
Linux Ubuntu 22.4.5 Manual Pages on command 'bundle-config2.7.1'

$ man bundle-config2.7.1

BUNDLE-CONFIG(1) BUNDLE-CONFIG(1)

NAME

 bundle-config - Set bundler configuration options

SYNOPSIS

 bundle config [list|get|set|unset] [name [value]]

DESCRIPTION

 This command allows you to interact with Bundler?s configuration system.

 Bundler loads configuration settings in this order:

 1. Local config (app/.bundle/config)

 2. Environmental variables (ENV)

 3. Global config (~/.bundle/config)

 4. Bundler default config

 Executing bundle config list with will print a list of all bundler configuration

 for the current bundle, and where that configuration was set.

 Executing bundle config get <name> will print the value of that configuration set?

 ting, and where it was set.

 Executing bundle config set <name> <value> will set that configuration to the value

 specified for all bundles executed as the current user. The configuration will be

 stored in ~/.bundle/config. If name already is set, name will be overridden and

 user will be warned.

 Executing bundle config set --global <name> <value> works the same as above.

 Executing bundle config set --local <name> <value> will set that configuration to
Page 1/10

 the local application. The configuration will be stored in app/.bundle/config.

 Executing bundle config unset <name> will delete the configuration in both local

 and global sources.

 Executing bundle config unset --global <name> will delete the configuration only

 from the user configuration.

 Executing bundle config unset --local <name> <value> will delete the configuration

 only from the local application.

 Executing bundle with the BUNDLE_IGNORE_CONFIG environment variable set will cause

 it to ignore all configuration.

 Executing bundle config set disable_multisource true upgrades the warning about the

 Gemfile containing multiple primary sources to an error. Executing bundle config

 unset disable_multisource downgrades this error to a warning.

REMEMBERING OPTIONS

 Flags passed to bundle install or the Bundler runtime, such as --path foo or

 --without production, are remembered between commands and saved to your local ap?

 plication?s configuration (normally, ./.bundle/config).

 However, this will be changed in bundler 3, so it?s better not to rely on this be?

 havior. If these options must be remembered, it?s better to set them using bundle

 config (e.g., bundle config set path foo).

 The options that can be configured are:

 bin Creates a directory (defaults to ~/bin) and place any executables from the

 gem there. These executables run in Bundler?s context. If used, you might

 add this directory to your environment?s PATH variable. For instance, if the

 rails gem comes with a rails executable, this flag will create a bin/rails

 executable that ensures that all referred dependencies will be resolved us?

 ing the bundled gems.

 deployment

 In deployment mode, Bundler will ?roll-out? the bundle for production use.

 Please check carefully if you want to have this option enabled in develop?

 ment or test environments.

 path The location to install the specified gems to. This defaults to Rubygems?

 setting. Bundler shares this location with Rubygems, gem install ... will

 have gem installed there, too. Therefore, gems installed without a --path Page 2/10

 ... setting will show up by calling gem list. Accordingly, gems installed to

 other locations will not get listed.

 without

 A space-separated list of groups referencing gems to skip during installa?

 tion.

 with A space-separated list of groups referencing gems to include during instal?

 lation.

BUILD OPTIONS

 You can use bundle config to give Bundler the flags to pass to the gem installer

 every time bundler tries to install a particular gem.

 A very common example, the mysql gem, requires Snow Leopard users to pass configu?

 ration flags to gem install to specify where to find the mysql_config executable.

 gem install mysql -- --with-mysql-config=/usr/local/mysql/bin/mysql_config

 Since the specific location of that executable can change from machine to machine,

 you can specify these flags on a per-machine basis.

 bundle config set build.mysql --with-mysql-config=/usr/local/mysql/bin/mysql_config

 After running this command, every time bundler needs to install the mysql gem, it

 will pass along the flags you specified.

CONFIGURATION KEYS

 Configuration keys in bundler have two forms: the canonical form and the environ?

 ment variable form.

 For instance, passing the --without flag to bundle install(1) bundle-install.1.html

 prevents Bundler from installing certain groups specified in the Gemfile(5).

 Bundler persists this value in app/.bundle/config so that calls to Bundler.setup do

 not try to find gems from the Gemfile that you didn?t install. Additionally, subse?

 quent calls to bundle install(1) bundle-install.1.html remember this setting and

 skip those groups.

 The canonical form of this configuration is "without". To convert the canonical

 form to the environment variable form, capitalize it, and prepend BUNDLE_. The en?

 vironment variable form of "without" is BUNDLE_WITHOUT.

 Any periods in the configuration keys must be replaced with two underscores when

 setting it via environment variables. The configuration key local.rack becomes the

 environment variable BUNDLE_LOCAL__RACK. Page 3/10

LIST OF AVAILABLE KEYS

 The following is a list of all configuration keys and their purpose. You can learn

 more about their operation in bundle install(1) bundle-install.1.html.

 ? allow_bundler_dependency_conflicts (BUNDLE_ALLOW_BUNDLER_DEPENDENCY_CONFLICTS):

 Allow resolving to specifications that have dependencies on bundler that are

 incompatible with the running Bundler version.

 ? allow_deployment_source_credential_changes (BUNDLE_ALLOW_DEPLOYMENT_SOURCE_CRE?

 DENTIAL_CHANGES): When in deployment mode, allow changing the credentials to a

 gem?s source. Ex: https://some.host.com/gems/path/ -> https://user_name:pass?

 word@some.host.com/gems/path

 ? allow_offline_install (BUNDLE_ALLOW_OFFLINE_INSTALL): Allow Bundler to use

 cached data when installing without network access.

 ? auto_clean_without_path (BUNDLE_AUTO_CLEAN_WITHOUT_PATH): Automatically run

 bundle clean after installing when an explicit path has not been set and

 Bundler is not installing into the system gems.

 ? auto_install (BUNDLE_AUTO_INSTALL): Automatically run bundle install when gems

 are missing.

 ? bin (BUNDLE_BIN): Install executables from gems in the bundle to the specified

 directory. Defaults to false.

 ? cache_all (BUNDLE_CACHE_ALL): Cache all gems, including path and git gems.

 ? cache_all_platforms (BUNDLE_CACHE_ALL_PLATFORMS): Cache gems for all platforms.

 ? cache_path (BUNDLE_CACHE_PATH): The directory that bundler will place cached

 gems in when running bundle package, and that bundler will look in when in?

 stalling gems. Defaults to vendor/cache.

 ? clean (BUNDLE_CLEAN): Whether Bundler should run bundle clean automatically af?

 ter bundle install.

 ? console (BUNDLE_CONSOLE): The console that bundle console starts. Defaults to

 irb.

 ? default_install_uses_path (BUNDLE_DEFAULT_INSTALL_USES_PATH): Whether a bundle

 install without an explicit --path argument defaults to installing gems in

 .bundle.

 ? deployment (BUNDLE_DEPLOYMENT): Disallow changes to the Gemfile. When the Gem?

 file is changed and the lockfile has not been updated, running Bundler commands Page 4/10

 will be blocked.

 ? disable_checksum_validation (BUNDLE_DISABLE_CHECKSUM_VALIDATION): Allow in?

 stalling gems even if they do not match the checksum provided by RubyGems.

 ? disable_exec_load (BUNDLE_DISABLE_EXEC_LOAD): Stop Bundler from using load to

 launch an executable in-process in bundle exec.

 ? disable_local_branch_check (BUNDLE_DISABLE_LOCAL_BRANCH_CHECK): Allow Bundler

 to use a local git override without a branch specified in the Gemfile.

 ? disable_multisource (BUNDLE_DISABLE_MULTISOURCE): When set, Gemfiles containing

 multiple sources will produce errors instead of warnings. Use bundle config un?

 set disable_multisource to unset.

 ? disable_platform_warnings (BUNDLE_DISABLE_PLATFORM_WARNINGS): Disable warnings

 during bundle install when a dependency is unused on the current platform.

 ? disable_shared_gems (BUNDLE_DISABLE_SHARED_GEMS): Stop Bundler from accessing

 gems installed to RubyGems? normal location.

 ? disable_version_check (BUNDLE_DISABLE_VERSION_CHECK): Stop Bundler from check?

 ing if a newer Bundler version is available on rubygems.org.

 ? force_ruby_platform (BUNDLE_FORCE_RUBY_PLATFORM): Ignore the current machine?s

 platform and install only ruby platform gems. As a result, gems with native ex?

 tensions will be compiled from source.

 ? frozen (BUNDLE_FROZEN): Disallow changes to the Gemfile. When the Gemfile is

 changed and the lockfile has not been updated, running Bundler commands will be

 blocked. Defaults to true when --deployment is used.

 ? gem.push_key (BUNDLE_GEM__PUSH_KEY): Sets the --key parameter for gem push when

 using the rake release command with a private gemstash server.

 ? gemfile (BUNDLE_GEMFILE): The name of the file that bundler should use as the

 Gemfile. This location of this file also sets the root of the project, which is

 used to resolve relative paths in the Gemfile, among other things. By default,

 bundler will search up from the current working directory until it finds a Gem?

 file.

 ? global_gem_cache (BUNDLE_GLOBAL_GEM_CACHE): Whether Bundler should cache all

 gems globally, rather than locally to the installing Ruby installation.

 ? ignore_messages (BUNDLE_IGNORE_MESSAGES): When set, no post install messages

 will be printed. To silence a single gem, use dot notation like ignore_mes? Page 5/10

 sages.httparty true.

 ? init_gems_rb (BUNDLE_INIT_GEMS_RB) Generate a gems.rb instead of a Gemfile when

 running bundle init.

 ? jobs (BUNDLE_JOBS): The number of gems Bundler can install in parallel. De?

 faults to 1.

 ? no_install (BUNDLE_NO_INSTALL): Whether bundle package should skip installing

 gems.

 ? no_prune (BUNDLE_NO_PRUNE): Whether Bundler should leave outdated gems unpruned

 when caching.

 ? only_update_to_newer_versions (BUNDLE_ONLY_UPDATE_TO_NEWER_VERSIONS): During

 bundle update, only resolve to newer versions of the gems in the lockfile.

 ? path (BUNDLE_PATH): The location on disk where all gems in your bundle will be

 located regardless of $GEM_HOME or $GEM_PATH values. Bundle gems not found in

 this location will be installed by bundle install. Defaults to Gem.dir. When

 --deployment is used, defaults to vendor/bundle.

 ? path.system (BUNDLE_PATH__SYSTEM): Whether Bundler will install gems into the

 default system path (Gem.dir).

 ? path_relative_to_cwd (BUNDLE_PATH_RELATIVE_TO_CWD) Makes --path relative to the

 CWD instead of the Gemfile.

 ? plugins (BUNDLE_PLUGINS): Enable Bundler?s experimental plugin system.

 ? prefer_patch (BUNDLE_PREFER_PATCH): Prefer updating only to next patch version

 during updates. Makes bundle update calls equivalent to bundler update --patch.

 ? print_only_version_number (BUNDLE_PRINT_ONLY_VERSION_NUMBER) Print only version

 number from bundler --version.

 ? redirect (BUNDLE_REDIRECT): The number of redirects allowed for network re?

 quests. Defaults to 5.

 ? retry (BUNDLE_RETRY): The number of times to retry failed network requests. De?

 faults to 3.

 ? setup_makes_kernel_gem_public (BUNDLE_SETUP_MAKES_KERNEL_GEM_PUBLIC): Have

 Bundler.setup make the Kernel#gem method public, even though RubyGems declares

 it as private.

 ? shebang (BUNDLE_SHEBANG): The program name that should be invoked for generated

 binstubs. Defaults to the ruby install name used to generate the binstub. Page 6/10

 ? silence_deprecations (BUNDLE_SILENCE_DEPRECATIONS): Whether Bundler should si?

 lence deprecation warnings for behavior that will be changed in the next major

 version.

 ? silence_root_warning (BUNDLE_SILENCE_ROOT_WARNING): Silence the warning Bundler

 prints when installing gems as root.

 ? skip_default_git_sources (BUNDLE_SKIP_DEFAULT_GIT_SOURCES): Whether Bundler

 should skip adding default git source shortcuts to the Gemfile DSL.

 ? specific_platform (BUNDLE_SPECIFIC_PLATFORM): Allow bundler to resolve for the

 specific running platform and store it in the lockfile, instead of only using a

 generic platform. A specific platform is the exact platform triple reported by

 Gem::Platform.local, such as x86_64-darwin-16 or universal-java-1.8. On the

 other hand, generic platforms are those such as ruby, mswin, or java. In this

 example, x86_64-darwin-16 would map to ruby and universal-java-1.8 to java.

 ? ssl_ca_cert (BUNDLE_SSL_CA_CERT): Path to a designated CA certificate file or

 folder containing multiple certificates for trusted CAs in PEM format.

 ? ssl_client_cert (BUNDLE_SSL_CLIENT_CERT): Path to a designated file containing

 a X.509 client certificate and key in PEM format.

 ? ssl_verify_mode (BUNDLE_SSL_VERIFY_MODE): The SSL verification mode Bundler

 uses when making HTTPS requests. Defaults to verify peer.

 ? suppress_install_using_messages (BUNDLE_SUPPRESS_INSTALL_USING_MESSAGES): Avoid

 printing Using ... messages during installation when the version of a gem has

 not changed.

 ? system_bindir (BUNDLE_SYSTEM_BINDIR): The location where RubyGems installs bin?

 stubs. Defaults to Gem.bindir.

 ? timeout (BUNDLE_TIMEOUT): The seconds allowed before timing out for network re?

 quests. Defaults to 10.

 ? unlock_source_unlocks_spec (BUNDLE_UNLOCK_SOURCE_UNLOCKS_SPEC): Whether running

 bundle update --source NAME unlocks a gem with the given name. Defaults to

 true.

 ? update_requires_all_flag (BUNDLE_UPDATE_REQUIRES_ALL_FLAG) Require passing

 --all to bundle update when everything should be updated, and disallow passing

 no options to bundle update.

 ? user_agent (BUNDLE_USER_AGENT): The custom user agent fragment Bundler includes Page 7/10

 in API requests.

 ? with (BUNDLE_WITH): A :-separated list of groups whose gems bundler should in?

 stall.

 ? without (BUNDLE_WITHOUT): A :-separated list of groups whose gems bundler

 should not install.

 In general, you should set these settings per-application by using the applicable

 flag to the bundle install(1) bundle-install.1.html or bundle package(1) bun?

 dle-package.1.html command.

 You can set them globally either via environment variables or bundle config, which?

 ever is preferable for your setup. If you use both, environment variables will take

 preference over global settings.

LOCAL GIT REPOS

 Bundler also allows you to work against a git repository locally instead of using

 the remote version. This can be achieved by setting up a local override:

 bundle config set local.GEM_NAME /path/to/local/git/repository

 For example, in order to use a local Rack repository, a developer could call:

 bundle config set local.rack ~/Work/git/rack

 Now instead of checking out the remote git repository, the local override will be

 used. Similar to a path source, every time the local git repository change, changes

 will be automatically picked up by Bundler. This means a commit in the local git

 repo will update the revision in the Gemfile.lock to the local git repo revision.

 This requires the same attention as git submodules. Before pushing to the remote,

 you need to ensure the local override was pushed, otherwise you may point to a com?

 mit that only exists in your local machine. You?ll also need to CGI escape your

 usernames and passwords as well.

 Bundler does many checks to ensure a developer won?t work with invalid references.

 Particularly, we force a developer to specify a branch in the Gemfile in order to

 use this feature. If the branch specified in the Gemfile and the current branch in

 the local git repository do not match, Bundler will abort. This ensures that a de?

 veloper is always working against the correct branches, and prevents accidental

 locking to a different branch.

 Finally, Bundler also ensures that the current revision in the Gemfile.lock exists

 in the local git repository. By doing this, Bundler forces you to fetch the latest Page 8/10

 changes in the remotes.

MIRRORS OF GEM SOURCES

 Bundler supports overriding gem sources with mirrors. This allows you to configure

 rubygems.org as the gem source in your Gemfile while still using your mirror to

 fetch gems.

 bundle config set mirror.SOURCE_URL MIRROR_URL

 For example, to use a mirror of rubygems.org hosted at rubygems-mirror.org:

 bundle config set mirror.http://rubygems.org http://rubygems-mirror.org

 Each mirror also provides a fallback timeout setting. If the mirror does not re?

 spond within the fallback timeout, Bundler will try to use the original server in?

 stead of the mirror.

 bundle config set mirror.SOURCE_URL.fallback_timeout TIMEOUT

 For example, to fall back to rubygems.org after 3 seconds:

 bundle config set mirror.https://rubygems.org.fallback_timeout 3

 The default fallback timeout is 0.1 seconds, but the setting can currently only ac?

 cept whole seconds (for example, 1, 15, or 30).

CREDENTIALS FOR GEM SOURCES

 Bundler allows you to configure credentials for any gem source, which allows you to

 avoid putting secrets into your Gemfile.

 bundle config set SOURCE_HOSTNAME USERNAME:PASSWORD

 For example, to save the credentials of user claudette for the gem source at

 gems.longerous.com, you would run:

 bundle config set gems.longerous.com claudette:s00pers3krit

 Or you can set the credentials as an environment variable like this:

 export BUNDLE_GEMS__LONGEROUS__COM="claudette:s00pers3krit"

 For gems with a git source with HTTP(S) URL you can specify credentials like so:

 bundle config set https://github.com/bundler/bundler.git username:password

 Or you can set the credentials as an environment variable like so:

 export BUNDLE_GITHUB__COM=username:password

 This is especially useful for private repositories on hosts such as Github, where

 you can use personal OAuth tokens:

 export BUNDLE_GITHUB__COM=abcd0123generatedtoken:x-oauth-basic

CONFIGURE BUNDLER DIRECTORIES Page 9/10

 Bundler?s home, config, cache and plugin directories are able to be configured

 through environment variables. The default location for Bundler?s home directory is

 ~/.bundle, which all directories inherit from by default. The following outlines

 the available environment variables and their default values

 BUNDLE_USER_HOME : $HOME/.bundle

 BUNDLE_USER_CACHE : $BUNDLE_USER_HOME/cache

 BUNDLE_USER_CONFIG : $BUNDLE_USER_HOME/config

 BUNDLE_USER_PLUGIN : $BUNDLE_USER_HOME/plugin

 December 2019 BUNDLE-CONFIG(1)

Page 10/10

