
Rocky Enterprise Linux 9.2 Manual Pages on command 'bootparam.7'

$ man bootparam.7

BOOTPARAM(7) Linux Programmer's Manual BOOTPARAM(7)

NAME

 bootparam - introduction to boot time parameters of the Linux kernel

DESCRIPTION

 The Linux kernel accepts certain 'command-line options' or 'boot time parameters' at the

 moment it is started. In general, this is used to supply the kernel with information

 about hardware parameters that the kernel would not be able to determine on its own, or to

 avoid/override the values that the kernel would otherwise detect.

 When the kernel is booted directly by the BIOS, you have no opportunity to specify any pa?

 rameters. So, in order to take advantage of this possibility you have to use a boot

 loader that is able to pass parameters, such as GRUB.

 The argument list

 The kernel command line is parsed into a list of strings (boot arguments) separated by

 spaces. Most of the boot arguments have the form:

 name[=value_1][,value_2]...[,value_10]

 where 'name' is a unique keyword that is used to identify what part of the kernel the as?

 sociated values (if any) are to be given to. Note the limit of 10 is real, as the present

 code handles only 10 comma separated parameters per keyword. (However, you can reuse the

 same keyword with up to an additional 10 parameters in unusually complicated situations,

 assuming the setup function supports it.)

 Most of the sorting is coded in the kernel source file init/main.c. First, the kernel

 checks to see if the argument is any of the special arguments 'root=', 'nfsroot=', 'nfsad?

 drs=', 'ro', 'rw', 'debug' or 'init'. The meaning of these special arguments is described Page 1/11

 below.

 Then it walks a list of setup functions to see if the specified argument string (such as

 'foo') has been associated with a setup function ('foo_setup()') for a particular device

 or part of the kernel. If you passed the kernel the line foo=3,4,5,6 then the kernel

 would search the bootsetups array to see if 'foo' was registered. If it was, then it

 would call the setup function associated with 'foo' (foo_setup()) and hand it the argu?

 ments 3, 4, 5, and 6 as given on the kernel command line.

 Anything of the form 'foo=bar' that is not accepted as a setup function as described above

 is then interpreted as an environment variable to be set. A (useless?) example would be

 to use 'TERM=vt100' as a boot argument.

 Any remaining arguments that were not picked up by the kernel and were not interpreted as

 environment variables are then passed onto PID 1, which is usually the init(1) program.

 The most common argument that is passed to the init process is the word 'single' which in?

 structs it to boot the computer in single user mode, and not launch all the usual daemons.

 Check the manual page for the version of init(1) installed on your system to see what ar?

 guments it accepts.

 General non-device-specific boot arguments

 'init=...'

 This sets the initial command to be executed by the kernel. If this is not set, or

 cannot be found, the kernel will try /sbin/init, then /etc/init, then /bin/init,

 then /bin/sh and panic if all of this fails.

 'nfsaddrs=...'

 This sets the NFS boot address to the given string. This boot address is used in

 case of a net boot.

 'nfsroot=...'

 This sets the NFS root name to the given string. If this string does not begin

 with '/' or ',' or a digit, then it is prefixed by '/tftpboot/'. This root name is

 used in case of a net boot.

 'root=...'

 This argument tells the kernel what device is to be used as the root filesystem

 while booting. The default of this setting is determined at compile time, and usu?

 ally is the value of the root device of the system that the kernel was built on.

 To override this value, and select the second floppy drive as the root device, one Page 2/11

 would use 'root=/dev/fd1'.

 The root device can be specified symbolically or numerically. A symbolic specifi?

 cation has the form /dev/XXYN, where XX designates the device type (e.g., 'hd' for

 ST-506 compatible hard disk, with Y in 'a'?'d'; 'sd' for SCSI compatible disk, with

 Y in 'a'?'e'), Y the driver letter or number, and N the number (in decimal) of the

 partition on this device.

 Note that this has nothing to do with the designation of these devices on your

 filesystem. The '/dev/' part is purely conventional.

 The more awkward and less portable numeric specification of the above possible root

 devices in major/minor format is also accepted. (For example, /dev/sda3 is major

 8, minor 3, so you could use 'root=0x803' as an alternative.)

 'rootdelay='

 This parameter sets the delay (in seconds) to pause before attempting to mount the

 root filesystem.

 'rootflags=...'

 This parameter sets the mount option string for the root filesystem (see also

 fstab(5)).

 'rootfstype=...'

 The 'rootfstype' option tells the kernel to mount the root filesystem as if it

 where of the type specified. This can be useful (for example) to mount an ext3

 filesystem as ext2 and then remove the journal in the root filesystem, in fact re?

 verting its format from ext3 to ext2 without the need to boot the box from alter?

 nate media.

 'ro' and 'rw'

 The 'ro' option tells the kernel to mount the root filesystem as 'read-only' so

 that filesystem consistency check programs (fsck) can do their work on a quiescent

 filesystem. No processes can write to files on the filesystem in question until it

 is 'remounted' as read/write capable, for example, by 'mount -w -n -o remount /'.

 (See also mount(8).)

 The 'rw' option tells the kernel to mount the root filesystem read/write. This is

 the default.

 'resume=...'

 This tells the kernel the location of the suspend-to-disk data that you want the Page 3/11

 machine to resume from after hibernation. Usually, it is the same as your swap

 partition or file. Example:

 resume=/dev/hda2

 'reserve=...'

 This is used to protect I/O port regions from probes. The form of the command is:

 reserve=iobase,extent[,iobase,extent]...

 In some machines it may be necessary to prevent device drivers from checking for

 devices (auto-probing) in a specific region. This may be because of hardware that

 reacts badly to the probing, or hardware that would be mistakenly identified, or

 merely hardware you don't want the kernel to initialize.

 The reserve boot-time argument specifies an I/O port region that shouldn't be

 probed. A device driver will not probe a reserved region, unless another boot ar?

 gument explicitly specifies that it do so.

 For example, the boot line

 reserve=0x300,32 blah=0x300

 keeps all device drivers except the driver for 'blah' from probing 0x300-0x31f.

 'panic=N'

 By default, the kernel will not reboot after a panic, but this option will cause a

 kernel reboot after N seconds (if N is greater than zero). This panic timeout can

 also be set by

 echo N > /proc/sys/kernel/panic

 'reboot=[warm|cold][,[bios|hard]]'

 Since Linux 2.0.22, a reboot is by default a cold reboot. One asks for the old de?

 fault with 'reboot=warm'. (A cold reboot may be required to reset certain hard?

 ware, but might destroy not yet written data in a disk cache. A warm reboot may be

 faster.) By default, a reboot is hard, by asking the keyboard controller to pulse

 the reset line low, but there is at least one type of motherboard where that

 doesn't work. The option 'reboot=bios' will instead jump through the BIOS.

 'nosmp' and 'maxcpus=N'

 (Only when __SMP__ is defined.) A command-line option of 'nosmp' or 'maxcpus=0'

 will disable SMP activation entirely; an option 'maxcpus=N' limits the maximum num?

 ber of CPUs activated in SMP mode to N.

 Boot arguments for use by kernel developers Page 4/11

 'debug'

 Kernel messages are handed off to a daemon (e.g., klogd(8) or similar) so that they

 may be logged to disk. Messages with a priority above console_loglevel are also

 printed on the console. (For a discussion of log levels, see syslog(2).) By de?

 fault, console_loglevel is set to log messages at levels higher than KERN_DEBUG.

 This boot argument will cause the kernel to also print messages logged at level

 KERN_DEBUG. The console loglevel can also be set on a booted system via the

 /proc/sys/kernel/printk file (described in syslog(2)), the syslog(2) SYSLOG_AC?

 TION_CONSOLE_LEVEL operation, or dmesg(8).

 'profile=N'

 It is possible to enable a kernel profiling function, if one wishes to find out

 where the kernel is spending its CPU cycles. Profiling is enabled by setting the

 variable prof_shift to a nonzero value. This is done either by specifying CON?

 FIG_PROFILE at compile time, or by giving the 'profile=' option. Now the value

 that prof_shift gets will be N, when given, or CONFIG_PROFILE_SHIFT, when that is

 given, or 2, the default. The significance of this variable is that it gives the

 granularity of the profiling: each clock tick, if the system was executing kernel

 code, a counter is incremented:

 profile[address >> prof_shift]++;

 The raw profiling information can be read from /proc/profile. Probably you'll want

 to use a tool such as readprofile.c to digest it. Writing to /proc/profile will

 clear the counters.

 Boot arguments for ramdisk use

 (Only if the kernel was compiled with CONFIG_BLK_DEV_RAM.) In general it is a bad idea to

 use a ramdisk under Linux?the system will use available memory more efficiently itself.

 But while booting, it is often useful to load the floppy contents into a ramdisk. One

 might also have a system in which first some modules (for filesystem or hardware) must be

 loaded before the main disk can be accessed.

 In Linux 1.3.48, ramdisk handling was changed drastically. Earlier, the memory was

 allocated statically, and there was a 'ramdisk=N' parameter to tell its size.

 (This could also be set in the kernel image at compile time.) These days ram disks

 use the buffer cache, and grow dynamically. For a lot of information on the cur?

 rent ramdisk setup, see the kernel source file Documentation/blockdev/ramdisk.txt Page 5/11

 (Documentation/ramdisk.txt in older kernels).

 There are four parameters, two boolean and two integral.

 'load_ramdisk=N'

 If N=1, do load a ramdisk. If N=0, do not load a ramdisk. (This is the default.)

 'prompt_ramdisk=N'

 If N=1, do prompt for insertion of the floppy. (This is the default.) If N=0, do

 not prompt. (Thus, this parameter is never needed.)

 'ramdisk_size=N' or (obsolete) 'ramdisk=N'

 Set the maximal size of the ramdisk(s) to N kB. The default is 4096 (4 MB).

 'ramdisk_start=N'

 Sets the starting block number (the offset on the floppy where the ramdisk starts)

 to N. This is needed in case the ramdisk follows a kernel image.

 'noinitrd'

 (Only if the kernel was compiled with CONFIG_BLK_DEV_RAM and CONFIG_BLK_DEV_INI?

 TRD.) These days it is possible to compile the kernel to use initrd. When this

 feature is enabled, the boot process will load the kernel and an initial ramdisk;

 then the kernel converts initrd into a "normal" ramdisk, which is mounted read-

 write as root device; then /linuxrc is executed; afterward the "real" root filesys?

 tem is mounted, and the initrd filesystem is moved over to /initrd; finally the

 usual boot sequence (e.g., invocation of /sbin/init) is performed.

 For a detailed description of the initrd feature, see the kernel source file Docu?

 mentation/admin-guide/initrd.rst (or Documentation/initrd.txt before Linux 4.10).

 The 'noinitrd' option tells the kernel that although it was compiled for operation

 with initrd, it should not go through the above steps, but leave the initrd data

 under /dev/initrd. (This device can be used only once: the data is freed as soon

 as the last process that used it has closed /dev/initrd.)

 Boot arguments for SCSI devices

 General notation for this section:

 iobase -- the first I/O port that the SCSI host occupies. These are specified in hexadec?

 imal notation, and usually lie in the range from 0x200 to 0x3ff.

 irq -- the hardware interrupt that the card is configured to use. Valid values will be

 dependent on the card in question, but will usually be 5, 7, 9, 10, 11, 12, and 15. The

 other values are usually used for common peripherals like IDE hard disks, floppies, serial Page 6/11

 ports, and so on.

 scsi-id -- the ID that the host adapter uses to identify itself on the SCSI bus. Only

 some host adapters allow you to change this value, as most have it permanently specified

 internally. The usual default value is 7, but the Seagate and Future Domain TMC-950

 boards use 6.

 parity -- whether the SCSI host adapter expects the attached devices to supply a parity

 value with all information exchanges. Specifying a one indicates parity checking is en?

 abled, and a zero disables parity checking. Again, not all adapters will support selec?

 tion of parity behavior as a boot argument.

 'max_scsi_luns=...'

 A SCSI device can have a number of 'subdevices' contained within itself. The most

 common example is one of the new SCSI CD-ROMs that handle more than one disk at a

 time. Each CD is addressed as a 'Logical Unit Number' (LUN) of that particular de?

 vice. But most devices, such as hard disks, tape drives and such are only one de?

 vice, and will be assigned to LUN zero.

 Some poorly designed SCSI devices cannot handle being probed for LUNs not equal to

 zero. Therefore, if the compile-time flag CONFIG_SCSI_MULTI_LUN is not set, newer

 kernels will by default probe only LUN zero.

 To specify the number of probed LUNs at boot, one enters 'max_scsi_luns=n' as a

 boot arg, where n is a number between one and eight. To avoid problems as de?

 scribed above, one would use n=1 to avoid upsetting such broken devices.

 SCSI tape configuration

 Some boot time configuration of the SCSI tape driver can be achieved by using the

 following:

 st=buf_size[,write_threshold[,max_bufs]]

 The first two numbers are specified in units of kB. The default buf_size is 32k B,

 and the maximum size that can be specified is a ridiculous 16384 kB. The

 write_threshold is the value at which the buffer is committed to tape, with a de?

 fault value of 30 kB. The maximum number of buffers varies with the number of

 drives detected, and has a default of two. An example usage would be:

 st=32,30,2

 Full details can be found in the file Documentation/scsi/st.txt (or driv?

 ers/scsi/README.st for older kernels) in the Linux kernel source. Page 7/11

 Hard disks

 IDE Disk/CD-ROM Driver Parameters

 The IDE driver accepts a number of parameters, which range from disk geometry spec?

 ifications, to support for broken controller chips. Drive-specific options are

 specified by using 'hdX=' with X in 'a'?'h'.

 Non-drive-specific options are specified with the prefix 'hd='. Note that using a

 drive-specific prefix for a non-drive-specific option will still work, and the op?

 tion will just be applied as expected.

 Also note that 'hd=' can be used to refer to the next unspecified drive in the (a,

 ..., h) sequence. For the following discussions, the 'hd=' option will be cited

 for brevity. See the file Documentation/ide/ide.txt (or Documentation/ide.txt in

 older kernels, or drivers/block/README.ide in ancient kernels) in the Linux kernel

 source for more details.

 The 'hd=cyls,heads,sects[,wpcom[,irq]]' options

 These options are used to specify the physical geometry of the disk. Only the

 first three values are required. The cylinder/head/sectors values will be those

 used by fdisk. The write precompensation value is ignored for IDE disks. The IRQ

 value specified will be the IRQ used for the interface that the drive resides on,

 and is not really a drive-specific parameter.

 The 'hd=serialize' option

 The dual IDE interface CMD-640 chip is broken as designed such that when drives on

 the secondary interface are used at the same time as drives on the primary inter?

 face, it will corrupt your data. Using this option tells the driver to make sure

 that both interfaces are never used at the same time.

 The 'hd=noprobe' option

 Do not probe for this drive. For example,

 hdb=noprobe hdb=1166,7,17

 would disable the probe, but still specify the drive geometry so that it would be

 registered as a valid block device, and hence usable.

 The 'hd=nowerr' option

 Some drives apparently have the WRERR_STAT bit stuck on permanently. This enables

 a work-around for these broken devices.

 The 'hd=cdrom' option Page 8/11

 This tells the IDE driver that there is an ATAPI compatible CD-ROM attached in

 place of a normal IDE hard disk. In most cases the CD-ROM is identified automati?

 cally, but if it isn't then this may help.

 Standard ST-506 Disk Driver Options ('hd=')

 The standard disk driver can accept geometry arguments for the disks similar to the

 IDE driver. Note however that it expects only three values (C/H/S); any more or

 any less and it will silently ignore you. Also, it accepts only 'hd=' as an argu?

 ment, that is, 'hda=' and so on are not valid here. The format is as follows:

 hd=cyls,heads,sects

 If there are two disks installed, the above is repeated with the geometry parame?

 ters of the second disk.

 Ethernet devices

 Different drivers make use of different parameters, but they all at least share having an

 IRQ, an I/O port base value, and a name. In its most generic form, it looks something

 like this:

 ether=irq,iobase[,param_1[,...param_8]],name

 The first nonnumeric argument is taken as the name. The param_n values (if applicable)

 usually have different meanings for each different card/driver. Typical param_n values

 are used to specify things like shared memory address, interface selection, DMA channel

 and the like.

 The most common use of this parameter is to force probing for a second ethercard, as the

 default is to probe only for one. This can be accomplished with a simple:

 ether=0,0,eth1

 Note that the values of zero for the IRQ and I/O base in the above example tell the

 driver(s) to autoprobe.

 The Ethernet-HowTo has extensive documentation on using multiple cards and on the

 card/driver-specific implementation of the param_n values where used. Interested readers

 should refer to the section in that document on their particular card.

 The floppy disk driver

 There are many floppy driver options, and they are all listed in Documentation/block?

 dev/floppy.txt (or Documentation/floppy.txt in older kernels, or drivers/block/README.fd

 for ancient kernels) in the Linux kernel source. See that file for the details.

 The sound driver Page 9/11

 The sound driver can also accept boot arguments to override the compiled-in values. This

 is not recommended, as it is rather complex. It is described in the Linux kernel source

 file Documentation/sound/oss/README.OSS (drivers/sound/Readme.linux in older kernel ver?

 sions). It accepts a boot argument of the form:

 sound=device1[,device2[,device3...[,device10]]]

 where each deviceN value is of the following format 0xTaaaId and the bytes are used as

 follows:

 T - device type: 1=FM, 2=SB, 3=PAS, 4=GUS, 5=MPU401, 6=SB16, 7=SB16-MPU401

 aaa - I/O address in hex.

 I - interrupt line in hex (i.e., 10=a, 11=b, ...)

 d - DMA channel.

 As you can see, it gets pretty messy, and you are better off to compile in your own per?

 sonal values as recommended. Using a boot argument of 'sound=0' will disable the sound

 driver entirely.

 The line printer driver

 'lp='

 Syntax:

 lp=0

 lp=auto

 lp=reset

 lp=port[,port...]

 You can tell the printer driver what ports to use and what ports not to use. The

 latter comes in handy if you don't want the printer driver to claim all available

 parallel ports, so that other drivers (e.g., PLIP, PPA) can use them instead.

 The format of the argument is multiple port names. For example, lp=none,parport0

 would use the first parallel port for lp1, and disable lp0. To disable the printer

 driver entirely, one can use lp=0.

SEE ALSO

 klogd(8), mount(8)

 For up-to-date information, see the kernel source file Documentation/admin-guide/kernel-

 parameters.txt.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the Page 10/11

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 BOOTPARAM(7)

Page 11/11

