
Rocky Enterprise Linux 9.2 Manual Pages on command 'buildah-run.1'

$ man buildah-run.1

buildah-run(1) General Commands Manual buildah-run(1)

NAME

 buildah-run - Run a command inside of the container.

SYNOPSIS

 buildah run [options] [--] container command

DESCRIPTION

 Launches a container and runs the specified command in that container using the con?

 tainer's root filesystem as a root filesystem, using configuration settings inherited from

 the container's image or as specified using previous calls to the buildah config command.

 To execute buildah run within an interactive shell, specify the --tty option.

OPTIONS

 --add-history

 Add an entry to the history which will note what command is being invoked. Defaults to

 false.

 Note: You can also override the default value of --add-history by setting the BUILDAH_HIS?

 TORY environment variable. export BUILDAH_HISTORY=true

 --cap-add=CAP_xxx

 Add the specified capability to the set of capabilities which will be granted to the spec?

 ified command. Certain capabilities are granted by default; this option can be used to

 add more beyond the defaults, which may have been modified by --cap-add and --cap-drop op?

 tions used with the buildah from invocation which created the container.

 --cap-drop=CAP_xxx

 Add the specified capability from the set of capabilities which will be granted to the Page 1/7

 specified command. The CAP_AUDIT_WRITE, CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_FOWNER,

 CAP_FSETID, CAP_KILL, CAP_MKNOD, CAP_NET_BIND_SERVICE, CAP_SETFCAP, CAP_SETGID, CAP_SETP?

 CAP, CAP_SETUID, and CAP_SYS_CHROOT capabilities are granted by default; this option can

 be used to remove them from the defaults, which may have been modified by --cap-add and

 --cap-drop options used with the buildah from invocation which created the container.

 If a capability is specified to both the --cap-add and --cap-drop options, it will be

 dropped, regardless of the order in which the options were given.

 --cni-config-dir=directory

 Location of CNI configuration files which will dictate which plugins will be used to con?

 figure network interfaces and routing inside the running container, if the container will

 be run in its own network namespace, and networking is not disabled.

 --cni-plugin-path=directory[:directory[:directory[...]]]

 List of directories in which the CNI plugins which will be used for configuring network

 namespaces can be found.

 --env, -e env=value

 Temporarily add a value (e.g. env=value) to the environment for the running process. Un?

 like buildah config --env, the environment will not persist to later calls to buildah run

 or to the built image. Can be used multiple times.

 --hostname

 Set the hostname inside of the running container.

 --ipc how

 Sets the configuration for the IPC namespaces for the container. The configured value can

 be "" (the empty string) or "private" to indicate that a new IPC namespace should be cre?

 ated, or it can be "host" to indicate that the IPC namespace in which buildah itself is

 being run should be reused, or it can be the path to an IPC namespace which is already in

 use by another process.

 --isolation type

 Controls what type of isolation is used for running the process. Recognized types include

 oci (OCI-compatible runtime, the default), rootless (OCI-compatible runtime invoked using

 a modified configuration, with --no-new-keyring added to its create invocation, reusing

 the host's network and UTS namespaces, and creating private IPC, PID, mount, and user

 namespaces; the default for unprivileged users), and chroot (an internal wrapper that

 leans more toward chroot(1) than container technology, reusing the host's control group, Page 2/7

 network, IPC, and PID namespaces, and creating private mount and UTS namespaces, and cre?

 ating user namespaces only when they're required for ID mapping).

 Note: You can also override the default isolation type by setting the BUILDAH_ISOLATION

 environment variable. export BUILDAH_ISOLATION=oci

 --mount=type=TYPE,TYPE-SPECIFIC-OPTION[,...]

 Attach a filesystem mount to the container

 Current supported mount TYPES are bind, and tmpfs. [1] ?#Footnote1?

 e.g.

 type=bind,source=/path/on/host,destination=/path/in/container

 type=tmpfs,tmpfs-size=512M,destination=/path/in/container

 Common Options:

 ? src, source: mount source spec for bind and volume. Mandatory for bind.

 ? dst, destination, target: mount destination spec.

 ? ro, read-only: true or false (default).

 Options specific to bind:

 ? bind-propagation: shared, slave, private, rshared, rslave, or rprivate(default). See also mount(2).

 . bind-nonrecursive: do not setup a recursive bind mount. By default it is recursive.

 Options specific to tmpfs:

 ? tmpfs-size: Size of the tmpfs mount in bytes. Unlimited by default in Linux.

 ? tmpfs-mode: File mode of the tmpfs in octal. (e.g. 700 or 0700.) Defaults to 1777 in Linux.

 --network, --net=mode

 Sets the configuration for the network namespace for the container.

 ? none: no networking;

 ? host: use the host network stack. Note: the host mode gives the container full

 access to local system services such as D-bus and is therefore considered inse?

 cure;

 ? ns:path: path to a network namespace to join;

 ? private: create a new namespace for the container (default)

 --pid how

 Sets the configuration for the PID namespace for the container. The configured value can

 be "" (the empty string) or "private" to indicate that a new PID namespace should be cre?

 ated, or it can be "host" to indicate that the PID namespace in which buildah itself is

 being run should be reused, or it can be the path to a PID namespace which is already in Page 3/7

 use by another process.

 --runtime path

 The path to an alternate OCI-compatible runtime. Default is runc, or crun when machine is

 configured to use cgroups V2.

 Note: You can also override the default runtime by setting the BUILDAH_RUNTIME environment

 variable. export BUILDAH_RUNTIME=/usr/bin/crun

 --runtime-flag flag

 Adds global flags for the container runtime. To list the supported flags, please consult

 the manpages of the selected container runtime. Note: Do not pass the leading -- to the

 flag. To pass the runc flag --log-format json to buildah run, the option given would be

 --runtime-flag log-format=json.

 --no-pivot

 Do not use pivot root to jail process inside rootfs. This should be used whenever the

 rootfs is on top of a ramdisk.

 Note: You can make this option the default by setting the BUILDAH_NOPIVOT environment

 variable. export BUILDAH_NOPIVOT=true

 -t, --tty, --terminal

 By default a pseudo-TTY is allocated only when buildah's standard input is attached to a

 pseudo-TTY. Setting the --tty option to true will cause a pseudo-TTY to be allocated in?

 side the container connecting the user's "terminal" with the stdin and stdout stream of

 the container. Setting the --tty option to false will prevent the pseudo-TTY from being

 allocated.

 --user user[:group]

 Set the user to be used for running the command in the container. The user can be speci?

 fied as a user name or UID, optionally followed by a group name or GID, separated by a

 colon (':'). If names are used, the container should include entries for those names in

 its /etc/passwd and /etc/group files.

 --uts how

 Sets the configuration for the UTS namespace for the container. The configured value can

 be "" (the empty string) or "private" to indicate that a new UTS namespace should be cre?

 ated, or it can be "host" to indicate that the UTS namespace in which buildah itself is

 being run should be reused, or it can be the path to a UTS namespace which is already in

 use by another process. Page 4/7

 --volume, -v source:destination:options

 Create a bind mount. If you specify, -v /HOST-DIR:/CONTAINER-DIR, Buildah bind mounts

 /HOST-DIR in the host to /CONTAINER-DIR in the Buildah container. The OPTIONS are a comma

 delimited list and can be: [1] ?#Footnote1?

 ? [rw|ro]

 ? [U]

 ? [z|Z]

 ? [[r]shared|[r]slave|[r]private]

 The CONTAINER-DIR must be an absolute path such as /src/docs. The HOST-DIR must be an ab?

 solute path as well. Buildah bind-mounts the HOST-DIR to the path you specify. For exam?

 ple, if you supply /foo as the host path, Buildah copies the contents of /foo to the con?

 tainer filesystem on the host and bind mounts that into the container.

 You can specify multiple -v options to mount one or more mounts to a container.

 Write Protected Volume Mounts

 You can add the :ro or :rw suffix to a volume to mount it read-only or read-write mode,

 respectively. By default, the volumes are mounted read-write. See examples.

 Chowning Volume Mounts

 By default, Buildah does not change the owner and group of source volume directories

 mounted into containers. If a container is created in a new user namespace, the UID and

 GID in the container may correspond to another UID and GID on the host.

 The :U suffix tells Buildah to use the correct host UID and GID based on the UID and GID

 within the container, to change the owner and group of the source volume.

 Labeling Volume Mounts

 Labeling systems like SELinux require that proper labels are placed on volume content

 mounted into a container. Without a label, the security system might prevent the processes

 running inside the container from using the content. By default, Buildah does not change

 the labels set by the OS.

 To change a label in the container context, you can add either of two suffixes :z or :Z to

 the volume mount. These suffixes tell Buildah to relabel file objects on the shared vol?

 umes. The z option tells Buildah that two containers share the volume content. As a re?

 sult, Buildah labels the content with a shared content label. Shared volume labels allow

 all containers to read/write content. The Z option tells Buildah to label the content

 with a private unshared label. Only the current container can use a private volume. Page 5/7

 By default bind mounted volumes are private. That means any mounts done inside container

 will not be visible on the host and vice versa. This behavior can be changed by specifying

 a volume mount propagation property.

 When the mount propagation policy is set to shared, any mounts completed inside the con?

 tainer on that volume will be visible to both the host and container. When the mount prop?

 agation policy is set to slave, one way mount propagation is enabled and any mounts com?

 pleted on the host for that volume will be visible only inside of the container. To con?

 trol the mount propagation property of the volume use the :[r]shared, :[r]slave or

 :[r]private propagation flag. The propagation property can be specified only for bind

 mounted volumes and not for internal volumes or named volumes. For mount propagation to

 work on the source mount point (the mount point where source dir is mounted on) it has to

 have the right propagation properties. For shared volumes, the source mount point has to

 be shared. And for slave volumes, the source mount has to be either shared or slave. [1]

 ?#Footnote1?

 Use df <source-dir> to determine the source mount and then use findmnt -o TARGET,PROPAGA?

 TION <source-mount-dir> to determine propagation properties of source mount, if findmnt

 utility is not available, the source mount point can be determined by looking at the mount

 entry in /proc/self/mountinfo. Look at optional fields and see if any propagation proper?

 ties are specified. shared:X means the mount is shared, master:X means the mount is slave

 and if nothing is there that means the mount is private. [1] ?#Footnote1?

 To change propagation properties of a mount point use the mount command. For example, to

 bind mount the source directory /foo do mount --bind /foo /foo and mount --make-private

 --make-shared /foo. This will convert /foo into a shared mount point. The propagation

 properties of the source mount can be changed directly. For instance if / is the source

 mount for /foo, then use mount --make-shared / to convert / into a shared mount.

 --workingdir directory

 Temporarily set the working directory for the running process. Unlike buildah config

 --workingdir, the workingdir will not persist to later calls to buildah run or the built

 image.

 NOTE: End parsing of options with the -- option, so that other options can be passed to

 the command inside of the container.

EXAMPLE

 buildah run containerID -- ps -auxw Page 6/7

 buildah run --hostname myhost containerID -- ps -auxw

 buildah run containerID -- sh -c 'echo $PATH'

 buildah run --runtime-flag log-format=json containerID /bin/bash

 buildah run --runtime-flag debug containerID /bin/bash

 buildah run --tty containerID /bin/bash

 buildah run --tty=false containerID ls /

 buildah run --volume /path/on/host:/path/in/container:ro,z containerID sh

 buildah run -v /path/on/host:/path/in/container:z,U containerID sh

 buildah run --mount type=bind,src=/tmp/on:host,dst=/in:container,ro containerID sh

SEE ALSO

 buildah(1), buildah-from(1), buildah-config(1), namespaces(7), pid_namespaces(7), crun(1),

 runc(8)

FOOTNOTES

 1: The Buildah project is committed to inclusivity, a core value of open source. The mas?

 ter and slave mount propagation terminology used here is problematic and divisive, and

 should be changed. However, these terms are currently used within the Linux kernel and

 must be used as-is at this time. When the kernel maintainers rectify this usage, Buildah

 will follow suit immediately.

buildah March 2017 buildah-run(1)

Page 7/7

