
Rocky Enterprise Linux 9.2 Manual Pages on command 'bzero.3'

$ man bzero.3

BZERO(3) Linux Programmer's Manual BZERO(3)

NAME

 bzero, explicit_bzero - zero a byte string

SYNOPSIS

 #include <strings.h>

 void bzero(void *s, size_t n);

 #include <string.h>

 void explicit_bzero(void *s, size_t n);

DESCRIPTION

 The bzero() function erases the data in the n bytes of the memory starting at the location

 pointed to by s, by writing zeros (bytes containing '\0') to that area.

 The explicit_bzero() function performs the same task as bzero(). It differs from bzero()

 in that it guarantees that compiler optimizations will not remove the erase operation if

 the compiler deduces that the operation is "unnecessary".

RETURN VALUE

 None.

VERSIONS

 explicit_bzero() first appeared in glibc 2.25.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ??? Page 1/3

 ?bzero(), ? Thread safety ? MT-Safe ?

 ?explicit_bzero() ? ? ?

 ???

CONFORMING TO

 The bzero() function is deprecated (marked as LEGACY in POSIX.1-2001); use memset(3) in

 new programs. POSIX.1-2008 removes the specification of bzero(). The bzero() function

 first appeared in 4.3BSD.

 The explicit_bzero() function is a nonstandard extension that is also present on some of

 the BSDs. Some other implementations have a similar function, such as memset_explicit()

 or memset_s().

NOTES

 The explicit_bzero() function addresses a problem that security-conscious applications may

 run into when using bzero(): if the compiler can deduce that the location to zeroed will

 never again be touched by a correct program, then it may remove the bzero() call alto?

 gether. This is a problem if the intent of the bzero() call was to erase sensitive data

 (e.g., passwords) to prevent the possibility that the data was leaked by an incorrect or

 compromised program. Calls to explicit_bzero() are never optimized away by the compiler.

 The explicit_bzero() function does not solve all problems associated with erasing sensi?

 tive data:

 1. The explicit_bzero() function does not guarantee that sensitive data is completely

 erased from memory. (The same is true of bzero().) For example, there may be copies

 of the sensitive data in a register and in "scratch" stack areas. The explicit_bzero()

 function is not aware of these copies, and can't erase them.

 2. In some circumstances, explicit_bzero() can decrease security. If the compiler deter?

 mined that the variable containing the sensitive data could be optimized to be stored

 in a register (because it is small enough to fit in a register, and no operation other

 than the explicit_bzero() call would need to take the address of the variable), then

 the explicit_bzero() call will force the data to be copied from the register to a loca?

 tion in RAM that is then immediately erased (while the copy in the register remains un?

 affected). The problem here is that data in RAM is more likely to be exposed by a bug

 than data in a register, and thus the explicit_bzero() call creates a brief time window

 where the sensitive data is more vulnerable than it would otherwise have been if no at?

 tempt had been made to erase the data. Page 2/3

 Note that declaring the sensitive variable with the volatile qualifier does not eliminate

 the above problems. Indeed, it will make them worse, since, for example, it may force a

 variable that would otherwise have been optimized into a register to instead be maintained

 in (more vulnerable) RAM for its entire lifetime.

 Notwithstanding the above details, for security-conscious applications, using ex?

 plicit_bzero() is generally preferable to not using it. The developers of ex?

 plicit_bzero() anticipate that future compilers will recognize calls to explicit_bzero()

 and take steps to ensure that all copies of the sensitive data are erased, including

 copies in registers or in "scratch" stack areas.

SEE ALSO

 bstring(3), memset(3), swab(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 BZERO(3)

Page 3/3

