability removed from

 its per-process bounding set, and that bounding set is inherited by all other processes

 created on the system.

SEE ALSO

 capsh(1), setpriv(1), prctl(2), setfsuid(2), cap_clear(3), cap_copy_ext(3),

 cap_from_text(3), cap_get_file(3), cap_get_proc(3), cap_init(3), capgetp(3), capsetp(3),

 libcap(3), proc(5), credentials(7), pthreads(7), user_namespaces(7), captest(8), file?

 cap(8), getcap(8), getpcaps(8), netcap(8), pscap(8), setcap(8)

 include/linux/capability.h in the Linux kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 CAPABILITIES(7)

Page 23/23

