
Rocky Enterprise Linux 9.2 Manual Pages on command 'bpf-helpers.7'

$ man bpf-helpers.7

BPF-HELPERS(7) BPF-HELPERS(7)

NAME

 BPF-HELPERS - list of eBPF helper functions

DESCRIPTION

 The extended Berkeley Packet Filter (eBPF) subsystem consists in programs written in a

 pseudo-assembly language, then attached to one of the several kernel hooks and run in re?

 action of specific events. This framework differs from the older, "classic" BPF (or

 "cBPF") in several aspects, one of them being the ability to call special functions (or

 "helpers") from within a program. These functions are restricted to a white-list of

 helpers defined in the kernel.

 These helpers are used by eBPF programs to interact with the system, or with the context

 in which they work. For instance, they can be used to print debugging messages, to get the

 time since the system was booted, to interact with eBPF maps, or to manipulate network

 packets. Since there are several eBPF program types, and that they do not run in the same

 context, each program type can only call a subset of those helpers.

 Due to eBPF conventions, a helper can not have more than five arguments.

 Internally, eBPF programs call directly into the compiled helper functions without requir?

 ing any foreign-function interface. As a result, calling helpers introduces no overhead,

 thus offering excellent performance.

 This document is an attempt to list and document the helpers available to eBPF developers.

 They are sorted by chronological order (the oldest helpers in the kernel at the top).

HELPERS

 void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) Page 1/60

 Description

 Perform a lookup in map for an entry associated to key.

 Return Map value associated to key, or NULL if no entry was found.

 long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64

 flags)

 Description

 Add or update the value of the entry associated to key in map with value.

 flags is one of:

 BPF_NOEXIST

 The entry for key must not exist in the map.

 BPF_EXIST

 The entry for key must already exist in the map.

 BPF_ANY

 No condition on the existence of the entry for key.

 Flag value BPF_NOEXIST cannot be used for maps of types BPF_MAP_TYPE_ARRAY

 or BPF_MAP_TYPE_PERCPU_ARRAY (all elements always exist), the helper would

 return an error.

 Return 0 on success, or a negative error in case of failure.

 long bpf_map_delete_elem(struct bpf_map *map, const void *key)

 Description

 Delete entry with key from map.

 Return 0 on success, or a negative error in case of failure.

 long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)

 Description

 For tracing programs, safely attempt to read size bytes from kernel space

 address unsafe_ptr and store the data in dst.

 Generally, use bpf_probe_read_user() or bpf_probe_read_kernel() instead.

 Return 0 on success, or a negative error in case of failure.

 u64 bpf_ktime_get_ns(void)

 Description

 Return the time elapsed since system boot, in nanoseconds. Does not include

 time the system was suspended. See: clock_gettime(CLOCK_MONOTONIC)

 Return Current ktime. Page 2/60

 long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)

 Description

 This helper is a "printk()-like" facility for debugging. It prints a message

 defined by format fmt (of size fmt_size) to file /sys/kernel/debug/trac?

 ing/trace from DebugFS, if available. It can take up to three additional u64

 arguments (as an eBPF helpers, the total number of arguments is limited to

 five).

 Each time the helper is called, it appends a line to the trace. Lines are

 discarded while /sys/kernel/debug/tracing/trace is open, use /sys/kernel/de?

 bug/tracing/trace_pipe to avoid this. The format of the trace is customiza?

 ble, and the exact output one will get depends on the options set in

 /sys/kernel/debug/tracing/trace_options (see also the README file under the

 same directory). However, it usually defaults to something like:

 telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>

 In the above:

 ? telnet is the name of the current task.

 ? 470 is the PID of the current task.

 ? 001 is the CPU number on which the task is running.

 ? In .N.., each character refers to a set of options (whether irqs are

 enabled, scheduling options, whether hard/softirqs are running, level

 of preempt_disabled respectively). N means that TIF_NEED_RESCHED and

 PREEMPT_NEED_RESCHED are set.

 ? 419421.045894 is a timestamp.

 ? 0x00000001 is a fake value used by BPF for the instruction pointer reg?

 ister.

 ? <formatted msg> is the message formatted with fmt.

 The conversion specifiers supported by fmt are similar, but more limited

 than for printk(). They are %d, %i, %u, %x, %ld, %li, %lu, %lx, %lld, %lli,

 %llu, %llx, %p, %s. No modifier (size of field, padding with zeroes, etc.)

 is available, and the helper will return -EINVAL (but print nothing) if it

 encounters an unknown specifier.

 Also, note that bpf_trace_printk() is slow, and should only be used for de?

 bugging purposes. For this reason, a notice block (spanning several lines) Page 3/60

 is printed to kernel logs and states that the helper should not be used "for

 production use" the first time this helper is used (or more precisely, when

 trace_printk() buffers are allocated). For passing values to user space,

 perf events should be preferred.

 Return The number of bytes written to the buffer, or a negative error in case of

 failure.

 u32 bpf_get_prandom_u32(void)

 Description

 Get a pseudo-random number.

 From a security point of view, this helper uses its own pseudo-random inter?

 nal state, and cannot be used to infer the seed of other random functions in

 the kernel. However, it is essential to note that the generator used by the

 helper is not cryptographically secure.

 Return A random 32-bit unsigned value.

 u32 bpf_get_smp_processor_id(void)

 Description

 Get the SMP (symmetric multiprocessing) processor id. Note that all programs

 run with preemption disabled, which means that the SMP processor id is sta?

 ble during all the execution of the program.

 Return The SMP id of the processor running the program.

 long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64

 flags)

 Description

 Store len bytes from address from into the packet associated to skb, at off?

 set. flags are a combination of BPF_F_RECOMPUTE_CSUM (automatically recom?

 pute the checksum for the packet after storing the bytes) and BPF_F_INVALI?

 DATE_HASH (set skb->hash, skb->swhash and skb->l4hash to 0).

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) Page 4/60

 Description

 Recompute the layer 3 (e.g. IP) checksum for the packet associated to skb.

 Computation is incremental, so the helper must know the former value of the

 header field that was modified (from), the new value of this field (to), and

 the number of bytes (2 or 4) for this field, stored in size. Alternatively,

 it is possible to store the difference between the previous and the new val?

 ues of the header field in to, by setting from and size to 0. For both meth?

 ods, offset indicates the location of the IP checksum within the packet.

 This helper works in combination with bpf_csum_diff(), which does not update

 the checksum in-place, but offers more flexibility and can handle sizes

 larger than 2 or 4 for the checksum to update.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)

 Description

 Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the packet asso?

 ciated to skb. Computation is incremental, so the helper must know the for?

 mer value of the header field that was modified (from), the new value of

 this field (to), and the number of bytes (2 or 4) for this field, stored on

 the lowest four bits of flags. Alternatively, it is possible to store the

 difference between the previous and the new values of the header field in

 to, by setting from and the four lowest bits of flags to 0. For both meth?

 ods, offset indicates the location of the IP checksum within the packet. In

 addition to the size of the field, flags can be added (bitwise OR) actual

 flags. With BPF_F_MARK_MANGLED_0, a null checksum is left untouched (unless

 BPF_F_MARK_ENFORCE is added as well), and for updates resulting in a null

 checksum the value is set to CSUM_MANGLED_0 instead. Flag BPF_F_PSEUDO_HDR

 indicates the checksum is to be computed against a pseudo-header.

 This helper works in combination with bpf_csum_diff(), which does not update

 the checksum in-place, but offers more flexibility and can handle sizes Page 5/60

 larger than 2 or 4 for the checksum to update.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)

 Description

 This special helper is used to trigger a "tail call", or in other words, to

 jump into another eBPF program. The same stack frame is used (but values on

 stack and in registers for the caller are not accessible to the callee).

 This mechanism allows for program chaining, either for raising the maximum

 number of available eBPF instructions, or to execute given programs in con?

 ditional blocks. For security reasons, there is an upper limit to the number

 of successive tail calls that can be performed.

 Upon call of this helper, the program attempts to jump into a program refer?

 enced at index index in prog_array_map, a special map of type

 BPF_MAP_TYPE_PROG_ARRAY, and passes ctx, a pointer to the context.

 If the call succeeds, the kernel immediately runs the first instruction of

 the new program. This is not a function call, and it never returns to the

 previous program. If the call fails, then the helper has no effect, and the

 caller continues to run its subsequent instructions. A call can fail if the

 destination program for the jump does not exist (i.e. index is superior to

 the number of entries in prog_array_map), or if the maximum number of tail

 calls has been reached for this chain of programs. This limit is defined in

 the kernel by the macro MAX_TAIL_CALL_CNT (not accessible to user space),

 which is currently set to 32.

 Return 0 on success, or a negative error in case of failure.

 long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)

 Description

 Clone and redirect the packet associated to skb to another net device of in?

 dex ifindex. Both ingress and egress interfaces can be used for redirection.

 The BPF_F_INGRESS value in flags is used to make the distinction (ingress Page 6/60

 path is selected if the flag is present, egress path otherwise). This is

 the only flag supported for now.

 In comparison with bpf_redirect() helper, bpf_clone_redirect() has the asso?

 ciated cost of duplicating the packet buffer, but this can be executed out

 of the eBPF program. Conversely, bpf_redirect() is more efficient, but it is

 handled through an action code where the redirection happens only after the

 eBPF program has returned.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 u64 bpf_get_current_pid_tgid(void)

 Return A 64-bit integer containing the current tgid and pid, and created as such:

 current_task->tgid << 32 | current_task->pid.

 u64 bpf_get_current_uid_gid(void)

 Return A 64-bit integer containing the current GID and UID, and created as such:

 current_gid << 32 | current_uid.

 long bpf_get_current_comm(void *buf, u32 size_of_buf)

 Description

 Copy the comm attribute of the current task into buf of size_of_buf. The

 comm attribute contains the name of the executable (excluding the path) for

 the current task. The size_of_buf must be strictly positive. On success, the

 helper makes sure that the buf is NUL-terminated. On failure, it is filled

 with zeroes.

 Return 0 on success, or a negative error in case of failure.

 u32 bpf_get_cgroup_classid(struct sk_buff *skb)

 Description

 Retrieve the classid for the current task, i.e. for the net_cls cgroup to

 which skb belongs.

 This helper can be used on TC egress path, but not on ingress.

 The net_cls cgroup provides an interface to tag network packets based on a

 user-provided identifier for all traffic coming from the tasks belonging to Page 7/60

 the related cgroup. See also the related kernel documentation, available

 from the Linux sources in file Documentation/ad?

 min-guide/cgroup-v1/net_cls.rst.

 The Linux kernel has two versions for cgroups: there are cgroups v1 and

 cgroups v2. Both are available to users, who can use a mixture of them, but

 note that the net_cls cgroup is for cgroup v1 only. This makes it incompati?

 ble with BPF programs run on cgroups, which is a cgroup-v2-only feature (a

 socket can only hold data for one version of cgroups at a time).

 This helper is only available is the kernel was compiled with the CON?

 FIG_CGROUP_NET_CLASSID configuration option set to "y" or to "m".

 Return The classid, or 0 for the default unconfigured classid.

 long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)

 Description

 Push a vlan_tci (VLAN tag control information) of protocol vlan_proto to the

 packet associated to skb, then update the checksum. Note that if vlan_proto

 is different from ETH_P_8021Q and ETH_P_8021AD, it is considered to be

 ETH_P_8021Q.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_vlan_pop(struct sk_buff *skb)

 Description

 Pop a VLAN header from the packet associated to skb.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64

 flags)

 Description Page 8/60

 Get tunnel metadata. This helper takes a pointer key to an empty struct

 bpf_tunnel_key of size, that will be filled with tunnel metadata for the

 packet associated to skb. The flags can be set to BPF_F_TUNINFO_IPV6, which

 indicates that the tunnel is based on IPv6 protocol instead of IPv4.

 The struct bpf_tunnel_key is an object that generalizes the principal param?

 eters used by various tunneling protocols into a single struct. This way, it

 can be used to easily make a decision based on the contents of the encapsu?

 lation header, "summarized" in this struct. In particular, it holds the IP

 address of the remote end (IPv4 or IPv6, depending on the case) in key->re?

 mote_ipv4 or key->remote_ipv6. Also, this struct exposes the key->tunnel_id,

 which is generally mapped to a VNI (Virtual Network Identifier), making it

 programmable together with the bpf_skb_set_tunnel_key() helper.

 Let's imagine that the following code is part of a program attached to the

 TC ingress interface, on one end of a GRE tunnel, and is supposed to filter

 out all messages coming from remote ends with IPv4 address other than

 10.0.0.1:

 int ret;

 struct bpf_tunnel_key key = {};

 ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);

 if (ret < 0)

 return TC_ACT_SHOT; // drop packet

 if (key.remote_ipv4 != 0x0a000001)

 return TC_ACT_SHOT; // drop packet

 return TC_ACT_OK; // accept packet

 This interface can also be used with all encapsulation devices that can op?

 erate in "collect metadata" mode: instead of having one network device per

 specific configuration, the "collect metadata" mode only requires a single

 device where the configuration can be extracted from this helper.

 This can be used together with various tunnels such as VXLan, Geneve, GRE or

 IP in IP (IPIP).

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64

 flags) Page 9/60

 Description

 Populate tunnel metadata for packet associated to skb. The tunnel metadata

 is set to the contents of key, of size. The flags can be set to a combina?

 tion of the following values:

 BPF_F_TUNINFO_IPV6

 Indicate that the tunnel is based on IPv6 protocol instead of IPv4.

 BPF_F_ZERO_CSUM_TX

 For IPv4 packets, add a flag to tunnel metadata indicating that

 checksum computation should be skipped and checksum set to zeroes.

 BPF_F_DONT_FRAGMENT

 Add a flag to tunnel metadata indicating that the packet should not

 be fragmented.

 BPF_F_SEQ_NUMBER

 Add a flag to tunnel metadata indicating that a sequence number

 should be added to tunnel header before sending the packet. This flag

 was added for GRE encapsulation, but might be used with other proto?

 cols as well in the future.

 Here is a typical usage on the transmit path:

 struct bpf_tunnel_key key;

 populate key ...

 bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);

 bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);

 See also the description of the bpf_skb_get_tunnel_key() helper for addi?

 tional information.

 Return 0 on success, or a negative error in case of failure.

 u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)

 Description

 Read the value of a perf event counter. This helper relies on a map of type

 BPF_MAP_TYPE_PERF_EVENT_ARRAY. The nature of the perf event counter is se?

 lected when map is updated with perf event file descriptors. The map is an

 array whose size is the number of available CPUs, and each cell contains a

 value relative to one CPU. The value to retrieve is indicated by flags, that

 contains the index of the CPU to look up, masked with BPF_F_INDEX_MASK. Al? Page 10/60

 ternatively, flags can be set to BPF_F_CURRENT_CPU to indicate that the

 value for the current CPU should be retrieved.

 Note that before Linux 4.13, only hardware perf event can be retrieved.

 Also, be aware that the newer helper bpf_perf_event_read_value() is recom?

 mended over bpf_perf_event_read() in general. The latter has some ABI quirks

 where error and counter value are used as a return code (which is wrong to

 do since ranges may overlap). This issue is fixed with

 bpf_perf_event_read_value(), which at the same time provides more features

 over the bpf_perf_event_read() interface. Please refer to the description of

 bpf_perf_event_read_value() for details.

 Return The value of the perf event counter read from the map, or a negative error

 code in case of failure.

 long bpf_redirect(u32 ifindex, u64 flags)

 Description

 Redirect the packet to another net device of index ifindex. This helper is

 somewhat similar to bpf_clone_redirect(), except that the packet is not

 cloned, which provides increased performance.

 Except for XDP, both ingress and egress interfaces can be used for redirect?

 ion. The BPF_F_INGRESS value in flags is used to make the distinction

 (ingress path is selected if the flag is present, egress path otherwise).

 Currently, XDP only supports redirection to the egress interface, and ac?

 cepts no flag at all.

 The same effect can also be attained with the more generic bpf_redi?

 rect_map(), which uses a BPF map to store the redirect target instead of

 providing it directly to the helper.

 Return For XDP, the helper returns XDP_REDIRECT on success or XDP_ABORTED on error.

 For other program types, the values are TC_ACT_REDIRECT on success or

 TC_ACT_SHOT on error.

 u32 bpf_get_route_realm(struct sk_buff *skb)

 Description

 Retrieve the realm or the route, that is to say the tclassid field of the

 destination for the skb. The identifier retrieved is a user-provided tag,

 similar to the one used with the net_cls cgroup (see description for Page 11/60

 bpf_get_cgroup_classid() helper), but here this tag is held by a route (a

 destination entry), not by a task.

 Retrieving this identifier works with the clsact TC egress hook (see also

 tc-bpf(8)), or alternatively on conventional classful egress qdiscs, but not

 on TC ingress path. In case of clsact TC egress hook, this has the advantage

 that, internally, the destination entry has not been dropped yet in the

 transmit path. Therefore, the destination entry does not need to be artifi?

 cially held via netif_keep_dst() for a classful qdisc until the skb is

 freed.

 This helper is available only if the kernel was compiled with CON?

 FIG_IP_ROUTE_CLASSID configuration option.

 Return The realm of the route for the packet associated to skb, or 0 if none was

 found.

 long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64

 size)

 Description

 Write raw data blob into a special BPF perf event held by map of type

 BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event must have the following at?

 tributes: PERF_SAMPLE_RAW as sample_type, PERF_TYPE_SOFTWARE as type, and

 PERF_COUNT_SW_BPF_OUTPUT as config.

 The flags are used to indicate the index in map for which the value must be

 put, masked with BPF_F_INDEX_MASK. Alternatively, flags can be set to

 BPF_F_CURRENT_CPU to indicate that the index of the current CPU core should

 be used.

 The value to write, of size, is passed through eBPF stack and pointed by

 data.

 The context of the program ctx needs also be passed to the helper.

 On user space, a program willing to read the values needs to call

 perf_event_open() on the perf event (either for one or for all CPUs) and to

 store the file descriptor into the map. This must be done before the eBPF

 program can send data into it. An example is available in file sam?

 ples/bpf/trace_output_user.c in the Linux kernel source tree (the eBPF pro?

 gram counterpart is in samples/bpf/trace_output_kern.c). Page 12/60

 bpf_perf_event_output() achieves better performance than bpf_trace_printk()

 for sharing data with user space, and is much better suitable for streaming

 data from eBPF programs.

 Note that this helper is not restricted to tracing use cases and can be used

 with programs attached to TC or XDP as well, where it allows for passing

 data to user space listeners. Data can be:

 ? Only custom structs,

 ? Only the packet payload, or

 ? A combination of both.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)

 Description

 This helper was provided as an easy way to load data from a packet. It can

 be used to load len bytes from offset from the packet associated to skb,

 into the buffer pointed by to.

 Since Linux 4.7, usage of this helper has mostly been replaced by "direct

 packet access", enabling packet data to be manipulated with skb->data and

 skb->data_end pointing respectively to the first byte of packet data and to

 the byte after the last byte of packet data. However, it remains useful if

 one wishes to read large quantities of data at once from a packet into the

 eBPF stack.

 Return 0 on success, or a negative error in case of failure.

 long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)

 Description

 Walk a user or a kernel stack and return its id. To achieve this, the helper

 needs ctx, which is a pointer to the context on which the tracing program is

 executed, and a pointer to a map of type BPF_MAP_TYPE_STACK_TRACE.

 The last argument, flags, holds the number of stack frames to skip (from 0

 to 255), masked with BPF_F_SKIP_FIELD_MASK. The next bits can be used to set

 a combination of the following flags:

 BPF_F_USER_STACK

 Collect a user space stack instead of a kernel stack.

 BPF_F_FAST_STACK_CMP Page 13/60

 Compare stacks by hash only.

 BPF_F_REUSE_STACKID

 If two different stacks hash into the same stackid, discard the old

 one.

 The stack id retrieved is a 32 bit long integer handle which can be further

 combined with other data (including other stack ids) and used as a key into

 maps. This can be useful for generating a variety of graphs (such as flame

 graphs or off-cpu graphs).

 For walking a stack, this helper is an improvement over bpf_probe_read(),

 which can be used with unrolled loops but is not efficient and consumes a

 lot of eBPF instructions. Instead, bpf_get_stackid() can collect up to

 PERF_MAX_STACK_DEPTH both kernel and user frames. Note that this limit can

 be controlled with the sysctl program, and that it should be manually in?

 creased in order to profile long user stacks (such as stacks for Java pro?

 grams). To do so, use:

 # sysctl kernel.perf_event_max_stack=<new value>

 Return The positive or null stack id on success, or a negative error in case of

 failure.

 s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)

 Description

 Compute a checksum difference, from the raw buffer pointed by from, of

 length from_size (that must be a multiple of 4), towards the raw buffer

 pointed by to, of size to_size (same remark). An optional seed can be added

 to the value (this can be cascaded, the seed may come from a previous call

 to the helper).

 This is flexible enough to be used in several ways:

 ? With from_size == 0, to_size > 0 and seed set to checksum, it can be used

 when pushing new data.

 ? With from_size > 0, to_size == 0 and seed set to checksum, it can be used

 when removing data from a packet.

 ? With from_size > 0, to_size > 0 and seed set to 0, it can be used to com?

 pute a diff. Note that from_size and to_size do not need to be equal.

 This helper can be used in combination with bpf_l3_csum_replace() and Page 14/60

 bpf_l4_csum_replace(), to which one can feed in the difference computed with

 bpf_csum_diff().

 Return The checksum result, or a negative error code in case of failure.

 long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

 Description

 Retrieve tunnel options metadata for the packet associated to skb, and store

 the raw tunnel option data to the buffer opt of size.

 This helper can be used with encapsulation devices that can operate in "col?

 lect metadata" mode (please refer to the related note in the description of

 bpf_skb_get_tunnel_key() for more details). A particular example where this

 can be used is in combination with the Geneve encapsulation protocol, where

 it allows for pushing (with bpf_skb_get_tunnel_opt() helper) and retrieving

 arbitrary TLVs (Type-Length-Value headers) from the eBPF program. This al?

 lows for full customization of these headers.

 Return The size of the option data retrieved.

 long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

 Description

 Set tunnel options metadata for the packet associated to skb to the option

 data contained in the raw buffer opt of size.

 See also the description of the bpf_skb_get_tunnel_opt() helper for addi?

 tional information.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)

 Description

 Change the protocol of the skb to proto. Currently supported are transition

 from IPv4 to IPv6, and from IPv6 to IPv4. The helper takes care of the

 groundwork for the transition, including resizing the socket buffer. The

 eBPF program is expected to fill the new headers, if any, via

 skb_store_bytes() and to recompute the checksums with bpf_l3_csum_replace()

 and bpf_l4_csum_replace(). The main case for this helper is to perform NAT64

 operations out of an eBPF program.

 Internally, the GSO type is marked as dodgy so that headers are checked and

 segments are recalculated by the GSO/GRO engine. The size for GSO target is Page 15/60

 adapted as well.

 All values for flags are reserved for future usage, and must be left at

 zero.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_change_type(struct sk_buff *skb, u32 type)

 Description

 Change the packet type for the packet associated to skb. This comes down to

 setting skb->pkt_type to type, except the eBPF program does not have a write

 access to skb->pkt_type beside this helper. Using a helper here allows for

 graceful handling of errors.

 The major use case is to change incoming skb*s to **PACKET_HOST* in a pro?

 grammatic way instead of having to recirculate via redirect(...,

 BPF_F_INGRESS), for example.

 Note that type only allows certain values. At this time, they are:

 PACKET_HOST

 Packet is for us.

 PACKET_BROADCAST

 Send packet to all.

 PACKET_MULTICAST

 Send packet to group.

 PACKET_OTHERHOST

 Send packet to someone else.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)

 Description

 Check whether skb is a descendant of the cgroup2 held by map of type

 BPF_MAP_TYPE_CGROUP_ARRAY, at index.

 Return The return value depends on the result of the test, and can be:

 ? 0, if the skb failed the cgroup2 descendant test. Page 16/60

 ? 1, if the skb succeeded the cgroup2 descendant test.

 ? A negative error code, if an error occurred.

 u32 bpf_get_hash_recalc(struct sk_buff *skb)

 Description

 Retrieve the hash of the packet, skb->hash. If it is not set, in particular

 if the hash was cleared due to mangling, recompute this hash. Later accesses

 to the hash can be done directly with skb->hash.

 Calling bpf_set_hash_invalid(), changing a packet prototype with

 bpf_skb_change_proto(), or calling bpf_skb_store_bytes() with the BPF_F_IN?

 VALIDATE_HASH are actions susceptible to clear the hash and to trigger a new

 computation for the next call to bpf_get_hash_recalc().

 Return The 32-bit hash.

 u64 bpf_get_current_task(void)

 Return A pointer to the current task struct.

 long bpf_probe_write_user(void *dst, const void *src, u32 len)

 Description

 Attempt in a safe way to write len bytes from the buffer src to dst in mem?

 ory. It only works for threads that are in user context, and dst must be a

 valid user space address.

 This helper should not be used to implement any kind of security mechanism

 because of TOC-TOU attacks, but rather to debug, divert, and manipulate exe?

 cution of semi-cooperative processes.

 Keep in mind that this feature is meant for experiments, and it has a risk

 of crashing the system and running programs. Therefore, when an eBPF pro?

 gram using this helper is attached, a warning including PID and process name

 is printed to kernel logs.

 Return 0 on success, or a negative error in case of failure.

 long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)

 Description

 Check whether the probe is being run is the context of a given subset of the

 cgroup2 hierarchy. The cgroup2 to test is held by map of type

 BPF_MAP_TYPE_CGROUP_ARRAY, at index.

 Return The return value depends on the result of the test, and can be: Page 17/60

 ? 0, if the skb task belongs to the cgroup2.

 ? 1, if the skb task does not belong to the cgroup2.

 ? A negative error code, if an error occurred.

 long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)

 Description

 Resize (trim or grow) the packet associated to skb to the new len. The flags

 are reserved for future usage, and must be left at zero.

 The basic idea is that the helper performs the needed work to change the

 size of the packet, then the eBPF program rewrites the rest via helpers like

 bpf_skb_store_bytes(), bpf_l3_csum_replace(), bpf_l3_csum_replace() and oth?

 ers. This helper is a slow path utility intended for replies with control

 messages. And because it is targeted for slow path, the helper itself can

 afford to be slow: it implicitly linearizes, unclones and drops offloads

 from the skb.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_pull_data(struct sk_buff *skb, u32 len)

 Description

 Pull in non-linear data in case the skb is non-linear and not all of len are

 part of the linear section. Make len bytes from skb readable and writable.

 If a zero value is passed for len, then the whole length of the skb is

 pulled.

 This helper is only needed for reading and writing with direct packet ac?

 cess.

 For direct packet access, testing that offsets to access are within packet

 boundaries (test on skb->data_end) is susceptible to fail if offsets are in?

 valid, or if the requested data is in non-linear parts of the skb. On fail?

 ure the program can just bail out, or in the case of a non-linear buffer,

 use a helper to make the data available. The bpf_skb_load_bytes() helper is

 a first solution to access the data. Another one consists in using Page 18/60

 bpf_skb_pull_data to pull in once the non-linear parts, then retesting and

 eventually access the data.

 At the same time, this also makes sure the skb is uncloned, which is a nec?

 essary condition for direct write. As this needs to be an invariant for the

 write part only, the verifier detects writes and adds a prologue that is

 calling bpf_skb_pull_data() to effectively unclone the skb from the very be?

 ginning in case it is indeed cloned.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)

 Description

 Add the checksum csum into skb->csum in case the driver has supplied a

 checksum for the entire packet into that field. Return an error otherwise.

 This helper is intended to be used in combination with bpf_csum_diff(), in

 particular when the checksum needs to be updated after data has been written

 into the packet through direct packet access.

 Return The checksum on success, or a negative error code in case of failure.

 void bpf_set_hash_invalid(struct sk_buff *skb)

 Description

 Invalidate the current skb->hash. It can be used after mangling on headers

 through direct packet access, in order to indicate that the hash is outdated

 and to trigger a recalculation the next time the kernel tries to access this

 hash or when the bpf_get_hash_recalc() helper is called.

 long bpf_get_numa_node_id(void)

 Description

 Return the id of the current NUMA node. The primary use case for this helper

 is the selection of sockets for the local NUMA node, when the program is at?

 tached to sockets using the SO_ATTACH_REUSEPORT_EBPF option (see also

 socket(7)), but the helper is also available to other eBPF program types,

 similarly to bpf_get_smp_processor_id(). Page 19/60

 Return The id of current NUMA node.

 long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)

 Description

 Grows headroom of packet associated to skb and adjusts the offset of the MAC

 header accordingly, adding len bytes of space. It automatically extends and

 reallocates memory as required.

 This helper can be used on a layer 3 skb to push a MAC header for redirect?

 ion into a layer 2 device.

 All values for flags are reserved for future usage, and must be left at

 zero.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)

 Description

 Adjust (move) xdp_md->data by delta bytes. Note that it is possible to use a

 negative value for delta. This helper can be used to prepare the packet for

 pushing or popping headers.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)

 Description

 Copy a NUL terminated string from an unsafe kernel address unsafe_ptr to

 dst. See bpf_probe_read_kernel_str() for more details.

 Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str() in?

 stead.

 Return On success, the strictly positive length of the string, including the trail?

 ing NUL character. On error, a negative value. Page 20/60

 u64 bpf_get_socket_cookie(struct sk_buff *skb)

 Description

 If the struct sk_buff pointed by skb has a known socket, retrieve the cookie

 (generated by the kernel) of this socket. If no cookie has been set yet,

 generate a new cookie. Once generated, the socket cookie remains stable for

 the life of the socket. This helper can be useful for monitoring per socket

 networking traffic statistics as it provides a global socket identifier that

 can be assumed unique.

 Return A 8-byte long non-decreasing number on success, or 0 if the socket field is

 missing inside skb.

 u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)

 Description

 Equivalent to bpf_get_socket_cookie() helper that accepts skb, but gets

 socket from struct bpf_sock_addr context.

 Return A 8-byte long non-decreasing number.

 u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)

 Description

 Equivalent to bpf_get_socket_cookie() helper that accepts skb, but gets

 socket from struct bpf_sock_ops context.

 Return A 8-byte long non-decreasing number.

 u32 bpf_get_socket_uid(struct sk_buff *skb)

 Return The owner UID of the socket associated to skb. If the socket is NULL, or if

 it is not a full socket (i.e. if it is a time-wait or a request socket in?

 stead), overflowuid value is returned (note that overflowuid might also be

 the actual UID value for the socket).

 long bpf_set_hash(struct sk_buff *skb, u32 hash)

 Description

 Set the full hash for skb (set the field skb->hash) to value hash.

 Return 0

 long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)

 Description

 Emulate a call to setsockopt() on the socket associated to bpf_socket, which

 must be a full socket. The level at which the option resides and the name Page 21/60

 optname of the option must be specified, see setsockopt(2) for more informa?

 tion. The option value of length optlen is pointed by optval.

 bpf_socket should be one of the following:

 ? struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

 ? struct bpf_sock_addr for BPF_CGROUP_INET4_CONNECT and

 BPF_CGROUP_INET6_CONNECT.

 This helper actually implements a subset of setsockopt(). It supports the

 following levels:

 ? SOL_SOCKET, which supports the following optnames: SO_RCVBUF, SO_SNDBUF,

 SO_MAX_PACING_RATE, SO_PRIORITY, SO_RCVLOWAT, SO_MARK, SO_BINDTODEVICE,

 SO_KEEPALIVE.

 ? IPPROTO_TCP, which supports the following optnames: TCP_CONGESTION,

 TCP_BPF_IW, TCP_BPF_SNDCWND_CLAMP, TCP_SAVE_SYN, TCP_KEEPIDLE, TCP_KEEP?

 INTVL, TCP_KEEPCNT, TCP_SYNCNT, TCP_USER_TIMEOUT.

 ? IPPROTO_IP, which supports optname IP_TOS.

 ? IPPROTO_IPV6, which supports optname IPV6_TCLASS.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)

 Description

 Grow or shrink the room for data in the packet associated to skb by

 len_diff, and according to the selected mode.

 By default, the helper will reset any offloaded checksum indicator of the

 skb to CHECKSUM_NONE. This can be avoided by the following flag:

 ? BPF_F_ADJ_ROOM_NO_CSUM_RESET: Do not reset offloaded checksum data of the

 skb to CHECKSUM_NONE.

 There are two supported modes at this time:

 ? BPF_ADJ_ROOM_MAC: Adjust room at the mac layer (room space is added or re?

 moved below the layer 2 header).

 ? BPF_ADJ_ROOM_NET: Adjust room at the network layer (room space is added or

 removed below the layer 3 header).

 The following flags are supported at this time:

 ? BPF_F_ADJ_ROOM_FIXED_GSO: Do not adjust gso_size. Adjusting mss in this

 way is not allowed for datagrams. Page 22/60

 ? BPF_F_ADJ_ROOM_ENCAP_L3_IPV4, BPF_F_ADJ_ROOM_ENCAP_L3_IPV6: Any new space

 is reserved to hold a tunnel header. Configure skb offsets and other

 fields accordingly.

 ? BPF_F_ADJ_ROOM_ENCAP_L4_GRE, BPF_F_ADJ_ROOM_ENCAP_L4_UDP: Use with EN?

 CAP_L3 flags to further specify the tunnel type.

 ? BPF_F_ADJ_ROOM_ENCAP_L2(len): Use with ENCAP_L3/L4 flags to further spec?

 ify the tunnel type; len is the length of the inner MAC header.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)

 Description

 Redirect the packet to the endpoint referenced by map at index key. Depend?

 ing on its type, this map can contain references to net devices (for for?

 warding packets through other ports), or to CPUs (for redirecting XDP frames

 to another CPU; but this is only implemented for native XDP (with driver

 support) as of this writing).

 The lower two bits of flags are used as the return code if the map lookup

 fails. This is so that the return value can be one of the XDP program return

 codes up to XDP_TX, as chosen by the caller. Any higher bits in the flags

 argument must be unset.

 See also bpf_redirect(), which only supports redirecting to an ifindex, but

 doesn't require a map to do so.

 Return XDP_REDIRECT on success, or the value of the two lower bits of the flags ar?

 gument on error.

 long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)

 Description

 Redirect the packet to the socket referenced by map (of type

 BPF_MAP_TYPE_SOCKMAP) at index key. Both ingress and egress interfaces can

 be used for redirection. The BPF_F_INGRESS value in flags is used to make

 the distinction (ingress path is selected if the flag is present, egress Page 23/60

 path otherwise). This is the only flag supported for now.

 Return SK_PASS on success, or SK_DROP on error.

 long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64

 flags)

 Description

 Add an entry to, or update a map referencing sockets. The skops is used as a

 new value for the entry associated to key. flags is one of:

 BPF_NOEXIST

 The entry for key must not exist in the map.

 BPF_EXIST

 The entry for key must already exist in the map.

 BPF_ANY

 No condition on the existence of the entry for key.

 If the map has eBPF programs (parser and verdict), those will be inherited

 by the socket being added. If the socket is already attached to eBPF pro?

 grams, this results in an error.

 Return 0 on success, or a negative error in case of failure.

 long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)

 Description

 Adjust the address pointed by xdp_md->data_meta by delta (which can be posi?

 tive or negative). Note that this operation modifies the address stored in

 xdp_md->data, so the latter must be loaded only after the helper has been

 called.

 The use of xdp_md->data_meta is optional and programs are not required to

 use it. The rationale is that when the packet is processed with XDP (e.g. as

 DoS filter), it is possible to push further meta data along with it before

 passing to the stack, and to give the guarantee that an ingress eBPF program

 attached as a TC classifier on the same device can pick this up for further

 post-processing. Since TC works with socket buffers, it remains possible to

 set from XDP the mark or priority pointers, or other pointers for the socket

 buffer. Having this scratch space generic and programmable allows for more

 flexibility as the user is free to store whatever meta data they need.

 A call to this helper is susceptible to change the underlying packet buffer. Page 24/60

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value

 *buf, u32 buf_size)

 Description

 Read the value of a perf event counter, and store it into buf of size

 buf_size. This helper relies on a map of type BPF_MAP_TYPE_PERF_EVENT_ARRAY.

 The nature of the perf event counter is selected when map is updated with

 perf event file descriptors. The map is an array whose size is the number of

 available CPUs, and each cell contains a value relative to one CPU. The

 value to retrieve is indicated by flags, that contains the index of the CPU

 to look up, masked with BPF_F_INDEX_MASK. Alternatively, flags can be set to

 BPF_F_CURRENT_CPU to indicate that the value for the current CPU should be

 retrieved.

 This helper behaves in a way close to bpf_perf_event_read() helper, save

 that instead of just returning the value observed, it fills the buf struc?

 ture. This allows for additional data to be retrieved: in particular, the

 enabled and running times (in buf->enabled and buf->running, respectively)

 are copied. In general, bpf_perf_event_read_value() is recommended over

 bpf_perf_event_read(), which has some ABI issues and provides fewer func?

 tionalities.

 These values are interesting, because hardware PMU (Performance Monitoring

 Unit) counters are limited resources. When there are more PMU based perf

 events opened than available counters, kernel will multiplex these events so

 each event gets certain percentage (but not all) of the PMU time. In case

 that multiplexing happens, the number of samples or counter value will not

 reflect the case compared to when no multiplexing occurs. This makes compar?

 ison between different runs difficult. Typically, the counter value should

 be normalized before comparing to other experiments. The usual normalization

 is done as follows.

 normalized_counter = counter * t_enabled / t_running Page 25/60

 Where t_enabled is the time enabled for event and t_running is the time run?

 ning for event since last normalization. The enabled and running times are

 accumulated since the perf event open. To achieve scaling factor between two

 invocations of an eBPF program, users can use CPU id as the key (which is

 typical for perf array usage model) to remember the previous value and do

 the calculation inside the eBPF program.

 Return 0 on success, or a negative error in case of failure.

 long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value

 *buf, u32 buf_size)

 Description

 For en eBPF program attached to a perf event, retrieve the value of the

 event counter associated to ctx and store it in the structure pointed by buf

 and of size buf_size. Enabled and running times are also stored in the

 structure (see description of helper bpf_perf_event_read_value() for more

 details).

 Return 0 on success, or a negative error in case of failure.

 long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)

 Description

 Emulate a call to getsockopt() on the socket associated to bpf_socket, which

 must be a full socket. The level at which the option resides and the name

 optname of the option must be specified, see getsockopt(2) for more informa?

 tion. The retrieved value is stored in the structure pointed by opval and

 of length optlen.

 bpf_socket should be one of the following:

 ? struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

 ? struct bpf_sock_addr for BPF_CGROUP_INET4_CONNECT and

 BPF_CGROUP_INET6_CONNECT.

 This helper actually implements a subset of getsockopt(). It supports the

 following levels:

 ? IPPROTO_TCP, which supports optname TCP_CONGESTION.

 ? IPPROTO_IP, which supports optname IP_TOS.

 ? IPPROTO_IPV6, which supports optname IPV6_TCLASS.

 Return 0 on success, or a negative error in case of failure. Page 26/60

 long bpf_override_return(struct pt_regs *regs, u64 rc)

 Description

 Used for error injection, this helper uses kprobes to override the return

 value of the probed function, and to set it to rc. The first argument is

 the context regs on which the kprobe works.

 This helper works by setting the PC (program counter) to an override func?

 tion which is run in place of the original probed function. This means the

 probed function is not run at all. The replacement function just returns

 with the required value.

 This helper has security implications, and thus is subject to restrictions.

 It is only available if the kernel was compiled with the CON?

 FIG_BPF_KPROBE_OVERRIDE configuration option, and in this case it only works

 on functions tagged with ALLOW_ERROR_INJECTION in the kernel code.

 Also, the helper is only available for the architectures having the CON?

 FIG_FUNCTION_ERROR_INJECTION option. As of this writing, x86 architecture is

 the only one to support this feature.

 Return 0

 long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)

 Description

 Attempt to set the value of the bpf_sock_ops_cb_flags field for the full TCP

 socket associated to bpf_sock_ops to argval.

 The primary use of this field is to determine if there should be calls to

 eBPF programs of type BPF_PROG_TYPE_SOCK_OPS at various points in the TCP

 code. A program of the same type can change its value, per connection and as

 necessary, when the connection is established. This field is directly acces?

 sible for reading, but this helper must be used for updates in order to re?

 turn an error if an eBPF program tries to set a callback that is not sup?

 ported in the current kernel.

 argval is a flag array which can combine these flags:

 ? BPF_SOCK_OPS_RTO_CB_FLAG (retransmission time out)

 ? BPF_SOCK_OPS_RETRANS_CB_FLAG (retransmission)

 ? BPF_SOCK_OPS_STATE_CB_FLAG (TCP state change)

 ? BPF_SOCK_OPS_RTT_CB_FLAG (every RTT) Page 27/60

 Therefore, this function can be used to clear a callback flag by setting the

 appropriate bit to zero. e.g. to disable the RTO callback:

 bpf_sock_ops_cb_flags_set(bpf_sock,

 bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)

 Here are some examples of where one could call such eBPF program:

 ? When RTO fires.

 ? When a packet is retransmitted.

 ? When the connection terminates.

 ? When a packet is sent.

 ? When a packet is received.

 Return Code -EINVAL if the socket is not a full TCP socket; otherwise, a positive

 number containing the bits that could not be set is returned (which comes

 down to 0 if all bits were set as required).

 long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64

 flags)

 Description

 This helper is used in programs implementing policies at the socket level.

 If the message msg is allowed to pass (i.e. if the verdict eBPF program re?

 turns SK_PASS), redirect it to the socket referenced by map (of type

 BPF_MAP_TYPE_SOCKMAP) at index key. Both ingress and egress interfaces can

 be used for redirection. The BPF_F_INGRESS value in flags is used to make

 the distinction (ingress path is selected if the flag is present, egress

 path otherwise). This is the only flag supported for now.

 Return SK_PASS on success, or SK_DROP on error.

 long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)

 Description

 For socket policies, apply the verdict of the eBPF program to the next bytes

 (number of bytes) of message msg.

 For example, this helper can be used in the following cases:

 ? A single sendmsg() or sendfile() system call contains multiple logical

 messages that the eBPF program is supposed to read and for which it should

 apply a verdict.

 ? An eBPF program only cares to read the first bytes of a msg. If the mes? Page 28/60

 sage has a large payload, then setting up and calling the eBPF program re?

 peatedly for all bytes, even though the verdict is already known, would

 create unnecessary overhead.

 When called from within an eBPF program, the helper sets a counter internal

 to the BPF infrastructure, that is used to apply the last verdict to the

 next bytes. If bytes is smaller than the current data being processed from a

 sendmsg() or sendfile() system call, the first bytes will be sent and the

 eBPF program will be re-run with the pointer for start of data pointing to

 byte number bytes + 1. If bytes is larger than the current data being pro?

 cessed, then the eBPF verdict will be applied to multiple sendmsg() or send?

 file() calls until bytes are consumed.

 Note that if a socket closes with the internal counter holding a non-zero

 value, this is not a problem because data is not being buffered for bytes

 and is sent as it is received.

 Return 0

 long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)

 Description

 For socket policies, prevent the execution of the verdict eBPF program for

 message msg until bytes (byte number) have been accumulated.

 This can be used when one needs a specific number of bytes before a verdict

 can be assigned, even if the data spans multiple sendmsg() or sendfile()

 calls. The extreme case would be a user calling sendmsg() repeatedly with

 1-byte long message segments. Obviously, this is bad for performance, but it

 is still valid. If the eBPF program needs bytes bytes to validate a header,

 this helper can be used to prevent the eBPF program to be called again until

 bytes have been accumulated.

 Return 0

 long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)

 Description

 For socket policies, pull in non-linear data from user space for msg and set

 pointers msg->data and msg->data_end to start and end bytes offsets into

 msg, respectively.

 If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg it can only parse Page 29/60

 data that the (data, data_end) pointers have already consumed. For sendmsg()

 hooks this is likely the first scatterlist element. But for calls relying on

 the sendpage handler (e.g. sendfile()) this will be the range (0, 0) because

 the data is shared with user space and by default the objective is to avoid

 allowing user space to modify data while (or after) eBPF verdict is being

 decided. This helper can be used to pull in data and to set the start and

 end pointer to given values. Data will be copied if necessary (i.e. if data

 was not linear and if start and end pointers do not point to the same

 chunk).

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 All values for flags are reserved for future usage, and must be left at

 zero.

 Return 0 on success, or a negative error in case of failure.

 long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)

 Description

 Bind the socket associated to ctx to the address pointed by addr, of length

 addr_len. This allows for making outgoing connection from the desired IP ad?

 dress, which can be useful for example when all processes inside a cgroup

 should use one single IP address on a host that has multiple IP configured.

 This helper works for IPv4 and IPv6, TCP and UDP sockets. The domain

 (addr->sa_family) must be AF_INET (or AF_INET6). It's advised to pass zero

 port (sin_port or sin6_port) which triggers IP_BIND_ADDRESS_NO_PORT-like be?

 havior and lets the kernel efficiently pick up an unused port as long as

 4-tuple is unique. Passing non-zero port might lead to degraded performance.

 Return 0 on success, or a negative error in case of failure.

 long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)

 Description

 Adjust (move) xdp_md->data_end by delta bytes. It is possible to both shrink

 and grow the packet tail. Shrink done via delta being a negative integer.

 A call to this helper is susceptible to change the underlying packet buffer. Page 30/60

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state

 *xfrm_state, u32 size, u64 flags)

 Description

 Retrieve the XFRM state (IP transform framework, see also ip-xfrm(8)) at in?

 dex in XFRM "security path" for skb.

 The retrieved value is stored in the struct bpf_xfrm_state pointed by

 xfrm_state and of length size.

 All values for flags are reserved for future usage, and must be left at

 zero.

 This helper is available only if the kernel was compiled with CONFIG_XFRM

 configuration option.

 Return 0 on success, or a negative error in case of failure.

 long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)

 Description

 Return a user or a kernel stack in bpf program provided buffer. To achieve

 this, the helper needs ctx, which is a pointer to the context on which the

 tracing program is executed. To store the stacktrace, the bpf program pro?

 vides buf with a nonnegative size.

 The last argument, flags, holds the number of stack frames to skip (from 0

 to 255), masked with BPF_F_SKIP_FIELD_MASK. The next bits can be used to set

 the following flags:

 BPF_F_USER_STACK

 Collect a user space stack instead of a kernel stack.

 BPF_F_USER_BUILD_ID

 Collect buildid+offset instead of ips for user stack, only valid if

 BPF_F_USER_STACK is also specified.

 bpf_get_stack() can collect up to PERF_MAX_STACK_DEPTH both kernel and user

 frames, subject to sufficient large buffer size. Note that this limit can be

 controlled with the sysctl program, and that it should be manually increased Page 31/60

 in order to profile long user stacks (such as stacks for Java programs). To

 do so, use:

 # sysctl kernel.perf_event_max_stack=<new value>

 Return A non-negative value equal to or less than size on success, or a negative

 error in case of failure.

 long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32

 start_header)

 Description

 This helper is similar to bpf_skb_load_bytes() in that it provides an easy

 way to load len bytes from offset from the packet associated to skb, into

 the buffer pointed by to. The difference to bpf_skb_load_bytes() is that a

 fifth argument start_header exists in order to select a base offset to start

 from. start_header can be one of:

 BPF_HDR_START_MAC

 Base offset to load data from is skb's mac header.

 BPF_HDR_START_NET

 Base offset to load data from is skb's network header.

 In general, "direct packet access" is the preferred method to access packet

 data, however, this helper is in particular useful in socket filters where

 skb->data does not always point to the start of the mac header and where

 "direct packet access" is not available.

 Return 0 on success, or a negative error in case of failure.

 long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)

 Description

 Do FIB lookup in kernel tables using parameters in params. If lookup is

 successful and result shows packet is to be forwarded, the neighbor tables

 are searched for the nexthop. If successful (ie., FIB lookup shows forward?

 ing and nexthop is resolved), the nexthop address is returned in ipv4_dst or

 ipv6_dst based on family, smac is set to mac address of egress device, dmac

 is set to nexthop mac address, rt_metric is set to metric from route

 (IPv4/IPv6 only), and ifindex is set to the device index of the nexthop from

 the FIB lookup.

 plen argument is the size of the passed in struct. flags argument can be a Page 32/60

 combination of one or more of the following values:

 BPF_FIB_LOOKUP_DIRECT

 Do a direct table lookup vs full lookup using FIB rules.

 BPF_FIB_LOOKUP_OUTPUT

 Perform lookup from an egress perspective (default is ingress).

 ctx is either struct xdp_md for XDP programs or struct sk_buff tc cls_act

 programs.

 Return

 ? < 0 if any input argument is invalid

 ? 0 on success (packet is forwarded, nexthop neighbor exists)

 ? > 0 one of BPF_FIB_LKUP_RET_ codes explaining why the packet is not for?

 warded or needs assist from full stack

 long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64

 flags)

 Description

 Add an entry to, or update a sockhash map referencing sockets. The skops is

 used as a new value for the entry associated to key. flags is one of:

 BPF_NOEXIST

 The entry for key must not exist in the map.

 BPF_EXIST

 The entry for key must already exist in the map.

 BPF_ANY

 No condition on the existence of the entry for key.

 If the map has eBPF programs (parser and verdict), those will be inherited

 by the socket being added. If the socket is already attached to eBPF pro?

 grams, this results in an error.

 Return 0 on success, or a negative error in case of failure.

 long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64

 flags)

 Description

 This helper is used in programs implementing policies at the socket level.

 If the message msg is allowed to pass (i.e. if the verdict eBPF program re?

 turns SK_PASS), redirect it to the socket referenced by map (of type Page 33/60

 BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress and egress interfaces

 can be used for redirection. The BPF_F_INGRESS value in flags is used to

 make the distinction (ingress path is selected if the flag is present,

 egress path otherwise). This is the only flag supported for now.

 Return SK_PASS on success, or SK_DROP on error.

 long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)

 Description

 This helper is used in programs implementing policies at the skb socket

 level. If the sk_buff skb is allowed to pass (i.e. if the verdict eBPF pro?

 gram returns SK_PASS), redirect it to the socket referenced by map (of type

 BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress and egress interfaces

 can be used for redirection. The BPF_F_INGRESS value in flags is used to

 make the distinction (ingress path is selected if the flag is present,

 egress otherwise). This is the only flag supported for now.

 Return SK_PASS on success, or SK_DROP on error.

 long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)

 Description

 Encapsulate the packet associated to skb within a Layer 3 protocol header.

 This header is provided in the buffer at address hdr, with len its size in

 bytes. type indicates the protocol of the header and can be one of:

 BPF_LWT_ENCAP_SEG6

 IPv6 encapsulation with Segment Routing Header (struct ipv6_sr_hdr).

 hdr only contains the SRH, the IPv6 header is computed by the kernel.

 BPF_LWT_ENCAP_SEG6_INLINE

 Only works if skb contains an IPv6 packet. Insert a Segment Routing

 Header (struct ipv6_sr_hdr) inside the IPv6 header.

 BPF_LWT_ENCAP_IP

 IP encapsulation (GRE/GUE/IPIP/etc). The outer header must be IPv4 or

 IPv6, followed by zero or more additional headers, up to

 LWT_BPF_MAX_HEADROOM total bytes in all prepended headers. Please

 note that if skb_is_gso(skb) is true, no more than two headers can be

 prepended, and the inner header, if present, should be either GRE or

 UDP/GUE. Page 34/60

 BPF_LWT_ENCAP_SEG6* types can be called by BPF programs of type

 BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP type can be called by bpf programs of

 types BPF_PROG_TYPE_LWT_IN and BPF_PROG_TYPE_LWT_XMIT.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)

 Description

 Store len bytes from address from into the packet associated to skb, at off?

 set. Only the flags, tag and TLVs inside the outermost IPv6 Segment Routing

 Header can be modified through this helper.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)

 Description

 Adjust the size allocated to TLVs in the outermost IPv6 Segment Routing

 Header contained in the packet associated to skb, at position offset by

 delta bytes. Only offsets after the segments are accepted. delta can be as

 well positive (growing) as negative (shrinking).

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)

 Description

 Apply an IPv6 Segment Routing action of type action to the packet associated

 to skb. Each action takes a parameter contained at address param, and of Page 35/60

 length param_len bytes. action can be one of:

 SEG6_LOCAL_ACTION_END_X

 End.X action: Endpoint with Layer-3 cross-connect. Type of param:

 struct in6_addr.

 SEG6_LOCAL_ACTION_END_T

 End.T action: Endpoint with specific IPv6 table lookup. Type of

 param: int.

 SEG6_LOCAL_ACTION_END_B6

 End.B6 action: Endpoint bound to an SRv6 policy. Type of param:

 struct ipv6_sr_hdr.

 SEG6_LOCAL_ACTION_END_B6_ENCAP

 End.B6.Encap action: Endpoint bound to an SRv6 encapsulation policy.

 Type of param: struct ipv6_sr_hdr.

 A call to this helper is susceptible to change the underlying packet buffer.

 Therefore, at load time, all checks on pointers previously done by the veri?

 fier are invalidated and must be performed again, if the helper is used in

 combination with direct packet access.

 Return 0 on success, or a negative error in case of failure.

 long bpf_rc_repeat(void *ctx)

 Description

 This helper is used in programs implementing IR decoding, to report a suc?

 cessfully decoded repeat key message. This delays the generation of a key up

 event for previously generated key down event.

 Some IR protocols like NEC have a special IR message for repeating last but?

 ton, for when a button is held down.

 The ctx should point to the lirc sample as passed into the program.

 This helper is only available is the kernel was compiled with the CON?

 FIG_BPF_LIRC_MODE2 configuration option set to "y".

 Return 0

 long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)

 Description

 This helper is used in programs implementing IR decoding, to report a suc?

 cessfully decoded key press with scancode, toggle value in the given proto? Page 36/60

 col. The scancode will be translated to a keycode using the rc keymap, and

 reported as an input key down event. After a period a key up event is gener?

 ated. This period can be extended by calling either bpf_rc_keydown() again

 with the same values, or calling bpf_rc_repeat().

 Some protocols include a toggle bit, in case the button was released and

 pressed again between consecutive scancodes.

 The ctx should point to the lirc sample as passed into the program.

 The protocol is the decoded protocol number (see enum rc_proto for some pre?

 defined values).

 This helper is only available is the kernel was compiled with the CON?

 FIG_BPF_LIRC_MODE2 configuration option set to "y".

 Return 0

 u64 bpf_skb_cgroup_id(struct sk_buff *skb)

 Description

 Return the cgroup v2 id of the socket associated with the skb. This is

 roughly similar to the bpf_get_cgroup_classid() helper for cgroup v1 by pro?

 viding a tag resp. identifier that can be matched on or used for map lookups

 e.g. to implement policy. The cgroup v2 id of a given path in the hierarchy

 is exposed in user space through the f_handle API in order to get to the

 same 64-bit id.

 This helper can be used on TC egress path, but not on ingress, and is avail?

 able only if the kernel was compiled with the CONFIG_SOCK_CGROUP_DATA con?

 figuration option.

 Return The id is returned or 0 in case the id could not be retrieved.

 u64 bpf_get_current_cgroup_id(void)

 Return A 64-bit integer containing the current cgroup id based on the cgroup within

 which the current task is running.

 void *bpf_get_local_storage(void *map, u64 flags)

 Description

 Get the pointer to the local storage area. The type and the size of the lo?

 cal storage is defined by the map argument. The flags meaning is specific

 for each map type, and has to be 0 for cgroup local storage.

 Depending on the BPF program type, a local storage area can be shared be? Page 37/60

 tween multiple instances of the BPF program, running simultaneously.

 A user should care about the synchronization by himself. For example, by

 using the BPF_STX_XADD instruction to alter the shared data.

 Return A pointer to the local storage area.

 long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void

 *key, u64 flags)

 Description

 Select a SO_REUSEPORT socket from a BPF_MAP_TYPE_REUSEPORT_ARRAY map. It

 checks the selected socket is matching the incoming request in the socket

 buffer.

 Return 0 on success, or a negative error in case of failure.

 u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)

 Description

 Return id of cgroup v2 that is ancestor of cgroup associated with the skb at

 the ancestor_level. The root cgroup is at ancestor_level zero and each step

 down the hierarchy increments the level. If ancestor_level == level of

 cgroup associated with skb, then return value will be same as that of

 bpf_skb_cgroup_id().

 The helper is useful to implement policies based on cgroups that are upper

 in hierarchy than immediate cgroup associated with skb.

 The format of returned id and helper limitations are same as in

 bpf_skb_cgroup_id().

 Return The id is returned or 0 in case the id could not be retrieved.

 struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tu?

 ple_size, u64 netns, u64 flags)

 Description

 Look for TCP socket matching tuple, optionally in a child network namespace

 netns. The return value must be checked, and if non-NULL, released via

 bpf_sk_release().

 The ctx should point to the context of the program, such as the skb or

 socket (depending on the hook in use). This is used to determine the base

 network namespace for the lookup.

 tuple_size must be one of: Page 38/60

 sizeof(tuple->ipv4)

 Look for an IPv4 socket.

 sizeof(tuple->ipv6)

 Look for an IPv6 socket.

 If the netns is a negative signed 32-bit integer, then the socket lookup ta?

 ble in the netns associated with the ctx will be used. For the TC hooks,

 this is the netns of the device in the skb. For socket hooks, this is the

 netns of the socket. If netns is any other signed 32-bit value greater than

 or equal to zero then it specifies the ID of the netns relative to the netns

 associated with the ctx. netns values beyond the range of 32-bit integers

 are reserved for future use.

 All values for flags are reserved for future usage, and must be left at

 zero.

 This helper is available only if the kernel was compiled with CONFIG_NET

 configuration option.

 Return Pointer to struct bpf_sock, or NULL in case of failure. For sockets with

 reuseport option, the struct bpf_sock result is from reuse->socks[] using

 the hash of the tuple.

 struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tu?

 ple_size, u64 netns, u64 flags)

 Description

 Look for UDP socket matching tuple, optionally in a child network namespace

 netns. The return value must be checked, and if non-NULL, released via

 bpf_sk_release().

 The ctx should point to the context of the program, such as the skb or

 socket (depending on the hook in use). This is used to determine the base

 network namespace for the lookup.

 tuple_size must be one of:

 sizeof(tuple->ipv4)

 Look for an IPv4 socket.

 sizeof(tuple->ipv6)

 Look for an IPv6 socket.

 If the netns is a negative signed 32-bit integer, then the socket lookup ta? Page 39/60

 ble in the netns associated with the ctx will be used. For the TC hooks,

 this is the netns of the device in the skb. For socket hooks, this is the

 netns of the socket. If netns is any other signed 32-bit value greater than

 or equal to zero then it specifies the ID of the netns relative to the netns

 associated with the ctx. netns values beyond the range of 32-bit integers

 are reserved for future use.

 All values for flags are reserved for future usage, and must be left at

 zero.

 This helper is available only if the kernel was compiled with CONFIG_NET

 configuration option.

 Return Pointer to struct bpf_sock, or NULL in case of failure. For sockets with

 reuseport option, the struct bpf_sock result is from reuse->socks[] using

 the hash of the tuple.

 long bpf_sk_release(struct bpf_sock *sock)

 Description

 Release the reference held by sock. sock must be a non-NULL pointer that was

 returned from bpf_sk_lookup_xxx().

 Return 0 on success, or a negative error in case of failure.

 long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)

 Description

 Push an element value in map. flags is one of:

 BPF_EXIST

 If the queue/stack is full, the oldest element is removed to make

 room for this.

 Return 0 on success, or a negative error in case of failure.

 long bpf_map_pop_elem(struct bpf_map *map, void *value)

 Description

 Pop an element from map.

 Return 0 on success, or a negative error in case of failure.

 long bpf_map_peek_elem(struct bpf_map *map, void *value)

 Description

 Get an element from map without removing it.

 Return 0 on success, or a negative error in case of failure. Page 40/60

 long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)

 Description

 For socket policies, insert len bytes into msg at offset start.

 If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg it may want to in?

 sert metadata or options into the msg. This can later be read and used by

 any of the lower layer BPF hooks.

 This helper may fail if under memory pressure (a malloc fails) in these

 cases BPF programs will get an appropriate error and BPF programs will need

 to handle them.

 Return 0 on success, or a negative error in case of failure.

 long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)

 Description

 Will remove len bytes from a msg starting at byte start. This may result in

 ENOMEM errors under certain situations if an allocation and copy are re?

 quired due to a full ring buffer. However, the helper will try to avoid do?

 ing the allocation if possible. Other errors can occur if input parameters

 are invalid either due to start byte not being valid part of msg payload

 and/or pop value being to large.

 Return 0 on success, or a negative error in case of failure.

 long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)

 Description

 This helper is used in programs implementing IR decoding, to report a suc?

 cessfully decoded pointer movement.

 The ctx should point to the lirc sample as passed into the program.

 This helper is only available is the kernel was compiled with the CON?

 FIG_BPF_LIRC_MODE2 configuration option set to "y".

 Return 0

 long bpf_spin_lock(struct bpf_spin_lock *lock)

 Description

 Acquire a spinlock represented by the pointer lock, which is stored as part

 of a value of a map. Taking the lock allows to safely update the rest of the

 fields in that value. The spinlock can (and must) later be released with a

 call to bpf_spin_unlock(lock). Page 41/60

 Spinlocks in BPF programs come with a number of restrictions and con?

 straints:

 ? bpf_spin_lock objects are only allowed inside maps of types

 BPF_MAP_TYPE_HASH and BPF_MAP_TYPE_ARRAY (this list could be extended in

 the future).

 ? BTF description of the map is mandatory.

 ? The BPF program can take ONE lock at a time, since taking two or more

 could cause dead locks.

 ? Only one struct bpf_spin_lock is allowed per map element.

 ? When the lock is taken, calls (either BPF to BPF or helpers) are not al?

 lowed.

 ? The BPF_LD_ABS and BPF_LD_IND instructions are not allowed inside a spin?

 lock-ed region.

 ? The BPF program MUST call bpf_spin_unlock() to release the lock, on all

 execution paths, before it returns.

 ? The BPF program can access struct bpf_spin_lock only via the

 bpf_spin_lock() and bpf_spin_unlock() helpers. Loading or storing data

 into the struct bpf_spin_lock lock; field of a map is not allowed.

 ? To use the bpf_spin_lock() helper, the BTF description of the map value

 must be a struct and have struct bpf_spin_lock anyname; field at the top

 level. Nested lock inside another struct is not allowed.

 ? The struct bpf_spin_lock lock field in a map value must be aligned on a

 multiple of 4 bytes in that value.

 ? Syscall with command BPF_MAP_LOOKUP_ELEM does not copy the bpf_spin_lock

 field to user space.

 ? Syscall with command BPF_MAP_UPDATE_ELEM, or update from a BPF program, do

 not update the bpf_spin_lock field.

 ? bpf_spin_lock cannot be on the stack or inside a networking packet (it can

 only be inside of a map values).

 ? bpf_spin_lock is available to root only.

 ? Tracing programs and socket filter programs cannot use bpf_spin_lock() due

 to insufficient preemption checks (but this may change in the future).

 ? bpf_spin_lock is not allowed in inner maps of map-in-map. Page 42/60

 Return 0

 long bpf_spin_unlock(struct bpf_spin_lock *lock)

 Description

 Release the lock previously locked by a call to bpf_spin_lock(lock).

 Return 0

 struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)

 Description

 This helper gets a struct bpf_sock pointer such that all the fields in this

 bpf_sock can be accessed.

 Return A struct bpf_sock pointer on success, or NULL in case of failure.

 struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)

 Description

 This helper gets a struct bpf_tcp_sock pointer from a struct bpf_sock

 pointer.

 Return A struct bpf_tcp_sock pointer on success, or NULL in case of failure.

 long bpf_skb_ecn_set_ce(struct sk_buff *skb)

 Description

 Set ECN (Explicit Congestion Notification) field of IP header to CE (Conges?

 tion Encountered) if current value is ECT (ECN Capable Transport). Other?

 wise, do nothing. Works with IPv6 and IPv4.

 Return 1 if the CE flag is set (either by the current helper call or because it was

 already present), 0 if it is not set.

 struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)

 Description

 Return a struct bpf_sock pointer in TCP_LISTEN state. bpf_sk_release() is

 unnecessary and not allowed.

 Return A struct bpf_sock pointer on success, or NULL in case of failure.

 struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tu?

 ple_size, u64 netns, u64 flags)

 Description

 Look for TCP socket matching tuple, optionally in a child network namespace

 netns. The return value must be checked, and if non-NULL, released via

 bpf_sk_release(). Page 43/60

 This function is identical to bpf_sk_lookup_tcp(), except that it also re?

 turns timewait or request sockets. Use bpf_sk_fullsock() or bpf_tcp_sock()

 to access the full structure.

 This helper is available only if the kernel was compiled with CONFIG_NET

 configuration option.

 Return Pointer to struct bpf_sock, or NULL in case of failure. For sockets with

 reuseport option, the struct bpf_sock result is from reuse->socks[] using

 the hash of the tuple.

 long bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr

 *th, u32 th_len)

 Description

 Check whether iph and th contain a valid SYN cookie ACK for the listening

 socket in sk.

 iph points to the start of the IPv4 or IPv6 header, while iph_len contains

 sizeof(struct iphdr) or sizeof(struct ip6hdr).

 th points to the start of the TCP header, while th_len contains

 sizeof(struct tcphdr).

 Return 0 if iph and th are a valid SYN cookie ACK, or a negative error otherwise.

 long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)

 Description

 Get name of sysctl in /proc/sys/ and copy it into provided by program buffer

 buf of size buf_len.

 The buffer is always NUL terminated, unless it's zero-sized.

 If flags is zero, full name (e.g. "net/ipv4/tcp_mem") is copied. Use

 BPF_F_SYSCTL_BASE_NAME flag to copy base name only (e.g. "tcp_mem").

 Return Number of character copied (not including the trailing NUL).

 -E2BIG if the buffer wasn't big enough (buf will contain truncated name in

 this case).

 long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)

 Description

 Get current value of sysctl as it is presented in /proc/sys (incl. newline,

 etc), and copy it as a string into provided by program buffer buf of size

 buf_len. Page 44/60

 The whole value is copied, no matter what file position user space issued

 e.g. sys_read at.

 The buffer is always NUL terminated, unless it's zero-sized.

 Return Number of character copied (not including the trailing NUL).

 -E2BIG if the buffer wasn't big enough (buf will contain truncated name in

 this case).

 -EINVAL if current value was unavailable, e.g. because sysctl is uninitial?

 ized and read returns -EIO for it.

 long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)

 Description

 Get new value being written by user space to sysctl (before the actual write

 happens) and copy it as a string into provided by program buffer buf of size

 buf_len.

 User space may write new value at file position > 0.

 The buffer is always NUL terminated, unless it's zero-sized.

 Return Number of character copied (not including the trailing NUL).

 -E2BIG if the buffer wasn't big enough (buf will contain truncated name in

 this case).

 -EINVAL if sysctl is being read.

 long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)

 Description

 Override new value being written by user space to sysctl with value provided

 by program in buffer buf of size buf_len.

 buf should contain a string in same form as provided by user space on sysctl

 write.

 User space may write new value at file position > 0. To override the whole

 sysctl value file position should be set to zero.

 Return 0 on success.

 -E2BIG if the buf_len is too big.

 -EINVAL if sysctl is being read.

 long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)

 Description

 Convert the initial part of the string from buffer buf of size buf_len to a Page 45/60

 long integer according to the given base and save the result in res.

 The string may begin with an arbitrary amount of white space (as determined

 by isspace(3)) followed by a single optional '-' sign.

 Five least significant bits of flags encode base, other bits are currently

 unused.

 Base must be either 8, 10, 16 or 0 to detect it automatically similar to

 user space strtol(3).

 Return Number of characters consumed on success. Must be positive but no more than

 buf_len.

 -EINVAL if no valid digits were found or unsupported base was provided.

 -ERANGE if resulting value was out of range.

 long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)

 Description

 Convert the initial part of the string from buffer buf of size buf_len to an

 unsigned long integer according to the given base and save the result in

 res.

 The string may begin with an arbitrary amount of white space (as determined

 by isspace(3)).

 Five least significant bits of flags encode base, other bits are currently

 unused.

 Base must be either 8, 10, 16 or 0 to detect it automatically similar to

 user space strtoul(3).

 Return Number of characters consumed on success. Must be positive but no more than

 buf_len.

 -EINVAL if no valid digits were found or unsupported base was provided.

 -ERANGE if resulting value was out of range.

 void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)

 Description

 Get a bpf-local-storage from a sk.

 Logically, it could be thought of getting the value from a map with sk as

 the key. From this perspective, the usage is not much different from

 bpf_map_lookup_elem(map, &sk) except this helper enforces the key must be a

 full socket and the map must be a BPF_MAP_TYPE_SK_STORAGE also. Page 46/60

 Underneath, the value is stored locally at sk instead of the map. The map

 is used as the bpf-local-storage "type". The bpf-local-storage "type" (i.e.

 the map) is searched against all bpf-local-storages residing at sk.

 An optional flags (BPF_SK_STORAGE_GET_F_CREATE) can be used such that a new

 bpf-local-storage will be created if one does not exist. value can be used

 together with BPF_SK_STORAGE_GET_F_CREATE to specify the initial value of a

 bpf-local-storage. If value is NULL, the new bpf-local-storage will be zero

 initialized.

 Return A bpf-local-storage pointer is returned on success.

 NULL if not found or there was an error in adding a new bpf-local-storage.

 long bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)

 Description

 Delete a bpf-local-storage from a sk.

 Return 0 on success.

 -ENOENT if the bpf-local-storage cannot be found.

 long bpf_send_signal(u32 sig)

 Description

 Send signal sig to the process of the current task. The signal may be de?

 livered to any of this process's threads.

 Return 0 on success or successfully queued.

 -EBUSY if work queue under nmi is full.

 -EINVAL if sig is invalid.

 -EPERM if no permission to send the sig.

 -EAGAIN if bpf program can try again.

 s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th,

 u32 th_len)

 Description

 Try to issue a SYN cookie for the packet with corresponding IP/TCP headers,

 iph and th, on the listening socket in sk.

 iph points to the start of the IPv4 or IPv6 header, while iph_len contains

 sizeof(struct iphdr) or sizeof(struct ip6hdr).

 th points to the start of the TCP header, while th_len contains the length

 of the TCP header. Page 47/60

 Return On success, lower 32 bits hold the generated SYN cookie in followed by 16

 bits which hold the MSS value for that cookie, and the top 16 bits are un?

 used.

 On failure, the returned value is one of the following:

 -EINVAL SYN cookie cannot be issued due to error

 -ENOENT SYN cookie should not be issued (no SYN flood)

 -EOPNOTSUPP kernel configuration does not enable SYN cookies

 -EPROTONOSUPPORT IP packet version is not 4 or 6

 long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)

 Description

 Write raw data blob into a special BPF perf event held by map of type

 BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event must have the following at?

 tributes: PERF_SAMPLE_RAW as sample_type, PERF_TYPE_SOFTWARE as type, and

 PERF_COUNT_SW_BPF_OUTPUT as config.

 The flags are used to indicate the index in map for which the value must be

 put, masked with BPF_F_INDEX_MASK. Alternatively, flags can be set to

 BPF_F_CURRENT_CPU to indicate that the index of the current CPU core should

 be used.

 The value to write, of size, is passed through eBPF stack and pointed by

 data.

 ctx is a pointer to in-kernel struct sk_buff.

 This helper is similar to bpf_perf_event_output() but restricted to raw_tra?

 cepoint bpf programs.

 Return 0 on success, or a negative error in case of failure.

 long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)

 Description

 Safely attempt to read size bytes from user space address unsafe_ptr and

 store the data in dst.

 Return 0 on success, or a negative error in case of failure.

 long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)

 Description

 Safely attempt to read size bytes from kernel space address unsafe_ptr and

 store the data in dst. Page 48/60

 Return 0 on success, or a negative error in case of failure.

 long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)

 Description

 Copy a NUL terminated string from an unsafe user address unsafe_ptr to dst.

 The size should include the terminating NUL byte. In case the string length

 is smaller than size, the target is not padded with further NUL bytes. If

 the string length is larger than size, just size-1 bytes are copied and the

 last byte is set to NUL.

 On success, the length of the copied string is returned. This makes this

 helper useful in tracing programs for reading strings, and more importantly

 to get its length at runtime. See the following snippet:

 SEC("kprobe/sys_open")

 void bpf_sys_open(struct pt_regs *ctx)

 {

 char buf[PATHLEN]; // PATHLEN is defined to 256

 int res = bpf_probe_read_user_str(buf, sizeof(buf),

 ctx->di);

 // Consume buf, for example push it to

 // userspace via bpf_perf_event_output(); we

 // can use res (the string length) as event

 // size, after checking its boundaries.

 }

 In comparison, using bpf_probe_read_user() helper here instead to read the

 string would require to estimate the length at compile time, and would often

 result in copying more memory than necessary.

 Another useful use case is when parsing individual process arguments or in?

 dividual environment variables navigating current->mm->arg_start and cur?

 rent->mm->env_start: using this helper and the return value, one can quickly

 iterate at the right offset of the memory area.

 Return On success, the strictly positive length of the string, including the trail?

 ing NUL character. On error, a negative value.

 long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)

 Description Page 49/60

 Copy a NUL terminated string from an unsafe kernel address unsafe_ptr to

 dst. Same semantics as with bpf_probe_read_user_str() apply.

 Return On success, the strictly positive length of the string, including the trail?

 ing NUL character. On error, a negative value.

 long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)

 Description

 Send out a tcp-ack. tp is the in-kernel struct tcp_sock. rcv_nxt is the

 ack_seq to be sent out.

 Return 0 on success, or a negative error in case of failure.

 long bpf_send_signal_thread(u32 sig)

 Description

 Send signal sig to the thread corresponding to the current task.

 Return 0 on success or successfully queued.

 -EBUSY if work queue under nmi is full.

 -EINVAL if sig is invalid.

 -EPERM if no permission to send the sig.

 -EAGAIN if bpf program can try again.

 u64 bpf_jiffies64(void)

 Description

 Obtain the 64bit jiffies

 Return The 64 bit jiffies

 long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64

 flags)

 Description

 For an eBPF program attached to a perf event, retrieve the branch records

 (struct perf_branch_entry) associated to ctx and store it in the buffer

 pointed by buf up to size size bytes.

 Return On success, number of bytes written to buf. On error, a negative value.

 The flags can be set to BPF_F_GET_BRANCH_RECORDS_SIZE to instead return the

 number of bytes required to store all the branch entries. If this flag is

 set, buf may be NULL.

 -EINVAL if arguments invalid or size not a multiple of sizeof(struct

 perf_branch_entry). Page 50/60

 -ENOENT if architecture does not support branch records.

 long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32

 size)

 Description

 Returns 0 on success, values for pid and tgid as seen from the current name?

 space will be returned in nsdata.

 Return 0 on success, or one of the following in case of failure:

 -EINVAL if dev and inum supplied don't match dev_t and inode number with

 nsfs of current task, or if dev conversion to dev_t lost high bits.

 -ENOENT if pidns does not exists for the current task.

 long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)

 Description

 Write raw data blob into a special BPF perf event held by map of type

 BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event must have the following at?

 tributes: PERF_SAMPLE_RAW as sample_type, PERF_TYPE_SOFTWARE as type, and

 PERF_COUNT_SW_BPF_OUTPUT as config.

 The flags are used to indicate the index in map for which the value must be

 put, masked with BPF_F_INDEX_MASK. Alternatively, flags can be set to

 BPF_F_CURRENT_CPU to indicate that the index of the current CPU core should

 be used.

 The value to write, of size, is passed through eBPF stack and pointed by

 data.

 ctx is a pointer to in-kernel struct xdp_buff.

 This helper is similar to bpf_perf_eventoutput() but restricted to raw_tra?

 cepoint bpf programs.

 Return 0 on success, or a negative error in case of failure.

 u64 bpf_get_netns_cookie(void *ctx)

 Description

 Retrieve the cookie (generated by the kernel) of the network namespace the

 input ctx is associated with. The network namespace cookie remains stable

 for its lifetime and provides a global identifier that can be assumed

 unique. If ctx is NULL, then the helper returns the cookie for the initial

 network namespace. The cookie itself is very similar to that of Page 51/60

 bpf_get_socket_cookie() helper, but for network namespaces instead of sock?

 ets.

 Return A 8-byte long opaque number.

 u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)

 Description

 Return id of cgroup v2 that is ancestor of the cgroup associated with the

 current task at the ancestor_level. The root cgroup is at ancestor_level

 zero and each step down the hierarchy increments the level. If ances?

 tor_level == level of cgroup associated with the current task, then return

 value will be the same as that of bpf_get_current_cgroup_id().

 The helper is useful to implement policies based on cgroups that are upper

 in hierarchy than immediate cgroup associated with the current task.

 The format of returned id and helper limitations are same as in bpf_get_cur?

 rent_cgroup_id().

 Return The id is returned or 0 in case the id could not be retrieved.

 long bpf_sk_assign(struct sk_buff *skb, struct bpf_sock *sk, u64 flags)

 Description

 Helper is overloaded depending on BPF program type. This description applies

 to BPF_PROG_TYPE_SCHED_CLS and BPF_PROG_TYPE_SCHED_ACT programs.

 Assign the sk to the skb. When combined with appropriate routing configura?

 tion to receive the packet towards the socket, will cause skb to be deliv?

 ered to the specified socket. Subsequent redirection of skb via bpf_redi?

 rect(), bpf_clone_redirect() or other methods outside of BPF may interfere

 with successful delivery to the socket.

 This operation is only valid from TC ingress path.

 The flags argument must be zero.

 Return 0 on success, or a negative error in case of failure:

 -EINVAL if specified flags are not supported.

 -ENOENT if the socket is unavailable for assignment.

 -ENETUNREACH if the socket is unreachable (wrong netns).

 -EOPNOTSUPP if the operation is not supported, for example a call from out?

 side of TC ingress.

 -ESOCKTNOSUPPORT if the socket type is not supported (reuseport). Page 52/60

 long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)

 Description

 Helper is overloaded depending on BPF program type. This description applies

 to BPF_PROG_TYPE_SK_LOOKUP programs.

 Select the sk as a result of a socket lookup.

 For the operation to succeed passed socket must be compatible with the

 packet description provided by the ctx object.

 L4 protocol (IPPROTO_TCP or IPPROTO_UDP) must be an exact match. While IP

 family (AF_INET or AF_INET6) must be compatible, that is IPv6 sockets that

 are not v6-only can be selected for IPv4 packets.

 Only TCP listeners and UDP unconnected sockets can be selected. sk can also

 be NULL to reset any previous selection.

 flags argument can combination of following values:

 ? BPF_SK_LOOKUP_F_REPLACE to override the previous socket selection, poten?

 tially done by a BPF program that ran before us.

 ? BPF_SK_LOOKUP_F_NO_REUSEPORT to skip load-balancing within reuseport group

 for the socket being selected.

 On success ctx->sk will point to the selected socket.

 Return 0 on success, or a negative errno in case of failure.

 ? -EAFNOSUPPORT if socket family (sk->family) is not compatible with packet

 family (ctx->family).

 ? -EEXIST if socket has been already selected, potentially by another pro?

 gram, and BPF_SK_LOOKUP_F_REPLACE flag was not specified.

 ? -EINVAL if unsupported flags were specified.

 ? -EPROTOTYPE if socket L4 protocol (sk->protocol) doesn't match packet pro?

 tocol (ctx->protocol).

 ? -ESOCKTNOSUPPORT if socket is not in allowed state (TCP listening or UDP

 unconnected).

 u64 bpf_ktime_get_boot_ns(void)

 Description

 Return the time elapsed since system boot, in nanoseconds. Does include the

 time the system was suspended. See: clock_gettime(CLOCK_BOOTTIME)

 Return Current ktime. Page 53/60

 long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data,

 u32 data_len)

 Description

 bpf_seq_printf() uses seq_file seq_printf() to print out the format string.

 The m represents the seq_file. The fmt and fmt_size are for the format

 string itself. The data and data_len are format string arguments. The data

 are a u64 array and corresponding format string values are stored in the ar?

 ray. For strings and pointers where pointees are accessed, only the pointer

 values are stored in the data array. The data_len is the size of data in

 bytes.

 Formats %s, %p{i,I}{4,6} requires to read kernel memory. Reading kernel

 memory may fail due to either invalid address or valid address but requiring

 a major memory fault. If reading kernel memory fails, the string for %s will

 be an empty string, and the ip address for %p{i,I}{4,6} will be 0. Not re?

 turning error to bpf program is consistent with what bpf_trace_printk() does

 for now.

 Return 0 on success, or a negative error in case of failure:

 -EBUSY if per-CPU memory copy buffer is busy, can try again by returning 1

 from bpf program.

 -EINVAL if arguments are invalid, or if fmt is invalid/unsupported.

 -E2BIG if fmt contains too many format specifiers.

 -EOVERFLOW if an overflow happened: The same object will be tried again.

 long bpf_seq_write(struct seq_file *m, const void *data, u32 len)

 Description

 bpf_seq_write() uses seq_file seq_write() to write the data. The m repre?

 sents the seq_file. The data and len represent the data to write in bytes.

 Return 0 on success, or a negative error in case of failure:

 -EOVERFLOW if an overflow happened: The same object will be tried again.

 u64 bpf_sk_cgroup_id(struct bpf_sock *sk)

 Description

 Return the cgroup v2 id of the socket sk.

 sk must be a non-NULL pointer to a full socket, e.g. one returned from

 bpf_sk_lookup_xxx(), bpf_sk_fullsock(), etc. The format of returned id is Page 54/60

 same as in bpf_skb_cgroup_id().

 This helper is available only if the kernel was compiled with the CON?

 FIG_SOCK_CGROUP_DATA configuration option.

 Return The id is returned or 0 in case the id could not be retrieved.

 u64 bpf_sk_ancestor_cgroup_id(struct bpf_sock *sk, int ancestor_level)

 Description

 Return id of cgroup v2 that is ancestor of cgroup associated with the sk at

 the ancestor_level. The root cgroup is at ancestor_level zero and each step

 down the hierarchy increments the level. If ancestor_level == level of

 cgroup associated with sk, then return value will be same as that of

 bpf_sk_cgroup_id().

 The helper is useful to implement policies based on cgroups that are upper

 in hierarchy than immediate cgroup associated with sk.

 The format of returned id and helper limitations are same as in

 bpf_sk_cgroup_id().

 Return The id is returned or 0 in case the id could not be retrieved.

 long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)

 Description

 Copy size bytes from data into a ring buffer ringbuf. If BPF_RB_NO_WAKEUP

 is specified in flags, no notification of new data availability is sent. If

 BPF_RB_FORCE_WAKEUP is specified in flags, notification of new data avail?

 ability is sent unconditionally.

 Return 0 on success, or a negative error in case of failure.

 void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)

 Description

 Reserve size bytes of payload in a ring buffer ringbuf.

 Return Valid pointer with size bytes of memory available; NULL, otherwise.

 void bpf_ringbuf_submit(void *data, u64 flags)

 Description

 Submit reserved ring buffer sample, pointed to by data. If BPF_RB_NO_WAKEUP

 is specified in flags, no notification of new data availability is sent. If

 BPF_RB_FORCE_WAKEUP is specified in flags, notification of new data avail?

 ability is sent unconditionally. Page 55/60

 Return Nothing. Always succeeds.

 void bpf_ringbuf_discard(void *data, u64 flags)

 Description

 Discard reserved ring buffer sample, pointed to by data. If

 BPF_RB_NO_WAKEUP is specified in flags, no notification of new data avail?

 ability is sent. If BPF_RB_FORCE_WAKEUP is specified in flags, notification

 of new data availability is sent unconditionally.

 Return Nothing. Always succeeds.

 u64 bpf_ringbuf_query(void *ringbuf, u64 flags)

 Description

 Query various characteristics of provided ring buffer. What exactly is

 queries is determined by flags:

 ? BPF_RB_AVAIL_DATA: Amount of data not yet consumed.

 ? BPF_RB_RING_SIZE: The size of ring buffer.

 ? BPF_RB_CONS_POS: Consumer position (can wrap around).

 ? BPF_RB_PROD_POS: Producer(s) position (can wrap around).

 Data returned is just a momentary snapshot of actual values and could be in?

 accurate, so this facility should be used to power heuristics and for re?

 porting, not to make 100% correct calculation.

 Return Requested value, or 0, if flags are not recognized.

 long bpf_csum_level(struct sk_buff *skb, u64 level)

 Description

 Change the skbs checksum level by one layer up or down, or reset it entirely

 to none in order to have the stack perform checksum validation. The level is

 applicable to the following protocols: TCP, UDP, GRE, SCTP, FCOE. For exam?

 ple, a decap of | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |

 through bpf_skb_adjust_room() helper with passing in

 BPF_F_ADJ_ROOM_NO_CSUM_RESET flag would require one call to bpf_csum_level()

 with BPF_CSUM_LEVEL_DEC since the UDP header is removed. Similarly, an encap

 of the latter into the former could be accompanied by a helper call to

 bpf_csum_level() with BPF_CSUM_LEVEL_INC if the skb is still intended to be

 processed in higher layers of the stack instead of just egressing at tc.

 There are three supported level settings at this time: Page 56/60

 ? BPF_CSUM_LEVEL_INC: Increases skb->csum_level for skbs with CHECKSUM_UN?

 NECESSARY.

 ? BPF_CSUM_LEVEL_DEC: Decreases skb->csum_level for skbs with CHECKSUM_UN?

 NECESSARY.

 ? BPF_CSUM_LEVEL_RESET: Resets skb->csum_level to 0 and sets CHECKSUM_NONE

 to force checksum validation by the stack.

 ? BPF_CSUM_LEVEL_QUERY: No-op, returns the current skb->csum_level.

 Return 0 on success, or a negative error in case of failure. In the case of

 BPF_CSUM_LEVEL_QUERY, the current skb->csum_level is returned or the error

 code -EACCES in case the skb is not subject to CHECKSUM_UNNECESSARY.

 struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)

 Description

 Dynamically cast a sk pointer to a tcp6_sock pointer.

 Return sk if casting is valid, or NULL otherwise.

 struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)

 Description

 Dynamically cast a sk pointer to a tcp_sock pointer.

 Return sk if casting is valid, or NULL otherwise.

 struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)

 Description

 Dynamically cast a sk pointer to a tcp_timewait_sock pointer.

 Return sk if casting is valid, or NULL otherwise.

 struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)

 Description

 Dynamically cast a sk pointer to a tcp_request_sock pointer.

 Return sk if casting is valid, or NULL otherwise.

 struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)

 Description

 Dynamically cast a sk pointer to a udp6_sock pointer.

 Return sk if casting is valid, or NULL otherwise.

 long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)

 Description

 Return a user or a kernel stack in bpf program provided buffer. To achieve Page 57/60

 this, the helper needs task, which is a valid pointer to struct task_struct.

 To store the stacktrace, the bpf program provides buf with a nonnegative

 size.

 The last argument, flags, holds the number of stack frames to skip (from 0

 to 255), masked with BPF_F_SKIP_FIELD_MASK. The next bits can be used to set

 the following flags:

 BPF_F_USER_STACK

 Collect a user space stack instead of a kernel stack.

 BPF_F_USER_BUILD_ID

 Collect buildid+offset instead of ips for user stack, only valid if

 BPF_F_USER_STACK is also specified.

 bpf_get_task_stack() can collect up to PERF_MAX_STACK_DEPTH both kernel and

 user frames, subject to sufficient large buffer size. Note that this limit

 can be controlled with the sysctl program, and that it should be manually

 increased in order to profile long user stacks (such as stacks for Java pro?

 grams). To do so, use:

 # sysctl kernel.perf_event_max_stack=<new value>

 Return A non-negative value equal to or less than size on success, or a negative

 error in case of failure.

EXAMPLES

 Example usage for most of the eBPF helpers listed in this manual page are available within

 the Linux kernel sources, at the following locations:

 ? samples/bpf/

 ? tools/testing/selftests/bpf/

LICENSE

 eBPF programs can have an associated license, passed along with the bytecode instructions

 to the kernel when the programs are loaded. The format for that string is identical to the

 one in use for kernel modules (Dual licenses, such as "Dual BSD/GPL", may be used). Some

 helper functions are only accessible to programs that are compatible with the GNU Privacy

 License (GPL).

 In order to use such helpers, the eBPF program must be loaded with the correct license

 string passed (via attr) to the bpf() system call, and this generally translates into the

 C source code of the program containing a line similar to the following: Page 58/60

 char ____license[] __attribute__((section("license"), used)) = "GPL";

IMPLEMENTATION

 This manual page is an effort to document the existing eBPF helper functions. But as of

 this writing, the BPF sub-system is under heavy development. New eBPF program or map types

 are added, along with new helper functions. Some helpers are occasionally made available

 for additional program types. So in spite of the efforts of the community, this page might

 not be up-to-date. If you want to check by yourself what helper functions exist in your

 kernel, or what types of programs they can support, here are some files among the kernel

 tree that you may be interested in:

 ? include/uapi/linux/bpf.h is the main BPF header. It contains the full list of all helper

 functions, as well as many other BPF definitions including most of the flags, structs or

 constants used by the helpers.

 ? net/core/filter.c contains the definition of most network-related helper functions, and

 the list of program types from which they can be used.

 ? kernel/trace/bpf_trace.c is the equivalent for most tracing program-related helpers.

 ? kernel/bpf/verifier.c contains the functions used to check that valid types of eBPF maps

 are used with a given helper function.

 ? kernel/bpf/ directory contains other files in which additional helpers are defined (for

 cgroups, sockmaps, etc.).

 ? The bpftool utility can be used to probe the availability of helper functions on the

 system (as well as supported program and map types, and a number of other parameters).

 To do so, run bpftool feature probe (see bpftool-feature(8) for details). Add the un?

 privileged keyword to list features available to unprivileged users.

 Compatibility between helper functions and program types can generally be found in the

 files where helper functions are defined. Look for the struct bpf_func_proto objects and

 for functions returning them: these functions contain a list of helpers that a given pro?

 gram type can call. Note that the default: label of the switch ... case used to filter

 helpers can call other functions, themselves allowing access to additional helpers. The

 requirement for GPL license is also in those struct bpf_func_proto.

 Compatibility between helper functions and map types can be found in the

 check_map_func_compatibility() function in file kernel/bpf/verifier.c.

 Helper functions that invalidate the checks on data and data_end pointers for network pro?

 cessing are listed in function bpf_helper_changes_pkt_data() in file net/core/filter.c. Page 59/60

SEE ALSO

 bpf(2), bpftool(8), cgroups(7), ip(8), perf_event_open(2), sendmsg(2), socket(7),

 tc-bpf(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

 BPF-HELPERS(7)

Page 60/60

