
Linux Ubuntu 22.4.5 Manual Pages on command 'bundle-exec2.7.1'

$ man bundle-exec2.7.1

BUNDLE-EXEC(1) BUNDLE-EXEC(1)

NAME

 bundle-exec - Execute a command in the context of the bundle

SYNOPSIS

 bundle exec [--keep-file-descriptors] command

DESCRIPTION

 This command executes the command, making all gems specified in the [Gem?

 file(5)][Gemfile(5)] available to require in Ruby programs.

 Essentially, if you would normally have run something like rspec spec/my_spec.rb,

 and you want to use the gems specified in the [Gemfile(5)][Gemfile(5)] and in?

 stalled via bundle install(1) bundle-install.1.html, you should run bundle exec

 rspec spec/my_spec.rb.

 Note that bundle exec does not require that an executable is available on your

 shell?s $PATH.

OPTIONS

 --keep-file-descriptors

 Exec in Ruby 2.0 began discarding non-standard file descriptors. When this

 flag is passed, exec will revert to the 1.9 behaviour of passing all file

 descriptors to the new process.

BUNDLE INSTALL --BINSTUBS

 If you use the --binstubs flag in bundle install(1) bundle-install.1.html, Bundler

 will automatically create a directory (which defaults to app_root/bin) containing
Page 1/4

 all of the executables available from gems in the bundle.

 After using --binstubs, bin/rspec spec/my_spec.rb is identical to bundle exec rspec

 spec/my_spec.rb.

ENVIRONMENT MODIFICATIONS

 bundle exec makes a number of changes to the shell environment, then executes the

 command you specify in full.

 ? make sure that it?s still possible to shell out to bundle from inside a command

 invoked by bundle exec (using $BUNDLE_BIN_PATH)

 ? put the directory containing executables (like rails, rspec, rackup) for your

 bundle on $PATH

 ? make sure that if bundler is invoked in the subshell, it uses the same Gemfile

 (by setting BUNDLE_GEMFILE)

 ? add -rbundler/setup to $RUBYOPT, which makes sure that Ruby programs invoked in

 the subshell can see the gems in the bundle

 It also modifies Rubygems:

 ? disallow loading additional gems not in the bundle

 ? modify the gem method to be a no-op if a gem matching the requirements is in

 the bundle, and to raise a Gem::LoadError if it?s not

 ? Define Gem.refresh to be a no-op, since the source index is always frozen when

 using bundler, and to prevent gems from the system leaking into the environment

 ? Override Gem.bin_path to use the gems in the bundle, making system executables

 work

 ? Add all gems in the bundle into Gem.loaded_specs

 Finally, bundle exec also implicitly modifies Gemfile.lock if the lockfile and the

 Gemfile do not match. Bundler needs the Gemfile to determine things such as a gem?s

 groups, autorequire, and platforms, etc., and that information isn?t stored in the

 lockfile. The Gemfile and lockfile must be synced in order to bundle exec success?

 fully, so bundle exec updates the lockfile beforehand.

 Loading

 By default, when attempting to bundle exec to a file with a ruby shebang, Bundler

 will Kernel.load that file instead of using Kernel.exec. For the vast majority of

 cases, this is a performance improvement. In a rare few cases, this could cause

 some subtle side-effects (such as dependence on the exact contents of $0 or Page 2/4

 __FILE__) and the optimization can be disabled by enabling the disable_exec_load

 setting.

 Shelling out

 Any Ruby code that opens a subshell (like system, backticks, or %x{}) will automat?

 ically use the current Bundler environment. If you need to shell out to a Ruby com?

 mand that is not part of your current bundle, use the with_clean_env method with a

 block. Any subshells created inside the block will be given the environment present

 before Bundler was activated. For example, Homebrew commands run Ruby, but don?t

 work inside a bundle:

 Bundler.with_clean_env do

 `brew install wget`

 end

 Using with_clean_env is also necessary if you are shelling out to a different bun?

 dle. Any Bundler commands run in a subshell will inherit the current Gemfile, so

 commands that need to run in the context of a different bundle also need to use

 with_clean_env.

 Bundler.with_clean_env do

 Dir.chdir "/other/bundler/project" do

 `bundle exec ./script`

 end

 end

 Bundler provides convenience helpers that wrap system and exec, and they can be

 used like this:

 Bundler.clean_system(?brew install wget?)

 Bundler.clean_exec(?brew install wget?)

RUBYGEMS PLUGINS

 At present, the Rubygems plugin system requires all files named rubygems_plugin.rb

 on the load path of any installed gem when any Ruby code requires rubygems.rb. This

 includes executables installed into the system, like rails, rackup, and rspec.

 Since Rubygems plugins can contain arbitrary Ruby code, they commonly end up acti?

 vating themselves or their dependencies.

 For instance, the gemcutter 0.5 gem depended on json_pure. If you had that version

 of gemcutter installed (even if you also had a newer version without this problem), Page 3/4

 Rubygems would activate gemcutter 0.5 and json_pure <latest>.

 If your Gemfile(5) also contained json_pure (or a gem with a dependency on

 json_pure), the latest version on your system might conflict with the version in

 your Gemfile(5), or the snapshot version in your Gemfile.lock.

 If this happens, bundler will say:

 You have already activated json_pure 1.4.6 but your Gemfile

 requires json_pure 1.4.3. Consider using bundle exec.

 In this situation, you almost certainly want to remove the underlying gem with the

 problematic gem plugin. In general, the authors of these plugins (in this case, the

 gemcutter gem) have released newer versions that are more careful in their plugins.

 You can find a list of all the gems containing gem plugins by running

 ruby -rrubygems -e "puts Gem.find_files(?rubygems_plugin.rb?)"

 At the very least, you should remove all but the newest version of each gem plugin,

 and also remove all gem plugins that you aren?t using (gem uninstall gem_name).

 December 2019 BUNDLE-EXEC(1)

Page 4/4

