
Rocky Enterprise Linux 9.2 Manual Pages on command 'btrfs-quota.8'

$ man btrfs-quota.8

BTRFS-QUOTA(8) Btrfs Manual BTRFS-QUOTA(8)

NAME

 btrfs-quota - control the global quota status of a btrfs filesystem

SYNOPSIS

 btrfs quota <subcommand> <args>

DESCRIPTION

 The commands under btrfs quota are used to affect the global status of quotas of a btrfs

 filesystem. The quota groups (qgroups) are managed by the subcommand btrfs qgroup(8).

 Note

 Qgroups are different than the traditional user quotas and designed to track shared

 and exclusive data per-subvolume. Please refer to the section HIERARCHICAL QUOTA GROUP

 CONCEPTS for a detailed description.

 PERFORMANCE IMPLICATIONS

 When quotas are activated, they affect all extent processing, which takes a performance

 hit. Activation of qgroups is not recommended unless the user intends to actually use

 them.

 STABILITY STATUS

 The qgroup implementation has turned out to be quite difficult as it affects the core of

 the filesystem operation. Qgroup users have hit various corner cases over time, such as

 incorrect accounting or system instability. The situation is gradually improving and

 issues found and fixed.

HIERARCHICAL QUOTA GROUP CONCEPTS

 The concept of quota has a long-standing tradition in the Unix world. Ever since computers Page 1/6

 allow multiple users to work simultaneously in one filesystem, there is the need to

 prevent one user from using up the entire space. Every user should get his fair share of

 the available resources.

 In case of files, the solution is quite straightforward. Each file has an owner recorded

 along with it, and it has a size. Traditional quota just restricts the total size of all

 files that are owned by a user. The concept is quite flexible: if a user hits his quota

 limit, the administrator can raise it on the fly.

 On the other hand, the traditional approach has only a poor solution to restrict

 directories. At installation time, the harddisk can be partitioned so that every directory

 (eg. /usr, /var/, ...) that needs a limit gets its own partition. The obvious problem is

 that those limits cannot be changed without a reinstallation. The btrfs subvolume feature

 builds a bridge. Subvolumes correspond in many ways to partitions, as every subvolume

 looks like its own filesystem. With subvolume quota, it is now possible to restrict each

 subvolume like a partition, but keep the flexibility of quota. The space for each

 subvolume can be expanded or restricted on the fly.

 As subvolumes are the basis for snapshots, interesting questions arise as to how to

 account used space in the presence of snapshots. If you have a file shared between a

 subvolume and a snapshot, whom to account the file to? The creator? Both? What if the file

 gets modified in the snapshot, should only these changes be accounted to it? But wait,

 both the snapshot and the subvolume belong to the same user home. I just want to limit the

 total space used by both! But somebody else might not want to charge the snapshots to the

 users.

 Btrfs subvolume quota solves these problems by introducing groups of subvolumes and let

 the user put limits on them. It is even possible to have groups of groups. In the

 following, we refer to them as qgroups.

 Each qgroup primarily tracks two numbers, the amount of total referenced space and the

 amount of exclusively referenced space.

 referenced

 space is the amount of data that can be reached from any of the subvolumes contained

 in the qgroup, while

 exclusive

 is the amount of data where all references to this data can be reached from within

 this qgroup. Page 2/6

 SUBVOLUME QUOTA GROUPS

 The basic notion of the Subvolume Quota feature is the quota group, short qgroup. Qgroups

 are notated as level/id, eg. the qgroup 3/2 is a qgroup of level 3. For level 0, the

 leading 0/ can be omitted. Qgroups of level 0 get created automatically when a

 subvolume/snapshot gets created. The ID of the qgroup corresponds to the ID of the

 subvolume, so 0/5 is the qgroup for the root subvolume. For the btrfs qgroup command, the

 path to the subvolume can also be used instead of 0/ID. For all higher levels, the ID can

 be chosen freely.

 Each qgroup can contain a set of lower level qgroups, thus creating a hierarchy of

 qgroups. Figure 1 shows an example qgroup tree.

 +---+

 |2/1|

 +---+

 / \

 +---+/ \+---+

 |1/1| |1/2|

 +---+ +---+

 / \ / \

 +---+/ \+---+/ \+---+

 qgroups |0/1| |0/2| |0/3|

 +-+-+ +---+ +---+

 | / \ / \

 | / \ / \

 | / \ / \

 extents 1 2 3 4

 Figure1: Sample qgroup hierarchy

 At the bottom, some extents are depicted showing which qgroups reference which extents. It

 is important to understand the notion of referenced vs exclusive. In the example, qgroup

 0/2 references extents 2 and 3, while 1/2 references extents 2-4, 2/1 references all

 extents.

 On the other hand, extent 1 is exclusive to 0/1, extent 2 is exclusive to 0/2, while

 extent 3 is neither exclusive to 0/2 nor to 0/3. But because both references can be

 reached from 1/2, extent 3 is exclusive to 1/2. All extents are exclusive to 2/1. Page 3/6

 So exclusive does not mean there is no other way to reach the extent, but it does mean

 that if you delete all subvolumes contained in a qgroup, the extent will get deleted.

 Exclusive of a qgroup conveys the useful information how much space will be freed in case

 all subvolumes of the qgroup get deleted.

 All data extents are accounted this way. Metadata that belongs to a specific subvolume

 (i.e. its filesystem tree) is also accounted. Checksums and extent allocation information

 are not accounted.

 In turn, the referenced count of a qgroup can be limited. All writes beyond this limit

 will lead to a Quota Exceeded error.

 INHERITANCE

 Things get a bit more complicated when new subvolumes or snapshots are created. The case

 of (empty) subvolumes is still quite easy. If a subvolume should be part of a qgroup, it

 has to be added to the qgroup at creation time. To add it at a later time, it would be

 necessary to at least rescan the full subvolume for a proper accounting.

 Creation of a snapshot is the hard case. Obviously, the snapshot will reference the exact

 amount of space as its source, and both source and destination now have an exclusive count

 of 0 (the filesystem nodesize to be precise, as the roots of the trees are not shared).

 But what about qgroups of higher levels? If the qgroup contains both the source and the

 destination, nothing changes. If the qgroup contains only the source, it might lose some

 exclusive.

 But how much? The tempting answer is, subtract all exclusive of the source from the

 qgroup, but that is wrong, or at least not enough. There could have been an extent that is

 referenced from the source and another subvolume from that qgroup. This extent would have

 been exclusive to the qgroup, but not to the source subvolume. With the creation of the

 snapshot, the qgroup would also lose this extent from its exclusive set.

 So how can this problem be solved? In the instant the snapshot gets created, we already

 have to know the correct exclusive count. We need to have a second qgroup that contains

 all the subvolumes as the first qgroup, except the subvolume we want to snapshot. The

 moment we create the snapshot, the exclusive count from the second qgroup needs to be

 copied to the first qgroup, as it represents the correct value. The second qgroup is

 called a tracking qgroup. It is only there in case a snapshot is needed.

 USE CASES

 Below are some usecases that do not mean to be extensive. You can find your own way how to Page 4/6

 integrate qgroups.

 SINGLE-USER MACHINE

 Replacement for partitions

 The simplest use case is to use qgroups as simple replacement for partitions. Btrfs

 takes the disk as a whole, and /, /usr, /var, etc. are created as subvolumes. As each

 subvolume gets it own qgroup automatically, they can simply be restricted. No

 hierarchy is needed for that.

 Track usage of snapshots

 When a snapshot is taken, a qgroup for it will automatically be created with the

 correct values. Referenced will show how much is in it, possibly shared with other

 subvolumes. Exclusive will be the amount of space that gets freed when the subvolume

 is deleted.

 MULTI-USER MACHINE

 Restricting homes

 When you have several users on a machine, with home directories probably under /home,

 you might want to restrict /home as a whole, while restricting every user to an

 individual limit as well. This is easily accomplished by creating a qgroup for /home ,

 eg. 1/1, and assigning all user subvolumes to it. Restricting this qgroup will limit

 /home, while every user subvolume can get its own (lower) limit.

 Accounting snapshots to the user

 Let?s say the user is allowed to create snapshots via some mechanism. It would only be

 fair to account space used by the snapshots to the user. This does not mean the user

 doubles his usage as soon as he takes a snapshot. Of course, files that are present in

 his home and the snapshot should only be accounted once. This can be accomplished by

 creating a qgroup for each user, say 1/UID. The user home and all snapshots are

 assigned to this qgroup. Limiting it will extend the limit to all snapshots, counting

 files only once. To limit /home as a whole, a higher level group 2/1 replacing 1/1

 from the previous example is needed, with all user qgroups assigned to it.

 Do not account snapshots

 On the other hand, when the snapshots get created automatically, the user has no

 chance to control them, so the space used by them should not be accounted to him. This

 is already the case when creating snapshots in the example from the previous section.

 Snapshots for backup purposes Page 5/6

 This scenario is a mixture of the previous two. The user can create snapshots, but

 some snapshots for backup purposes are being created by the system. The user?s

 snapshots should be accounted to the user, not the system. The solution is similar to

 the one from section Accounting snapshots to the user, but do not assign system

 snapshots to user?s qgroup.

SUBCOMMAND

 disable <path>

 Disable subvolume quota support for a filesystem.

 enable <path>

 Enable subvolume quota support for a filesystem.

 rescan [-s] <path>

 Trash all qgroup numbers and scan the metadata again with the current config.

 Options

 -s

 show status of a running rescan operation.

 -w

 wait for rescan operation to finish(can be already in progress).

EXIT STATUS

 btrfs quota returns a zero exit status if it succeeds. Non zero is returned in case of

 failure.

AVAILABILITY

 btrfs is part of btrfs-progs. Please refer to the btrfs wiki http://btrfs.wiki.kernel.org

 for further details.

SEE ALSO

 mkfs.btrfs(8), btrfs-subvolume(8), btrfs-qgroup(8)

Btrfs v5.16.2 02/16/2022 BTRFS-QUOTA(8)

Page 6/6

