
Rocky Enterprise Linux 9.2 Manual Pages on command 'bpf.2'

$ man bpf.2

BPF(2) Linux Programmer's Manual BPF(2)

NAME

 bpf - perform a command on an extended BPF map or program

SYNOPSIS

 #include <linux/bpf.h>

 int bpf(int cmd, union bpf_attr *attr, unsigned int size);

DESCRIPTION

 The bpf() system call performs a range of operations related to extended Berkeley Packet

 Filters. Extended BPF (or eBPF) is similar to the original ("classic") BPF (cBPF) used to

 filter network packets. For both cBPF and eBPF programs, the kernel statically analyzes

 the programs before loading them, in order to ensure that they cannot harm the running

 system.

 eBPF extends cBPF in multiple ways, including the ability to call a fixed set of in-kernel

 helper functions (via the BPF_CALL opcode extension provided by eBPF) and access shared

 data structures such as eBPF maps.

 Extended BPF Design/Architecture

 eBPF maps are a generic data structure for storage of different data types. Data types

 are generally treated as binary blobs, so a user just specifies the size of the key and

 the size of the value at map-creation time. In other words, a key/value for a given map

 can have an arbitrary structure.

 A user process can create multiple maps (with key/value-pairs being opaque bytes of data)

 and access them via file descriptors. Different eBPF programs can access the same maps in

 parallel. It's up to the user process and eBPF program to decide what they store inside Page 1/19

 maps.

 There's one special map type, called a program array. This type of map stores file de?

 scriptors referring to other eBPF programs. When a lookup in the map is performed, the

 program flow is redirected in-place to the beginning of another eBPF program and does not

 return back to the calling program. The level of nesting has a fixed limit of 32, so that

 infinite loops cannot be crafted. At run time, the program file descriptors stored in the

 map can be modified, so program functionality can be altered based on specific require?

 ments. All programs referred to in a program-array map must have been previously loaded

 into the kernel via bpf(). If a map lookup fails, the current program continues its exe?

 cution. See BPF_MAP_TYPE_PROG_ARRAY below for further details.

 Generally, eBPF programs are loaded by the user process and automatically unloaded when

 the process exits. In some cases, for example, tc-bpf(8), the program will continue to

 stay alive inside the kernel even after the process that loaded the program exits. In

 that case, the tc subsystem holds a reference to the eBPF program after the file descrip?

 tor has been closed by the user-space program. Thus, whether a specific program continues

 to live inside the kernel depends on how it is further attached to a given kernel subsys?

 tem after it was loaded via bpf().

 Each eBPF program is a set of instructions that is safe to run until its completion. An

 in-kernel verifier statically determines that the eBPF program terminates and is safe to

 execute. During verification, the kernel increments reference counts for each of the maps

 that the eBPF program uses, so that the attached maps can't be removed until the program

 is unloaded.

 eBPF programs can be attached to different events. These events can be the arrival of

 network packets, tracing events, classification events by network queueing disciplines

 (for eBPF programs attached to a tc(8) classifier), and other types that may be added in

 the future. A new event triggers execution of the eBPF program, which may store informa?

 tion about the event in eBPF maps. Beyond storing data, eBPF programs may call a fixed

 set of in-kernel helper functions.

 The same eBPF program can be attached to multiple events and different eBPF programs can

 access the same map:

 tracing tracing tracing packet packet packet

 event A event B event C on eth0 on eth1 on eth2

 | | | | | ^ Page 2/19

 | | | | v |

 --> tracing <-- tracing socket tc ingress tc egress

 prog_1 prog_2 prog_3 classifier action

 | | | | prog_4 prog_5

 |--- -----| |------| map_3 | |

 map_1 map_2 --| map_4 |--

 Arguments

 The operation to be performed by the bpf() system call is determined by the cmd argument.

 Each operation takes an accompanying argument, provided via attr, which is a pointer to a

 union of type bpf_attr (see below). The size argument is the size of the union pointed to

 by attr.

 The value provided in cmd is one of the following:

 BPF_MAP_CREATE

 Create a map and return a file descriptor that refers to the map. The close-on-

 exec file descriptor flag (see fcntl(2)) is automatically enabled for the new file

 descriptor.

 BPF_MAP_LOOKUP_ELEM

 Look up an element by key in a specified map and return its value.

 BPF_MAP_UPDATE_ELEM

 Create or update an element (key/value pair) in a specified map.

 BPF_MAP_DELETE_ELEM

 Look up and delete an element by key in a specified map.

 BPF_MAP_GET_NEXT_KEY

 Look up an element by key in a specified map and return the key of the next ele?

 ment.

 BPF_PROG_LOAD

 Verify and load an eBPF program, returning a new file descriptor associated with

 the program. The close-on-exec file descriptor flag (see fcntl(2)) is automati?

 cally enabled for the new file descriptor.

 The bpf_attr union consists of various anonymous structures that are used by dif?

 ferent bpf() commands:

 union bpf_attr {

 struct { /* Used by BPF_MAP_CREATE */ Page 3/19

 __u32 map_type;

 __u32 key_size; /* size of key in bytes */

 __u32 value_size; /* size of value in bytes */

 __u32 max_entries; /* maximum number of entries

 in a map */

 };

 struct { /* Used by BPF_MAP_*_ELEM and BPF_MAP_GET_NEXT_KEY

 commands */

 __u32 map_fd;

 __aligned_u64 key;

 union {

 __aligned_u64 value;

 __aligned_u64 next_key;

 };

 __u64 flags;

 };

 struct { /* Used by BPF_PROG_LOAD */

 __u32 prog_type;

 __u32 insn_cnt;

 __aligned_u64 insns; /* 'const struct bpf_insn *' */

 __aligned_u64 license; /* 'const char *' */

 __u32 log_level; /* verbosity level of verifier */

 __u32 log_size; /* size of user buffer */

 __aligned_u64 log_buf; /* user supplied 'char *'

 buffer */

 __u32 kern_version;

 /* checked when prog_type=kprobe

 (since Linux 4.1) */

 };

 } __attribute__((aligned(8)));

 eBPF maps

 Maps are a generic data structure for storage of different types of data. They allow

 sharing of data between eBPF kernel programs, and also between kernel and user-space ap? Page 4/19

 plications.

 Each map type has the following attributes:

 * type

 * maximum number of elements

 * key size in bytes

 * value size in bytes

 The following wrapper functions demonstrate how various bpf() commands can be used to ac?

 cess the maps. The functions use the cmd argument to invoke different operations.

 BPF_MAP_CREATE

 The BPF_MAP_CREATE command creates a new map, returning a new file descriptor that

 refers to the map.

 int

 bpf_create_map(enum bpf_map_type map_type,

 unsigned int key_size,

 unsigned int value_size,

 unsigned int max_entries)

 {

 union bpf_attr attr = {

 .map_type = map_type,

 .key_size = key_size,

 .value_size = value_size,

 .max_entries = max_entries

 };

 return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));

 }

 The new map has the type specified by map_type, and attributes as specified in

 key_size, value_size, and max_entries. On success, this operation returns a file

 descriptor. On error, -1 is returned and errno is set to EINVAL, EPERM, or ENOMEM.

 The key_size and value_size attributes will be used by the verifier during program

 loading to check that the program is calling bpf_map_*_elem() helper functions with

 a correctly initialized key and to check that the program doesn't access the map

 element value beyond the specified value_size. For example, when a map is created

 with a key_size of 8 and the eBPF program calls Page 5/19

 bpf_map_lookup_elem(map_fd, fp - 4)

 the program will be rejected, since the in-kernel helper function

 bpf_map_lookup_elem(map_fd, void *key)

 expects to read 8 bytes from the location pointed to by key, but the fp - 4 (where

 fp is the top of the stack) starting address will cause out-of-bounds stack access.

 Similarly, when a map is created with a value_size of 1 and the eBPF program con?

 tains

 value = bpf_map_lookup_elem(...);

 *(u32 *) value = 1;

 the program will be rejected, since it accesses the value pointer beyond the speci?

 fied 1 byte value_size limit.

 Currently, the following values are supported for map_type:

 enum bpf_map_type {

 BPF_MAP_TYPE_UNSPEC, /* Reserve 0 as invalid map type */

 BPF_MAP_TYPE_HASH,

 BPF_MAP_TYPE_ARRAY,

 BPF_MAP_TYPE_PROG_ARRAY,

 BPF_MAP_TYPE_PERF_EVENT_ARRAY,

 BPF_MAP_TYPE_PERCPU_HASH,

 BPF_MAP_TYPE_PERCPU_ARRAY,

 BPF_MAP_TYPE_STACK_TRACE,

 BPF_MAP_TYPE_CGROUP_ARRAY,

 BPF_MAP_TYPE_LRU_HASH,

 BPF_MAP_TYPE_LRU_PERCPU_HASH,

 BPF_MAP_TYPE_LPM_TRIE,

 BPF_MAP_TYPE_ARRAY_OF_MAPS,

 BPF_MAP_TYPE_HASH_OF_MAPS,

 BPF_MAP_TYPE_DEVMAP,

 BPF_MAP_TYPE_SOCKMAP,

 BPF_MAP_TYPE_CPUMAP,

 BPF_MAP_TYPE_XSKMAP,

 BPF_MAP_TYPE_SOCKHASH,

 BPF_MAP_TYPE_CGROUP_STORAGE, Page 6/19

 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,

 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,

 BPF_MAP_TYPE_QUEUE,

 BPF_MAP_TYPE_STACK,

 /* See /usr/include/linux/bpf.h for the full list. */

 };

 map_type selects one of the available map implementations in the kernel. For all

 map types, eBPF programs access maps with the same bpf_map_lookup_elem() and

 bpf_map_update_elem() helper functions. Further details of the various map types

 are given below.

 BPF_MAP_LOOKUP_ELEM

 The BPF_MAP_LOOKUP_ELEM command looks up an element with a given key in the map re?

 ferred to by the file descriptor fd.

 int

 bpf_lookup_elem(int fd, const void *key, void *value)

 {

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 .value = ptr_to_u64(value),

 };

 return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));

 }

 If an element is found, the operation returns zero and stores the element's value

 into value, which must point to a buffer of value_size bytes.

 If no element is found, the operation returns -1 and sets errno to ENOENT.

 BPF_MAP_UPDATE_ELEM

 The BPF_MAP_UPDATE_ELEM command creates or updates an element with a given

 key/value in the map referred to by the file descriptor fd.

 int

 bpf_update_elem(int fd, const void *key, const void *value,

 uint64_t flags)

 { Page 7/19

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 .value = ptr_to_u64(value),

 .flags = flags,

 };

 return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));

 }

 The flags argument should be specified as one of the following:

 BPF_ANY

 Create a new element or update an existing element.

 BPF_NOEXIST

 Create a new element only if it did not exist.

 BPF_EXIST

 Update an existing element.

 On success, the operation returns zero. On error, -1 is returned and errno is set

 to EINVAL, EPERM, ENOMEM, or E2BIG. E2BIG indicates that the number of elements in

 the map reached the max_entries limit specified at map creation time. EEXIST will

 be returned if flags specifies BPF_NOEXIST and the element with key already exists

 in the map. ENOENT will be returned if flags specifies BPF_EXIST and the element

 with key doesn't exist in the map.

 BPF_MAP_DELETE_ELEM

 The BPF_MAP_DELETE_ELEM command deletes the element whose key is key from the map

 referred to by the file descriptor fd.

 int

 bpf_delete_elem(int fd, const void *key)

 {

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 };

 return bpf(BPF_MAP_DELETE_ELEM, &attr, sizeof(attr));

 } Page 8/19

 On success, zero is returned. If the element is not found, -1 is returned and er?

 rno is set to ENOENT.

 BPF_MAP_GET_NEXT_KEY

 The BPF_MAP_GET_NEXT_KEY command looks up an element by key in the map referred to

 by the file descriptor fd and sets the next_key pointer to the key of the next ele?

 ment.

 int

 bpf_get_next_key(int fd, const void *key, void *next_key)

 {

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 .next_key = ptr_to_u64(next_key),

 };

 return bpf(BPF_MAP_GET_NEXT_KEY, &attr, sizeof(attr));

 }

 If key is found, the operation returns zero and sets the next_key pointer to the

 key of the next element. If key is not found, the operation returns zero and sets

 the next_key pointer to the key of the first element. If key is the last element,

 -1 is returned and errno is set to ENOENT. Other possible errno values are ENOMEM,

 EFAULT, EPERM, and EINVAL. This method can be used to iterate over all elements in

 the map.

 close(map_fd)

 Delete the map referred to by the file descriptor map_fd. When the user-space pro?

 gram that created a map exits, all maps will be deleted automatically (but see

 NOTES).

 eBPF map types

 The following map types are supported:

 BPF_MAP_TYPE_HASH

 Hash-table maps have the following characteristics:

 * Maps are created and destroyed by user-space programs. Both user-space and eBPF

 programs can perform lookup, update, and delete operations.

 * The kernel takes care of allocating and freeing key/value pairs. Page 9/19

 * The map_update_elem() helper will fail to insert new element when the max_en?

 tries limit is reached. (This ensures that eBPF programs cannot exhaust mem?

 ory.)

 * map_update_elem() replaces existing elements atomically.

 Hash-table maps are optimized for speed of lookup.

 BPF_MAP_TYPE_ARRAY

 Array maps have the following characteristics:

 * Optimized for fastest possible lookup. In the future the verifier/JIT compiler

 may recognize lookup() operations that employ a constant key and optimize it

 into constant pointer. It is possible to optimize a non-constant key into di?

 rect pointer arithmetic as well, since pointers and value_size are constant for

 the life of the eBPF program. In other words, array_map_lookup_elem() may be

 'inlined' by the verifier/JIT compiler while preserving concurrent access to

 this map from user space.

 * All array elements pre-allocated and zero initialized at init time

 * The key is an array index, and must be exactly four bytes.

 * map_delete_elem() fails with the error EINVAL, since elements cannot be deleted.

 * map_update_elem() replaces elements in a nonatomic fashion; for atomic updates,

 a hash-table map should be used instead. There is however one special case that

 can also be used with arrays: the atomic built-in __sync_fetch_and_add() can be

 used on 32 and 64 bit atomic counters. For example, it can be applied on the

 whole value itself if it represents a single counter, or in case of a structure

 containing multiple counters, it could be used on individual counters. This is

 quite often useful for aggregation and accounting of events.

 Among the uses for array maps are the following:

 * As "global" eBPF variables: an array of 1 element whose key is (index) 0 and

 where the value is a collection of 'global' variables which eBPF programs can

 use to keep state between events.

 * Aggregation of tracing events into a fixed set of buckets.

 * Accounting of networking events, for example, number of packets and packet

 sizes.

 BPF_MAP_TYPE_PROG_ARRAY (since Linux 4.2)

 A program array map is a special kind of array map whose map values contain only Page 10/19

 file descriptors referring to other eBPF programs. Thus, both the key_size and

 value_size must be exactly four bytes. This map is used in conjunction with the

 bpf_tail_call() helper.

 This means that an eBPF program with a program array map attached to it can call

 from kernel side into

 void bpf_tail_call(void *context, void *prog_map,

 unsigned int index);

 and therefore replace its own program flow with the one from the program at the

 given program array slot, if present. This can be regarded as kind of a jump table

 to a different eBPF program. The invoked program will then reuse the same stack.

 When a jump into the new program has been performed, it won't return to the old

 program anymore.

 If no eBPF program is found at the given index of the program array (because the

 map slot doesn't contain a valid program file descriptor, the specified lookup in?

 dex/key is out of bounds, or the limit of 32 nested calls has been exceed), execu?

 tion continues with the current eBPF program. This can be used as a fall-through

 for default cases.

 A program array map is useful, for example, in tracing or networking, to handle in?

 dividual system calls or protocols in their own subprograms and use their identi?

 fiers as an individual map index. This approach may result in performance bene?

 fits, and also makes it possible to overcome the maximum instruction limit of a

 single eBPF program. In dynamic environments, a user-space daemon might atomically

 replace individual subprograms at run-time with newer versions to alter overall

 program behavior, for instance, if global policies change.

 eBPF programs

 The BPF_PROG_LOAD command is used to load an eBPF program into the kernel. The return

 value for this command is a new file descriptor associated with this eBPF program.

 char bpf_log_buf[LOG_BUF_SIZE];

 int

 bpf_prog_load(enum bpf_prog_type type,

 const struct bpf_insn *insns, int insn_cnt,

 const char *license)

 { Page 11/19

 union bpf_attr attr = {

 .prog_type = type,

 .insns = ptr_to_u64(insns),

 .insn_cnt = insn_cnt,

 .license = ptr_to_u64(license),

 .log_buf = ptr_to_u64(bpf_log_buf),

 .log_size = LOG_BUF_SIZE,

 .log_level = 1,

 };

 return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

 }

 prog_type is one of the available program types:

 enum bpf_prog_type {

 BPF_PROG_TYPE_UNSPEC, /* Reserve 0 as invalid

 program type */

 BPF_PROG_TYPE_SOCKET_FILTER,

 BPF_PROG_TYPE_KPROBE,

 BPF_PROG_TYPE_SCHED_CLS,

 BPF_PROG_TYPE_SCHED_ACT,

 BPF_PROG_TYPE_TRACEPOINT,

 BPF_PROG_TYPE_XDP,

 BPF_PROG_TYPE_PERF_EVENT,

 BPF_PROG_TYPE_CGROUP_SKB,

 BPF_PROG_TYPE_CGROUP_SOCK,

 BPF_PROG_TYPE_LWT_IN,

 BPF_PROG_TYPE_LWT_OUT,

 BPF_PROG_TYPE_LWT_XMIT,

 BPF_PROG_TYPE_SOCK_OPS,

 BPF_PROG_TYPE_SK_SKB,

 BPF_PROG_TYPE_CGROUP_DEVICE,

 BPF_PROG_TYPE_SK_MSG,

 BPF_PROG_TYPE_RAW_TRACEPOINT,

 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, Page 12/19

 BPF_PROG_TYPE_LWT_SEG6LOCAL,

 BPF_PROG_TYPE_LIRC_MODE2,

 BPF_PROG_TYPE_SK_REUSEPORT,

 BPF_PROG_TYPE_FLOW_DISSECTOR,

 /* See /usr/include/linux/bpf.h for the full list. */

 };

 For further details of eBPF program types, see below.

 The remaining fields of bpf_attr are set as follows:

 * insns is an array of struct bpf_insn instructions.

 * insn_cnt is the number of instructions in the program referred to by insns.

 * license is a license string, which must be GPL compatible to call helper functions

 marked gpl_only. (The licensing rules are the same as for kernel modules, so that also

 dual licenses, such as "Dual BSD/GPL", may be used.)

 * log_buf is a pointer to a caller-allocated buffer in which the in-kernel verifier can

 store the verification log. This log is a multi-line string that can be checked by the

 program author in order to understand how the verifier came to the conclusion that the

 eBPF program is unsafe. The format of the output can change at any time as the veri?

 fier evolves.

 * log_size size of the buffer pointed to by log_buf. If the size of the buffer is not

 large enough to store all verifier messages, -1 is returned and errno is set to ENOSPC.

 * log_level verbosity level of the verifier. A value of zero means that the verifier

 will not provide a log; in this case, log_buf must be a NULL pointer, and log_size must

 be zero.

 Applying close(2) to the file descriptor returned by BPF_PROG_LOAD will unload the eBPF

 program (but see NOTES).

 Maps are accessible from eBPF programs and are used to exchange data between eBPF programs

 and between eBPF programs and user-space programs. For example, eBPF programs can process

 various events (like kprobe, packets) and store their data into a map, and user-space pro?

 grams can then fetch data from the map. Conversely, user-space programs can use a map as

 a configuration mechanism, populating the map with values checked by the eBPF program,

 which then modifies its behavior on the fly according to those values.

 eBPF program types

 The eBPF program type (prog_type) determines the subset of kernel helper functions that Page 13/19

 the program may call. The program type also determines the program input (context)?the

 format of struct bpf_context (which is the data blob passed into the eBPF program as the

 first argument).

 For example, a tracing program does not have the exact same subset of helper functions as

 a socket filter program (though they may have some helpers in common). Similarly, the in?

 put (context) for a tracing program is a set of register values, while for a socket filter

 it is a network packet.

 The set of functions available to eBPF programs of a given type may increase in the fu?

 ture.

 The following program types are supported:

 BPF_PROG_TYPE_SOCKET_FILTER (since Linux 3.19)

 Currently, the set of functions for BPF_PROG_TYPE_SOCKET_FILTER is:

 bpf_map_lookup_elem(map_fd, void *key)

 /* look up key in a map_fd */

 bpf_map_update_elem(map_fd, void *key, void *value)

 /* update key/value */

 bpf_map_delete_elem(map_fd, void *key)

 /* delete key in a map_fd */

 The bpf_context argument is a pointer to a struct __sk_buff.

 BPF_PROG_TYPE_KPROBE (since Linux 4.1)

 [To be documented]

 BPF_PROG_TYPE_SCHED_CLS (since Linux 4.1)

 [To be documented]

 BPF_PROG_TYPE_SCHED_ACT (since Linux 4.1)

 [To be documented]

 Events

 Once a program is loaded, it can be attached to an event. Various kernel subsystems have

 different ways to do so.

 Since Linux 3.19, the following call will attach the program prog_fd to the socket sockfd,

 which was created by an earlier call to socket(2):

 setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_BPF,

 &prog_fd, sizeof(prog_fd));

 Since Linux 4.1, the following call may be used to attach the eBPF program referred to by Page 14/19

 the file descriptor prog_fd to a perf event file descriptor, event_fd, that was created by

 a previous call to perf_event_open(2):

 ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);

RETURN VALUE

 For a successful call, the return value depends on the operation:

 BPF_MAP_CREATE

 The new file descriptor associated with the eBPF map.

 BPF_PROG_LOAD

 The new file descriptor associated with the eBPF program.

 All other commands

 Zero.

 On error, -1 is returned, and errno is set appropriately.

ERRORS

 E2BIG The eBPF program is too large or a map reached the max_entries limit (maximum num?

 ber of elements).

 EACCES For BPF_PROG_LOAD, even though all program instructions are valid, the program has

 been rejected because it was deemed unsafe. This may be because it may have ac?

 cessed a disallowed memory region or an uninitialized stack/register or because the

 function constraints don't match the actual types or because there was a misaligned

 memory access. In this case, it is recommended to call bpf() again with log_level

 = 1 and examine log_buf for the specific reason provided by the verifier.

 EBADF fd is not an open file descriptor.

 EFAULT One of the pointers (key or value or log_buf or insns) is outside the accessible

 address space.

 EINVAL The value specified in cmd is not recognized by this kernel.

 EINVAL For BPF_MAP_CREATE, either map_type or attributes are invalid.

 EINVAL For BPF_MAP_*_ELEM commands, some of the fields of union bpf_attr that are not used

 by this command are not set to zero.

 EINVAL For BPF_PROG_LOAD, indicates an attempt to load an invalid program. eBPF programs

 can be deemed invalid due to unrecognized instructions, the use of reserved fields,

 jumps out of range, infinite loops or calls of unknown functions.

 ENOENT For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indicates that the element with the

 given key was not found. Page 15/19

 ENOMEM Cannot allocate sufficient memory.

 EPERM The call was made without sufficient privilege (without the CAP_SYS_ADMIN capabil?

 ity).

VERSIONS

 The bpf() system call first appeared in Linux 3.18.

CONFORMING TO

 The bpf() system call is Linux-specific.

NOTES

 Prior to Linux 4.4, all bpf() commands require the caller to have the CAP_SYS_ADMIN capa?

 bility. From Linux 4.4 onwards, an unprivileged user may create limited programs of type

 BPF_PROG_TYPE_SOCKET_FILTER and associated maps. However they may not store kernel point?

 ers within the maps and are presently limited to the following helper functions:

 * get_random

 * get_smp_processor_id

 * tail_call

 * ktime_get_ns

 Unprivileged access may be blocked by writing the value 1 to the file /proc/sys/kernel/un?

 privileged_bpf_disabled.

 eBPF objects (maps and programs) can be shared between processes. For example, after

 fork(2), the child inherits file descriptors referring to the same eBPF objects. In addi?

 tion, file descriptors referring to eBPF objects can be transferred over UNIX domain sock?

 ets. File descriptors referring to eBPF objects can be duplicated in the usual way, using

 dup(2) and similar calls. An eBPF object is deallocated only after all file descriptors

 referring to the object have been closed.

 eBPF programs can be written in a restricted C that is compiled (using the clang compiler)

 into eBPF bytecode. Various features are omitted from this restricted C, such as loops,

 global variables, variadic functions, floating-point numbers, and passing structures as

 function arguments. Some examples can be found in the samples/bpf/*_kern.c files in the

 kernel source tree.

 The kernel contains a just-in-time (JIT) compiler that translates eBPF bytecode into na?

 tive machine code for better performance. In kernels before Linux 4.15, the JIT compiler

 is disabled by default, but its operation can be controlled by writing one of the follow?

 ing integer strings to the file /proc/sys/net/core/bpf_jit_enable: Page 16/19

 0 Disable JIT compilation (default).

 1 Normal compilation.

 2 Debugging mode. The generated opcodes are dumped in hexadecimal into the kernel log.

 These opcodes can then be disassembled using the program tools/net/bpf_jit_disasm.c

 provided in the kernel source tree.

 Since Linux 4.15, the kernel may configured with the CONFIG_BPF_JIT_ALWAYS_ON option. In

 this case, the JIT compiler is always enabled, and the bpf_jit_enable is initialized to 1

 and is immutable. (This kernel configuration option was provided as a mitigation for one

 of the Spectre attacks against the BPF interpreter.)

 The JIT compiler for eBPF is currently available for the following architectures:

 * x86-64 (since Linux 3.18; cBPF since Linux 3.0);

 * ARM32 (since Linux 3.18; cBPF since Linux 3.4);

 * SPARC 32 (since Linux 3.18; cBPF since Linux 3.5);

 * ARM-64 (since Linux 3.18);

 * s390 (since Linux 4.1; cBPF since Linux 3.7);

 * PowerPC 64 (since Linux 4.8; cBPF since Linux 3.1);

 * SPARC 64 (since Linux 4.12);

 * x86-32 (since Linux 4.18);

 * MIPS 64 (since Linux 4.18; cBPF since Linux 3.16);

 * riscv (since Linux 5.1).

EXAMPLES

 /* bpf+sockets example:

 * 1. create array map of 256 elements

 * 2. load program that counts number of packets received

 * r0 = skb->data[ETH_HLEN + offsetof(struct iphdr, protocol)]

 * map[r0]++

 * 3. attach prog_fd to raw socket via setsockopt()

 * 4. print number of received TCP/UDP packets every second

 */

 int

 main(int argc, char **argv)

 {

 int sock, map_fd, prog_fd, key; Page 17/19

 long long value = 0, tcp_cnt, udp_cnt;

 map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key),

 sizeof(value), 256);

 if (map_fd < 0) {

 printf("failed to create map '%s'\n", strerror(errno));

 /* likely not run as root */

 return 1;

 }

 struct bpf_insn prog[] = {

 BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* r6 = r1 */

 BPF_LD_ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)),

 /* r0 = ip->proto */

 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4),

 /* *(u32 *)(fp - 4) = r0 */

 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* r2 = fp */

 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = r2 - 4 */

 BPF_LD_MAP_FD(BPF_REG_1, map_fd), /* r1 = map_fd */

 BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),

 /* r0 = map_lookup(r1, r2) */

 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

 /* if (r0 == 0) goto pc+2 */

 BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */

 BPF_XADD(BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0),

 /* lock *(u64 *) r0 += r1 */

 BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

 BPF_EXIT_INSN(), /* return r0 */

 };

 prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog,

 sizeof(prog) / sizeof(prog[0]), "GPL");

 sock = open_raw_sock("lo");

 assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd,

 sizeof(prog_fd)) == 0);

 for (;;) { Page 18/19

 key = IPPROTO_TCP;

 assert(bpf_lookup_elem(map_fd, &key, &tcp_cnt) == 0);

 key = IPPROTO_UDP;

 assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);

 printf("TCP %lld UDP %lld packets\n", tcp_cnt, udp_cnt);

 sleep(1);

 }

 return 0;

 }

 Some complete working code can be found in the samples/bpf directory in the kernel source

 tree.

SEE ALSO

 seccomp(2), bpf-helpers(7), socket(7), tc(8), tc-bpf(8)

 Both classic and extended BPF are explained in the kernel source file Documentation/net?

 working/filter.txt.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 BPF(2)

Page 19/19

