
Rocky Enterprise Linux 9.2 Manual Pages on command 'bc.1'

$ man bc.1

bc(1) General Commands Manual bc(1)

NAME

 bc - An arbitrary precision calculator language

SYNTAX

 bc [-hlwsqv] [long-options] [file ...]

DESCRIPTION

 bc is a language that supports arbitrary precision numbers with interactive execution of

 statements. There are some similarities in the syntax to the C programming language. A

 standard math library is available by command line option. If requested, the math library

 is defined before processing any files. bc starts by processing code from all the files

 listed on the command line in the order listed. After all files have been processed, bc

 reads from the standard input. All code is executed as it is read. (If a file contains a

 command to halt the processor, bc will never read from the standard input.)

 This version of bc contains several extensions beyond traditional bc implementations and

 the POSIX draft standard. Command line options can cause these extensions to print a

 warning or to be rejected. This document describes the language accepted by this proces?

 sor. Extensions will be identified as such.

 OPTIONS

 -h, --help

 Print the usage and exit.

 -i, --interactive

 Force interactive mode.

 -l, --mathlib Page 1/18

 Define the standard math library.

 -w, --warn

 Give warnings for extensions to POSIX bc.

 -s, --standard

 Process exactly the POSIX bc language.

 -q, --quiet

 Do not print the normal GNU bc welcome.

 -v, --version

 Print the version number and copyright and quit.

 NUMBERS

 The most basic element in bc is the number. Numbers are arbitrary precision numbers.

 This precision is both in the integer part and the fractional part. All numbers are rep?

 resented internally in decimal and all computation is done in decimal. (This version

 truncates results from divide and multiply operations.) There are two attributes of num?

 bers, the length and the scale. The length is the total number of decimal digits used by

 bc to represent a number and the scale is the total number of decimal digits after the

 decimal point. For example:

 .000001 has a length of 6 and scale of 6.

 1935.000 has a length of 7 and a scale of 3.

 VARIABLES

 Numbers are stored in two types of variables, simple variables and arrays. Both simple

 variables and array variables are named. Names begin with a letter followed by any number

 of letters, digits and underscores. All letters must be lower case. (Full alpha-numeric

 names are an extension. In POSIX bc all names are a single lower case letter.) The type

 of variable is clear by the context because all array variable names will be followed by

 brackets ([]).

 There are four special variables, scale, ibase, obase, and last. scale defines how some

 operations use digits after the decimal point. The default value of scale is 0. ibase

 and obase define the conversion base for input and output numbers. The default for both

 input and output is base 10. last (an extension) is a variable that has the value of the

 last printed number. These will be discussed in further detail where appropriate. All of

 these variables may have values assigned to them as well as used in expressions.

 COMMENTS Page 2/18

 Comments in bc start with the characters /* and end with the characters */. Comments may

 start anywhere and appear as a single space in the input. (This causes comments to de?

 limit other input items. For example, a comment can not be found in the middle of a vari?

 able name.) Comments include any newlines (end of line) between the start and the end of

 the comment.

 To support the use of scripts for bc, a single line comment has been added as an exten?

 sion. A single line comment starts at a # character and continues to the next end of the

 line. The end of line character is not part of the comment and is processed normally.

 EXPRESSIONS

 The numbers are manipulated by expressions and statements. Since the language was de?

 signed to be interactive, statements and expressions are executed as soon as possible.

 There is no "main" program. Instead, code is executed as it is encountered. (Functions,

 discussed in detail later, are defined when encountered.)

 A simple expression is just a constant. bc converts constants into internal decimal num?

 bers using the current input base, specified by the variable ibase. (There is an exception

 in functions.) The legal values of ibase are 2 through 36. (Bases greater than 16 are an

 extension.) Assigning a value outside this range to ibase will result in a value of 2 or

 36. Input numbers may contain the characters 0?9 and A?Z. (Note: They must be capitals.

 Lower case letters are variable names.) Single digit numbers always have the value of the

 digit regardless of the value of ibase. (i.e. A = 10.) For multi-digit numbers, bc

 changes all input digits greater or equal to ibase to the value of ibase-1. This makes

 the number ZZZ always be the largest 3 digit number of the input base.

 Full expressions are similar to many other high level languages. Since there is only one

 kind of number, there are no rules for mixing types. Instead, there are rules on the

 scale of expressions. Every expression has a scale. This is derived from the scale of

 original numbers, the operation performed and in many cases, the value of the variable

 scale. Legal values of the variable scale are 0 to the maximum number representable by a C

 integer.

 In the following descriptions of legal expressions, "expr" refers to a complete expression

 and "var" refers to a simple or an array variable. A simple variable is just a

 name

 and an array variable is specified as

 name[expr] Page 3/18

 Unless specifically mentioned the scale of the result is the maximum scale of the expres?

 sions involved.

 - expr The result is the negation of the expression.

 ++ var The variable is incremented by one and the new value is the result of the expres?

 sion.

 -- var The variable is decremented by one and the new value is the result of the expres?

 sion.

 var ++

 The result of the expression is the value of the variable and then the variable is

 incremented by one.

 var -- The result of the expression is the value of the variable and then the variable is

 decremented by one.

 expr + expr

 The result of the expression is the sum of the two expressions.

 expr - expr

 The result of the expression is the difference of the two expressions.

 expr * expr

 The result of the expression is the product of the two expressions.

 expr / expr

 The result of the expression is the quotient of the two expressions. The scale of

 the result is the value of the variable scale.

 expr % expr

 The result of the expression is the "remainder" and it is computed in the following

 way. To compute a%b, first a/b is computed to scale digits. That result is used

 to compute a-(a/b)*b to the scale of the maximum of scale+scale(b) and scale(a).

 If scale is set to zero and both expressions are integers this expression is the

 integer remainder function.

 expr ^ expr

 The result of the expression is the value of the first raised to the second. The

 second expression must be an integer. (If the second expression is not an integer,

 a warning is generated and the expression is truncated to get an integer value.)

 The scale of the result is scale if the exponent is negative. If the exponent is

 positive the scale of the result is the minimum of the scale of the first expres? Page 4/18

 sion times the value of the exponent and the maximum of scale and the scale of the

 first expression. (e.g. scale(a^b) = min(scale(a)*b, max(scale, scale(a))).) It

 should be noted that expr^0 will always return the value of 1.

 (expr)

 This alters the standard precedence to force the evaluation of the expression.

 var = expr

 The variable is assigned the value of the expression.

 var <op>= expr

 This is equivalent to "var = var <op> expr" with the exception that the "var" part

 is evaluated only once. This can make a difference if "var" is an array.

 Relational expressions are a special kind of expression that always evaluate to 0 or 1, 0

 if the relation is false and 1 if the relation is true. These may appear in any legal ex?

 pression. (POSIX bc requires that relational expressions are used only in if, while, and

 for statements and that only one relational test may be done in them.) The relational op?

 erators are

 expr1 < expr2

 The result is 1 if expr1 is strictly less than expr2.

 expr1 <= expr2

 The result is 1 if expr1 is less than or equal to expr2.

 expr1 > expr2

 The result is 1 if expr1 is strictly greater than expr2.

 expr1 >= expr2

 The result is 1 if expr1 is greater than or equal to expr2.

 expr1 == expr2

 The result is 1 if expr1 is equal to expr2.

 expr1 != expr2

 The result is 1 if expr1 is not equal to expr2.

 Boolean operations are also legal. (POSIX bc does NOT have boolean operations). The re?

 sult of all boolean operations are 0 and 1 (for false and true) as in relational expres?

 sions. The boolean operators are:

 !expr The result is 1 if expr is 0.

 expr && expr

 The result is 1 if both expressions are non-zero. Page 5/18

 expr || expr

 The result is 1 if either expression is non-zero.

 The expression precedence is as follows: (lowest to highest)

 || operator, left associative

 && operator, left associative

 ! operator, nonassociative

 Relational operators, left associative

 Assignment operator, right associative

 + and - operators, left associative

 *, / and % operators, left associative

 ^ operator, right associative

 unary - operator, nonassociative

 ++ and -- operators, nonassociative

 This precedence was chosen so that POSIX compliant bc programs will run correctly. This

 will cause the use of the relational and logical operators to have some unusual behavior

 when used with assignment expressions. Consider the expression:

 a = 3 < 5

 Most C programmers would assume this would assign the result of "3 < 5" (the value 1) to

 the variable "a". What this does in bc is assign the value 3 to the variable "a" and then

 compare 3 to 5. It is best to use parenthesis when using relational and logical operators

 with the assignment operators.

 There are a few more special expressions that are provided in bc. These have to do with

 user defined functions and standard functions. They all appear as "name(parameters)".

 See the section on functions for user defined functions. The standard functions are:

 length (expression)

 The value of the length function is the number of significant digits in the expres?

 sion.

 read ()

 The read function (an extension) will read a number from the standard input, re?

 gardless of where the function occurs. Beware, this can cause problems with the

 mixing of data and program in the standard input. The best use for this function

 is in a previously written program that needs input from the user, but never allows

 program code to be input from the user. The value of the read function is the num? Page 6/18

 ber read from the standard input using the current value of the variable ibase for

 the conversion base.

 scale (expression)

 The value of the scale function is the number of digits after the decimal point in

 the expression.

 sqrt (expression)

 The value of the sqrt function is the square root of the expression. If the ex?

 pression is negative, a run time error is generated.

 STATEMENTS

 Statements (as in most algebraic languages) provide the sequencing of expression evalua?

 tion. In bc statements are executed "as soon as possible." Execution happens when a new?

 line in encountered and there is one or more complete statements. Due to this immediate

 execution, newlines are very important in bc. In fact, both a semicolon and a newline are

 used as statement separators. An improperly placed newline will cause a syntax error.

 Because newlines are statement separators, it is possible to hide a newline by using the

 backslash character. The sequence "\<nl>", where <nl> is the newline appears to bc as

 whitespace instead of a newline. A statement list is a series of statements separated by

 semicolons and newlines. The following is a list of bc statements and what they do:

 (Things enclosed in brackets ([]) are optional parts of the statement.)

 expression

 This statement does one of two things. If the expression starts with "<variable>

 <assignment> ...", it is considered to be an assignment statement. If the expres?

 sion is not an assignment statement, the expression is evaluated and printed to the

 output. After the number is printed, a newline is printed. For example, "a=1" is

 an assignment statement and "(a=1)" is an expression that has an embedded assign?

 ment. All numbers that are printed are printed in the base specified by the vari?

 able obase. The legal values for obase are 2 through BC_BASE_MAX. (See the sec?

 tion LIMITS.) For bases 2 through 16, the usual method of writing numbers is used.

 For bases greater than 16, bc uses a multi-character digit method of printing the

 numbers where each higher base digit is printed as a base 10 number. The multi-

 character digits are separated by spaces. Each digit contains the number of char?

 acters required to represent the base ten value of "obase-1". Since numbers are of

 arbitrary precision, some numbers may not be printable on a single output line. Page 7/18

 These long numbers will be split across lines using the "\" as the last character

 on a line. The maximum number of characters printed per line is 70. Due to the

 interactive nature of bc, printing a number causes the side effect of assigning the

 printed value to the special variable last. This allows the user to recover the

 last value printed without having to retype the expression that printed the number.

 Assigning to last is legal and will overwrite the last printed value with the as?

 signed value. The newly assigned value will remain until the next number is

 printed or another value is assigned to last. (Some installations may allow the

 use of a single period (.) which is not part of a number as a short hand notation

 for for last.)

 string The string is printed to the output. Strings start with a double quote character

 and contain all characters until the next double quote character. All characters

 are take literally, including any newline. No newline character is printed after

 the string.

 print list

 The print statement (an extension) provides another method of output. The "list"

 is a list of strings and expressions separated by commas. Each string or expres?

 sion is printed in the order of the list. No terminating newline is printed. Ex?

 pressions are evaluated and their value is printed and assigned to the variable

 last. Strings in the print statement are printed to the output and may contain

 special characters. Special characters start with the backslash character (\).

 The special characters recognized by bc are "a" (alert or bell), "b" (backspace),

 "f" (form feed), "n" (newline), "r" (carriage return), "q" (double quote), "t"

 (tab), and "\" (backslash). Any other character following the backslash will be

 ignored.

 { statement_list }

 This is the compound statement. It allows multiple statements to be grouped to?

 gether for execution.

 if (expression) statement1 [else statement2]

 The if statement evaluates the expression and executes statement1 or statement2 de?

 pending on the value of the expression. If the expression is non-zero, statement1

 is executed. If statement2 is present and the value of the expression is 0, then

 statement2 is executed. (The else clause is an extension.) Page 8/18

 while (expression) statement

 The while statement will execute the statement while the expression is non-zero.

 It evaluates the expression before each execution of the statement. Termination

 of the loop is caused by a zero expression value or the execution of a break state?

 ment.

 for ([expression1] ; [expression2] ; [expression3]) statement

 The for statement controls repeated execution of the statement. Expression1 is

 evaluated before the loop. Expression2 is evaluated before each execution of the

 statement. If it is non-zero, the statement is evaluated. If it is zero, the loop

 is terminated. After each execution of the statement, expression3 is evaluated be?

 fore the reevaluation of expression2. If expression1 or expression3 are missing,

 nothing is evaluated at the point they would be evaluated. If expression2 is miss?

 ing, it is the same as substituting the value 1 for expression2. (The optional ex?

 pressions are an extension. POSIX bc requires all three expressions.) The follow?

 ing is equivalent code for the for statement:

 expression1;

 while (expression2) {

 statement;

 expression3;

 }

 break This statement causes a forced exit of the most recent enclosing while statement or

 for statement.

 continue

 The continue statement (an extension) causes the most recent enclosing for state?

 ment to start the next iteration.

 halt The halt statement (an extension) is an executed statement that causes the bc pro?

 cessor to quit only when it is executed. For example, "if (0 == 1) halt" will not

 cause bc to terminate because the halt is not executed.

 return Return the value 0 from a function. (See the section on functions.)

 return (expression)

 Return the value of the expression from a function. (See the section on func?

 tions.) As an extension, the parenthesis are not required.

 PSEUDO STATEMENTS Page 9/18

 These statements are not statements in the traditional sense. They are not executed

 statements. Their function is performed at "compile" time.

 limits Print the local limits enforced by the local version of bc. This is an extension.

 quit When the quit statement is read, the bc processor is terminated, regardless of

 where the quit statement is found. For example, "if (0 == 1) quit" will cause bc

 to terminate.

 warranty

 Print a longer warranty notice. This is an extension.

 FUNCTIONS

 Functions provide a method of defining a computation that can be executed later. Func?

 tions in bc always compute a value and return it to the caller. Function definitions are

 "dynamic" in the sense that a function is undefined until a definition is encountered in

 the input. That definition is then used until another definition function for the same

 name is encountered. The new definition then replaces the older definition. A function

 is defined as follows:

 define name (parameters) { newline

 auto_list statement_list }

 A function call is just an expression of the form "name(parameters)".

 Parameters are numbers or arrays (an extension). In the function definition, zero or more

 parameters are defined by listing their names separated by commas. All parameters are

 call by value parameters. Arrays are specified in the parameter definition by the nota?

 tion "name[]". In the function call, actual parameters are full expressions for number

 parameters. The same notation is used for passing arrays as for defining array parame?

 ters. The named array is passed by value to the function. Since function definitions are

 dynamic, parameter numbers and types are checked when a function is called. Any mismatch

 in number or types of parameters will cause a runtime error. A runtime error will also

 occur for the call to an undefined function.

 The auto_list is an optional list of variables that are for "local" use. The syntax of

 the auto list (if present) is "auto name, ... ;". (The semicolon is optional.) Each name

 is the name of an auto variable. Arrays may be specified by using the same notation as

 used in parameters. These variables have their values pushed onto a stack at the start of

 the function. The variables are then initialized to zero and used throughout the execu?

 tion of the function. At function exit, these variables are popped so that the original Page 10/18

 value (at the time of the function call) of these variables are restored. The parameters

 are really auto variables that are initialized to a value provided in the function call.

 Auto variables are different than traditional local variables because if function A calls

 function B, B may access function A's auto variables by just using the same name, unless

 function B has called them auto variables. Due to the fact that auto variables and param?

 eters are pushed onto a stack, bc supports recursive functions.

 The function body is a list of bc statements. Again, statements are separated by semi?

 colons or newlines. Return statements cause the termination of a function and the return

 of a value. There are two versions of the return statement. The first form, "return",

 returns the value 0 to the calling expression. The second form, "return (expression)",

 computes the value of the expression and returns that value to the calling expression.

 There is an implied "return (0)" at the end of every function. This allows a function to

 terminate and return 0 without an explicit return statement.

 Functions also change the usage of the variable ibase. All constants in the function body

 will be converted using the value of ibase at the time of the function call. Changes of

 ibase will be ignored during the execution of the function except for the standard func?

 tion read, which will always use the current value of ibase for conversion of numbers.

 Several extensions have been added to functions. First, the format of the definition has

 been slightly relaxed. The standard requires the opening brace be on the same line as the

 define keyword and all other parts must be on following lines. This version of bc will

 allow any number of newlines before and after the opening brace of the function. For ex?

 ample, the following definitions are legal.

 define d (n) { return (2*n); }

 define d (n)

 { return (2*n); }

 Functions may be defined as void. A void function returns no value and thus may not be

 used in any place that needs a value. A void function does not produce any output when

 called by itself on an input line. The key word void is placed between the key word de?

 fine and the function name. For example, consider the following session.

 define py (y) { print "--->", y, "<---", "\n"; }

 define void px (x) { print "--->", x, "<---", "\n"; }

 py(1)

 --->1<--- Page 11/18

 0

 px(1)

 --->1<---

 Since py is not a void function, the call of py(1) prints the desired output and then

 prints a second line that is the value of the function. Since the value of a function

 that is not given an explicit return statement is zero, the zero is printed. For px(1),

 no zero is printed because the function is a void function.

 Also, call by variable for arrays was added. To declare a call by variable array, the

 declaration of the array parameter in the function definition looks like "*name[]". The

 call to the function remains the same as call by value arrays.

 MATH LIBRARY

 If bc is invoked with the -l option, a math library is preloaded and the default scale is

 set to 20. The math functions will calculate their results to the scale set at the time

 of their call. The math library defines the following functions:

 s (x) The sine of x, x is in radians.

 c (x) The cosine of x, x is in radians.

 a (x) The arctangent of x, arctangent returns radians.

 l (x) The natural logarithm of x.

 e (x) The exponential function of raising e to the value x.

 j (n,x)

 The Bessel function of integer order n of x.

 EXAMPLES

 In /bin/sh, the following will assign the value of "pi" to the shell variable pi.

 pi=$(echo "scale=10; 4*a(1)" | bc -l)

 The following is the definition of the exponential function used in the math library.

 This function is written in POSIX bc.

 scale = 20

 /* Uses the fact that e^x = (e^(x/2))^2

 When x is small enough, we use the series:

 e^x = 1 + x + x^2/2! + x^3/3! + ...

 */

 define e(x) {

 auto a, d, e, f, i, m, v, z Page 12/18

 /* Check the sign of x. */

 if (x<0) {

 m = 1

 x = -x

 }

 /* Precondition x. */

 z = scale;

 scale = 4 + z + .44*x;

 while (x > 1) {

 f += 1;

 x /= 2;

 }

 /* Initialize the variables. */

 v = 1+x

 a = x

 d = 1

 for (i=2; 1; i++) {

 e = (a *= x) / (d *= i)

 if (e == 0) {

 if (f>0) while (f--) v = v*v;

 scale = z

 if (m) return (1/v);

 return (v/1);

 }

 v += e

 }

 }

 The following is code that uses the extended features of bc to implement a simple program

 for calculating checkbook balances. This program is best kept in a file so that it can be

 used many times without having to retype it at every use.

 scale=2

 print "\nCheck book program!\n"

 print " Remember, deposits are negative transactions.\n" Page 13/18

 print " Exit by a 0 transaction.\n\n"

 print "Initial balance? "; bal = read()

 bal /= 1

 print "\n"

 while (1) {

 "current balance = "; bal

 "transaction? "; trans = read()

 if (trans == 0) break;

 bal -= trans

 bal /= 1

 }

 quit

 The following is the definition of the recursive factorial function.

 define f (x) {

 if (x <= 1) return (1);

 return (f(x-1) * x);

 }

 READLINE AND LIBEDIT OPTIONS

 GNU bc can be compiled (via a configure option) to use the GNU readline input editor li?

 brary or the BSD libedit library. This allows the user to do editing of lines before

 sending them to bc. It also allows for a history of previous lines typed. When this op?

 tion is selected, bc has one more special variable. This special variable, history is the

 number of lines of history retained. For readline, a value of -1 means that an unlimited

 number of history lines are retained. Setting the value of history to a positive number

 restricts the number of history lines to the number given. The value of 0 disables the

 history feature. The default value is 100. For more information, read the user manuals

 for the GNU readline, history and BSD libedit libraries. One can not enable both readline

 and libedit at the same time.

 DIFFERENCES

 This version of bc was implemented from the POSIX P1003.2/D11 draft and contains several

 differences and extensions relative to the draft and traditional implementations. It is

 not implemented in the traditional way using dc(1). This version is a single process

 which parses and runs a byte code translation of the program. There is an "undocumented" Page 14/18

 option (-c) that causes the program to output the byte code to the standard output instead

 of running it. It was mainly used for debugging the parser and preparing the math li?

 brary.

 A major source of differences is extensions, where a feature is extended to add more func?

 tionality and additions, where new features are added. The following is the list of dif?

 ferences and extensions.

 LANG environment

 This version does not conform to the POSIX standard in the processing of the LANG

 environment variable and all environment variables starting with LC_.

 names Traditional and POSIX bc have single letter names for functions, variables and ar?

 rays. They have been extended to be multi-character names that start with a letter

 and may contain letters, numbers and the underscore character.

 Strings

 Strings are not allowed to contain NUL characters. POSIX says all characters must

 be included in strings.

 last POSIX bc does not have a last variable. Some implementations of bc use the period

 (.) in a similar way.

 comparisons

 POSIX bc allows comparisons only in the if statement, the while statement, and the

 second expression of the for statement. Also, only one relational operation is al?

 lowed in each of those statements.

 if statement, else clause

 POSIX bc does not have an else clause.

 for statement

 POSIX bc requires all expressions to be present in the for statement.

 &&, ||, !

 POSIX bc does not have the logical operators.

 read function

 POSIX bc does not have a read function.

 print statement

 POSIX bc does not have a print statement.

 continue statement

 POSIX bc does not have a continue statement. Page 15/18

 return statement

 POSIX bc requires parentheses around the return expression.

 array parameters

 POSIX bc does not (currently) support array parameters in full. The POSIX grammar

 allows for arrays in function definitions, but does not provide a method to specify

 an array as an actual parameter. (This is most likely an oversight in the gram?

 mar.) Traditional implementations of bc have only call by value array parameters.

 function format

 POSIX bc requires the opening brace on the same line as the define key word and the

 auto statement on the next line.

 =+, =-, =*, =/, =%, =^

 POSIX bc does not require these "old style" assignment operators to be defined.

 This version may allow these "old style" assignments. Use the limits statement to

 see if the installed version supports them. If it does support the "old style" as?

 signment operators, the statement "a =- 1" will decrement a by 1 instead of setting

 a to the value -1.

 spaces in numbers

 Other implementations of bc allow spaces in numbers. For example, "x=1 3" would

 assign the value 13 to the variable x. The same statement would cause a syntax er?

 ror in this version of bc.

 errors and execution

 This implementation varies from other implementations in terms of what code will be

 executed when syntax and other errors are found in the program. If a syntax error

 is found in a function definition, error recovery tries to find the beginning of a

 statement and continue to parse the function. Once a syntax error is found in the

 function, the function will not be callable and becomes undefined. Syntax errors

 in the interactive execution code will invalidate the current execution block. The

 execution block is terminated by an end of line that appears after a complete se?

 quence of statements. For example,

 a = 1

 b = 2

 has two execution blocks and

 { a = 1 Page 16/18

 b = 2 }

 has one execution block. Any runtime error will terminate the execution of the current

 execution block. A runtime warning will not terminate the current execution block.

 Interrupts

 During an interactive session, the SIGINT signal (usually generated by the control-

 C character from the terminal) will cause execution of the current execution block

 to be interrupted. It will display a "runtime" error indicating which function was

 interrupted. After all runtime structures have been cleaned up, a message will be

 printed to notify the user that bc is ready for more input. All previously defined

 functions remain defined and the value of all non-auto variables are the value at

 the point of interruption. All auto variables and function parameters are removed

 during the clean up process. During a non-interactive session, the SIGINT signal

 will terminate the entire run of bc.

 LIMITS

 The following are the limits currently in place for this bc processor. Some of them may

 have been changed by an installation. Use the limits statement to see the actual values.

 BC_BASE_MAX

 The maximum output base is currently set at 999. The maximum input base is 16.

 BC_DIM_MAX

 This is currently an arbitrary limit of 65535 as distributed. Your installation

 may be different.

 BC_SCALE_MAX

 The number of digits after the decimal point is limited to INT_MAX digits. Also,

 the number of digits before the decimal point is limited to INT_MAX digits.

 BC_STRING_MAX

 The limit on the number of characters in a string is INT_MAX characters.

 exponent

 The value of the exponent in the raise operation (^) is limited to LONG_MAX.

 variable names

 The current limit on the number of unique names is 32767 for each of simple vari?

 ables, arrays and functions.

ENVIRONMENT VARIABLES

 The following environment variables are processed by bc: Page 17/18

 POSIXLY_CORRECT

 This is the same as the -s option.

 BC_ENV_ARGS

 This is another mechanism to get arguments to bc. The format is the same as the

 command line arguments. These arguments are processed first, so any files listed

 in the environment arguments are processed before any command line argument files.

 This allows the user to set up "standard" options and files to be processed at ev?

 ery invocation of bc. The files in the environment variables would typically con?

 tain function definitions for functions the user wants defined every time bc is

 run.

 BC_LINE_LENGTH

 This should be an integer specifying the number of characters in an output line for

 numbers. This includes the backslash and newline characters for long numbers. As

 an extension, the value of zero disables the multi-line feature. Any other value

 of this variable that is less than 3 sets the line length to 70.

DIAGNOSTICS

 If any file on the command line can not be opened, bc will report that the file is un?

 available and terminate. Also, there are compile and run time diagnostics that should be

 self-explanatory.

BUGS

 Error recovery is not very good yet.

 Email bug reports to bug-bc@gnu.org. Be sure to include the word ``bc'' somewhere in the

 ``Subject:'' field.

AUTHOR

 Philip A. Nelson

 philnelson@acm.org

ACKNOWLEDGEMENTS

 The author would like to thank Steve Sommars (Steve.Sommars@att.com) for his extensive

 help in testing the implementation. Many great suggestions were given. This is a much

 better product due to his involvement.

GNU Project 2006-06-11 bc(1)

Page 18/18

