
Rocky Enterprise Linux 9.2 Manual Pages on command 'bind.2'

$ man bind.2

BIND(2) Linux Programmer's Manual BIND(2)

NAME

 bind - bind a name to a socket

SYNOPSIS

 #include <sys/types.h> /* See NOTES */

 #include <sys/socket.h>

 int bind(int sockfd, const struct sockaddr *addr,

 socklen_t addrlen);

DESCRIPTION

 When a socket is created with socket(2), it exists in a name space (address family) but

 has no address assigned to it. bind() assigns the address specified by addr to the socket

 referred to by the file descriptor sockfd. addrlen specifies the size, in bytes, of the

 address structure pointed to by addr. Traditionally, this operation is called ?assigning

 a name to a socket?.

 It is normally necessary to assign a local address using bind() before a SOCK_STREAM

 socket may receive connections (see accept(2)).

 The rules used in name binding vary between address families. Consult the manual entries

 in Section 7 for detailed information. For AF_INET, see ip(7); for AF_INET6, see ipv6(7);

 for AF_UNIX, see unix(7); for AF_APPLETALK, see ddp(7); for AF_PACKET, see packet(7); for

 AF_X25, see x25(7); and for AF_NETLINK, see netlink(7).

 The actual structure passed for the addr argument will depend on the address family. The

 sockaddr structure is defined as something like:

 struct sockaddr { Page 1/4

 sa_family_t sa_family;

 char sa_data[14];

 }

 The only purpose of this structure is to cast the structure pointer passed in addr in or?

 der to avoid compiler warnings. See EXAMPLES below.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES The address is protected, and the user is not the superuser.

 EADDRINUSE

 The given address is already in use.

 EADDRINUSE

 (Internet domain sockets) The port number was specified as zero in the socket ad?

 dress structure, but, upon attempting to bind to an ephemeral port, it was deter?

 mined that all port numbers in the ephemeral port range are currently in use. See

 the discussion of /proc/sys/net/ipv4/ip_local_port_range ip(7).

 EBADF sockfd is not a valid file descriptor.

 EINVAL The socket is already bound to an address.

 EINVAL addrlen is wrong, or addr is not a valid address for this socket's domain.

 ENOTSOCK

 The file descriptor sockfd does not refer to a socket.

 The following errors are specific to UNIX domain (AF_UNIX) sockets:

 EACCES Search permission is denied on a component of the path prefix. (See also path_res?

 olution(7).)

 EADDRNOTAVAIL

 A nonexistent interface was requested or the requested address was not local.

 EFAULT addr points outside the user's accessible address space.

 ELOOP Too many symbolic links were encountered in resolving addr.

 ENAMETOOLONG

 addr is too long.

 ENOENT A component in the directory prefix of the socket pathname does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR Page 2/4

 A component of the path prefix is not a directory.

 EROFS The socket inode would reside on a read-only filesystem.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD (bind() first appeared in 4.2BSD).

NOTES

 POSIX.1 does not require the inclusion of <sys/types.h>, and this header file is not re?

 quired on Linux. However, some historical (BSD) implementations required this header

 file, and portable applications are probably wise to include it.

 For background on the socklen_t type, see accept(2).

BUGS

 The transparent proxy options are not described.

EXAMPLES

 An example of the use of bind() with Internet domain sockets can be found in getad?

 drinfo(3).

 The following example shows how to bind a stream socket in the UNIX (AF_UNIX) domain, and

 accept connections:

 #include <sys/socket.h>

 #include <sys/un.h>

 #include <stdlib.h>

 #include <stdio.h>

 #include <string.h>

 #define MY_SOCK_PATH "/somepath"

 #define LISTEN_BACKLOG 50

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 int

 main(int argc, char *argv[])

 {

 int sfd, cfd;

 struct sockaddr_un my_addr, peer_addr;

 socklen_t peer_addr_size;

 sfd = socket(AF_UNIX, SOCK_STREAM, 0);

 if (sfd == -1) Page 3/4

 handle_error("socket");

 memset(&my_addr, 0, sizeof(my_addr));

 /* Clear structure */

 my_addr.sun_family = AF_UNIX;

 strncpy(my_addr.sun_path, MY_SOCK_PATH,

 sizeof(my_addr.sun_path) - 1);

 if (bind(sfd, (struct sockaddr *) &my_addr,

 sizeof(my_addr)) == -1)

 handle_error("bind");

 if (listen(sfd, LISTEN_BACKLOG) == -1)

 handle_error("listen");

 /* Now we can accept incoming connections one

 at a time using accept(2) */

 peer_addr_size = sizeof(peer_addr);

 cfd = accept(sfd, (struct sockaddr *) &peer_addr,

 &peer_addr_size);

 if (cfd == -1)

 handle_error("accept");

 /* Code to deal with incoming connection(s)... */

 /* When no longer required, the socket pathname, MY_SOCK_PATH

 should be deleted using unlink(2) or remove(3) */

 }

SEE ALSO

 accept(2), connect(2), getsockname(2), listen(2), socket(2), getaddrinfo(3), getifad?

 drs(3), ip(7), ipv6(7), path_resolution(7), socket(7), unix(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 BIND(2)

Page 4/4

