
Linux Ubuntu 22.4.5 Manual Pages on command 'bundle-cache2.7.1'

$ man bundle-cache2.7.1

BUNDLE-CACHE(1) BUNDLE-CACHE(1)

NAME

 bundle-cache - Package your needed .gem files into your application

SYNOPSIS

 bundle cache

DESCRIPTION

 Copy all of the .gem files needed to run the application into the vendor/cache di?

 rectory. In the future, when running [bundle install(1)][bundle-install], use the

 gems in the cache in preference to the ones on rubygems.org.

GIT AND PATH GEMS

 The bundle cache command can also package :git and :path dependencies besides .gem

 files. This needs to be explicitly enabled via the --all option. Once used, the

 --all option will be remembered.

SUPPORT FOR MULTIPLE PLATFORMS

 When using gems that have different packages for different platforms, Bundler sup?

 ports caching of gems for other platforms where the Gemfile has been resolved (i.e.

 present in the lockfile) in vendor/cache. This needs to be enabled via the

 --all-platforms option. This setting will be remembered in your local bundler con?

 figuration.

REMOTE FETCHING

 By default, if you run bundle install(1)](bundle-install.1.html) after running bun?

 dle cache(1) bundle-cache.1.html, bundler will still connect to rubygems.org to
Page 1/2

 check whether a platform-specific gem exists for any of the gems in vendor/cache.

 For instance, consider this Gemfile(5):

 source "https://rubygems.org"

 gem "nokogiri"

 If you run bundle cache under C Ruby, bundler will retrieve the version of nokogiri

 for the "ruby" platform. If you deploy to JRuby and run bundle install, bundler is

 forced to check to see whether a "java" platformed nokogiri exists.

 Even though the nokogiri gem for the Ruby platform is technically acceptable on

 JRuby, it has a C extension that does not run on JRuby. As a result, bundler will,

 by default, still connect to rubygems.org to check whether it has a version of one

 of your gems more specific to your platform.

 This problem is also not limited to the "java" platform. A similar (common) problem

 can happen when developing on Windows and deploying to Linux, or even when develop?

 ing on OSX and deploying to Linux.

 If you know for sure that the gems packaged in vendor/cache are appropriate for the

 platform you are on, you can run bundle install --local to skip checking for more

 appropriate gems, and use the ones in vendor/cache.

 One way to be sure that you have the right platformed versions of all your gems is

 to run bundle cache on an identical machine and check in the gems. For instance,

 you can run bundle cache on an identical staging box during your staging process,

 and check in the vendor/cache before deploying to production.

 By default, bundle cache(1) bundle-cache.1.html fetches and also installs the gems

 to the default location. To package the dependencies to vendor/cache without in?

 stalling them to the local install location, you can run bundle cache --no-install.

 December 2019 BUNDLE-CACHE(1)

Page 2/2

