
Rocky Enterprise Linux 9.2 Manual Pages on command 'btrfs.5'

$ man btrfs.5

BTRFS-MAN5(5) BTRFS-MAN5(5)

NAME

 btrfs-man5 - topics about the BTRFS filesystem (mount options, supported file attributes

 and other)

DESCRIPTION

 This document describes topics related to BTRFS that are not specific to the tools.

 Currently covers:

 1. mount options

 2. filesystem features

 3. checksum algorithms

 4. compression

 5. filesystem exclusive operations

 6. filesystem limits

 7. bootloader support

 8. file attributes

 9. zoned mode

 10. control device

 11. filesystems with multiple block group profiles

 12. seeding device

 13. raid56 status and recommended practices

 14. storage model

 15. hardware considerations

MOUNT OPTIONS Page 1/36

 This section describes mount options specific to BTRFS. For the generic mount options

 please refer to mount(8) manpage. The options are sorted alphabetically (discarding the no

 prefix).

 Note

 most mount options apply to the whole filesystem and only options in the first mounted

 subvolume will take effect. This is due to lack of implementation and may change in

 the future. This means that (for example) you can?t set per-subvolume nodatacow,

 nodatasum, or compress using mount options. This should eventually be fixed, but it

 has proved to be difficult to implement correctly within the Linux VFS framework.

 Mount options are processed in order, only the last occurrence of an option takes effect

 and may disable other options due to constraints (see eg. nodatacow and compress). The

 output of mount command shows which options have been applied.

 acl, noacl

 (default: on)

 Enable/disable support for Posix Access Control Lists (ACLs). See the acl(5) manual

 page for more information about ACLs.

 The support for ACL is build-time configurable (BTRFS_FS_POSIX_ACL) and mount fails if

 acl is requested but the feature is not compiled in.

 autodefrag, noautodefrag

 (since: 3.0, default: off)

 Enable automatic file defragmentation. When enabled, small random writes into files

 (in a range of tens of kilobytes, currently it?s 64K) are detected and queued up for

 the defragmentation process. Not well suited for large database workloads.

 The read latency may increase due to reading the adjacent blocks that make up the

 range for defragmentation, successive write will merge the blocks in the new location.

 Warning

 Defragmenting with Linux kernel versions < 3.9 or ? 3.14-rc2 as well as with Linux

 stable kernel versions ? 3.10.31, ? 3.12.12 or ? 3.13.4 will break up the reflinks

 of COW data (for example files copied with cp --reflink, snapshots or

 de-duplicated data). This may cause considerable increase of space usage depending

 on the broken up reflinks.

 barrier, nobarrier

 (default: on) Page 2/36

 Ensure that all IO write operations make it through the device cache and are stored

 permanently when the filesystem is at its consistency checkpoint. This typically means

 that a flush command is sent to the device that will synchronize all pending data and

 ordinary metadata blocks, then writes the superblock and issues another flush.

 The write flushes incur a slight hit and also prevent the IO block scheduler to

 reorder requests in a more effective way. Disabling barriers gets rid of that penalty

 but will most certainly lead to a corrupted filesystem in case of a crash or power

 loss. The ordinary metadata blocks could be yet unwritten at the time the new

 superblock is stored permanently, expecting that the block pointers to metadata were

 stored permanently before.

 On a device with a volatile battery-backed write-back cache, the nobarrier option will

 not lead to filesystem corruption as the pending blocks are supposed to make it to the

 permanent storage.

 check_int, check_int_data, check_int_print_mask=value

 (since: 3.0, default: off)

 These debugging options control the behavior of the integrity checking module (the

 BTRFS_FS_CHECK_INTEGRITY config option required). The main goal is to verify that all

 blocks from a given transaction period are properly linked.

 check_int enables the integrity checker module, which examines all block write

 requests to ensure on-disk consistency, at a large memory and CPU cost.

 check_int_data includes extent data in the integrity checks, and implies the check_int

 option.

 check_int_print_mask takes a bitmask of BTRFSIC_PRINT_MASK_* values as defined in

 fs/btrfs/check-integrity.c, to control the integrity checker module behavior.

 See comments at the top of fs/btrfs/check-integrity.c for more information.

 clear_cache

 Force clearing and rebuilding of the disk space cache if something has gone wrong. See

 also: space_cache.

 commit=seconds

 (since: 3.12, default: 30)

 Set the interval of periodic transaction commit when data are synchronized to

 permanent storage. Higher interval values lead to larger amount of unwritten data,

 which has obvious consequences when the system crashes. The upper bound is not forced, Page 3/36

 but a warning is printed if it?s more than 300 seconds (5 minutes). Use with care.

 compress, compress=type[:level], compress-force, compress-force=type[:level]

 (default: off, level support since: 5.1)

 Control BTRFS file data compression. Type may be specified as zlib, lzo, zstd or no

 (for no compression, used for remounting). If no type is specified, zlib is used. If

 compress-force is specified, then compression will always be attempted, but the data

 may end up uncompressed if the compression would make them larger.

 Both zlib and zstd (since version 5.1) expose the compression level as a tunable knob

 with higher levels trading speed and memory (zstd) for higher compression ratios. This

 can be set by appending a colon and the desired level. Zlib accepts the range [1, 9]

 and zstd accepts [1, 15]. If no level is set, both currently use a default level of 3.

 The value 0 is an alias for the default level.

 Otherwise some simple heuristics are applied to detect an incompressible file. If the

 first blocks written to a file are not compressible, the whole file is permanently

 marked to skip compression. As this is too simple, the compress-force is a workaround

 that will compress most of the files at the cost of some wasted CPU cycles on failed

 attempts. Since kernel 4.15, a set of heuristic algorithms have been improved by using

 frequency sampling, repeated pattern detection and Shannon entropy calculation to

 avoid that.

 Note

 If compression is enabled, nodatacow and nodatasum are disabled.

 datacow, nodatacow

 (default: on)

 Enable data copy-on-write for newly created files. Nodatacow implies nodatasum, and

 disables compression. All files created under nodatacow are also set the NOCOW file

 attribute (see chattr(1)).

 Note

 If nodatacow or nodatasum are enabled, compression is disabled.

 Updates in-place improve performance for workloads that do frequent overwrites, at the

 cost of potential partial writes, in case the write is interrupted (system crash,

 device failure).

 datasum, nodatasum

 (default: on) Page 4/36

 Enable data checksumming for newly created files. Datasum implies datacow, ie. the

 normal mode of operation. All files created under nodatasum inherit the "no checksums"

 property, however there?s no corresponding file attribute (see chattr(1)).

 Note

 If nodatacow or nodatasum are enabled, compression is disabled.

 There is a slight performance gain when checksums are turned off, the corresponding

 metadata blocks holding the checksums do not need to updated. The cost of checksumming

 of the blocks in memory is much lower than the IO, modern CPUs feature hardware

 support of the checksumming algorithm.

 degraded

 (default: off)

 Allow mounts with less devices than the RAID profile constraints require. A read-write

 mount (or remount) may fail when there are too many devices missing, for example if a

 stripe member is completely missing from RAID0.

 Since 4.14, the constraint checks have been improved and are verified on the chunk

 level, not at the device level. This allows degraded mounts of filesystems with mixed

 RAID profiles for data and metadata, even if the device number constraints would not

 be satisfied for some of the profiles.

 Example: metadata ? raid1, data ? single, devices ? /dev/sda, /dev/sdb

 Suppose the data are completely stored on sda, then missing sdb will not prevent the

 mount, even if 1 missing device would normally prevent (any) single profile to mount.

 In case some of the data chunks are stored on sdb, then the constraint of single/data

 is not satisfied and the filesystem cannot be mounted.

 device=devicepath

 Specify a path to a device that will be scanned for BTRFS filesystem during mount.

 This is usually done automatically by a device manager (like udev) or using the btrfs

 device scan command (eg. run from the initial ramdisk). In cases where this is not

 possible the device mount option can help.

 Note

 booting eg. a RAID1 system may fail even if all filesystem?s device paths are

 provided as the actual device nodes may not be discovered by the system at that

 point.

 discard, discard=sync, discard=async, nodiscard Page 5/36

 (default: off, async support since: 5.6)

 Enable discarding of freed file blocks. This is useful for SSD devices, thinly

 provisioned LUNs, or virtual machine images; however, every storage layer must support

 discard for it to work.

 In the synchronous mode (sync or without option value), lack of asynchronous queued

 TRIM on the backing device TRIM can severely degrade performance, because a

 synchronous TRIM operation will be attempted instead. Queued TRIM requires newer than

 SATA revision 3.1 chipsets and devices.

 The asynchronous mode (async) gathers extents in larger chunks before sending them to

 the devices for TRIM. The overhead and performance impact should be negligible

 compared to the previous mode and it?s supposed to be the preferred mode if needed.

 If it is not necessary to immediately discard freed blocks, then the fstrim tool can

 be used to discard all free blocks in a batch. Scheduling a TRIM during a period of

 low system activity will prevent latent interference with the performance of other

 operations. Also, a device may ignore the TRIM command if the range is too small, so

 running a batch discard has a greater probability of actually discarding the blocks.

 enospc_debug, noenospc_debug

 (default: off)

 Enable verbose output for some ENOSPC conditions. It?s safe to use but can be noisy if

 the system reaches near-full state.

 fatal_errors=action

 (since: 3.4, default: bug)

 Action to take when encountering a fatal error.

 bug

 BUG() on a fatal error, the system will stay in the crashed state and may be still

 partially usable, but reboot is required for full operation

 panic

 panic() on a fatal error, depending on other system configuration, this may be

 followed by a reboot. Please refer to the documentation of kernel boot parameters,

 eg. panic, oops or crashkernel.

 flushoncommit, noflushoncommit

 (default: off)

 This option forces any data dirtied by a write in a prior transaction to commit as Page 6/36

 part of the current commit, effectively a full filesystem sync.

 This makes the committed state a fully consistent view of the file system from the

 application?s perspective (i.e. it includes all completed file system operations).

 This was previously the behavior only when a snapshot was created.

 When off, the filesystem is consistent but buffered writes may last more than one

 transaction commit.

 fragment=type

 (depends on compile-time option BTRFS_DEBUG, since: 4.4, default: off)

 A debugging helper to intentionally fragment given type of block groups. The type can

 be data, metadata or all. This mount option should not be used outside of debugging

 environments and is not recognized if the kernel config option BTRFS_DEBUG is not

 enabled.

 nologreplay

 (default: off, even read-only)

 The tree-log contains pending updates to the filesystem until the full commit. The log

 is replayed on next mount, this can be disabled by this option. See also treelog. Note

 that nologreplay is the same as norecovery.

 Warning

 currently, the tree log is replayed even with a read-only mount! To disable that

 behaviour, mount also with nologreplay.

 max_inline=bytes

 (default: min(2048, page size))

 Specify the maximum amount of space, that can be inlined in a metadata B-tree leaf.

 The value is specified in bytes, optionally with a K suffix (case insensitive). In

 practice, this value is limited by the filesystem block size (named sectorsize at mkfs

 time), and memory page size of the system. In case of sectorsize limit, there?s some

 space unavailable due to leaf headers. For example, a 4k sectorsize, maximum size of

 inline data is about 3900 bytes.

 Inlining can be completely turned off by specifying 0. This will increase data block

 slack if file sizes are much smaller than block size but will reduce metadata

 consumption in return.

 Note

 the default value has changed to 2048 in kernel 4.6. Page 7/36

 metadata_ratio=value

 (default: 0, internal logic)

 Specifies that 1 metadata chunk should be allocated after every value data chunks.

 Default behaviour depends on internal logic, some percent of unused metadata space is

 attempted to be maintained but is not always possible if there?s not enough space left

 for chunk allocation. The option could be useful to override the internal logic in

 favor of the metadata allocation if the expected workload is supposed to be metadata

 intense (snapshots, reflinks, xattrs, inlined files).

 norecovery

 (since: 4.5, default: off)

 Do not attempt any data recovery at mount time. This will disable logreplay and avoids

 other write operations. Note that this option is the same as nologreplay.

 Note

 The opposite option recovery used to have different meaning but was changed for

 consistency with other filesystems, where norecovery is used for skipping log

 replay. BTRFS does the same and in general will try to avoid any write operations.

 rescan_uuid_tree

 (since: 3.12, default: off)

 Force check and rebuild procedure of the UUID tree. This should not normally be

 needed.

 rescue

 (since: 5.9)

 Modes allowing mount with damaged filesystem structures.

 ? usebackuproot (since: 5.9, replaces standalone option usebackuproot)

 ? nologreplay (since: 5.9, replaces standalone option nologreplay)

 ? ignorebadroots, ibadroots (since: 5.11)

 ? ignoredatacsums, idatacsums (since: 5.11)

 ? all (since: 5.9)

 skip_balance

 (since: 3.3, default: off)

 Skip automatic resume of an interrupted balance operation. The operation can later be

 resumed with btrfs balance resume, or the paused state can be removed with btrfs

 balance cancel. The default behaviour is to resume an interrupted balance immediately Page 8/36

 after a volume is mounted.

 space_cache, space_cache=version, nospace_cache

 (nospace_cache since: 3.2, space_cache=v1 and space_cache=v2 since 4.5, default:

 space_cache=v1)

 Options to control the free space cache. The free space cache greatly improves

 performance when reading block group free space into memory. However, managing the

 space cache consumes some resources, including a small amount of disk space.

 There are two implementations of the free space cache. The original one, referred to

 as v1, is the safe default. The v1 space cache can be disabled at mount time with

 nospace_cache without clearing.

 On very large filesystems (many terabytes) and certain workloads, the performance of

 the v1 space cache may degrade drastically. The v2 implementation, which adds a new

 B-tree called the free space tree, addresses this issue. Once enabled, the v2 space

 cache will always be used and cannot be disabled unless it is cleared. Use

 clear_cache,space_cache=v1 or clear_cache,nospace_cache to do so. If v2 is enabled,

 kernels without v2 support will only be able to mount the filesystem in read-only

 mode.

 The btrfs-check(8) and mkfs.btrfs(8) commands have full v2 free space cache support

 since v4.19.

 If a version is not explicitly specified, the default implementation will be chosen,

 which is v1.

 ssd, ssd_spread, nossd, nossd_spread

 (default: SSD autodetected)

 Options to control SSD allocation schemes. By default, BTRFS will enable or disable

 SSD optimizations depending on status of a device with respect to rotational or

 non-rotational type. This is determined by the contents of

 /sys/block/DEV/queue/rotational). If it is 0, the ssd option is turned on. The option

 nossd will disable the autodetection.

 The optimizations make use of the absence of the seek penalty that?s inherent for the

 rotational devices. The blocks can be typically written faster and are not offloaded

 to separate threads.

 Note

 Since 4.14, the block layout optimizations have been dropped. This used to help Page 9/36

 with first generations of SSD devices. Their FTL (flash translation layer) was not

 effective and the optimization was supposed to improve the wear by better aligning

 blocks. This is no longer true with modern SSD devices and the optimization had no

 real benefit. Furthermore it caused increased fragmentation. The layout tuning has

 been kept intact for the option ssd_spread.

 The ssd_spread mount option attempts to allocate into bigger and aligned chunks of

 unused space, and may perform better on low-end SSDs. ssd_spread implies ssd,

 enabling all other SSD heuristics as well. The option nossd will disable all SSD

 options while nossd_spread only disables ssd_spread.

 subvol=path

 Mount subvolume from path rather than the toplevel subvolume. The path is always

 treated as relative to the toplevel subvolume. This mount option overrides the default

 subvolume set for the given filesystem.

 subvolid=subvolid

 Mount subvolume specified by a subvolid number rather than the toplevel subvolume. You

 can use btrfs subvolume list of btrfs subvolume show to see subvolume ID numbers. This

 mount option overrides the default subvolume set for the given filesystem.

 Note

 if both subvolid and subvol are specified, they must point at the same subvolume,

 otherwise the mount will fail.

 thread_pool=number

 (default: min(NRCPUS + 2, 8))

 The number of worker threads to start. NRCPUS is number of on-line CPUs detected at

 the time of mount. Small number leads to less parallelism in processing data and

 metadata, higher numbers could lead to a performance hit due to increased locking

 contention, process scheduling, cache-line bouncing or costly data transfers between

 local CPU memories.

 treelog, notreelog

 (default: on)

 Enable the tree logging used for fsync and O_SYNC writes. The tree log stores changes

 without the need of a full filesystem sync. The log operations are flushed at sync and

 transaction commit. If the system crashes between two such syncs, the pending tree log

 operations are replayed during mount. Page 10/36

 Warning

 currently, the tree log is replayed even with a read-only mount! To disable that

 behaviour, also mount with nologreplay.

 The tree log could contain new files/directories, these would not exist on a mounted

 filesystem if the log is not replayed.

 usebackuproot

 (since: 4.6, default: off)

 Enable autorecovery attempts if a bad tree root is found at mount time. Currently this

 scans a backup list of several previous tree roots and tries to use the first

 readable. This can be used with read-only mounts as well.

 Note

 This option has replaced recovery.

 user_subvol_rm_allowed

 (default: off)

 Allow subvolumes to be deleted by their respective owner. Otherwise, only the root

 user can do that.

 Note

 historically, any user could create a snapshot even if he was not owner of the

 source subvolume, the subvolume deletion has been restricted for that reason. The

 subvolume creation has been restricted but this mount option is still required.

 This is a usability issue. Since 4.18, the rmdir(2) syscall can delete an empty

 subvolume just like an ordinary directory. Whether this is possible can be

 detected at runtime, see rmdir_subvol feature in FILESYSTEM FEATURES.

 DEPRECATED MOUNT OPTIONS

 List of mount options that have been removed, kept for backward compatibility.

 recovery

 (since: 3.2, default: off, deprecated since: 4.5)

 Note

 this option has been replaced by usebackuproot and should not be used but will

 work on 4.5+ kernels.

 inode_cache, noinode_cache

 (removed in: 5.11, since: 3.0, default: off)

 Note Page 11/36

 the functionality has been removed in 5.11, any stale data created by previous use

 of the inode_cache option can be removed by btrfs check --clear-ino-cache.

 NOTES ON GENERIC MOUNT OPTIONS

 Some of the general mount options from mount(8) that affect BTRFS and are worth

 mentioning.

 noatime

 under read intensive work-loads, specifying noatime significantly improves performance

 because no new access time information needs to be written. Without this option, the

 default is relatime, which only reduces the number of inode atime updates in

 comparison to the traditional strictatime. The worst case for atime updates under

 relatime occurs when many files are read whose atime is older than 24 h and which are

 freshly snapshotted. In that case the atime is updated and COW happens - for each file

 - in bulk. See also https://lwn.net/Articles/499293/ - Atime and btrfs: a bad

 combination? (LWN, 2012-05-31).

 Note that noatime may break applications that rely on atime uptimes like the venerable

 Mutt (unless you use maildir mailboxes).

FILESYSTEM FEATURES

 The basic set of filesystem features gets extended over time. The backward compatibility

 is maintained and the features are optional, need to be explicitly asked for so accidental

 use will not create incompatibilities.

 There are several classes and the respective tools to manage the features:

 at mkfs time only

 This is namely for core structures, like the b-tree nodesize or checksum algorithm,

 see mkfs.btrfs(8) for more details.

 after mkfs, on an unmounted filesystem

 Features that may optimize internal structures or add new structures to support new

 functionality, see btrfstune(8). The command btrfs inspect-internal dump-super device

 will dump a superblock, you can map the value of incompat_flags to the features listed

 below

 after mkfs, on a mounted filesystem

 The features of a filesystem (with a given UUID) are listed in

 /sys/fs/btrfs/UUID/features/, one file per feature. The status is stored inside the

 file. The value 1 is for enabled and active, while 0 means the feature was enabled at Page 12/36

 mount time but turned off afterwards.

 Whether a particular feature can be turned on a mounted filesystem can be found in the

 directory /sys/fs/btrfs/features/, one file per feature. The value 1 means the feature

 can be enabled.

 List of features (see also mkfs.btrfs(8) section FILESYSTEM FEATURES):

 big_metadata

 (since: 3.4)

 the filesystem uses nodesize for metadata blocks, this can be bigger than the page

 size

 compress_lzo

 (since: 2.6.38)

 the lzo compression has been used on the filesystem, either as a mount option or via

 btrfs filesystem defrag.

 compress_zstd

 (since: 4.14)

 the zstd compression has been used on the filesystem, either as a mount option or via

 btrfs filesystem defrag.

 default_subvol

 (since: 2.6.34)

 the default subvolume has been set on the filesystem

 extended_iref

 (since: 3.7)

 increased hardlink limit per file in a directory to 65536, older kernels supported a

 varying number of hardlinks depending on the sum of all file name sizes that can be

 stored into one metadata block

 free_space_tree

 (since: 4.5)

 free space representation using a dedicated b-tree, successor of v1 space cache

 metadata_uuid

 (since: 5.0)

 the main filesystem UUID is the metadata_uuid, which stores the new UUID only in the

 superblock while all metadata blocks still have the UUID set at mkfs time, see

 btrfstune(8) for more Page 13/36

 mixed_backref

 (since: 2.6.31)

 the last major disk format change, improved backreferences, now default

 mixed_groups

 (since: 2.6.37)

 mixed data and metadata block groups, ie. the data and metadata are not separated and

 occupy the same block groups, this mode is suitable for small volumes as there are no

 constraints how the remaining space should be used (compared to the split mode, where

 empty metadata space cannot be used for data and vice versa)

 on the other hand, the final layout is quite unpredictable and possibly highly

 fragmented, which means worse performance

 no_holes

 (since: 3.14)

 improved representation of file extents where holes are not explicitly stored as an

 extent, saves a few percent of metadata if sparse files are used

 raid1c34

 (since: 5.5)

 extended RAID1 mode with copies on 3 or 4 devices respectively

 raid56

 (since: 3.9)

 the filesystem contains or contained a raid56 profile of block groups

 rmdir_subvol

 (since: 4.18)

 indicate that rmdir(2) syscall can delete an empty subvolume just like an ordinary

 directory. Note that this feature only depends on the kernel version.

 skinny_metadata

 (since: 3.10)

 reduced-size metadata for extent references, saves a few percent of metadata

 send_stream_version

 (since: 5.10)

 number of the highest supported send stream version

 supported_checksums

 (since: 5.5) Page 14/36

 list of checksum algorithms supported by the kernel module, the respective modules or

 built-in implementing the algorithms need to be present to mount the filesystem, see

 CHECKSUM ALGORITHMS

 supported_sectorsizes

 (since: 5.13)

 list of values that are accepted as sector sizes (mkfs.btrfs --sectorsize) by the

 running kernel

 supported_rescue_options

 (since: 5.11)

 list of values for the mount option rescue that are supported by the running kernel,

 see btrfs(5)

 zoned

 (since: 5.12)

 zoned mode is allocation/write friendly to host-managed zoned devices, allocation

 space is partitioned into fixed-size zones that must be updated sequentially, see

 ZONED MODE

 SWAPFILE SUPPORT

 The swapfile is supported since kernel 5.0. Use swapon(8) to activate the swapfile. There

 are some limitations of the implementation in btrfs and linux swap subsystem:

 ? filesystem - must be only single device

 ? filesystem - must have only single data profile

 ? swapfile - the containing subvolume cannot be snapshotted

 ? swapfile - must be preallocated

 ? swapfile - must be nodatacow (ie. also nodatasum)

 ? swapfile - must not be compressed

 The limitations come namely from the COW-based design and mapping layer of blocks that

 allows the advanced features like relocation and multi-device filesystems. However, the

 swap subsystem expects simpler mapping and no background changes of the file blocks once

 they?ve been attached to swap.

 With active swapfiles, the following whole-filesystem operations will skip swapfile

 extents or may fail:

 ? balance - block groups with swapfile extents are skipped and reported, the rest will

 be processed normally Page 15/36

 ? resize grow - unaffected

 ? resize shrink - works as long as the extents are outside of the shrunk range

 ? device add - a new device does not interfere with existing swapfile and this

 operation will work, though no new swapfile can be activated afterwards

 ? device delete - if the device has been added as above, it can be also deleted

 ? device replace - ditto

 When there are no active swapfiles and a whole-filesystem exclusive operation is running

 (ie. balance, device delete, shrink), the swapfiles cannot be temporarily activated. The

 operation must finish first.

 To create and activate a swapfile run the following commands:

 # truncate -s 0 swapfile

 # chattr +C swapfile

 # fallocate -l 2G swapfile

 # chmod 0600 swapfile

 # mkswap swapfile

 # swapon swapfile

 Please note that the UUID returned by the mkswap utility identifies the swap "filesystem"

 and because it?s stored in a file, it?s not generally visible and usable as an identifier

 unlike if it was on a block device.

 The file will appear in /proc/swaps:

 # cat /proc/swaps

 Filename Type Size Used Priority

 /path/swapfile file 2097152 0 -2

 The swapfile can be created as one-time operation or, once properly created, activated on

 each boot by the swapon -a command (usually started by the service manager). Add the

 following entry to /etc/fstab, assuming the filesystem that provides the /path has been

 already mounted at this point. Additional mount options relevant for the swapfile can be

 set too (like priority, not the btrfs mount options).

 /path/swapfile none swap defaults 0 0

CHECKSUM ALGORITHMS

 There are several checksum algorithms supported. The default and backward compatible is

 crc32c. Since kernel 5.5 there are three more with different characteristics and

 trade-offs regarding speed and strength. The following list may help you to decide which Page 16/36

 one to select.

 CRC32C (32bit digest)

 default, best backward compatibility, very fast, modern CPUs have instruction-level

 support, not collision-resistant but still good error detection capabilities

 XXHASH (64bit digest)

 can be used as CRC32C successor, very fast, optimized for modern CPUs utilizing

 instruction pipelining, good collision resistance and error detection

 SHA256 (256bit digest)

 a cryptographic-strength hash, relatively slow but with possible CPU instruction

 acceleration or specialized hardware cards, FIPS certified and in wide use

 BLAKE2b (256bit digest)

 a cryptographic-strength hash, relatively fast with possible CPU acceleration using

 SIMD extensions, not standardized but based on BLAKE which was a SHA3 finalist, in

 wide use, the algorithm used is BLAKE2b-256 that?s optimized for 64bit platforms

 The digest size affects overall size of data block checksums stored in the filesystem. The

 metadata blocks have a fixed area up to 256bits (32 bytes), so there?s no increase. Each

 data block has a separate checksum stored, with additional overhead of the b-tree leaves.

 Approximate relative performance of the algorithms, measured against CRC32C using

 reference software implementations on a 3.5GHz intel CPU:

 [cols="^,>,>,>",width="50%"]

 ??

 ? ? ? ? ?

 ?Digest ? Cycles/4KiB ? Ratio ? Implementation ?

 ??

 ? ? ? ? ?

 ?CRC32C ? 1700 ? 1.00 ? CPU instruction ?

 ??

 ? ? ? ? ?

 ?XXHASH ? 2500 ? 1.44 ? reference impl. ?

 ??

 ? ? ? ? ?

 ?SHA256 ? 105000 ? 61 ? reference impl. ?

 ?? Page 17/36

 ? ? ? ? ?

 ?SHA256 ? 36000 ? 21 ? libgcrypt/AVX2 ?

 ??

 ? ? ? ? ?

 ?SHA256 ? 63000 ? 37 ? libsodium/AVX2 ?

 ??

 ? ? ? ? ?

 ?BLAKE2b ? 22000 ? 13 ? reference impl. ?

 ??

 ? ? ? ? ?

 ?BLAKE2b ? 19000 ? 11 ? libgcrypt/AVX2 ?

 ??

 ? ? ? ? ?

 ?BLAKE2b ? 19000 ? 11 ? libsodium/AVX2 ?

 ??

 Many kernels are configured with SHA256 as built-in and not as a module. The accelerated

 versions are however provided by the modules and must be loaded explicitly (modprobe

 sha256) before mounting the filesystem to make use of them. You can check in

 /sys/fs/btrfs/FSID/checksum which one is used. If you see sha256-generic, then you may

 want to unmount and mount the filesystem again, changing that on a mounted filesystem is

 not possible. Check the file /proc/crypto, when the implementation is built-in, you?d find

 name : sha256

 driver : sha256-generic

 module : kernel

 priority : 100

 ...

 while accelerated implementation is e.g.

 name : sha256

 driver : sha256-avx2

 module : sha256_ssse3

 priority : 170

 ...

COMPRESSION Page 18/36

 Btrfs supports transparent file compression. There are three algorithms available: ZLIB,

 LZO and ZSTD (since v4.14). Basically, compression is on a file by file basis. You can

 have a single btrfs mount point that has some files that are uncompressed, some that are

 compressed with LZO, some with ZLIB, for instance (though you may not want it that way, it

 is supported).

 To enable compression, mount the filesystem with options compress or compress-force.

 Please refer to section MOUNT OPTIONS. Once compression is enabled, all new writes will be

 subject to compression. Some files may not compress very well, and these are typically not

 recompressed but still written uncompressed.

 Each compression algorithm has different speed/ratio trade offs. The levels can be

 selected by a mount option and affect only the resulting size (ie. no compatibility

 issues).

 Basic characteristics:

 ZLIB slower, higher compression ratio

 ? levels: 1 to 9,

 mapped directly,

 default level is 3

 ? good backward

 compatibility

 LZO faster compression and

 decompression than zlib, worse

 compression ratio, designed to

 be fast

 ? no levels

 ? good backward

 compatibility

 ZSTD compression comparable to zlib

 with higher

 compression/decompression speeds

 and different ratio

 ? levels: 1 to 15

 ? since 4.14, levels

 since 5.1 Page 19/36

 The differences depend on the actual data set and cannot be expressed by a single number

 or recommendation. Higher levels consume more CPU time and may not bring a significant

 improvement, lower levels are close to real time.

 The algorithms could be mixed in one file as they?re stored per extent. The compression

 can be changed on a file by btrfs filesystem defrag command, using the -c option, or by

 btrfs property set using the compression property. Setting compression by chattr +c

 utility will set it to zlib.

 INCOMPRESSIBLE DATA

 Files with already compressed data or with data that won?t compress well with the CPU and

 memory constraints of the kernel implementations are using a simple decision logic. If the

 first portion of data being compressed is not smaller than the original, the compression

 of the file is disabled ? unless the filesystem is mounted with compress-force. In that

 case compression will always be attempted on the file only to be later discarded. This is

 not optimal and subject to optimizations and further development.

 If a file is identified as incompressible, a flag is set (NOCOMPRESS) and it?s sticky. On

 that file compression won?t be performed unless forced. The flag can be also set by chattr

 +m (since e2fsprogs 1.46.2) or by properties with value no or none. Empty value will reset

 it to the default that?s currently applicable on the mounted filesystem.

 There are two ways to detect incompressible data:

 ? actual compression attempt - data are compressed, if the result is not smaller, it?s

 discarded, so this depends on the algorithm and level

 ? pre-compression heuristics - a quick statistical evaluation on the data is performed

 and based on the result either compression is performed or skipped, the NOCOMPRESS bit

 is not set just by the heuristic, only if the compression algorithm does not make an

 improvement

 PRE-COMPRESSION HEURISTICS

 The heuristics aim to do a few quick statistical tests on the compressed data in order to

 avoid probably costly compression that would turn out to be inefficient. Compression

 algorithms could have internal detection of incompressible data too but this leads to more

 overhead as the compression is done in another thread and has to write the data anyway.

 The heuristic is read-only and can utilize cached memory.

 The tests performed based on the following: data sampling, long repeated pattern

 detection, byte frequency, Shannon entropy. Page 20/36

 COMPATIBILITY WITH OTHER FEATURES

 Compression is done using the COW mechanism so it?s incompatible with nodatacow. Direct IO

 works on compressed files but will fall back to buffered writes. Currently nodatasum and

 compression don?t work together.

FILESYSTEM EXCLUSIVE OPERATIONS

 There are several operations that affect the whole filesystem and cannot be run in

 parallel. Attempt to start one while another is running will fail.

 Since kernel 5.10 the currently running operation can be obtained from

 /sys/fs/UUID/exclusive_operation with following values and operations:

 ? balance

 ? device add

 ? device delete

 ? device replace

 ? resize

 ? swapfile activate

 ? none

 Enqueuing is supported for several btrfs subcommands so they can be started at once and

 then serialized.

FILESYSTEM LIMITS

 maximum file name length

 255

 maximum symlink target length

 depends on the nodesize value, for 4k it?s 3949 bytes, for larger nodesize it?s 4095

 due to the system limit PATH_MAX

 The symlink target may not be a valid path, ie. the path name components can exceed

 the limits (NAME_MAX), there?s no content validation at symlink(3) creation.

 maximum number of inodes

 264 but depends on the available metadata space as the inodes are created dynamically

 inode numbers

 minimum number: 256 (for subvolumes), regular files and directories: 257

 maximum file length

 inherent limit of btrfs is 264 (16 EiB) but the linux VFS limit is 263 (8 EiB)

 maximum number of subvolumes Page 21/36

 the subvolume ids can go up to 264 but the number of actual subvolumes depends on the

 available metadata space, the space consumed by all subvolume metadata includes

 bookkeeping of shared extents can be large (MiB, GiB)

 maximum number of hardlinks of a file in a directory

 65536 when the extref feature is turned on during mkfs (default), roughly 100

 otherwise

 minimum filesystem size

 the minimal size of each device depends on the mixed-bg feature, without that (the

 default) it?s about 109MiB, with mixed-bg it?s is 16MiB

BOOTLOADER SUPPORT

 GRUB2 (https://www.gnu.org/software/grub) has the most advanced support of booting from

 BTRFS with respect to features.

 U-boot (https://www.denx.de/wiki/U-Boot/) has decent support for booting but not all BTRFS

 features are implemented, check the documentation.

 EXTLINUX (from the https://syslinux.org project) can boot but does not support all

 features. Please check the upstream documentation before you use it.

 The first 1MiB on each device is unused with the exception of primary superblock that is

 on the offset 64KiB and spans 4KiB.

FILE ATTRIBUTES

 The btrfs filesystem supports setting file attributes or flags. Note there are old and new

 interfaces, with confusing names. The following list should clarify that:

 ? attributes: chattr(1) or lsattr(1) utilities (the ioctls are FS_IOC_GETFLAGS and

 FS_IOC_SETFLAGS), due to the ioctl names the attributes are also called flags

 ? xflags: to distinguish from the previous, it?s extended flags, with tunable bits

 similar to the attributes but extensible and new bits will be added in the future (the

 ioctls are FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR but they are not related to

 extended attributes that are also called xattrs), there?s no standard tool to change

 the bits, there?s support in xfs_io(8) as command xfs_io -c chattr

 ATTRIBUTES

 a

 append only, new writes are always written at the end of the file

 A

 no atime updates Page 22/36

 c

 compress data, all data written after this attribute is set will be compressed. Please

 note that compression is also affected by the mount options or the parent directory

 attributes.

 When set on a directory, all newly created files will inherit this attribute. This

 attribute cannot be set with m at the same time.

 C

 no copy-on-write, file data modifications are done in-place

 When set on a directory, all newly created files will inherit this attribute.

 Note

 due to implementation limitations, this flag can be set/unset only on empty files.

 d

 no dump, makes sense with 3rd party tools like dump(8), on BTRFS the attribute can be

 set/unset but no other special handling is done

 D

 synchronous directory updates, for more details search open(2) for O_SYNC and O_DSYNC

 i

 immutable, no file data and metadata changes allowed even to the root user as long as

 this attribute is set (obviously the exception is unsetting the attribute)

 m

 no compression, permanently turn off compression on the given file. Any compression

 mount options will not affect this file. (chattr support added in 1.46.2)

 When set on a directory, all newly created files will inherit this attribute. This

 attribute cannot be set with c at the same time.

 S

 synchronous updates, for more details search open(2) for O_SYNC and O_DSYNC

 No other attributes are supported. For the complete list please refer to the chattr(1)

 manual page.

 XFLAGS

 There?s overlap of letters assigned to the bits with the attributes, this list refers to

 what xfs_io(8) provides:

 i

 immutable, same as the attribute Page 23/36

 a

 append only, same as the attribute

 s

 synchronous updates, same as the attribute S

 A

 no atime updates, same as the attribute

 d

 no dump, same as the attribute

ZONED MODE

 Since version 5.12 btrfs supports so called zoned mode. This is a special on-disk format

 and allocation/write strategy that?s friendly to zoned devices. In short, a device is

 partitioned into fixed-size zones and each zone can be updated by append-only manner, or

 reset. As btrfs has no fixed data structures, except the super blocks, the zoned mode only

 requires block placement that follows the device constraints. You can learn about the

 whole architecture at https://zonedstorage.io .

 The devices are also called SMR/ZBC/ZNS, in host-managed mode. Note that there are devices

 that appear as non-zoned but actually are, this is drive-managed and using zoned mode

 won?t help.

 The zone size depends on the device, typical sizes are 256MiB or 1GiB. In general it must

 be a power of two. Emulated zoned devices like null_blk allow to set various zone sizes.

 REQUIREMENTS, LIMITATIONS

 ? all devices must have the same zone size

 ? maximum zone size is 8GiB

 ? mixing zoned and non-zoned devices is possible, the zone writes are emulated, but

 this is namely for testing

 ? the super block is handled in a special way and is at different locations than on a

 non-zoned filesystem:

 ? primary: 0B (and the next two zones)

 ? secondary: 512G (and the next two zones)

 ? tertiary: 4TiB (4096GiB, and the next two zones)

 INCOMPATIBLE FEATURES

 The main constraint of the zoned devices is lack of in-place update of the data. This is

 inherently incompatbile with some features: Page 24/36

 ? nodatacow - overwrite in-place, cannot create such files

 ? fallocate - preallocating space for in-place first write

 ? mixed-bg - unordered writes to data and metadata, fixing that means using separate

 data and metadata block groups

 ? booting - the zone at offset 0 contains superblock, resetting the zone would destroy

 the bootloader data

 Initial support lacks some features but they?re planned:

 ? only single profile is supported

 ? fstrim - due to dependency on free space cache v1

 SUPER BLOCK

 As said above, super block is handled in a special way. In order to be crash safe, at

 least one zone in a known location must contain a valid superblock. This is implemented as

 a ring buffer in two consecutive zones, starting from known offsets 0, 512G and 4TiB. The

 values are different than on non-zoned devices. Each new super block is appended to the

 end of the zone, once it?s filled, the zone is reset and writes continue to the next one.

 Looking up the latest super block needs to read offsets of both zones and determine the

 last written version.

 The amount of space reserved for super block depends on the zone size. The secondary and

 tertiary copies are at distant offsets as the capacity of the devices is expected to be

 large, tens of terabytes. Maximum zone size supported is 8GiB, which would mean that eg.

 offset 0-16GiB would be reserved just for the super block on a hypothetical device of that

 zone size. This is wasteful but required to guarantee crash safety.

CONTROL DEVICE

 There?s a character special device /dev/btrfs-control with major and minor numbers 10 and

 234 (the device can be found under the misc category).

 $ ls -l /dev/btrfs-control

 crw------- 1 root root 10, 234 Jan 1 12:00 /dev/btrfs-control

 The device accepts some ioctl calls that can perform following actions on the filesystem

 module:

 ? scan devices for btrfs filesystem (ie. to let multi-device filesystems mount

 automatically) and register them with the kernel module

 ? similar to scan, but also wait until the device scanning process is finished for a

 given filesystem Page 25/36

 ? get the supported features (can be also found under /sys/fs/btrfs/features)

 The device is created when btrfs is initialized, either as a module or a built-in

 functionality and makes sense only in connection with that. Running eg. mkfs without the

 module loaded will not register the device and will probably warn about that.

 In rare cases when the module is loaded but the device is not present (most likely

 accidentally deleted), it?s possible to recreate it by

 # mknod --mode=600 /dev/btrfs-control c 10 234

 or (since 5.11) by a convenience command

 # btrfs rescue create-control-device

 The control device is not strictly required but the device scanning will not work and a

 workaround would need to be used to mount a multi-device filesystem. The mount option

 device can trigger the device scanning during mount, see also btrfs device scan.

FILESYSTEM WITH MULTIPLE PROFILES

 It is possible that a btrfs filesystem contains multiple block group profiles of the same

 type. This could happen when a profile conversion using balance filters is interrupted

 (see btrfs-balance(8)). Some btrfs commands perform a test to detect this kind of

 condition and print a warning like this:

 WARNING: Multiple block group profiles detected, see 'man btrfs(5)'.

 WARNING: Data: single, raid1

 WARNING: Metadata: single, raid1

 The corresponding output of btrfs filesystem df might look like:

 WARNING: Multiple block group profiles detected, see 'man btrfs(5)'.

 WARNING: Data: single, raid1

 WARNING: Metadata: single, raid1

 Data, RAID1: total=832.00MiB, used=0.00B

 Data, single: total=1.63GiB, used=0.00B

 System, single: total=4.00MiB, used=16.00KiB

 Metadata, single: total=8.00MiB, used=112.00KiB

 Metadata, RAID1: total=64.00MiB, used=32.00KiB

 GlobalReserve, single: total=16.25MiB, used=0.00B

 There?s more than one line for type Data and Metadata, while the profiles are single and

 RAID1.

 This state of the filesystem OK but most likely needs the user/administrator to take an Page 26/36

 action and finish the interrupted tasks. This cannot be easily done automatically, also

 the user knows the expected final profiles.

 In the example above, the filesystem started as a single device and single block group

 profile. Then another device was added, followed by balance with convert=raid1 but for

 some reason hasn?t finished. Restarting the balance with convert=raid1 will continue and

 end up with filesystem with all block group profiles RAID1.

 Note

 If you?re familiar with balance filters, you can use

 convert=raid1,profiles=single,soft, which will take only the unconverted single

 profiles and convert them to raid1. This may speed up the conversion as it would not

 try to rewrite the already convert raid1 profiles.

 Having just one profile is desired as this also clearly defines the profile of newly

 allocated block groups, otherwise this depends on internal allocation policy. When there

 are multiple profiles present, the order of selection is RAID6, RAID5, RAID10, RAID1,

 RAID0 as long as the device number constraints are satisfied.

 Commands that print the warning were chosen so they?re brought to user attention when the

 filesystem state is being changed in that regard. This is: device add, device delete,

 balance cancel, balance pause. Commands that report space usage: filesystem df, device

 usage. The command filesystem usage provides a line in the overall summary:

 Multiple profiles: yes (data, metadata)

SEEDING DEVICE

 The COW mechanism and multiple devices under one hood enable an interesting concept,

 called a seeding device: extending a read-only filesystem on a single device filesystem

 with another device that captures all writes. For example imagine an immutable golden

 image of an operating system enhanced with another device that allows to use the data from

 the golden image and normal operation. This idea originated on CD-ROMs with base OS and

 allowing to use them for live systems, but this became obsolete. There are technologies

 providing similar functionality, like unionmount, overlayfs or qcow2 image snapshot.

 The seeding device starts as a normal filesystem, once the contents is ready, btrfstune -S

 1 is used to flag it as a seeding device. Mounting such device will not allow any writes,

 except adding a new device by btrfs device add. Then the filesystem can be remounted as

 read-write.

 Given that the filesystem on the seeding device is always recognized as read-only, it can Page 27/36

 be used to seed multiple filesystems, at the same time. The UUID that is normally attached

 to a device is automatically changed to a random UUID on each mount.

 Once the seeding device is mounted, it needs the writable device. After adding it,

 something like remount -o remount,rw /path makes the filesystem at /path ready for use.

 The simplest usecase is to throw away all changes by unmounting the filesystem when

 convenient.

 Alternatively, deleting the seeding device from the filesystem can turn it into a normal

 filesystem, provided that the writable device can also contain all the data from the

 seeding device.

 The seeding device flag can be cleared again by btrfstune -f -s 0, eg. allowing to update

 with newer data but please note that this will invalidate all existing filesystems that

 use this particular seeding device. This works for some usecases, not for others, and a

 forcing flag to the command is mandatory to avoid accidental mistakes.

 Example how to create and use one seeding device:

 # mkfs.btrfs /dev/sda

 # mount /dev/sda /mnt/mnt1

 # ... fill mnt1 with data

 # umount /mnt/mnt1

 # btrfstune -S 1 /dev/sda

 # mount /dev/sda /mnt/mnt1

 # btrfs device add /dev/sdb /mnt

 # mount -o remount,rw /mnt/mnt1

 # ... /mnt/mnt1 is now writable

 Now /mnt/mnt1 can be used normally. The device /dev/sda can be mounted again with a

 another writable device:

 # mount /dev/sda /mnt/mnt2

 # btrfs device add /dev/sdc /mnt/mnt2

 # mount -o remount,rw /mnt/mnt2

 # ... /mnt/mnt2 is now writable

 The writable device (/dev/sdb) can be decoupled from the seeding device and used

 independently:

 # btrfs device delete /dev/sda /mnt/mnt1

 As the contents originated in the seeding device, it?s possible to turn /dev/sdb to a Page 28/36

 seeding device again and repeat the whole process.

 A few things to note:

 ? it?s recommended to use only single device for the seeding device, it works for

 multiple devices but the single profile must be used in order to make the seeding

 device deletion work

 ? block group profiles single and dup support the usecases above

 ? the label is copied from the seeding device and can be changed by btrfs filesystem

 label

 ? each new mount of the seeding device gets a new random UUID

RAID56 STATUS AND RECOMMENDED PRACTICES

 The RAID56 feature provides striping and parity over several devices, same as the

 traditional RAID5/6. There are some implementation and design deficiencies that make it

 unreliable for some corner cases and the feature should not be used in production, only

 for evaluation or testing. The power failure safety for metadata with RAID56 is not 100%.

 Metadata

 Do not use raid5 nor raid6 for metadata. Use raid1 or raid1c3 respectively.

 The substitute profiles provide the same guarantees against loss of 1 or 2 devices, and in

 some respect can be an improvement. Recovering from one missing device will only need to

 access the remaining 1st or 2nd copy, that in general may be stored on some other devices

 due to the way RAID1 works on btrfs, unlike on a striped profile (similar to raid0) that

 would need all devices all the time.

 The space allocation pattern and consumption is different (eg. on N devices): for raid5 as

 an example, a 1GiB chunk is reserved on each device, while with raid1 there?s each 1GiB

 chunk stored on 2 devices. The consumption of each 1GiB of used metadata is then N * 1GiB

 for vs 2 * 1GiB. Using raid1 is also more convenient for balancing/converting to other

 profile due to lower requirement on the available chunk space.

 Missing/incomplete support

 When RAID56 is on the same filesystem with different raid profiles, the space reporting is

 inaccurate, eg. df, btrfs filesystem df or btrfs filesystem usge. When there?s only a one

 profile per block group type (eg. raid5 for data) the reporting is accurate.

 When scrub is started on a RAID56 filesystem, it?s started on all devices that degrade the

 performance. The workaround is to start it on each device separately. Due to that the

 device stats may not match the actual state and some errors might get reported multiple Page 29/36

 times.

 The write hole problem.

STORAGE MODEL

 A storage model is a model that captures key physical aspects of data structure in a data

 store. A filesystem is the logical structure organizing data on top of the storage device.

 The filesystem assumes several features or limitations of the storage device and utilizes

 them or applies measures to guarantee reliability. BTRFS in particular is based on a COW

 (copy on write) mode of writing, ie. not updating data in place but rather writing a new

 copy to a different location and then atomically switching the pointers.

 In an ideal world, the device does what it promises. The filesystem assumes that this may

 not be true so additional mechanisms are applied to either detect misbehaving hardware or

 get valid data by other means. The devices may (and do) apply their own detection and

 repair mechanisms but we won?t assume any.

 The following assumptions about storage devices are considered (sorted by importance,

 numbers are for further reference):

 1. atomicity of reads and writes of blocks/sectors (the smallest unit of data the device

 presents to the upper layers)

 2. there?s a flush command that instructs the device to forcibly order writes before and

 after the command; alternatively there?s a barrier command that facilitates the

 ordering but may not flush the data

 3. data sent to write to a given device offset will be written without further changes

 to the data and to the offset

 4. writes can be reordered by the device, unless explicitly serialized by the flush

 command

 5. reads and writes can be freely reordered and interleaved

 The consistency model of BTRFS builds on these assumptions. The logical data updates are

 grouped, into a generation, written on the device, serialized by the flush command and

 then the super block is written ending the generation. All logical links among metadata

 comprising a consistent view of the data may not cross the generation boundary.

 WHEN THINGS GO WRONG

 No or partial atomicity of block reads/writes (1)

 ? Problem: a partial block contents is written (torn write), eg. due to a power glitch

 or other electronics failure during the read/write Page 30/36

 ? Detection: checksum mismatch on read

 ? Repair: use another copy or rebuild from multiple blocks using some encoding scheme

 The flush command does not flush (2)

 This is perhaps the most serious problem and impossible to mitigate by filesystem without

 limitations and design restrictions. What could happen in the worst case is that writes

 from one generation bleed to another one, while still letting the filesystem consider the

 generations isolated. Crash at any point would leave data on the device in an inconsistent

 state without any hint what exactly got written, what is missing and leading to stale

 metadata link information.

 Devices usually honor the flush command, but for performance reasons may do internal

 caching, where the flushed data are not yet persistently stored. A power failure could

 lead to a similar scenario as above, although it?s less likely that later writes would be

 written before the cached ones. This is beyond what a filesystem can take into account.

 Devices or controllers are usually equipped with batteries or capacitors to write the

 cache contents even after power is cut. (Battery backed write cache)

 Data get silently changed on write (3)

 Such thing should not happen frequently, but still can happen spuriously due the complex

 internal workings of devices or physical effects of the storage media itself.

 ? Problem: while the data are written atomically, the contents get changed

 ? Detection: checksum mismatch on read

 ? Repair: use another copy or rebuild from multiple blocks using some encoding scheme

 Data get silently written to another offset (3)

 This would be another serious problem as the filesystem has no information when it

 happens. For that reason the measures have to be done ahead of time. This problem is also

 commonly called ghost write.

 The metadata blocks have the checksum embedded in the blocks, so a correct atomic write

 would not corrupt the checksum. It?s likely that after reading such block the data inside

 would not be consistent with the rest. To rule that out there?s embedded block number in

 the metadata block. It?s the logical block number because this is what the logical

 structure expects and verifies.

HARDWARE CONSIDERATIONS

 The following is based on information publicly available, user feedback, community

 discussions or bug report analyses. It?s not complete and further research is encouraged Page 31/36

 when in doubt.

 MAIN MEMORY

 The data structures and raw data blocks are temporarily stored in computer memory before

 they get written to the device. It is critical that memory is reliable because even simple

 bit flips can have vast consequences and lead to damaged structures, not only in the

 filesystem but in the whole operating system.

 Based on experience in the community, memory bit flips are more common than one would

 think. When it happens, it?s reported by the tree-checker or by a checksum mismatch after

 reading blocks. There are some very obvious instances of bit flips that happen, e.g. in an

 ordered sequence of keys in metadata blocks. We can easily infer from the other data what

 values get damaged and how. However, fixing that is not straightforward and would require

 cross-referencing data from the entire filesystem to see the scope.

 If available, ECC memory should lower the chances of bit flips, but this type of memory is

 not available in all cases. A memory test should be performed in case there?s a visible

 bit flip pattern, though this may not detect a faulty memory module because the actual

 load of the system could be the factor making the problems appear. In recent years attacks

 on how the memory modules operate have been demonstrated (rowhammer) achieving specific

 bits to be flipped. While these were targeted, this shows that a series of reads or writes

 can affect unrelated parts of memory.

 Further reading:

 ? https://en.wikipedia.org/wiki/Row_hammer

 What to do:

 ? run memtest, note that sometimes memory errors happen only when the system is under

 heavy load that the default memtest cannot trigger

 ? memory errors may appear as filesystem going read-only due to "pre write" check, that

 verify meta data before they get written but fail some basic consistency checks

 DIRECT MEMORY ACCESS (DMA)

 Another class of errors is related to DMA (direct memory access) performed by device

 drivers. While this could be considered a software error, the data transfers that happen

 without CPU assistance may accidentally corrupt other pages. Storage devices utilize DMA

 for performance reasons, the filesystem structures and data pages are passed back and

 forth, making errors possible in case page life time is not properly tracked.

 There are lots of quirks (device-specific workarounds) in Linux kernel drivers (regarding Page 32/36

 not only DMA) that are added when found. The quirks may avoid specific errors or disable

 some features to avoid worse problems.

 What to do:

 ? use up-to-date kernel (recent releases or maintained long term support versions)

 ? as this may be caused by faulty drivers, keep the systems up-to-date

 ROTATIONAL DISKS (HDD)

 Rotational HDDs typically fail at the level of individual sectors or small clusters. Read

 failures are caught on the levels below the filesystem and are returned to the user as EIO

 - Input/output error. Reading the blocks repeatedly may return the data eventually, but

 this is better done by specialized tools and filesystem takes the result of the lower

 layers. Rewriting the sectors may trigger internal remapping but this inevitably leads to

 data loss.

 Disk firmware is technically software but from the filesystem perspective is part of the

 hardware. IO requests are processed, and caching or various other optimizations are

 performed, which may lead to bugs under high load or unexpected physical conditions or

 unsupported use cases.

 Disks are connected by cables with two ends, both of which can cause problems when not

 attached properly. Data transfers are protected by checksums and the lower layers try hard

 to transfer the data correctly or not at all. The errors from badly-connecting cables may

 manifest as large amount of failed read or write requests, or as short error bursts

 depending on physical conditions.

 What to do:

 ? check smartctl for potential issues

 SOLID STATE DRIVES (SSD)

 The mechanism of information storage is different from HDDs and this affects the failure

 mode as well. The data are stored in cells grouped in large blocks with limited number of

 resets and other write constraints. The firmware tries to avoid unnecessary resets and

 performs optimizations to maximize the storage media lifetime. The known techniques are

 deduplication (blocks with same fingerprint/hash are mapped to same physical block),

 compression or internal remapping and garbage collection of used memory cells. Due to the

 additional processing there are measures to verity the data e.g. by ECC codes.

 The observations of failing SSDs show that the whole electronic fails at once or affects a

 lot of data (eg. stored on one chip). Recovering such data may need specialized equipment Page 33/36

 and reading data repeatedly does not help as it?s possible with HDDs.

 There are several technologies of the memory cells with different characteristics and

 price. The lifetime is directly affected by the type and frequency of data written.

 Writing "too much" distinct data (e.g. encrypted) may render the internal deduplication

 ineffective and lead to a lot of rewrites and increased wear of the memory cells.

 There are several technologies and manufacturers so it?s hard to describe them but there

 are some that exhibit similar behaviour:

 ? expensive SSD will use more durable memory cells and is optimized for reliability and

 high load

 ? cheap SSD is projected for a lower load ("desktop user") and is optimized for cost,

 it may employ the optimizations and/or extended error reporting partially or not at

 all

 It?s not possible to reliably determine the expected lifetime of an SSD due to lack of

 information about how it works or due to lack of reliable stats provided by the device.

 Metadata writes tend to be the biggest component of lifetime writes to a SSD, so there is

 some value in reducing them. Depending on the device class (high end/low end) the features

 like DUP block group profiles may affect the reliability in both ways:

 ? high end are typically more reliable and using single for data and metadata could be

 suitable to reduce device wear

 ? low end could lack ability to identify errors so an additional redundancy at the

 filesystem level (checksums, DUP) could help

 Only users who consume 50 to 100% of the SSD?s actual lifetime writes need to be concerned

 by the write amplification of btrfs DUP metadata. Most users will be far below 50% of the

 actual lifetime, or will write the drive to death and discover how many writes 100% of the

 actual lifetime was. SSD firmware often adds its own write multipliers that can be

 arbitrary and unpredictable and dependent on application behavior, and these will

 typically have far greater effect on SSD lifespan than DUP metadata. It?s more or less

 impossible to predict when a SSD will run out of lifetime writes to within a factor of

 two, so it?s hard to justify wear reduction as a benefit.

 Further reading:

 ? https://www.snia.org/educational-library/ssd-and-deduplication-end-spinning-disk-2012

 ? https://www.snia.org/educational-library/realities-solid-state-storage-2013-2013

 ? https://www.snia.org/educational-library/ssd-performance-primer-2013 Page 34/36

 ? https://www.snia.org/educational-library/how-controllers-maximize-ssd-life-2013

 What to do:

 ? run smartctl or self-tests to look for potential issues

 ? keep the firmware up-to-date

 NVM EXPRESS, NON-VOLATILE MEMORY (NVMe)

 NVMe is a type of persistent memory usually connected over a system bus (PCIe) or similar

 interface and the speeds are an order of magnitude faster than SSD. It is also a

 non-rotating type of storage, and is not typically connected by a cable. It?s not a SCSI

 type device either but rather a complete specification for logical device interface.

 In a way the errors could be compared to a combination of SSD class and regular memory.

 Errors may exhibit as random bit flips or IO failures. There are tools to access the

 internal log (nvme log and nvme-cli) for a more detailed analysis.

 There are separate error detection and correction steps performed e.g. on the bus level

 and in most cases never making in to the filesystem level. Once this happens it could mean

 there?s some systematic error like overheating or bad physical connection of the device.

 You may want to run self-tests (using smartctl).

 ? https://en.wikipedia.org/wiki/NVM_Express

 ? https://www.smartmontools.org/wiki/NVMe_Support

 DRIVE FIRMWARE

 Firmware is technically still software but embedded into the hardware. As all software has

 bugs, so does firmware. Storage devices can update the firmware and fix known bugs. In

 some cases the it?s possible to avoid certain bugs by quirks (device-specific workarounds)

 in Linux kernel.

 A faulty firmware can cause wide range of corruptions from small and localized to large

 affecting lots of data. Self-repair capabilities may not be sufficient.

 What to do:

 ? check for firmware updates in case there are known problems, note that updating

 firmware can be risky on itself

 ? use up-to-date kernel (recent releases or maintained long term support versions)

 SD FLASH CARDS

 There are a lot of devices with low power consumption and thus using storage media based

 on low power consumption too, typically flash memory stored on a chip enclosed in a

 detachable card package. An improperly inserted card may be damaged by electrical spikes Page 35/36

 when the device is turned on or off. The chips storing data in turn may be damaged

 permanently. All types of flash memory have a limited number of rewrites, so the data are

 internally translated by FTL (flash translation layer). This is implemented in firmware

 (technically a software) and prone to bugs that manifest as hardware errors.

 Adding redundancy like using DUP profiles for both data and metadata can help in some

 cases but a full backup might be the best option once problems appear and replacing the

 card could be required as well.

 HARDWARE AS THE MAIN SOURCE OF FILESYSTEM CORRUPTIONS

 If you use unreliable hardware and don?t know about that, don?t blame the filesystem when

 it tells you.

SEE ALSO

 acl(5), btrfs(8), chattr(1), fstrim(8), ioctl(2), mkfs.btrfs(8), mount(8), swapon(8)

 2022-02-24 BTRFS-MAN5(5)

Page 36/36

